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Generalized Proportional Allocation Policies for
Robust Control of Dynamical Flow Networks

Gustav Nilsson and Giacomo Como

Abstract—We study a robust control problem for dynamical
flow networks. In the considered framework, traffic flows along
the links of a transportation network —modeled as a capacited
multigraph— and queues up at the nodes, whereby control
policies determine which incoming queues are to be allocated
service simultaneously, within some predetermined scheduling
constraints. We first prove fundamental performance limitations
on the system performance by showing that for a dynamical flow
network to be stabilizable by some control policy it is necessary
that the exogenous inflows belong to a certain stability region,
that is determined by the network topology, the link capacities,
and the scheduling constraints. Then, we introduce a family of
distributed controls, referred to as Generalized Proportional Al-
location (GPA) policies, and prove that they stabilize a dynamical
transportation network whenever the exogenous inflows belong
to such stability region. The proposed GPA control policies are
decentralized and fully scalable as they rely on local feedback
information only. Differently from previously studied maximally
stabilizing control strategies, the GPA control policies do not
require any global information about the network topology, the
exogenous inflows, or the routing, which makes them robust
to unpredicted network load variations and changes in the
link capacities or the routing decisions. Moreover, the proposed
GPA control policies also take into account the overhead time
while switching between services. Our theoretical results find
one application in the control of urban traffic networks with
signalized intersections, where vehicles have to queue up at
junctions and the traffic signal controls determine the green light
allocation to the different incoming lanes.

Index terms: Dynamical flow networks, transportation net-
works, robust control, distributed control, non-linear control,
traffic signal control.

I. INTRODUCTION

Dynamical flow networks have attracted significant research
interest, with applications including road traffic, data, produc-
tion, and biological networks [2]–[6]. Such network systems
tend to be of large scale, involve complex interactions between
different layers, and are potentially fragile to cascading failures
[7]–[9]. In order to deal with such complexity, the role of
structural properties such as monotonicity, contractivity, sepa-
rable Lyapunov functions, and convexity has proved critical in
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order to design scalable distributed control architectures with
provable performance and robustness guarantees [10]–[19].

In this paper, we study a robust control problem for dynam-
ical flow networks modeled as deterministic continuous-time
point-queue networks. In the considered framework, traffic
flows along the links of a capacited multigraph modeling the
transportation network, and queues up at the nodes, while
satisfying the mass conservation law. At each node, scheduling
control policies determine which incoming queues are to be
allocated service simultaneously. We study the problem in the
case where not all incoming queues at a node can receive
service simultaneously as there are scheduling constraints
modeled in terms of phases and the service allocation to such
different phases is determined by the controller.

This paper’s main contribution consists in the introduction
of a family of distributed controls, referred to as General-
ized Proportional Allocation (GPA) policies and in the proof
of their throughput optimality. Albeit relying only on local
feedback information on the queue lengths on the incoming
links to a node —which makes the GPA control policies
fully decentralized and scalable with the network size— and
requiring no global information on the network topology, nor
on the exogenous inflows, nor on the routing, we prove that
the proposed GPA control policies are maximally stabiliz-
ing. In particular, we show that they are able to stabilize
a dynamical flow network with given topology, scheduling
constraints, exogenous inflows, and routing, whenever any
controller can. These properties make the GPA control policies
robust to perturbations to the exogenous inflows and model
errors regarding the routing of the traffic. Recently, we have
proved its robustness to measurement offsets as well [20].

Apart from being a natural model for deterministic point-
queues, the dynamical flow network models studied in this
paper are also related to the fluid limit approximations of
stochastic queueing networks for which different service al-
location controllers have been studied, see, e.g., [21], [22]. In
particular, the BackPressure controller, first proposed in [21],
determines both the service allocation and the routing. While
this kind of control strategy can be applied in some scenarios,
like communication networks, there are other applications
where one cannot assume that it is the same controller that
both determines the service allocation and the routing. In this
paper, we focus on the problem where the routing is exogenous
and only the service allocation can be directly controlled.
For instance, in traffic signal control of urban transportation
networks, this means that the drivers determine their routes
themselves, while the only control action is how to allocate
green light at signalized junctions.

While the main contribution of this paper is a theoretical
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analysis of a novel distributed control policy for dynamical
flow networks, the presented mathematical abstraction can
be viewed as a simplified model for transportation networks
where the GPA controller controls the traffic signals. The large
body of literature on traffic signal control starts with early
works, e.g., [23] considering a centralized open-loop approach
to coordinate the cycles in the traffic signals, so that they allow
traffic on the main corridors in a city to progress smoothly,
sometimes referred to as “green-waves”. One early computer
implementation of an algorithm that computes an optimal
traffic signal control is TRANSYT [24], which computes a
static signal program. Later, other approaches to compute
the optimal offset in signal timing have been developed, for
example in [25]–[27]. By utilizing magnetic loop detectors to
detect vehicles, several solutions have been proposed on how
to retune the traffic signal programs depending on the current
state of the network. SCAT [28], SCOOT [29], UTOPIA [30]
are all examples of such solutions. While those retuning
strategies take several practical aspects into account, they do
not have any formal performance guarantees, such as stability
of the dynamical system or throughput optimality.

On the other hand, with the rapid development of new
sensors such as, e.g., cameras, it is now possible to control
traffic signals in real time. One recently proposed distributed
feedback solution for traffic signal control is the MaxPressure
controller, see [31]. In particular, the MaxPressure controller
is based on the same idea as BackPressure [21], namely
minimizing the drift of a separable Lyapunov function. How-
ever, differently from the BackPressure controller, the Max-
Pressure controller is only concerned with service allocation
and not with routing. In fact, in order to minimize the drift
of the Lyapunov function, the MaxPressure controller needs
information about the vehicles’ routing behaviors, something
that is often difficult to get an exact estimate of, although
estimation techniques have been proposed in, e.g., [32]. Under
the assumption that the turning ratios of each junction are
known, other feedback policies for traffic signals have been
proposed based, e.g., on model predictive control [33]–[35].
Also, the idea of utilizing the routing suggestions from the
BackPressure controller and variants thereof to control the
vehicles’ paths has been proposed in [36]–[38]. While the
aforementioned works assume that the routing is exogenous,
analysis of traffic controllers together with optimal route
choices has been done in [39], [40].

Control policies relying on information about the routing
may turn out to be less robust to perturbations. For example,
today many drivers use online route guidance, something that
makes it more likely that they will change their preferred
routes from a trip to another. In contrast, our proposed GPA
control policies do not require any information about the
routing, and still are —just like the MaxPressure-controller—
provably able to stabilize the dynamical flow network when-
ever any control strategy is able to do so. The particular
structure of the GPA control policies —i.e., using only local
feedback information on the queue lengths and not relying on
any global knowledge of the network structure, the exogenous
inflows or the routing— makes them easy to implement and
robust to demand variations and unpredicted changes in the

link capacities or the routing decisions. The intuition behind
such GPA controls is related to the idea of proportional fair-
ness, originally proposed for queueing networks, see, e.g., [22]
and [41]. Our proof of maximal stability relies on a Lyapunov-
LaSalle argument based on a particular separable Lyapunov
function. Differently from previously proposed proportional
allocation controllers, we also take into account the fact that
in many service allocation tasks, a fraction of the service
time can not be fully utilized when shifting between different
service modes. In transportation networks, this is known as
clearance time, and is the time when traffic signals are showing
yellow light [42], while in CPU-scheduling this time to shift
between different service allocations is referred to as a context
switch [43]. Given that the overhead time is fixed, the length of
the service cycle will vary. As we will show later in the paper,
by taking this switching time into account, our controller will
in some settings adjust the cycle length after the demand in the
same way as Webster’s formula [44] suggests. While this paper
focuses on the mathematical aspects of the GPA controller for
a simplified traffic flow model, i.e., a point queue model that
does not capture propagation delays and congestion effects,
simulation studies in [45], [46] of the GPA control policies
in a traffic micro-simulator have validated our theoretical
findings showing that by incorporating this overhead time in
the controller, and adjust the cycle lengths accordingly, gives a
better performance compared to standard proportional fairness
control. These simulation studies have also shown that since
the controller is decentralized, it can be employed in a city-
wide transportation network, and still do all the computations
in real-time.

The rest of this paper is organized as follows: The last
paragraph of this section is devoted to introducing some
notational conventions used throughout the paper. In Section II
we present the dynamical flow network model. In Section III,
we present a fundamental limit on how large exogenous
inflows a flow network can possibly handle and still keep it
stable. In Section V, we show simulations of the dynamics on
a small flow network, that also illustrate the controller’s ability
to adopt a new behavioral flow pattern, something that a static
controller is not able to. The paper is concluded by discussing
some ongoing and future research lines. Finally, the Appendix
reports proofs of all the technical lemmas in the paper.

Notation Let: R(+) denote the (non-negative) reals. For a
finite set A, let RA denote the set of vectors indexed by the
elements in A. For a vector a ∈ Rn, let diag(a) ∈ Rn×n be
a diagonal matrix with the components of a on its diagonal.
With 1 we denote a vector whose all elements equals one. The
positive and negative parts of a vector x are denoted by [x]+ =
max(x, 0) and [x]− = max(−x, 0), respectively, where max
and min are applied entry-wise. We use ‖x‖ to denote the
Euclidean norm of a vector x, unless otherwise specified. For
a subset A ⊂ Rn and x ∈ Rn, we let dist(x,A) denote the
shortest distance to the set, i.e., dist(x,A) = infa∈A ‖x− a‖.
For finitely many sets A1,A2 . . . ,An, Πn

k=1Ak denotes their
cartesian product set.
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II. DYNAMICAL FLOW NETWORK MODEL

In this section, we describe the dynamical flow network
model in detail and formulate the associated control problem.
The section is concluded with some examples illustrating the
introduced modeling concepts.

The topology of the flow network is described as a capacited
directed multigraph G = (V, E , c). Here, V and E denote the
finite sets of nodes and directed links, respectively, whereas
c in RE+ is a vector whose entries ci > 0 represent the flow
capacities of the different links i in E . We shall denote the
number of nodes by |V| = m and the number of directed links
by |E| = n. For simplicity, we may identify V = {v1, . . . , vm}
and E = {1, . . . , n}. Each link i in E is directed from its tail
node σi to its head node τi. We shall assume that σi 6= τi for
every link i in E , i.e., that G does not contain any self-loop. On
the other hand, letting G be a multigraph rather than simply a
graph allows for the possibility of parallel links between two
nodes, i.e., links with the same tail and head nodes. A length-l
walk in G is an l-tuple of links (e1, . . . , el) in E l such that
the tail node of the next link coincides with the head node
of the previous link, i.e., τeh−1

= σeh for every 1 ≤ h ≤ l.
A length-l path in G is a walk (e1, . . . , el) that does not pass
through the same node twice, i.e., such that v0 = σe1 and
vh = τeh for 1 ≤ h ≤ l satisfy vr 6= vs for 0 ≤ r < s ≤ l,
except possibly for v0 = vl, in which case the path is referred
to a cycle.

We identify the directed links i in E with cells. Traffic flows
from a cell i to cells j that are immediately downstream of i,
i.e., such that τi = σj . The traffic volume in and the outflow
from a cell i are denoted by xi and zi, respectively, and they
are both nonnegative quantities. Moreover, we assume that the
outflow zi from a cell i never exceeds the link flow capacity.
Such non-negativity and capacity constraints hence read

xi ≥ 0 , 0 ≤ zi ≤ ci , i ∈ E . (1)

Cells i in E may get an exogenous traffic inflow λi ≥ 0 from
outside the network. Traffic volumes, outflows, and exogenous
inflows are in general time-varying; when useful we shall
emphasize their time dependence by writing xi(t), zi(t), and
λi(t), respectively. The vectors of all cells’ traffic volumes,
outflows, and exogenous inflows are denoted by x, z, and λ,
respectively. We shall also use the compact notation X = RE+
for the state space of the network flow dynamics, and write

C = diag(c)

for the diagonal matrix of the cells’ flow capacities.
To model flow propagation through the network, we in-

troduce a routing matrix R in RE×E+ whose entries Rij are
all nonnegative and represent the fraction of the outflow
from cell i to a downstream cell j. Topological constraints
imply that Rij = 0 whenever τi 6= σj , i.e., if cell j is
not immediately downstream of cell i. On the other hand,
conservation of mass implies that

∑
j Rij ≤ 1 for every

cell i in E , a constraint that can be compactly rewritten as
R1 ≤ 1. If

∑
j Rij < 1 for a cell i, this means that the

fraction 1−
∑
j Rij > 0 of the outflow zi leaves the network

when flowing out from cell i. Otherwise, if
∑
j Rij = 1, this

means that no traffic flows out of the network directly from
cell i, so that all the outflow from cell i is distributed among
its immediately downstream cells.

A cell j is said to be reachable from a cell i through a
routing matrix R if i = j or there exists a path (e1, . . . , el)
such that e1 = i, el = j, and Π1≤h<lReh,eh+1

> 0. The pair
of an exogenous inflow vector λ and a routing matrix R is
said to be out-connected if for every cell i with λi > 0 there
exists a cell j that is reachable from i through R and such
that

∑
k∈E Rjk < 1. In the same manner, a pair (λ,R) is said

to be in-connected if for every cell j there exists some cell i
with λi > 0 such that j is reachable from i through R. The
routing matrix R is then referred to as out-connected if (λ,R)
is out-connected for every inflow vector λ in Rn+, i.e. if from
every cell i a cell j with

∑
k∈E Rjk < 1 is reachable. Finally,

a routing matrix R is in-connected if (λ,R) is in-connected
for every λ in Rn+ \ {0}, i.e, if every cell j is reachable from
every other cell i.

The traffic flow dynamics on a flow network with topology
G = (V, E , c) then reads

ẋi = λi +
∑
j∈E

Rjizj − zi , ∀i ∈ E . (2)

In addition to the non-negativity and capacity constraints (1),
the flow network is characterized by scheduling constraints
on which traffic can simultaneously flow from a cell i to an
immediately downstream one j through node k = τi = σj .
A cell is said to be served if traffic is allowed to flow out
from it. In order to describe the scheduling constraints, we
introduce the notion of phases as follows. For every node k
in V , let Ek = {i ∈ E | τi = k} be the set of incoming cells
and let nk = |Ek| be its cardinality. A local phase at node k
is then a subset Q ⊆ Ek of incoming cells that can be served
simultaneously. Let Pk be the set of feasible local phases and
pk = |Pk| be its cardinality. Such set of feasible local phases
at a node k can be represented in terms of a local phase matrix,
that is a binary nk × pk matrix

P (k) ∈ {0, 1}Ek×Pk

whose entries are defined as

P
(k)
ij =

{
1 if cell i ∈ Ek is served in phase j ∈ Pk,
0 if cell i ∈ Ek is not served in phase j ∈ Pk.

We then stack local phase matrices into a block-diagonal
global phase matrix

P =


P (v1)

P (v2)

. . .
P (vm)

 .
Without loss of generality, we assume throughout the paper
that every cell belongs to at least one phase j in P =⋃
k∈V Pk, i.e.,

∑
j∈P Pij ≥ 1 for every cell i, which we may

rewrite more compactly as P1 ≥ 1. Moreover, we shall refer
to phases as orthogonal if every cell i in Pk belongs to exactly
one local phase in Pk, i.e., if

∑
j∈P Pij = 1 for every cell i

in E , which we may rewrite more compactly as P1 = 1 .
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Remark 1: While this paper consider phases over the nodes,
our results apply for arbitrary partitions of the cell set E , i.e.,

E =
⋃
k∈V

Ek , Ek ∩ Eh = ∅ , ∀h 6= k ∈ V ,

where V is a finite set of cardinality m.

Depending on the application, the phases can correspond
to different kinds of actuators that can be activated simultane-
ously. For example, in traffic signal control of urban networks,
the phases can be seen as lanes that can receive green light
simultaneously in such a way that collisions are avoided.

From now on, we shall identify a flow network as the pair
(G, P ) of a topology G = (V, E , c) and a phase matrix P . To
determine which phase should be activated at each node, we
introduce the set of control signals

U =
∏
k∈V

Uk ,

defined as the Cartesian product of the sets of local control
signals

Uk =
{
u ∈ RPk

+ | 1>u ≤ 1
}
, k ∈ V .

The j-th entry uj of a control signal u in U represents the
fraction of time allocated to phase j. This definition of local
control set Uk captures the fact that the total fraction of time∑
i∈Ek ui allocated to all local phases p in Pk at each node k

in V must not exceed 1.
We shall allow for set-valued control signals that, at each

time t ≥ 0, determine a set W(t) ⊆ U of controls that can
be activated. The opportunity to allow for set-valued control
signals will become apparent in the following. Phase control
signals introduce constraints on the outflow vector z(t) at
time t that are generally more stringent than the flow capacity
ones. Specifically, we have that

u(t) ∈ W(t) , zi(t) ≤ ci
∑

j
Pijuj(t) , ∀i ∈ E . (3)

The inequality above states that the outflow from a given cell i
in E cannot exceed the capacity of cell i times the total fraction
of time allocated by the control u(t) inW(t) to all local phases
in Pτi containing cell i. While the above is an inequality, we
shall in fact assume that it holds true as an equality whenever
the traffic volume xi(i) is strictly positive. Using (1) and (3),
this additional constraint can be written as

xi(t)
(
ci
∑

j
Pijuj(t)− zi(t)

)
= 0, ∀i ∈ E . (4)

Observe that the dynamical flow network (1)–(4) is com-
pletely specified by the flow network (G, P ), the exogenous
inflow vector λ, the routing matrix R, and the control signal
(W(t))t≥0. In this paper, we are particularly interested in
investigating the case when the control setW(t) is determined
by the current state of the network, so that

W(t) = ω(x(t)) , t ≥ 0 ,

where the feedback control policy

ω : X 3 x 7→ ω(x) ⊆ U ,

v1 v2

v3v4
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Fig. 1. Part of a transportation network consisting of four junctions, each of
which corresponds to a node: the phases represent constraints on which lanes
that can receive green light simultaneously.

is defined as a map from the state space X to the class of
subsets of the control space U .

For convenience of the notation, we introduce

ζ(x) = CPυ , υ ∈ ω(x(t)) . (5)

With the feedback control policy, the network flow dynamics
(1)–(4) can then be compactly rewritten as

ẋ = λ− (I −R>)z , (6)

with the constraints

x ≥ 0 , 0 ≤ z ≤ ζ(x) , x>(ζ(x)− z) = 0 . (7)

Equations (5)–(7) model the network traffic flow dynamics as a
differential inclusion. We refer to a triple (x(t), u(t), z(t))t≥0

as a solution of the controlled traffic flow dynamics if x(t)
is an absolutely continuous function of t, u(t), and z(t) are
measurable functions of t, and (5)–(7) are satisfied.

In this paper, we shall not discuss issues of existence and
uniqueness of solutions of (5)–(7), as the presented results will
hold true for any solution (provided it exists and regardless
whether it is unique or not). The interested reader is referred to,
e.g., [47] where the existence and the uniqueness of a solution
of (5)–(7) are proved in the case when the control policy ω(x)
is single-valued and Lipschitz continuous with respect to x.

A. Examples

In the following example, we illustrate how the previously
presented model can be utilized as a simplified model for a
small transportation network:

Example 1: Consider a small part of a transportation net-
work, depicted in Fig. 1. The topology of this transportation
network can be modeled by a multigraph G = (V, E) where
each lane corresponds to a cell and each junction to a node, see
Fig. 2. To avoid collisions between vehicles, the local phase
matrix can be constructed as follows for node v1:

P (v1) =

0 1 1 0 0
1 0 0 1 0
0 0 0 0 1

> ,



5

v1 v2

v3v4

Fig. 2. A graph representation of the transportation network in Fig. 1,
consisting of four junctions. Here each node corresponds to one signalized
junction. The links correspond to lanes or cells where the vehicles queue up.
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Fig. 3. Example of a local set of phases for junction v1 in Example 1. In
this case, there are three different phases and those phases are orthogonal.

and in similar way for the other nodes. The phases are
orthogonal and depicted in Fig. 3.

The next two examples show two different control strategies
that fit into our framework.

Example 2 (MaxPressure-control):

ω(x) = argmax
ν∈U

ν>P>(I −R)x , x ∈ X . (8)

In the above, for each node k in V and for each local phase
p in Pk, we can interpret the quantity

s(k)
p (x) =

∑
i∈Ek

P
(k)
ip

xi −∑
j∈E

Rijxj

 (9)

as the pressure associated with phase p. Then, the MaxPressure
controller selects, for each node k in V , the local phase with
the maximum pressure. Observe that computing the pressure
of a local phase requires measuring the traffic volume on the
cells that belong to the local phase itself and on the links
immediately downstream, as well as knowledge of the routing
matrix.

Example 3 (GPA control with orthogonal phases): For the
special case where all the phases are orthogonal, i.e., the
phase matrix satisfies P1 = 1, we consider the Generalized
Proportional Allocation control defined as follows. For every

node k in V , fix a ξk > 0 and, for every local phase p in Pk
and state vector x in X , define

υ(k)
p (x) =

∑
i∈Ek P

(k)
ip xi

ξk +
∑
j∈Ek xj

. (10)

Then, stack the values υp(x) in a vector υ(x) in U and define
the GPA controller as the singleton

ω(x) = {υ(x)} . (11)

Observe that the map υ : X → U defined by (10) is Lipschitz
continuous, so that the aforementioned results from [47] can
be applied in this case to guarantee existence and uniqueness
of solutions of the closed-loop network flow dynamics (5)–(7).

This example also illustrates the need of specifying the flow
dynamics (5)–(7) through inequalities. Suppose that two cells
i and j belong to the same phase p in P and xi > 0. Then,
if xj = 0, ζj(x) will still be strictly positive, in spite of the
fact that cell j is empty. Hence, the outflow zj has to be such
that zj < ζj(x). In Section IV we shall study a more general
form of the GPA controller that applies to arbitrary (i.e., not
necessarily orthogonal) phase sets.

III. FUNDAMENTAL LIMITATIONS

In this section, we prove a fundamental limitation on the
maximal exogenous inflow that a flow network can handle,
independently from the control strategy. Specifically, we will
introduce a certain stability region and prove that it is impos-
sible for any control to stabilize the dynamical flow network
when the exogenous inflow is outside such stability region.

We start by introducing the following notion of stability for
a dynamical flow network, characterized as the property that
for every initial state the traffic volumes remain bounded.

Definition 1 (Stability of a dynamical flow network): Given
a flow network (G, P ), an exogenous inflow vector λ, a
routing matrix R, an initial state x(0) in X , and control signal
(W(t))t≥0, a solution of the dynamical flow network (1)–
(4) is stable if there exists a positive constant D such that
‖x(t)‖ ≤ D for every t ≥ 0.
The above definition coincides with the notion of Lagrange
stability in dynamical systems theory [48, Ch. III.4] and has
been often adopted in the theory of dynamical flow networks
[5], [7], [15], [16]. With respect to the stricter notions of
Lyapunov stability, it allows for studying a broader set of sce-
narios including, e.g., time-varying controllers and exogenous
inflows inducing trajectories that do not necessarily approach
an equilibrium.

We now proceed by introducing the set of feasible flows of
a flow network.

Definition 2: The set of feasible flows of a flow network
with topology G = (V, E , c) and phase matrix P is the set

Z =
{
z ∈ RE+ | 0 ≤ z ≤ CPu for some u ∈ U

}
.

We will now state a necessary condition for stability of a
dynamical flow network that is independent of the chosen con-
trol signal. First observe that, for a given constant exogenous
inflow λ and routing matrix R such that (λ,R) is in-connected,
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it is physically intuitive that a necessary condition for stability
of the dynamical flow network (1)–(4) with any control is
that the pair (λ,R) be out-connected. Indeed, if (λ,R) were
not out-connected, there would be constant positive exogenous
inflow λi in a cell i which cannot flow out of the network.
For simplicity of the presentation, we will work with the
somewhat stronger assumption that the routing matrix R is out-
connected. With this assumption R has spectral radius strictly
less than one, see, e.g., [49], which in turn implies that the
matrix I −R is invertible with nonnegative inverse

(I −R)−1 = I +R+R2 + . . . .

Proposition 1 (Necessary condition for stability): Consider
a flow network with topology G and phase matrix P and let Z
be its set of feasible flows. Let R be an out-connected routing
matrix and λ be a possibly time-varying exogenous inflow
vector. If for an initial state x(0) in RE+ and a control signal
(W(t))t≥0 the dynamical flow network (1)–(4) admits a stable
solution, then the average inflow vector λ̄(t) = 1

t

∫ t
0
λ(s)ds

satisfies

lim
t→+∞

dist
(
(I −R>)−1λ̄(t),Z

)
= 0 . (12)

In particular, if the exogenous inflow vector λ is constant, then
condition (12) simply reads

(I −R>)−1λ ∈ Z . (13)

Proof: For every t > 0 and initial state x(0), we have

x(t) = x(0) + tλ̄(t)− (I −R>)

∫ t

0

z(s)ds . (14)

Since R is out-connected, its spectral radius is less than one,
so the matrix (I − R>) is invertible. Multiplying both sides
of (14) by 1

t (I −R
>)−1 and rearranging terms yields

(I −R>)−1λ̄(t) = z̄(t) + ε(t) , (15)

where

z̄(t) =
1

t

∫ t

0

z(s)ds , ε(t) =
1

t
(I−R>)−1 (x(t)− x(0)) .

Since z(s) ∈ Z for 0 ≤ s ≤ t and Z is a convex set, it follows
that z̄(t) ∈ Z . Hence (15) implies that

dist
(
(I −R>)λ̄(t),Z

)
≤ ‖ε(t)‖ , t ≥ 0 . (16)

On the other hand, x(t) is a stable solution of the dynam-
ics (1)–(4), so x(t) remains bounded in t ≥ 0. This implies
that ‖ε(t)‖ converges to 0 as t grows large, so that (12) follows
from (16). In the special case of constant inflow vector λ, we
have (I −R>)−1λ̄(t) = λ, so that (12) reduces to (13).

The previous result provides a necessary condition for a
dynamical flow network to be stable, regardless of the chosen
control signal. It means that the flow networks stability region
for static inflows is naturally characterized by the set of
feasible flows:

Definition 3 (Stability region): Let R be an out-connected
routing matrix and λ be a static inflow vector. The pair (λ,R)
is said to belong to the stability region, if

a = (I −R>)−1λ ∈ int(Z) . (17)

In the case where the inflow vectors λ and the routing matrix
R are both constant and such that (I−R>)−1λ belongs to the
set of feasible flows Z , so that there exists some control vector
u in U such that (I −R>)−1λ < CPu, one could prove that
the dynamical flow network with the constant signal control
W(t) = {u} is stable. However, such static and centralized
solution would be highly unfeasible as it would require full
knowledge of the exogenous inflows λ and of the routing
matrix R (which are seldom constant in time and known in
advance), and would lack any robustness. Hence a feedback
solution, that requires as little information about the network
as possible, is strongly preferable. In the next section, we
shall introduce such a decentralized feedback solution and
prove that it is maximally stable, i.e., it is able to stabilize
the dynamical flow network whenever (I − R>)−1λ belongs
to the interior of the set of feasible flows Z .

IV. GENERALIZED PROPORTIONAL ALLOCATION
CONTROLS AND STABILITY

In this section we will construct a decentralized feedback
control policy that is able to stabilize the network whenever
the necessary condition in Proposition 1 is satisfied. The
considered control policy, which we refer to as Generalized
Proportional Allocation (GPA) control, determines the set
ω(x) through a convex optimization problem, namely

ω(x) = argmax
ν∈U

H(x, ν) , (18)

where

H(x, ν) =
∑
i∈E

xi log (CPν)i +
∑
k∈V

ξk log (1− 1>ν(k)) ,

(19)
In the equation above, for every node k in V , ν(k) denotes the
projection of the vector ν in U on the local control space Uk.
Moreover, ξ in RV+ is a vector of parameters, introduced
to capture the fact that in many applications it is seldom
possible to switch simultaneously between different phases,
without loosing some control action during the phase shift.
However, the fraction of time when no cell receives service
is decreasing with the traffic volume, something that well
captures the fact that in applications such as transportation
networks, one usually lets the traffic signal cycles be longer
when the demand is higher [42]. The objective (19) will also
allocate more service to queues that are longer. As we will see
later, the objective function in (19) will in certain cases have
simple explicit solutions. Later in this section we will show
that, while this objective function captures a set of desired
properties, it also allows us to prove stability of the dynamical
flow network.

The GPA control strategy has several benefits. First of all,
it is fully distributed: the control action at each node can be
computed separately and using local feedback only. This can
be seen by rewriting the expression in (19) as

H(x, ν) =∑
k∈V

(∑
i∈Ev

xi log (C(k)P (k)ν(k))i + ξk log (1− 1>ν(k))

)
(20)
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where, for every node k in V , C(k) the projection of C on
the set of cells Ek. By plugging (20) into (18) one finds that
the maximization in the righthand side of the latter can be
decoupled into m independent maximizations each over the
local control space associated to a node k in V:

ω(k)(x) =

argmax
ν∈Uk

∑
i∈Ev

xi log (C(k)P (k)ν(k))i + ξk log (1− 1>ν(k)) .

From the above, it is also apparent how the local control
ω(k)(x) depends only on the entries {xi}i∈Ek of the state vec-
tor x that correspond to incoming cells to node k. Moreover,
since the optimization problem is convex, it can be solved
efficiently for each node k in V .

Notice that, to compute the phase activation, the controller
does not require any information about the network topol-
ogy G, the routing matrix R or the exogenous inflow λ. These
facts make the controller robust to perturbations, but it also
makes it easier to deploy new controllers into the network,
since one does not have to retune the already deployed ones.

While obtaining an explicit solution to the problem (18)
may not be possible for general sets of phases, in the relevant
special case of orthogonal phases, one gets an explicit solution
which turns out to coincide with the one anticipated in
Example 3 as stated in the following result:

Lemma 1: If the phases are orthogonal, the GPA controller
ω(x) in (18) is a singleton as given by (10)–(11).
The proof of the lemma is given in Appendix A.

In particular, it follows from Lemma 1 and the considera-
tions done in Example 3 that in the case of orthogonal phases,
a solution of the dynamical flow network (5)–(7) with GPA
control exists and is unique.

For the general case of non-orthogonal phases, the opti-
mization problem (18) defining the GPA controller remains
a convex program, so that in particular ω(x) is a nonempty
compact convex subset of the control set U for every state
vector x ∈ X . In fact, for all state vectors x all of whose
entries xi are strictly positive the objective function H(x, ν)
in (18) is strictly concave so that ω(x) = {ν(x)} is a
singleton. Moreover, it can be shown that the map x 7→ ν(x) is
continuous on the positive orthant {x ∈ X : xi > 0, ∀i ∈ E}.

Remark 2: The continuity of the controller cannot be
extended to the boundary of the orthant and in fact, it is
not always the case that the GPA controller ω(x) remains a
singleton when some entries of the state vector x are equal to
0. This prevents us from applying the existence and uniqueness
results in [47], although we conjecture that a solution of
the dynamical flow network (5)–(7) with GPA control (18)
still exists and is unique even for non-orthogonal phases.
We emphasize once more that the main result of the paper,
Theorem 1 applies to any solution of the dynamical flow
network (5)–(7) with GPA control (18), provided such solution
exists and regardless of its uniqueness. In particular, if xi = 0
for a subset of cells, the objective function H(x, ν) in (18) is
not necessary strictly concave anymore, and the set ω(x) may
consist of more than one element, as we will illustrate later in
Example 5.

The next theorem states that the GPA controller is able to
stabilize the dynamical flow network:

Theorem 1: Consider a flow network with topology G and
phase matrix P and let Z be its region of feasible flows. Then,
for every constant exogenous inflow vector λ and routing
matrix R such that (λ,R) is both in- and out-connected and
is in the set of feasible flows, every solution x(t) of the
dynamical flow network (5)–(7) with GPA control (18) is
stable and satisfies

lim
t→+∞

dist(x(t),X ∗) ,

where

X ∗ =
{
x ∈ X | ζ(x) ≥ a , x>(ζ(x)− a) ≥ 0

}
. (21)

The proof of Theorem 1 is postponed to Section IV-B.

In the case when the phases are orthogonal, it is possible to
claim how large the aggregate traffic volumes in each phase
will be:

Corollary 1: Consider a flow network with topology G and
phase matrix P such that the phases are orthogonal. Let

ρp = max
i∈p

ai
Ci

, ∀p ∈ Pk , k ∈ V . (22)

be the critical utilization for each phase. Then, for every
constant exogenous inflow vector λ and routing matrix R
such that (λ,R) is both in- and out-connected and is in the
set of feasible flows, every solution x(t) of the dynamical
flow network (5)–(7) with GPA control (18) is such that the
aggregate traffic volume in each phase satisfies

lim
t→+∞

∑
i∈p

xi(t) = ξk
ρp

1−
∑
q ρq

, ∀p ∈ Pk, k ∈ V .

Proof: From Theorem 1 it follows that x(t) approaches
the set X ∗ as t grows large. Let x∗ be any point in X ∗. First,
notice that ζi(x∗) ≥ ai for every cell i in E . Moreover, since
the phases are assumed to be orthogonal, for each node k in
V and each phase p in P , it must then hold that υ(k)

p (x∗) ≥
maxi∈p

ai
Ci

.
On the other hand, it follows from the definition of X ∗ that

if υ(k)
p (x∗) > maxi∈p

ai
Ci

, then one would have
∑
i∈p x

∗
i = 0,

which is a contradiction since υ
(k)
p (0) = 0. Hence, it must

hold that υ(k)
p (x∗) = maxi∈p

ai
Ci

. By utilizing the explicit
expression (10), this can equivalently be written as∑

i∈p x
∗
i∑

j∈Ev x
∗
j + ξk

= ρp .

Let x̄p =
∑
i∈p x

∗
i for all p in Pk. Then the equation above

can be rewritten as

x̄p = ρp

∑
q∈Pk

x̄q + ξk

 ,

which is in turn equivalent to (22).
Remark 3: Corollary 1 describes the asymptotic behavior

of the total traffic volume in all cells for every phase. Hence,
it also implies an upper bound on the traffic volume at
equilibrium for each cell. Remarkably, the limit of the traffic
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Fig. 4. The state trajectories in Example 4 are plotted in the case λ = 0.5
and ξ = 1, for the initial states (x1(0), x2(0)) = (1.5, 1) (solid lines) and
(x1(0), x2(0)) = (0.5, 0.7) (dashed lines).

volume in all cells for every phase and the resulting upper
bound on the traffic volume at equilibrium is only dependent
on the exogenous inflows, the routing matrix, the phase matrix,
and the flow capacities and holds true irrespective of the initial
state x(0).

In the special case when every phase only consists of one
cell, i.e. P>1 = 1, the following corollary states that X ∗ is
a singleton, something already observed in a more specific
setting in [50].

Corollary 2: Consider a flow network with topology G and
phase matrix P such that P>1 = 1. Then, for every constant
exogenous inflow vector λ and routing matrix R such that
(λ,R) is both out-connected and in-connected and a ∈ int(Z),
every solution x(t) of the dynamical flow network (5)–(7) with
GPA control (18) converges to a unique point x∗ in X , such
that x∗i > 0 and ζi(x) = ai for all i in E .

Proof: This is a consequence of Corollary 1. For every
node k in V and phase p in Pk, the sum

∑
i∈p xi(t) consists

of a single addend. Hence x∗i > 0 for all x∗ in X ∗ and i in E ,
which combined with the fact that x>(ζ(x)− a) ≥ 0 implies
the result.

A. Examples

The following example shows that for a given set of
orthogonal phases, there can be more than one equilibrium
point. This justifies why only convergence to the set X ∗ can
be ensured in Theorem 1.

Example 4: Consider a network with one node and two cells,
E = {1, 2}, both directed towards the node. The network only
has one phase, which both cells belong to. Both of the cells
have exogenous inflow λ1 = λ2 = λ > 0 and c1 = c2 = 1.
Then, the dynamics is given by

ẋ1 = λ− z1

ẋ2 = λ− z2

where

0 ≤ z1 ≤ υ1(x) , x1(z1 − υ1(x)) = 0 ,

0 ≤ z2 ≤ υ1(x) , x2(z2 − υ1(x)) = 0 ,

υ1(x) =
x1 + x2

x1 + x2 + ξ
.

If x1(0) > x2(0), then limt→+∞ x1(t) > limt→+∞ x2(t).
On the other hand, if x1(0) < x2(0), limt→+∞ x1(t) <
limt→+∞ x2(t). The trajectories for the two different cases
are shown in Fig 4.

The next example illustrates that when the phases are non-
orthogonal, the control signal may be set valued:

Example 5: Consider a node k in V with three cells (indexed
{1, 2, 3}) heading into the node, all with unit capacity. Let the
phase matrix be

P (k) =

1 0
1 1
0 1

 .
The maximization problem in (18) can then be equivalently
written as

υ(k)(x) ∈ argmax
ν∈Uk

x1 log(ν1) + x2 log(ν1 + ν2)

+ x3 log(ν2) + ξk log(1− ν1 − ν2) .

The solution to the maximization problem is:
• If x1 = 0, x2 > 0, x3 = 0, then

0 ≤ υ1 ≤
x2

x2 + ξk
, υ2 =

x2

x2 + ξk
− υ1 .

• For all other cases,

υ1 =
x1(x1 + x2 + x3)

(x1 + x3)(x1 + x2 + x3 + ξk)
, υ2 =

x3

x1
υ1 .

Let us specifically study the case when x1 = x3 = 0. In this
case, the set ω(k)(x) is not a singleton anymore. Assume that
the cells have exogenous inflows, λ1, λ2 and λ3, respectively,
and no inflows from other upstream cells. In this case

υ1 + υ2 =
x2

x2 + ξk
.

If choosing υ1 < λ1 or υ3 < λ3, then ẋ1 > 0 or ẋ3 > 0,
and the traffic volumes will immediately become positive. Let
us for simplicity assume that υ1 = 0 and υ3 ≥ λ3, then
ẋ1 > 0 and after an infinitesimal small time x1 > 0. When
this happens, the control signal will be

υ1 =
x1 + x2

x1 + x2 + ξk
> λ1 ,

and x1 will immediately go back to zero again if x2 >
λ1ξk
1−λ1

is
large enough. Therefore trajectory x(t) can not be absolutely
continuous in this case. To get an absolutely continuous
trajectory x(t) it must hold that υ1 > λ1 and υ3 > λ3 when
x2 >

λ′ξk
1−λ′ where λ′ = max(λ1, λ3). Recall that υ1 > λ1 and

υ3 > λ3 will cause the actual outflow z1 < υ1 and z3 < υ3.

We conclude this section by showing how the GPA con-
troller recovers a well-known formula for computing the
optimal cycle length in a signalized road traffic junction:

Example 6: Consider a dynamical flow network consisting
of one node with two incoming cells E = {1, 2}. The
exogenous inflows to the cells are λ1 > 0, λ2 > 0 and their
capacities are c1 > 0 and c2 > 0. The node is equipped with
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V (x) = maxν∈U H̃(x, ν)

Lemma 2
∂V (x)
∂xi

= wi(x)

dV
dt = −W (x)

Lemma 3
W (x) ≥ 0

Lemma 4
W (x) ≥

∑
j∈J λ̃jχj

Lemma 5

χj ≥ 0

Lemma 2
V (x) ≥ 0

limt∈ΩJ ,t→+∞W (x(t)) = 0

Fig. 5. Scheme of the proof of Theorem 1 illustrating how the different
intermediate results contribute to it.

two phases, one for each lane. The dynamics is then described
by

ẋ1 = λ1 − c1
x1

x1 + x2 + ξk
,

ẋ2 = λ2 − c2
x2

x1 + x2 + ξk
.

The traffic volumes at equilibrium are

(x∗1, x
∗
2) =

(
ξkρ1

1− ρ1 − ρ2
,

ξkρ2

1− ρ1 − ρ2

)
,

where ρi = λi/ci. Observe that the necessary condition for
stability is ρ1 + ρ2 < 1. The fraction of the cycle that will be
allocated to phase shifts at the equilibrium is then given by

ξk
x∗1 + x∗2 + ξk

=
1

1 + ρ1
1−ρ1−ρ2 + ρ2

1−ρ1−ρ2
= 1− ρ1 − ρ2 .

Since the total cycle length will be inverse proportional to the
fraction allocated to phase shifts, we get that the cycle length
at equilibrium T (x∗) will be proportional to

T (x∗) ∝ 1

1− ρ1 − ρ2
.

One classical formula for computing the cycle length in a
static traffic signal control setting is Webster’s formula [44],
which suggests that that the cycle length should be

T (x∗) =
1.5L+ 5

1− λ1

c1
− λ2

c2

,

where L > 0 is the total loss time, i.e., the total time where
no phase is activated. Hence, for any ξk > 0, the GPA will
adjust the cycle length after the demand –without knowing
the demand or the lanes outflow capacity– in the same way as
Webster’s formula suggests.

B. Proof of Theorem 1

The proof of Theorem 1 is provided through a series of
intermediate results. How such intermediate results are related
to each other and contribute to the proof of the theorem is
shown in Fig. 5.

Overall, the proof of Theorem 1 relies on a LaSalle-
Lyapunov argument. For every node k in V , let

bk = 1− min
ν ∈ Uk :

C(k)P (k)ν ≥ a(k)

1>ν , (23)

and observe that the assumption a ∈ int(Z) implies that bk >
0. Then, define the scalar fields

H̃ : RE+ × U → R , V : RE+ → R ,

by

H̃(x, ν) =
∑
i∈E

xi log
(CPν)i
ai

+
∑
k∈V

ξk log
1− 1>ν(k)

bk
(24)

and, respectively,

V (x) = max
ν∈U

H̃(x, ν) . (25)

As we shall see, the proof of Theorem 1 relies on showing
that, when the generalized proportional allocation feedback
controller (10) is employed, the quantity V (x(t)) is non-
increasing in t along solutions of the network flow dynamics
(5)–(7) and strictly decreasing outside the set X ∗ defined
in (21). Let also w : RE+ → RE be the vector field defined by

wi(x) := log

(
ζi(x)

ai

)
, ∀i ∈ E . (26)

The following result gathers a few properties of the functions
above.

Lemma 2: Let ω(x) be the GPA controller defined in (18),
and let H(x, ν), V (x), and w(x) be defined as in (24), (25),
and (26), respectively. Then, for every state vector x in X and
control υ in ω(x),

V (x) = H̃(x, υ) ≥ 0 . (27)

Moreover, V (x) is absolutely continuous on X and

∂V (x)

∂xi
= wi(x) , (28)

for all i such that xi > 0.
Lemma 2 is proved in Appendix A.

A key difficulty in proving that V (x(t)) is nondecreasing
along solutions x(t) of the network flow dynamics (5)–(7)
consists in dealing with the time instants when some of the
entries xi(t) are equal to 0. To address this issue, it proves
convenient to introduce the following additional notation. For
a state vector x in X , define I(x) = I and J (x) = J as

I = {i ∈ E | xi = 0} , J = {j ∈ E | xj > 0} , (29)

and the vector λ̃(x) ∈ RJ+ , the matrix R̃(x) ∈ RJ×J+ , and
the scalar W (x) in R as

λ̃(x) := λJ + (R>)JI(I −R>II)−1λI , (30)

R̃>(x) := R>JJ + (R>)JI(I −R>II)−1(R>)IJ , (31)

and

W (x) := −w>J (x)
(
λ̃− (I − R̃>(x))ζJ (x)

)
, (32)
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respectively. The following result states a fundamental prop-
erty of W (x).

Lemma 3: For every state vector x in X , it holds true that

W (x) ≥ 0

with equality if and only if

ζJ (x) = aJ .

The proof of Lemma 3 is given in Appendix A.

Proof of Theorem 1: For a state vector x in X , let the
subsets of cells I(x) = I and J (x) = J be defined as in (29).
Let (x(t), z(t)) be a solution of the dynamics (6)–(7). Observe
that, within any open time interval (t−, t+) where no entry of
x(t) changes sign, so that the sets I = I(x(t)) and J =
J (x(t)) remain constant, one has that zJ = ζJ (x) and

0 = ẋI = λI + (R>)IJ zJ +R>IIzI − zI
so that the vector zI of outflows from the cells in I satisfies

zI = (I −R>II)−1(λI + (R>)IJ ζJ (x)) (33)

and the vector xJ of the states of the cells in J has time-
derivative

ẋJ = λJ +R>JJ ζJ (x) + (R>)JIzI

= λ̃(x)− (I − R̃>(x))ζJ (x) .
(34)

Now, let w : X → RE be the vector field defined by (26)
and V,W : X → R be the scalar fields defined by (25) and
(32), respectively. Then, for every solution (x(t), z(t)) of the
dynamics (6)–(7) and for every time instant t belonging to an
open interval where the sign of all entries of x(t) are constant,
Lemma 2 and (34) imply that

V̇ (x(t)) =
∑
j∈J

∂V

∂xj
(x(t))ẋj(t)

= w>J (x(t))
(
λ̃(x(t))− (I − R̃>(x(t)))ζJ (x(t))

)
= −W (x(t)) .

Since V (x(t)) is absolutely continuous as a function of t, it
follows that

V (x(t)) = V (x(0))−
∫ t

0

W (x(s))ds .

By rearranging terms in the identity above and using Lemma 2
one gets that∫ t

0

W (x(s))ds = V (x(0))− V (x(t)) ≤ V (x(0)) , (35)

for all t ≥ 0.
Now, it follows from Lemma 3 that

W (x(t)) ≥ 0 , t ≥ 0 . (36)

Hence V (x(t)) ≤ V (x(0)) for all t ≥ 0.
We will now show that x(t) will be bounded for all t ≥ 0.

Due to the assumption in (17), there exists a ν̃ in U such that
(CPν̃)i = ai(1 + εi) for some εi > 0.

V (x(0)) ≥ V (x(t)) = max
ν∈U

H̃(x, ν) ≥ H̃(x, ν̃)

=
∑
i∈E

xi log(1 + εi) +D =
∑
i∈E
|xi| log(1 + εi) +D ,

where

D =
∑
k∈V

ξk log
1− 1>ν̃(k)

bk
.

Hence x(t) will be bounded for all t ≥ 0.
For all J ⊆ E , let

ΩJ = int{t ≥ 0 | J (x(t)) = J } .

Now, inequality (36), combined with (35), implies that the
integral∫

ΩJ

W (x(s))ds ≤ lim
t→+∞

∫ t

0

W (x(s))ds ≤ V (x(0))

is finite for all J ⊆ E .
Since x(t) is bounded and W (x) is continuous, W (x(t)) is

uniformly continuous on ΩJ . This implies that

lim
t ∈ ΩJ
t→ +∞

W (x(t)) = 0 , (37)

for all J ⊆ E such that ΩJ has infinite measure. Then, it
follows from (37) and Lemma 3 that

lim
t ∈ ΩJ
t→ +∞

ζJ (x(t)) = aJ . (38)

On the other hand, one has that

λI = ((I −R>)a)I = (I − (R>)II)aI − (R>)IJ aJ . (39)

Using (33), (38), and (39), one gets that

ζI(x(t)) ≥ zI(t)
= (I −R>II)−1(λI + (R>)IJ ζJ (x))

t→∞−→
t∈ΩJ

(I −R>II)−1(λI + (R>)IJ aJ )

= aI .
(40)

Together, (38) and (40) imply that

lim inf
t ∈ ΩJ
t→ +∞

ζ(x(t)) ≥ a ,

so that, for every J ⊆ E such that ΩJ has infinite measure,

lim
t ∈ ΩJ
t→ +∞

dist (x(t),X ∗) = 0 .

The claim now follows from the fact that, on the one hand,
since x(t) is absolutely continuous,

R+ =
⋃
J⊂E

ΩJ ∪A

for some measure-0 subset of times A ⊆ R+, on the other
hand,

lim
t→+∞

µ(ΩJ ∩ [t,+∞)) = 0

for every J ⊆ E such that ΩJ has finite measure.
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TABLE I
THE NON-ZERO ENTRIES IN THE ROUTING MATRIX

Original values
v1 v2 v3 v4

R1,20 = 1 R6,15 = 1 R11,10 = 1 R16,5 = 1
R2,6 = 0.2 R8,3 = 0.7 R12,16 = 0.4 R18,13 = 0.5
R2,7 = 0.8 R8,4 = 0.3 R12,17 = 0.6 R18,14 = 0.5
R4,20 = 1 R9,15 = 1 R14,10 = 1 R19,5 = 1
R5,6 = 0.07 R10,3 = 0.245 R15,16 = 0.14 R20,13 = 0.175
R5,7 = 0.28 R10,20 = 0.105 R15,17 = 0.21 R20,14 = 0.175

New values (for cell 5, 10, 15, 20)
v1 v2 v3 v4

R5,6 = 0.1 R10,3 = 0.35 R15,16 = 0.2 R20,13 = 0.25
R5,7 = 0.4 R10,20 = 0.15 R15,17 = 0.3 R20,14 = 0.25

V. NUMERICAL SIMULATION

To illustrate the concepts presented in this paper, we will
simulate the dynamical system with the topology shown in
Fig. 2. For each of the four nodes, we let the set of phases be
the same as in Example 1. We let the exogenous inflow rate
be 0.2 on all incoming cells from the outside of the network,
i.e., the cells 1, 2, 8, 9, 11, 12, 18, and 19. For simplicity of
the presentation, we assume identical outflow capacity from
all cells, and normalize all the units in such a way that the
outflow capacity is 1 for every cell in the network. The non-
zero entries of the routing matrix are shown in Table I.

To illustrate the controller’s ability to adapt a new rout-
ing setting and hence the controller’s robustness to demand
changes within the set of feasible flows, we will change the
routing matrix during the simulation. When one-third of the
simulation time has passed we change some of the entries in
the routing matrix, related to the outflows as specified in the
lower part of Table I.

The trajectories for the dynamics (6)–(7) with GPA con-
trol (10) in the setting previously described are shown in Fig. 6.
For all four nodes, we let the initial traffic volume on the in-
coming cells be x(v1)(0) = x(v2)(0) = x(v3)(0) = x(v4)(0) =
(0.5, 0.4, 0.3, 0.2, 0.1). As we can see, the controller manages
to keep the traffic volumes bounded, and adapt to a new setting
when the routing is changed. We also see that a few cells will
stay around zero traffic volume. This is expected, since we
have cells with different average inflow rates belonging to the
same phase, so the cell with a lower average inflow rate will
stay at zero.

In Fig. 7 we show the control signals, together with the
average inflow rates, we see that the control signals are always
greater than or equal to the average inflow rates, something
that is necessary to keep the traffic volumes bounded. For
the cells where the control signals are strictly greater than
the average inflow rates, the traffic volume will stay zero
and the actual outflow from every such cell will equal its
inflow. We also see that the controller is able to adapt the
new setting when the routing has changed, without having any
information about that the routing has changed. This illustrates
the robustness of the proposed controller.

For reference, we also simulate a static controller. For the
static controller, we have chosen the control signals to be to
be ν(1) = (0.21, 0.25, 0.31), ν(2) = (0.21, 0.28, 0.37), ν(3) =
(0.21, 0.21, 0.27) and ν(4) = (0.21, 0.21, 0.31). While these
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Fig. 6. The traffic volumes when the network in Section V is controlled
with the GPA controller. The coloring is the following: Cell 1, 6, 11, 16 -
( ), Cell 2, 7, 12, 17 - ( ), Cell 3, 8, 13, 18 - ( ), Cell 4, 9, 14, 19
- ( ), and Cell 5, 10, 15, 20 - ( ).

control signals are appropriate to handle the traffic flows before
the perturbation, they cause instability after the perturbation.
How the trajectories evolve with time for this example, when
the control signal is static, is shown in Fig. 8.

VI. CONCLUSION

We have presented a feedback based service allocation
policy for dynamical flow networks that is decentralized as
the service allocation in each part of the network only depends
on the queue lengths in that part of the network. Moreover,
the policy does not require any information on the network
topology, the exogenous inflows, or the routing matrix. Despite
its information frugality, the controller stabilizes the dynamical
flow network, whenever any controller can do so.

Future work includes investigating the stability properties of
the GPA with more complex flow dynamics tailored specifi-
cally for the relevant application, including propagation delay,
congestion effects, and limited storage capacity, as well as
considering time-varying routing matrices.

APPENDIX

A. Proofs of Lemmas
For the reader’s convenience, the statements of the lemmas

are included in this appendix as well.
Lemma 1: If the phases are orthogonal, the GPA control

ω(x) in (18) is a singleton as given by (10)–(11).
Proof: To show that (10) is a solution to (18), we have

to show that

ω(x(t)) = argmax
υ∈U

H(x(t), υ) . (41)
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Fig. 7. The control signals when the network in Section V is controlled with
the GPA controller. The phase activation for Phase 1 is shown in ( ), for
Phase 2 in ( ), and Phase 3 in ( ). The dashed lines are the average
arrival rates with the coloring: Cell 1, 6, 11, 16 - ( ), Cell 2, 7, 12, 17
- ( ), Cell 3, 8, 13, 18 - ( ), Cell 4, 9, 14, 19 - ( ), and Cell
5, 10, 15, 20 - ( ).
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Fig. 8. The traffic volumes when the network in Section V is controlled
with the static controller. The coloring is the following: Cell 1, 6, 11, 16 -
( ), Cell 2, 7, 12, 17 - ( ), Cell 3, 8, 13, 18 - ( ), Cell 4, 9, 14, 19
- ( ), and Cell 5, 10, 15, 20 - ( ).

Define the the Lagrangian L : X × U × RV+ → R associated
with the optimization problem in (41) as

L(x, υ, γ) = H(x, υ) +
∑
k∈V

γk(1− 1>υ(k))

=
∑
i∈E

xi log(CPυ)i +
∑
k∈V

ξk log 1− 1>υ(k)

+
∑
k∈V

γk(1− 1>υ(k))

=
∑
k∈V

(∑
i∈Ev

xi log(CPυ)i

+ξk log 1− 1>υ(k) + γk(1− 1>υ(k))
)
,

where γ in RV+ is the vector of Lagrange multipliers associated
to the inequality constraints 1>υ(k) ≤ 1. Then, necessary
conditions for optimum are that

∂L

∂υ
(k)
q

=
1

υ
(k)
q

∑
i∈Ev

P
(k)
iq xi −

1

1− 1>υ(k)
ξk − γk = 0 ,

for all k in V and q in Pk. Moreover, since the problem in (41)
is convex, using the complementary slackness principle [51],
we get that either 1−1>υ(k) is zero, which clearly cannot be
a maximum, or γk = 0. For the latter case, it holds that

1

ξk

∑
i∈Ek

P
(k)
iq xi =

υ
(k)
q

1− 1>υ(k)
. (42)

Summing up the expression above over all phases q in Pv and
using the fact that the phases are orthogonal yields

1

ξk

∑
i∈Ek

xi =
1>υ(k)

1− 1>υ(k)
,

and hence

1>υ(k) =

∑
i∈Ek xi

ξk +
∑
i∈Ek xi

. (43)

By combining (42) and (43) we get

υ(k)
q =

∑
i∈Ek Piqxi

ξk +
∑
i∈Ek xi

,

which, together with the concavity of (19), proves that (10) is
a solution to (18).

Lemma 2: Let ω(x) be the GPA controller defined in (18),
and let H(x, ν), V (x), and w(x) be defined as in (24), (25),
and (26), respectively. Then, for every state vector x in X and
control υ in ω(x),

V (x) = H̃(x, υ) ≥ 0 . (27)

Moreover, V (x) is absolutely continuous on X and

∂V (x)

∂xi
= wi(x) , (28)

for all i such that xi > 0.
Proof: The equality in (27), that

max
ν∈U

H̃(x, ν) = H̃(x, υ)
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is a solution to (18) follows from the fact that

argmax
ν∈U

H̃(x, ν) = argmax
ν∈U

H(x, ν) ,

where H(x, ν) is the expression in (19).
The inequality in (27) stating that V (x) ≥ 0 follows from

the fact that

V (x) = max
ν∈U

H̃(x, ν) ≥ H̃(x, ν̃) ≥ 0 ,

where ν̃ ∈ U is chosen such that (CPν̃)i ≥ ai for all i in
E and 1 − 1>ν̃(k) = bk for all k in V . It follows from the
definition of bk in (23) that this choice of ν̃ is feasible.

To show (28), we follow the idea presented in [41]. For a
state vector x in X and i in E , let x(ε) in X be a vector such
that x(ε)

i = xi + ε for some ε > 0 and x(ε)
j = xj for all j 6= i

in E . Then

V (xε)− V (x) =∑
j∈E

x
(ε)
j log

ζj(x
(ε))

aj
+
∑
k∈V

ξk log
1− 1>υ(k)(x(ε))

bk

−
∑
j∈E

xj log
ζj(x)

aj
+
∑
k∈V

ξk log
1− 1>υ(k)(x)

bk

≥
∑
j∈E

x
(ε)
j log

ζj(x)

aj
+
∑
k∈V

ξk log
1− 1>υ(k)(x)

bk

−
∑
j∈E

xj log
ζj(x)

aj
+
∑
k∈V

ξk log
1− 1>υ(k)(x)

bk

= ε log
ζi(x)

ai
,

where the inequality follows from the fact that

H(x(ε), υ(x(ε))) = max
ν∈U

H(x(ε), ν) ≥ H(x(ε), υ(x)) .

In the same manner, we have that

V (x(ε))− V (x) =∑
j∈E

x
(ε)
j log

ζj(x
(ε))

aj
+
∑
k∈V

ξk log
1− 1>υ(k)(x(ε))

bk

−
∑
j∈E

xj log
ζj(x)

aj
+
∑
k∈V

ξk log
1− 1>υ(k)(x)

bk

≤
∑
j∈E

x
(ε)
j log

ζj(x
(ε))

aj
+
∑
k∈V

ξk log
1− 1>υ(k)(x(ε))

bk

−
∑
j∈E

xj log
ζj(x

(ε))

aj
+
∑
k∈V

ξk log
1− 1>υ(k)(x(ε))

bk

= ε log
ζi(x

(ε))

ai
.

The bounds combined together yields

log
ζi(x)

ai
≤ 1

ε
(V (x(ε))− V (x)) ≤ log

ζi(x
(ε))

ai
.

Since the optimization problem in (18) is strictly concave
for all x > 0, it follows from the maximum theorem [52,
Theorem 9.14], that υ(x) depends continuously on x. Hence

ζ(x) depends continuously on x, letting ε→ 0 proves the last
statement of the lemma.

Lemma 3: For every state vector x in X , it holds true that

W (x) ≥ 0

with equality if and only if

ζJ (x) = aJ .

We prove Lemma 3 by combining two intermediate results.
The first one is a lower bound on W (x) as stated in the
following.

Lemma 4: For every state x in X we have

W (x) =
∑
j∈J

λ̃jFj(wJ ) , (44)

where

F (wJ ) = (I − R̃)−1 diag ((I − R̃)wJ )(ewJ − 1) ,

and ewJ is the vector with entries (ewJ )j = ewj for j in J .
Moreover,

Fj(wJ ) ≥ χj , ∀j ∈ J , (45)

where

χj =
∑
i,k∈J

N
(j)
ik wi(e

wi − 1)−
∑
i,k∈J

N
(j)
ik wi(e

wk − 1)

and, for every i, j, k in J ,

N
(j)
ik =

∑
h≥0

R̃hji

(
R̃ik + δ

(j)
k

(
1−

∑
l∈J

R̃il

))
. (46)

Proof: It follows from λ = (I −R>)a that

λI = (I −R>II)aI − (R>)IJ aJ ,

λJ = (I −R>JJ )aJ − (R>)JIaI .

Using the above, as well as (30), we obtain that

(I −R>JJ )aJ = λJ + (R>)JIaI

= λ̃+ (R>)JI(I −R>II)−1(R>)IJ aJ

so that, by substituting (31), we get that

(I − R̃>)aJ = λ̃ .

Let A = diag(aJ ). Then, ζJ (x) = AewJ , so that

W (x) = −w>J
(
λ̃− (I − R̃>)AewJ

)
= −w>J

(
(I − R̃>)A1− (I − R̃>)AewJ

)
= −w>J (I − R̃>)A(1− ewJ )

= λ̃>F (wJ ) ,

which proves the first part of the claim.
In order to prove the second part, let

B(wJ ) = diag ((I − R̃)wJ )(ewJ − 1) .
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For i in J , rewrite wi = [wi]+ − [wi]− and observe that
e[wi]± − 1 = [qi]±, where qi = ewi − 1. Then,

Bi(wJ ) = qi

(
wi −

∑
k R̃ikwk

)
= [qi]+

(
[wi]+ −

∑
k R̃ik[wk]+

)
+[qi]−

(
[wi]− −

∑
k R̃ik[wk]+

)
+[qi]+

∑
k Rik[wk]− + [qi]−

∑
k Rik[wk]−

≥ Bi(w
+
J ) +Bi(w

−
J ) ,

where the summation index k is intended to run over J and
the fact that [qi]±[wi]∓ = 0 is used in the second equality.
Since (I − R̃)−1 is a nonnegative matrix, the above implies
that

F (wJ ) = (I − R̃)−1B(wJ )

≥ (I − R̃)−1B([wJ ]+) + (I − R̃)−1B([wJ ]−)

= F ([wJ ]+) + F ([wJ ]−) .

Now, rewrite Fj(wJ ) as

Fj(wJ ) =
∑
i∈J

∑
n≥0

R̃nji(wi −
∑
k∈J

R̃ikwk)(ewi − 1)

=
∑
i,k∈J

N
(j)
ik (ewi − 1)wi −

∑
i,k∈J

N
(j)
ik (ewi − 1)wk

−
∑
i∈J

∑
n≥0

R̃nji

(
1−

∑
l∈J

R̃il

)
(ewi − 1)wj .

(47)
It then follows that
Fj(wJ ) ≥ Fj([wJ ]+) + Fj([wJ ]−)

≥
∑
i,k∈J

N
(j)
ik (e[wi]+ − 1)[wi]+

−
∑
i,k∈J

N
(j)
ik (e[wi]+ − 1)[wk]+

+
∑
i,k∈J

N
(j)
ik (e[wi]− − 1)[wi]−

−
∑
i,k∈J

N
(j)
ik (e[wi]− − 1)[wk]−

≥
∑
i,k∈J

N
(j)
ik (ewi − 1)wi −

∑
i,k∈J

N
(j)
ik (ewi − 1)wk

= χj ,

thus completing the proof.

Lemma 5: Let µ in Rn+ be a vector with strictly positive
entries and let

M :=
{
M ∈ Rn×n+ |M1 = M>1 = µ

}
be the set of nonnegative square matrices with both row and
column sum vectors equal to µ. Let f, g : R→ R be strictly
increasing functions. Then, for every vector v in Rn, it holds
true that

n∑
i=1

µif(vi)g(vi) ≥
n∑
i=1

n∑
j=1

Mijf(vi)g(vj) , (48)

for every M in M, with equality if and only if

Mij = 0 , ∀ i, j : vi 6= vj . (49)

Proof: Let us define the function h :M→ R by

h(M) =

n∑
i=1

n∑
j=1

Mijf(vi)g(vj) .

Observe that h(M) is a continuous function and M is a
compact set. Hence, h(M) admits a maximum over M. We
shall prove the claim by showing that such maximum value is

max{h(M) |M ∈M} =

n∑
i=1

µif(vi)g(vi)

and that the set of maximum points

argmax{h(M) |M ∈M} = {M ∈M | (49)}

coincides with the subset of matrices satisfying (49).
Without any loss of generality, we shall assume that

v1 ≤ v2 ≤ · · · ≤ vn−1 ≤ vn .

Now, let m ≤ n be the number of distinct entries of v and
let H1, . . . ,Hm ⊆ {1, . . . , n} be the subsets of indices such
that vi = vj if and only if i, j in Hl for the same 1 ≤ l ≤ m.
Then, a matrix M in M satisfies (49) if and only if is in the
following block diagonal form

M =

 M (1) · · · 0
...

. . .
...

0 · · · M (m)

 ,
with each block M (l) in R|Hl|×|Hl|

+ for 1 ≤ l ≤ m. Using the
block diagonal form above, for an arbitrary selection of kl in
Hl, 1 ≤ l ≤ m, one gets that

h(M) =

m∑
l=1

∑
i,j∈Hl

Mijf(vi)g(vj)

=

m∑
l=1

|Hl|µklf(vkl)g(vkl)

=

n∑
i=1

µif(vi)g(vi) ,

(50)

for every matrix M in M satisfying (49).
We are then left with proving that no matrix M in M not

satisfying (49) can be a maximizer of h(M) overM. For any
such M , let j be the unique value in {1, 2, . . . , n−1} such that
Mii = µi for all 1 ≤ i < j and Mjj < µj and let 1 ≤ q ≤ m
be such that j in Hq . Then, since M belongs to M and it
does not satisfy (49), there must exist indices k in Hr and l
in Hs, with r, s in {q + 1, . . . ,m}, such that

ε = min{Mjl,Mkj} > 0 .

Define the matrix M̃ in Rn×n with entries

M̃hi =



Mhi + ε if i = j and h = j ,

Mhi + ε if i = l and h = k ,

Mhi − ε if i = l and h = j ,

Mhi − ε if i = j and h = k ,

Mhi otherwise .
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It is easily verified that M̃ in M. Moreover, since j in Hq , k
in Hr, and l in Hs, with r, s in {q+ 1, . . . ,m}, we have that
vk > vj and vl > vj . Since the functions f and g are strictly
increasing, this implies that

f(vl) > f(vj) , g(vk) > g(vj) .

It follows that

0 < ε(f(vl)− f(vj))(g(vk)− g(vj))

= ε(f(vj)g(vj) + f(vl)g(vk)− f(vl)g(vj)− f(vj)g(vk))

= h(M̃)− h(M) .

The above shows that no matrix M inM that does not satisfy
(49) can be a maximizer of h(M) over M, thus completing
the proof.

We are now ready to prove Lemma 3. For i, j, k in J , let
N

(j)
ik be defined as in (46) and let

µ
(j)
i =

∑
h≥0

R̃hji .

Clearly, µ(j)
j ≥ R0

jj = 1 > 0 and, more in general, µ(j)
k > 0

if and only if k is reachable from j through R̃. Let Kj be the
set reachable from j through R̃. Now observe that, for i in
Kj , ∑

k∈Kj

N
(j)
ik =

∑
h≥0

R̃hji = µ
(j)
i ,

while, for k in Kj ,∑
i∈Kj

N
(j)
ik =

∑
h≥0

R̃h+1
jk +

∑
h≥0

(R̃hjk − R̃h+1
jk ) = µ

(j)
k .

On the other hand, observe that, since Kj is the set reachable
from j, the restriction of the matrix N (j) to Kj ×Kj consists
of a single diagonal block. Then, (45) and Lemma 5 imply
that, for every j in J ,

Fj(wJ ) ≥ χj
=
∑
i,k∈Kj

N
(j)
ik wi(e

wi − 1)−
∑
i,k∈Kj

N
(j)
ik wi(e

wk − 1)

≥ 0 ,
(51)

where the last inequality holds true as an equality if and only
if w is constant over Kj . Observe that, in this case, there exists
some constant c in R such that

Fj(wJ ) =
∑
i∈Kj

∑
h≥0

R̃hji

(
1−

∑
l∈Kj

R̃il

)
(ec − 1)c ≥ 0 . (52)

However, since Kj is out-connected, then necessarily there
must exist at least one i in Kj such that

∑
l∈Kj

R̃il < 1 and
an h ≥ 0 such that R̃hji > 0. It then follows from (51) and
(52) that

Fj(wJ ) ≥ 0 , ∀j ∈ J , (53)

with equality if and only if wi = 0 for every i in Kj .
Finally, observe that ⋃

j∈J :λ̃j>0

Kj = J .

The above, (44), and (52) imply that

W (x) =
∑
j∈J

λ̃jFj(wJ ) ≥ 0 ,

with equality if and only if wi = 0 for all i in J , i.e., if and
only if

ζi(x) = ai , ∀i ∈ J .

The proof of Lemma 3 is then complete.
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