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Abstract: 

In this work the capabilities of Two Fluid Model simulations coupled with a Population 

Balance Model solved with the Quadrature Method of Moments in predicting the turbulent 

kinetic energy dissipation rate and the droplet size distribution in a dilute liquid-liquid 

stirred tank are investigated. For a strict evaluation of the numerical and modelling 

approximations, original two-phase flow fields and droplet size distributions are collected 

by Particle Image Velocimetry and a laser diffraction technique, respectively. The spatial 

discretization requirements for achieving grid independent and reliable predictions of the 

turbulent variables already observed in RANS-based simulations of single-phase stirred 

tanks are confirmed also for the investigated dilute two-phase system, for which the effect 

of the dispersed phase on the continuous liquid is negligible. Besides, better prediction of 

the droplet size distribution is apparently obtained with poorly predicted turbulent kinetic 

energy dissipation rate, showing that the usually adopted parameters of the breakup kernel 

have been tuned for coarse grids. A way to derive grid independent breakup kernel 

parameters and a correction based on the spatial distribution of turbulent dissipation rate are 

proposed to account for the underestimation of the turbulent variables in the RANS 

simulation of industrial scale equipment. 
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1 Introduction 

Several operations in the food, pharmaceutical and chemical industry rely on turbulent 

dispersions of immiscible liquids. Emulsification, organic synthesis and extractions, among 

the others, are heavily dependent on the properties of the dispersion which rheology, 

stability and exchange properties are determined by many factors, one of the most 

important being the drop size distribution (DSD) of the disperse phase (Afshar Ghotli et al., 

2013; Leng and Calabrese, 2016). The DSD, in fact, has an important role in governing the 

fluid dynamics and the inter-phase mass transfer in the equipment, that in turn usually 

affect the performances of the whole operation (Afshar Ghotli et al., 2013; Drumm et al., 

2009; Maaß et al., 2012). 

Computational models have become an important aid in predicting the equipment fluid 

dynamics and the evolution of the DSD. Among the different modelling approaches, e.g. 

fully-resolved (Derksen and Van Den Akker, 2007; Di Miceli Raimondi et al., 2008), 

Lagrangian point-particle (Jaworski and Pianko-Oprych, 2002; Rieger et al., 1996) and 

Two-Fluid Model (TFM) (Gao et al., 2016; Hu et al., 2015), TFM methods have the 

advantage of being computationally cheaper than the others, but, at the same time, they do 

not allow to evaluate the distribution of the disperse phase properties, such as size, velocity, 

interfacial properties, that are instead described with a unique value for each disperse 

element (Buffo et al., 2013). To overcome this limitation, the distribution of the internal 
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properties of interest can be described by means of a population balance model (PBM) that 

can be solved in a computational fluid dynamics (CFD) framework (Marchisio and Fox, 

2013; Shiea et al., 2020).  

Fully predictive CFD-PBM models require reliable closure equations to account for 

coalescence and breakage. Although in recent times there have been attempts to derive 

coalescence and breakage models, usually called kernels, starting from detailed numerical 

simulations (Amani et al., 2019; Karimi and Andersson, 2020; Mukherjee et al., 2019), the 

models commonly adopted to describe these mechanisms are mostly phenomenological, in 

which heavy simplifications and approximations are often made (Liao and Lucas, 2010, 

2009). However, recently there has been a significant effort to improve the kernels 

theoretical formulation, especially the relationship between fluid particles and turbulence 

(Karimi and Andersson, 2020; Solsvik et al., 2016) and high-order turbulence effects like 

intermittency (Baldyga and Podgórska, 1998; Gao et al., 2016; Li et al., 2017a; Podgórska, 

2005; Podgórska and Bałdyga, 2001), but the computational requirements needed to solve 

these kernels remains unaffordable for large scale equipment (Castellano et al., 2019). 

Coalescence and breakage kernels usually contain information regarding both the fluid 

dynamics and the physical properties of the investigated system, together with scalar 

parameters that include all the modelling uncertainties (Falzone et al., 2018). These scalar 

parameters are not universal constants, as they should be if the model fully described the 

physics of the problem, but they are often tuned on the specific systems in order to 
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minimize the distance between experimental data and model predictions (Azizi and Taweel, 

2011; Bakker et al., 2001; Castellano et al., 2019). It is important to remark that the fitting 

procedures usually adopted in the literature make use of important simplifications of the 

experimental flow features, one of the most important being the turbulent dissipation rate 

field, consisting in either just one value representative of the whole field or a small 

collection of values to describe the inhomogeneities. By means of example, Coulaloglou 

and Tavlarides, (1977) assumed that the impeller region of a stirred tank is where breakage 

predominates and a single value of the turbulent dissipation rate was used, equal to 70 times 

the volume averaged value. Narsimhan et al., (1979) adopted the same criterion, but used a 

reduced value of the turbulent dissipation rate in the impeller zone, equal to 30 times the 

averaged turbulent dissipation rate, derived from an average in the impeller discharge jet. 

Alopaeus et al., (2002) derived the kernel parameters through a multi-block subdivision of 

a stirred tank (Alopaeus et al., 1999) based on a previous experimental work (Bourne and 

Yu, 1994) that reported a value of turbulent dissipation rate in the impeller region equal to 

33.8 times the global volume average. These examples highlight that the kernel parameter 

values reported in the literature are intrinsically dependent on the experimental data fitting, 

and they are determined by the assumed turbulent dissipation rate fields. 

Thus, the turbulent kinetic energy dissipation rate has a major effect in determining the 

ratio between breakage and coalescence rates as well as the evolution of the droplets size 

(Li et al., 2017b). Coroneo et al., (2011) proved that, in the simulations of single-phase 
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stirred tanks based on Reynolds Averaged Navier Stokes equations, the underprediction of 

turbulent variables were in fact caused by insufficiently fine grids and low order numerical 

schemes. Jaworski et al., (2007) pointed out the importance of a correct calculation of the 

turbulent quantities in the prediction of the DSD and how their underestimation led to 

larger droplets diameters. Other authors acknowledged and identified the issue of 

underestimating the turbulent dissipation rate because of a coarse mesh and low order 

numerical schemes, either without proposing alternative solutions (Drumm et al., 2009; 

Tang et al., 2018; Zhang et al., 2012), by quantifying the error on the turbulent variables 

and how this affected their results (Alopaeus et al., 2002; Kálal et al., 2014), or deriving 

new experimental-numerical hybrid methods tuned to correctly predict the DSD (Khajeh 

Naeeni and Pakzad, 2019). Recently, the introduction of a uniform scalar correction in the 

kernels has been proposed (Gao et al., 2016; Li et al., 2017b) for taking into account the 

underprediction of the turbulent dissipation field.  

In this work, for the first time an in-depth analysis of the effects related to the 

underprediction of the turbulent dissipation rate and to the uncertainties tied to the kernel 

parameters values on the resulting DSD and breakup events is carried out by studying a 

liquid-liquid stirred tank from both experimental and numerical point of view. A single 

operating condition in a very dilute liquid-liquid stirred tank is experimentally investigated 

(volume fraction of 0.1%), in such a way to neglect coalescence and to focus on the drop 

breakage. The dispersed phase effect on the continuous phase turbulent flow field is 
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assessed by purposely collected experimental measurements of both local velocity profiles 

and droplet size distributions. On the numerical side, first the quality of the turbulent 

kinetic energy dissipation rate and velocity field predictions obtained by the CFD-PBM 

approach is assessed. Particular attention is devoted to the evaluation of a grid-independent 

turbulent flow field, as an essential starting point to analyze the breakage frequency 

distribution in the stirred tank and explore the effects of the turbulent fluid dynamics on the 

breakage frequency at the equipment scale in mechanically stirred tanks. Then a 

comparison between experimental and numerical DSD is performed to evaluate the quality 

of the breakup kernel predictions and to identify the uncertainties associated with the kernel 

parameters using a quantitative approach, highlighting the importance of a proper fluid 

dynamics description. To the best of the authors knowledge, in this work for the first time 

the application of a CFD-PBM approach is studied by focusing on both fluid dynamics and 

DSD predictions and their validation with the experimental data.  

The outline of the paper is the following. The experimental set-up is described in 

Section 2.  The fluid dynamics model equations are presented in Section 3, together with 

the population balance model, whilst the numerical solution procedure and the coupling 

between fluid dynamics and population balance equation is presented in Section 4.  The 

numerical solution grid independence study is presented in Section 5. In section 6, the 

results of the comparison between experiments and simulations are shown. In section 7, a 
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grid dependent scalar correction for the breakup kernel is proposed, with the purpose to 

reduce computational simulation time of large-scale equipment. 

In this work the interconnections between turbulent fluid dynamics and drop breakage 

in mechanically stirred tanks are evaluated by means of a RANS TFM PBM approach, 

whose predictions are validated by experimental results, both original and from the 

literature. Local and global experimental results were used to compare grid independent 

turbulent variables, that allowed to investigate the spatial distribution of breakup frequency. 

The resulting DSD predicted by the model is compared with purposely collected 

experimental distributions and the comparison underlines the dependency of the breakup 

kernel parameters on the spatial distribution of the turbulent flow field used in the tuning 

conditions. 

2 Experimental set-up 

The investigated stirred tank was previously employed in liquid-liquid investigations 

(Laurenzi et al., 2009; Maluta et al., 2020). It consists of a cylindrical, flat bottomed tank 

with diameter, T, and height, 𝐻𝑇, both equal to 0.232m. It was equipped with four equally 

spaced baffles of width equal to T/10. A single Rushton turbine (RT) mounted on a central 

shaft was used for agitation. The diameter of the impeller, D, was equal to 0.077m, 

corresponding to a D/T ratio equal to 1/3, and the off-bottom clearance, C, was half the 
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vessel diameter (C/T =1/2). The liquid height, HL, was always maintained at 𝐻𝑇, 

corresponding to a total volume of 9.8L. 

The two immiscible liquids were commercial diesel fuel with density, 𝜌𝐷 , equal to 

810kg/m3, viscosity, 𝜇𝐷, equal to 3.5×10-3Pa∙s and surface tension of 27.6mN/m (measured 

at room temperature) and demineralized water with density, 𝜌𝐶 , and viscosity, 𝜇𝐶, equal to 

998kg/m3 and 10-3 Pa∙s respectively.  

The experiments were carried out after the injection of 9.7mL of diesel fuel in the 

stirred vessel filled with demineralized water, corresponding to a volume fraction of 𝛼𝐷 =

10−3, at an impeller rotational speed, N, of 500rpm, to ensure complete dispersion. Under 

this agitation condition, the flow regime is fully turbulent being the rotational Reynolds 

number, 𝑅𝑒 = 𝜌𝐶𝑁𝐷2 𝜇𝐶 ⁄ , equal to 4.9×104. The injection of the disperse phase occurred 

in the proximity of the impeller by means of a rigid needle.  

The local measured data were referred to a cylindrical coordinate system, with the 

origin placed on the centre of the tank bottom, the radial coordinate, r, positive if directed 

toward the vessel wall and the axial coordinate, z, positive if directed upwards. 

The drop size distribution was measured by means of a Spraytec laser diffraction system 

(Malvern Panalytical) equipped with a wet sample dispersion unit. The Spraytec laser 

diffraction system measures the intensity of light scattered as a laser beam passes through a 

dispersion. Light intensity is collected by several detectors that measure the intensity of 

light scattered by the droplets over a wide range of angles. The set of light intensities is 
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then analyzed to calculate the size of the droplets in the sample that created the scattering 

pattern. The sampling was performed after 40 minutes from the oil injection, to make sure 

that the system was at the steady state. A 100mL sample of the mixture was withdrawn 

from the system midway between two consecutive baffles at a position of r/T = 0.35 ± 0.02, 

z/T = 0.69 ± 0.04 with a plastic tube of 6mm diameter not to alter the DSD. A single sample 

point was used since the DSD is expected to have a rather constant shape throughout the 

tank with little variations on the mean parameters of the distribution (Zhou and Kresta, 

1998a). The sample was promptly transferred to a wet sample dispersion unit (Malvern 

Panalytical) that uses a small stirrer to continuously recirculate the sample through a 

measurement cell positioned between the Spraytec transmitter and receiver units. An 

insufficient rotational speed of the wet dispersion unit stirrer would not circulate the larger 

drops, whereas an excessive rotation could break the droplets. Both these effects would 

alter the DSD. The influence of the wet sample dispersion unit recirculation flow rate, the 

sample volume and measuring time on the DSD were carefully quantified at the beginning 

of the experimental campaign. The time evolution of the scattering pattern is tracked for 

about 30s, and data are averaged on a 10s window, observing very few variations in the 

observed time window. The size of the droplets that created the scattering pattern was 

calculated, producing a discretized DSD in term of the weighted volume fractions with 

respect to the total disperse phase volume in the sample. Triballier et al. (2003) analyzed 

the performances of Spraytec and the possible sources of errors. They pointed out one of 
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the strengths of Spraytec is that the Lorenz-Mie theory is employed allowing the correct 

measurements of very fine sprays. Triballier et al. (2003) also argued that the correction 

suggested by Malvern for solving the problem of the multiple scattering seems to induce 

relevant errors. It is worthwhile noticing that this drawback does not influence the accuracy 

of the present measurements because our experiments were performed at obscuration up to 

10% that is absolutely lower than the critical value of 60% above which the multiple 

scattering has to be taken into account. 

The flow fields of the diesel fuel droplets  and of the continuous phase with and 

without droplets were measured by Particle Image Velocimetry (PIV), similarly to previous 

investigations concerning gas-liquid (Montante et al., 2008) and solid-liquid (Montante et 

al., 2012) stirred tanks. Data were collected on a portion of the vertical plane located 

midway between two consecutive baffles, with 0<r/T<0.5 and 0.3<z/T<0.7. Water was 

seeded with polymeric particles coated with fluorescent Rhodamine B that emit the 

received laser light at the wavelength of 590nm, while the droplets have the same emission 

wavelength as the laser light. By using two cameras equipped with optical filters, each 

camera received the proper light signal. The pulsed Nd:YAG laser (=532nm, 65mJ) and 

the two Charge-Coupled Device cameras (resolution of 1344×1024 pixels) were handled by 

a Dantec Dynamics synchronization and acquisition system. The areas viewed from the two 

cameras were identical.  
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The instantaneous velocity vectors were obtained from the cross-correlation of images 

collected in double-frame mode. The time interval between the two laser pulses was set to 

270s, the total number of image pairs was 2000. A vector resolution of 1.7mm was 

obtained by applying the cross-correlation on an interrogation area size of 32×32 pixels 

with on overlap of 50%. The instantaneous vectors were discarded if they did not fulfil two 

conditions, one based on the evaluation of the peak heights in the correlation plane and the 

other on the velocity magnitude, as previously done for dilute solid-liquid systems 

(Montante et al., 2012). The PIV uncertainty has been evaluated following the approach 

suggested by Sciacchitano and Wieneke (2016) based on Montecarlo simulations, the 

uncertainty in the velocity measurements is between 2-3%. 

The instantaneous velocities were ensemble averaged to obtain the mean axial and 

radial velocity components, U and V, and the axial and radial root mean square (RMS) 

velocity fluctuations, u’ and v’.  

3 Computational model 

The simulations were based on the RANS-TFM equations written for two 

incompressible fluids under isothermal conditions. The disperse phase continuity and 

momentum equations specifically solved in this work are the following: 
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𝜕(𝛼𝐷𝜌𝐷)

𝜕𝑡
+ ∇ ∙ (𝛼𝐷𝜌𝐷𝒖𝑫) = 0  (1) 

∂(𝛼𝐷𝜌𝐷𝒖𝑫)

∂𝑡
+ ∇ ⋅ (𝛼𝐷𝜌𝐷𝒖𝑫𝒖𝑫) = −𝛼𝐷∇𝑃 + 𝛼𝐷𝜌𝐷𝒈 + ∇ ⋅ (𝝉𝑫 + 𝝉𝒕) + 𝑭  (2) 

Where 𝛼𝐷  is the volume fraction of the disperse phase, 𝒖𝑫 is the disperse phase mean 

velocity vector, 𝑃 is the pressure, 𝒈 is the gravity vector and 𝝉𝑫 is the viscous stress tensor. 

The Reynolds stress tensor, 𝝉𝒕, and the interphase momentum transfer term, 𝑭, need to be 

modelled to mathematically close the set of equations.  

The continuity and momentum conservation equations for the continuous phase are in 

the same form of Eq. (1) and Eq. (2). 

The Reynolds stress tensor was modelled with the single-phase standard k-ε turbulence 

model with the properties of the continuous phase, as already done for similar systems (Gao 

et al., 2016; Li et al., 2017a): 

𝜕𝛼𝐶𝜌𝐶𝑘

𝜕𝑡
+ 𝛻 · (𝛼𝐶𝜌𝐶𝑘𝒖𝐂) = 𝛻 · (𝛼𝐶

𝜇𝑡

𝜎𝑘
𝛻𝑘) + 2𝛼𝐶𝜇𝑡𝑬𝟐 − 𝛼𝐶𝜌𝐶𝜀  (3) 

𝜕𝛼𝐶𝜌𝐶𝜀

𝜕𝑡
+ 𝛻 · (𝛼𝐶𝜌𝐶𝜀𝒖𝐂) = 𝛻 · (𝛼𝐶

𝜇𝑡

𝜎𝜀
𝛻𝜀) + 𝛼𝐶𝐶1𝜀

𝜀

𝑘
2𝜇𝑡𝑬2 − 𝛼𝐶𝐶2𝜀𝜌𝐶

𝜀2

𝑘
  (4) 

Where 𝛼𝐶 and 𝜌𝐶  are the volume fraction and the density of the continuous phase, 

respectively, 𝑘 is the turbulent kinetic energy, 𝜀 is the turbulent dissipation rate, 𝑬 is the 

rate of deformation tensor and 𝜇𝑡 = 𝜌𝐶C𝜇 𝑘2 𝜀⁄  is the turbulent viscosity. The five model 

constants 𝜎𝑘, 𝜎𝜀, 𝐶1𝜀, 𝐶2𝜀 and C𝜇 assume their standard values of 1.00, 1.30, 1.44, 1.92 and 

0.09, respectively. 
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The inter-phase momentum transfer term consisted in the drag force only, 𝑭𝑑𝑟𝑎𝑔,𝐶𝐷, 

that was considered prevailing over the other interfacial forces acting between the phases 

(such as lift force, turbulent dispersion, wall lubrication), as in similar dilute liquid-liquid 

stirred tanks (Gao et al., 2016; Li et al., 2017a). The drag force was written in the form: 

𝑭𝑑𝑟𝑎𝑔,𝐶𝐷 =
3

4

𝛼𝐷

𝑑𝐷
𝐶𝐷𝜌𝐶‖𝒖𝑫 − 𝒖𝑪‖(𝒖𝑫 − 𝒖𝑪)  (5) 

In Eq.(5), 𝑑𝐷 is the droplet diameter and 𝐶𝐷 is the drag coefficient calculated with the 

well-known Schiller & Naumann correlation: 

𝐶𝐷 = 24(1 + 0.15𝑅𝑒𝑝
0.687)/𝑅𝑒𝑝  (6) 

With the drop Reynolds number, 𝑅𝑒𝑝, defined as: 

𝑅𝑒𝑝 =
‖𝒖𝑫−𝒖𝑪‖𝑑𝐷𝜌𝐶

𝜇𝐶
  (7) 

valid for 0.1 < 𝑅𝑒𝑝 < 1000.  

As a matter of fact, the drag force magnitude acting on a droplet depends on the drop 

diameter. When the drop size distribution of the population of droplets is relatively narrow, 

a widely accepted hypothesis is to consider that all the droplets move with the same mean 

velocity (Gao et al., 2016). The resulting drag force is based on a single diameter value 

equal to the Sauter mean diameter of the population (Buffo and Marchisio, 2014). Since the 

Sauter mean diameter can be defined as the ratio between the third and the second order 

moment of the DSD, the DSD moments are required to close the system of equations. 
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3.1 Population Balance Model 

The PBM for the system under study consists of a population balance equation (PBE), 

with the droplet size being the internal coordinate of the disperse phase. When the disperse 

phase volume fraction is small, a common assumption is to neglect the coalescence events 

(Maaß et al., 2012; Marchisio and Fox, 2013; Wang and Calabrese, 1986). In fact 

coalescence can become significant for clean systems at dispersed phase volume fractions 

larger than 0.05, while it is usually neglected for volume fractions smaller than 0.01 (Leng 

and Calabrese, 2016). When the momentum transfer due to collisions between droplets can 

be neglected, when no growth mechanisms exists, the PBE becomes: 

𝜕𝑛(𝑑𝐷)

𝜕𝑡
+ ∇ ⋅ (𝑛(𝑑𝐷)𝒖𝑫)  =  ∫ 𝛽(𝑑𝐷, 𝑑′)𝑔(𝑑′)𝑛(𝑑′)d𝑑′ − 𝑔(𝑑𝐷)𝑛(𝑑𝐷)

∞

𝑑𝐷
  (8) 

Where 𝑛(𝑑𝐷) is the DSD and the term on the right-hand side of the equation is a source 

term that accounts for the discontinuous changes due to breakup. 

In Eq.(8) 𝑔 is the breakup kernel expressing the breakup frequency and 𝛽(𝑑𝐷, 𝑑′) is the 

daughter distribution function that gives the size distribution of drops originating from the 

breakage of a drop of diameter 𝑑′. In this work the daughter distribution function proposed 

by Laakkonen et al. (2006) was used due to its low computational cost and the fair 

agreement with more detailed models (Li et al., 2017a). The daughter distribution function 

has the following expression (Laakkonen et al., 2006): 
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𝛽(𝑑𝐷, 𝑑′) = 180 (
𝑑𝐷

2

𝑑′3) (
𝑑𝐷

3

𝑑′3)
2

(1 −
𝑑𝐷

3

𝑑′3)
2

    
(9) 

Eq. (9) assumes binary breakage based on a beta distribution, in which symmetric 

breakup is considered as the event with the highest probability. The binary breakage 

assumption is reasonable due to the expected small size of the droplets and the low 

viscosity of the disperse phase (Li et al., 2017b). 

The Alopaeus breakup kernel (Alopaeus et al., 2002) was used in this work. The kernel 

assumes a Poisson point process distribution frequency of the eddy-drop collisions in which 

the turbulent dissipation rate, ε, affects said frequency. Its expression is: 

𝑔 = 𝐶1𝜀1 3⁄ 𝑒𝑟𝑓𝑐 (√
𝐶2𝜎

𝜌𝐶𝜀2 3⁄ 𝑑𝐷
5 3⁄ +

𝐶3𝜇𝐷

√𝜌𝐶𝜌𝐷𝜀1 3⁄ 𝑑𝐷
4 3⁄ )  (10) 

With 𝐶1, 𝐶2, 𝐶3 being model constants and 𝜎 being the water-diesel fuel interfacial 

tension equal to 44.7mN/m, estimated for biodiesel-diesel fuel blends. The constant values 

were taken equal to 3.68, 0.0775 and 0.2, respectively, being the values for 𝐶1 and 𝐶3 the 

original values proposed by Alopaeus et al. (2002) and the value for 𝐶2 being fitted with 

experimental data for a similar system by Li et al. (2017a). 

In this work, the Quadrature Based Method of Moment (QMOM) was adopted to solve 

Eq.(8). With this approach, the NDF is simplified with a quadrature approximation: 

𝑛 ≈ ∑ 𝑤𝑖𝛿[𝑑𝐷 − 𝑑𝑖]
𝑁𝑞

𝑖=1
  (11) 

where 𝑁𝑞  is the order of the approximation, 𝑤𝑖  are the quadrature weights and 𝑑𝑖 are 

the nodes or abscissas of the quadrature. The quadrature nodes and weights are obtained 
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from the first 6 moments (𝑀0, 𝑀1, … , 𝑀5) of the NDF using the well-known Product-

Difference algorithm, as described by Marchisio & Fox (Boccardo et al., 2019; Marchisio 

and Fox, 2013; Shiea et al., 2020), analogously to what already done by Buffo et al. (2012) 

for gas-liquid systems following a sensitivity analysis on the number of nodes for the 

quadrature approximation to assess the accuracy of the approximation. Substituting the 

quadrature approximation of the moment of order 𝑘 in the moment transport equation one 

obtains: 

𝜕𝑀𝑘

𝜕𝑡
+ ∇ ⋅ (𝑀𝑘𝒖𝑫) = ∑ 𝑤𝑖𝑔(𝑑𝑖)

𝑁𝑞

𝑖=1 [∫ 𝛽(𝑑𝐷, 𝑑𝑖)𝑑𝐷
𝑘d𝑑𝐷

∞

0
] − 𝑑𝑖

𝑘    (12) 

Where the integral between square brackets is analytically solved, once Eq. (9) is 

substituted into the term in square brackets of Eq. (12), resulting in: 

∫ 𝛽(𝑑𝐷, 𝑑𝑖)𝑑𝐷
𝑘d𝑑𝐷

∞

0
=

3240𝑑𝑖
𝑘

(𝑘+9)(𝑘+12)(𝑘+15)
    

(13) 

4 Numerical solution procedure 

The Two Fluid Model equations were solved with a modified version of the 

OpenFOAM 5.0 solver twoPhaseEulerFoam and the default OpenFOAM merged 

PISO-SIMPLE algorithm (PIMPLE) detailly described by Passalacqua and Fox (2011) in a 

computational domain coincident with the experimental stirred tank, that was built with 

ANSYS Design-Modeler and discretised with hexahedral elements generated with ANSYS 
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ICEM. The rotation of the impeller was accounted for with the unsteady formulation of the 

so-called Multiple Reference Frame approach (MRF). The boundary conditions and the 

order of the numerical schemes used for each variable are reported in Tab. 1 and Tab. 2, 

respectively. 

Tab. 1 – Boundary conditions used in the simulations 

Variable Wall Boundary conditions 

𝛼𝐷 Zero Gradient 

𝜀 Zero Gradient 

𝑘 Zero Gradient 

𝑀𝑘 Zero Gradient 

𝑃 Zero Gradient 

𝒖𝐃, 𝒖𝑪 No Slip 

 

Tab. 2 – Order of the numerical schemes used for the solution of the model equations 

Term Configuration 

∂
∂t⁄  1st order Euler explicit 

𝛻𝜓 Cell limited 2nd order 

𝛻 ⋅ (𝒖𝑫α𝐷) 2nd order with van Leer limiter 

𝛻 ⋅ (𝒖𝑪α𝐶𝑘) 2nd order upwind 
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𝛻 ⋅ (𝒖𝑪α𝐶𝜀) 2nd order upwind 

𝛻 ⋅ (α𝒖𝒖) 2nd order with Sweby limiter 

𝛻 ⋅ (𝒖𝑫𝑀𝑘) 1st order upwind 

𝛻2𝜓 2nd order 

𝜓𝑓 2nd order 

𝛻⊥𝜓 Cell limited 2nd order 

𝜓 is a generic variable, 𝑓 denotes the face interpolation operator, 𝛻⊥ is the surface normal gradient. 

The PBM was solved with the QMOM approach implemented in OpenFOAM as 

described by Buffo et al. (2016b, 2013). Six NDF moments were transported, resulting in 

three quadrature nodes and three weights. 

The time-dependent solution of the CFD equations and the PBM was obtained through 

two different strategies, called weak coupling, already described by Gao et al. (2016), and 

offline coupling. With the first strategy, for each second of simulated time, the fluid 

dynamics equations coupled with the PBM are solved for 0.1s and then just the PBM is 

solved for the remaining 0.9s. With the offline coupling, on the other hand, the PBM is 

solved in a stationary frozen flow-field. The adoption of the Weak and the Offline Coupling 

strategies is acceptable since the disperse phase volume fraction is very low and since the 

mixing characteristic time, defined as the integral time scale of turbulence, is smaller than 

the breakage characteristic time scales (Buffo et al., 2016a). 
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The Weak and the Offline Coupling were both tested, starting the simulation with the 

disperse phase homogeneously distributed inside the volume as droplets of constant 

diameter equal to 700μm. The time evolution of the Sauter mean diameter, as obtained with 

the two coupling strategies, was compared to quantify the deviations between them. The 

maximum deviation of the Sauter mean diameter obtained with the Offline Coupling 

strategy is about 0.5% of the diameter as obtained with the Weak Coupling. The decoupling 

between continuous phase fluid dynamics and breakup phenomena is also confirmed by the 

experimental observations, as discussed in the following, since the dispersed droplets 

mainly follow the continuous flow field in the investigated operating condition. Given the 

enormous differences in term of computational time and the overall agreement between the 

two strategies, just the Offline Coupling was considered in the remaining part of this study. 

5 Grid convergence study 

Three different structured meshes were adopted to evaluate the grid convergence of the 

solution (Roache, 1998). The number of elements of the three meshes, named G1, G2 and 

G3, was 5.5×106, 2.2×106 and 0.60×106, respectively, resulting in a refinement ratio of 

1.41, calculated on the spacing between the grid nodes of the impeller blades (ℎ1 = 0.80 

mm for G1, ℎ2 = 1.10mm for G2 and ℎ3 = 1.60mm for G3).  
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A set of single-phase simulations with the three grids was performed and the grid 

convergence of the solution was evaluated considering axial and radial velocity profiles in 

different tank locations and turbulent variables profiles. Results confirm that mean flow 

variables reach grid independency with relatively coarse meshes, while much finer grids are 

required to obtain grid independent turbulent flow variables, as already found by Coroneo 

et al. (2011). In determining the properties of the dispersion, the correct prediction of the 

turbulent variables is of primary importance, since the breakage rate depends on the local 

turbulent dissipation rate (Li et al., 2017b). 

For these reasons, the grid convergence study was performed on the predictions of the 

power number, 𝑁𝑃 = 𝑃𝜀 𝜌𝐶𝑁3𝐷5⁄  of the RT at N equal to 500rpm, which experimental 

value is equal to 5. The impeller power consumption, 𝑃𝜀, was calculated from the integral 

of the turbulent dissipation rate over the mass in the vessel. The values obtained with the 

three grids are 4.86 for G1, 4.60 for G2 and 3.71 for G3. The power numbers obtained with 

the three grids from the torque transferred from the moving walls are 5.09 for G1, 5.05 for 

G2 and 4.78 for G3. As reported in the literature (Coroneo et al., 2011), the power number 

obtained from the moment on the moving walls achieves grid independency with much 

coarser grids, similarly to the mean velocity field. 

For the three grids, the grid convergence index (GCI) (Coleman and Stern, 1997) based 

on 𝑁𝑃 obtained from the integral of the turbulent dissipation rate over the vessel mass is 

2.79% for G1, 9.48% for G2 and 34.06% for G3, as can be seen in Fig. 1, this results in a 
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Richardson extrapolation (Roache, 1998) of 𝑁𝑃 equal to 4.97, that is very close to the 

experimental value.  

The total CPU time required on a octa-core Intel Xeon E5-1660 Dell Precision T5810 

system operating under Linux for the single-phase flow calculation of the 9.8 L vessel 

under consideration is equal to 105, 38 and 3 hours for G1, G2 and G3, respectively. The 

spatial discretization and the related computational time requirements for the calculation of 

grid independent turbulent variables cannot be disregarded in the simulation of industrial 

size liquid-liquid stirred vessels, since the number of cells increases with the volume of the 

computational domain. The two-phase simulations were run on the CINECA HPC system 

MARCONI. 

 

Fig. 1 – GCI (dashed lines) and Richardson extrapolation for the three grids considered. 

6 Results 
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6.1 Analysis of the continuous phase turbulent field 

Being the turbulent variables paramount in the determination of the breakup frequency, 

the continuous phase turbulent velocity field was considered first, in order to evaluate the 

appropriateness of the selection of a single-phase turbulence model and to assess the 

turbulent dissipation rate predictions.  

The continuous phase flow field was measured in single phase conditions (SP), with the 

stirred tank filled with water only, and in two-phase conditions (TP), with 0.1vol% of diesel 

fuel in water. Axial profiles of the mean and fluctuating velocity components of water 

measured in SP and TP conditions were analyzed. By means of example, fluctuating 

velocity axial profiles at different radial coordinates are shown in Fig. 2. The velocity 

components are divided by the impeller tip speed, 𝑉𝑡𝑖𝑝 = 𝜋𝑁𝐷 = 2.01m/s, to make them 

dimensionless. In a preliminary investigation, three different replicates were collected with 

a diesel-fuel volume fraction of 5×10-4, and a maximum standard deviation of 0.02𝑉𝑡𝑖𝑝 was 

calculated. As can be observed in Fig. 2, the profiles at r/T = 0.22 perfectly overlap, 

whereas at r/T = 0.43 the water fluctuations in the presence of diesel fuel are slightly larger 

than the water fluctuations without droplets, especially in the region 0.44 < z/T <0.56, with 

a maximum deviation of 𝑣′/𝑉𝑡𝑖𝑝 = 0.017 at z/T = 0.53. Unsurprisingly, since oil droplets 

closely follow fluctuations in the flow, 0.1% by volume of diesel fuel has a negligible 

effect on the mean flow field (Zhou and Kresta, 1998b). 
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Indeed, averaged velocity profiles of water with and without disperse phase almost 

perfectly overlap (not shown for brevity), and negligible differences are also visible for the 

water RMS velocity fluctuations with and without oil droplets. Having confirmed that 

under these operating conditions the presence of the disperse phase negligibly affects both 

the mean and the turbulent velocity field of the continuous phase, the single-phase k- 

model is an appropriate choice. The experimental determination of the turbulent dissipation 

rate was not performed in this work, since the validation of the turbulent flow field can be 

based on single-phase data collected in previous works from literature. 

  

(a) (b) 
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(c) (d) 

Fig. 2 – Axial profile of single-phase (SP) and two-phase (TP) axial (𝑢′) and radial (𝑣′) non-dimensional RMS of the 

water fluctuating velocities. Data are obtained on a plane midway two consecutive baffles at a dimensionless radial 

coordinate of r/T = 0.22 (a) and (b) and r/T = 0.43 (c) and (d). 

 

6.2  Assessment of the turbulent kinetic energy dissipation rate 

predictions 

The turbulent dissipation rate was not determined in this work since a very high spatial 

and time resolution would have been needed to collect the data (de Jong et al., 2009; 

Vejražka et al., 2018). In Fig.3, the radial profiles of non-dimensional turbulent dissipation 

rate at the impeller disk elevation obtained in this work with the G1 grid, that is the finer 

grid, are compared with results reported in previously published works with similar 

geometries. Additionally, in Fig.4 axial profiles of non-dimensional turbulent dissipation 

rate are compared with the experimental data obtained from turbulent kinetic energy 

balance by Escudié and Liné, (2003). In particular, Baldi et al. (2004) employed a direct 

method to obtain turbulent dissipation rate from measurements of the Reynolds stress 

gradients, performing LDA experiments as well; Escudié and Liné (2003) obtained the 

turbulent dissipation rate from a balance on the turbulent kinetic energy and from 

dimensional analysis. Sharp and Adrian (2001) employed a direct method to obtain 

turbulent dissipation rate from measurements, with different estimates methods (with 
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various assumptions of isotropy and axisymmetry) to obtain the unknown terms in the 

gradients of the Reynolds stress. 

The comparison clearly shows that, although RANS simulations fail in reproducing the 

non-monotonic profile of the turbulent dissipation rate along the radial coordinate as 

already observed in previous works (Yeoh et al., 2004; Yoon et al., 2003), the predictions 

closely match the experimental data by Baldi et al. (2004) for r/T>0.22. Moreover, after r/T 

= 0.20 the slope of the 𝜀 profile is equal to that obtained by Yeoh et al. (2004) with LES 

simulations. 

 

Fig. 3 – Comparison between numerical and experimental turbulent dissipation rate radial profiles from the literature 

and the present work results. Data are collected at an axial coordinate equal to the center of the impeller blade. 
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                    (a)                        (b) 

Fig. 4 – Non dimensional turbulent dissipation rate axial profiles obtained at a non dimensional radial coordinate of 

𝑟/𝑇 = 0.20(a) and of 𝑟/𝑇 = 0.22(b).  

Data in Fig. 4 are shown in terms of a scaled axial coordinate centered in the midpoint 

of the impeller blade height and divided by the blade height, 𝑤, equal to 0.2D = 0.0153m. 

The numerical results compare well with the experimental profile, with a closer agreement 

at r/T = 0.20 with respect to at r/T = 0.22, where the turbulent dissipation is underpredicted. 

It is worth recalling that these predictions are obtained without the use of adjustable 

parameters and that a slight difference in blade and disk thickness can affect both mean 

flow and turbulent distributions, thus geometrical differences could explain the profile 
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discrepancies. Moreover, it is well known that the organized periodic flow structures 

generated by the impeller rotation affect the turbulent kinetic energy (and its dissipation) up 

to a non-dimensional radial coordinate (r/T) of 0.225 and this flow feature cannot be 

predicted by the RANS multiple reference frame modelling framework adopted in this 

study. 

Being the turbulent dissipation rate responsible for the droplet breakage, in Tab. 3 the 

maximum value of the turbulence dissipation rate obtained with the simulations with the 

G1 grid excluding the zone at r/T<1/6 is compared with the experimental data by Escudié 

and Liné, (2003), Baldi and Yianneskis, (2004), Ducci and Yianneskis, (2005) and with the 

RANS simulations of Delafosse et al. (2008), as already done by the latter author. The 

analysis excludes the radial location of the impeller (r/T<1/6) that usually cannot be 

investigated with optical techniques, since the laser light is blocked by the impeller blade 

passage. For r/T>1/6 a maximum value of 10.2 is found in the simulations, that is in fair 

agreement with the results from the literature.  

For r/T<1/6, at the non-dimensional coordinate of r/T = 0.08 the maximum predicted 

non-dimensional turbulent dissipation rate is that is equal to 84. 
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Tab. 3 – Maximum energy dissipation rate and its position as obtained from experimental and numerical works from the 

literature and the present work. 

 

 

Overall, the evaluation of the local predicted values of  in the impeller region leads to 

conclude that notwithstanding the known approximation of RANS-based modelling, a fair 

representation of the turbulent dissipation rate can be achieved minimizing the numerical 

approximations, thus providing a reliable basis for the droplet size distribution calculation. 

6.3 Discussion 

A map of the turbulent dissipation rate obtained with the G1 and G3 grids is shown in 

Fig. 5 on a vertical plane midway two consecutive baffles. As expected, the spatial 

distribution of turbulent dissipation rate is remarkably inhomogeneous, the highest values 

are limited in the proximity of the impeller and large differences are found with the two 

grids.  

 

Escudié and 

Liné, (2003) 

Baldi and 

Yianneskis, 

(2004) 

Ducci and 

Yianneskis, 

(2005) 

Delafosse et 

al. (2008) 

Present 

work 

𝜀𝑚𝑎𝑥

𝑁3𝐷2 14 10.5 9.4 11 10.2 

r/T 0.22 0.224 0.225 0.16 0.17 
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Fig. 5 – Comparison between the turbulent dissipation rate field generated with the G1 grid (left) and the G3 grid (right) 

on a vertical plane midway two consecutive baffles. In green, the section corresponding to the sampling zone. 

Focusing the analysis of the predicted  in the sampling zone adopted for the 

experimental DSD determination, that is depicted in green in Fig. 5, the ratio of the average 

turbulent dissipation rate as predicted by the two grids is: 

𝜀(𝐺1)
𝜀(𝐺3)⁄ ≈ 0.077

0.065⁄ = 1.20     (14) 

which is very close to the ratio of the power numbers obtained from 𝑃𝜀: 

𝑁𝑃(𝐺1)
𝑁𝑃(𝐺3)⁄ ≈ 4.86

3.71⁄ = 1.31     (15) 

This result confirms that correcting the turbulent dissipation rate inside the breakage 

kernels with the ratio of the power number obtained from the simulation and the 
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experimental power number may be a workable approach to avoid long computational 

times (Gao et al., 2016). 

The spatial distribution of  has a significant impact on the breakup phenomena, as can 

be observed in Fig. 6 on a vertical plane between two consecutive baffles. The droplet 

breakup frequency is obtained with G1 right after the fluid dynamics solution converged. 

 

Fig. 6 – Breakup frequency on a vertical plane midway two consecutive baffles obtained with G1. 

As can be observed, the breakup frequency is significant just where 𝜀 is high. Since for 

this system the breaking events are meaningful just in the proximity of the impeller, as 

shown in Fig. 6, the correcting factor should be derived from the ratio of the 𝜀 volume 

average obtained either in a region close the impeller or as the ratio of the maximum 𝜀 in 
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the system. In fact, the breakup rate in the bulk of the tank is four orders of magnitude 

smaller than in the impeller region. 

In those scenarios the correcting factors for our system would be: 

 

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟(𝐺1)
𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟(𝐺3)⁄ ≈ 24.30

15.16⁄ = 1.60       (16) 

𝜀𝑚𝑎𝑥(𝐺1)
𝜀𝑚𝑎𝑥(𝐺3)⁄ ≈ 291.6

85.2⁄ = 3.42  (17) 

 

As known, the grid has a non-linear effect on the turbulent dissipation rate and with G3 

it is underestimated by 16% in the bulk, by 38% around the impeller (𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟) and by 71% 

of the peak maximum value (𝜀𝑚𝑎𝑥), with respect to G1. This observation confirms that in 

case of underprediction of the turbulent dissipation rate, as can be the case of relatively 

coarse discretization of large volumes, a correction for the breakage kernels based on  

values in the impeller region instead of on the overall power dissipation is more 

appropriate.  

The spatial distribution of the breakage frequency in a stirred tank was already 

numerically studied by Vonka and Soos, (2015) who stated that a small zone located in the 

proximity of the impeller may have a significant effect on the DSD. In their analysis they 

used a 316,803 elements mesh in a tank of diameter equal to 150 mm and found a 𝜀𝑚𝑎𝑥/〈𝜀〉 

value of 290 (with 〈𝜀〉 being the volume average of the turbulent dissipation rate) obtained 
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with a 𝑘 − 𝜀 model with the physical properties of the mixture, that compared well with the 

value of 𝜀𝑚𝑎𝑥/〈𝜀〉 = 550 obtained for a similar system in a previous work with a LES 

simulation and a 1.6 million elements mesh (Soos et al., 2013). 

The value of 𝜀𝑚𝑎𝑥/〈𝜀〉 = 550 agrees with our value of 𝜀𝑚𝑎𝑥/〈𝜀〉 = 387 obtained with 

G1 (the grid with 5,500,000 elements). However, Soos et al. (2013) reported that the power 

number calculated as the integral of the turbulent dissipation rate on the whole tank volume 

was underpredicted with respect to the values in the literature, pointing to the fact that the 

turbulent field may, in fact, have been underpredicted (even with a 1.6 million elements 

mesh in a tank of diameter equal to 150 mm).  

In principle, high order turbulence phenomena such as intermittency may have an 

effect in the description of the drop breakage in agitated systems, but these phenomena 

mostly affect the breakup dynamics. Minor differences are expected on the prediction of the 

DSD at the steady state (Gao et al., 2016; Li et al., 2017a). 

6.4 Analysis of size distribution and velocity of the droplets 

The experimental DSD obtained as described in Section 2 from triplicate measurements 

at N = 500 rpm are shown Fig. 7, where the distribution probability is expressed in terms of 

volume fraction with respect to the total disperse phase volume in the sample. 

The experimental measurements of the DSD show good reproducibility, as shown by 

the error bars which values are the standard deviations for each diameter category, that 
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range from 1.4 × 10−4 to 3.8 × 10−3. The corresponding coefficients of variations for each 

diameter category range from 0.8% to 23.4% for the droplets with average diameters equal 

to 8.00 × 10−5 m and to 1.47 × 10−4 m respectively. 

 

Fig. 7 – Experimental DSD obtained from triplicate measurements at N = 500rpm and error bars representing standard 

deviations 

The experiments confirm that the size of the droplets is of the order of tens of 

micrometers and that the DSD is relatively narrow. The experimental DSD is then used to 

validate the numerical results obtained with the modelling procedure described in Section 

3. 

Since the experiments provided the DSD in the sample, a method to reconstruct the 

NDF in the postprocessing calculations was used, being this information not promptly 
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available with the QMOM. The EQMOM with a gamma distribution as a kernel density 

function was used, in the postprocessing stage, to obtain the continuous DSD from the 

moment set available from the calculation (Marchisio and Fox, 2013). The results obtained 

with the coarsest mesh G3 are shown in Fig. 8. 

 

Fig. 8 – Comparison between experimental and numerical DSD as obtained with the G3 grid. 

As already mentioned, the numerical DSD is obtained through an average over the cells 

in the sampling position described in Section 2. The reconstructed DSD obtained from the 

simulation, with the two calculated quadrature nodes equal to 36.3μm and 49.6μm, was 

discretized in the same diameter bins used in the experimental DSD, for an easier 

comparison. The DSD is expressed in terms of volume fraction, to match the experimental 

data. Almost no differences were observed in the DSD reconstructed from the moments 
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collected in different tank zones. This result confirms that the DSD is homogeneous 

throughout the tank and consequently the choice of the sampling point is not pivotal. 

Despite an underestimation of the power consumed by the impeller, 𝑃𝜀, the DSD from 

the simulation is in acceptable agreement with the experimental one. A numerical Sauter 

mean diameter of 47.9μm was obtained whereas the experimentally measured diameter was 

equal to 47.6μm. In addition to the Sauter mean diameter, the Spraytec laser diffraction 

system measures the ratio between the fourth and the third NDF moment, also called the De 

Brouckere mean diameter, that is equal to 61.7μm. The numerical De Brouckere mean 

diameter as obtained with G3 is equal to 49.0μm. 

The DSD as obtained with the simulation with the finest grid G1 was calculated as 

well, with the same procedure described above for G3, and it is shown in Fig. 9. The two 

calculated quadrature nodes are equal to 23.8μm and 32.4μm. As expected, in this case a 

lower Sauter mean diameter of 31.7μm was obtained in the sampling volume since the 

turbulent dissipation rate is higher, as shown in Section 5. The numerical De Brouckere 

mean diameter as obtained with G1 is equal to 32.0μm. 

These results confirm the importance of the computational grids on the prediction of 

the turbulent variables and their subsequent effects on the resulting DSD.  

Having found that an underestimation of the turbulent dissipation rate by the coarser 

grid leads to a better agreement with the experiments entails that the set of parameters used 

in the breakage kernel is grid dependent (i.e. dependent on the coarse multiblock grid 
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adopted by Alopaeus et al. (2002) for the fitting procedure ) and it is not suitable for very 

fine grids.  

 

Fig. 9 - Comparison between experimental and numerical DSD as obtained with the G1 grid. 

Although the variability of the turbulent dissipation rate predictions can be 

compensated with an adjustment of the set of parameters of the breakage kernel, the 

selection of their values results in a loss of fully predictive capabilities of the simulations. 

Although the variability of the turbulent dissipation rate predictions could be 

compensated with an adjustment of the set of parameters of the breakage kernel, this 

approach would require large amounts of experiments in order to fit the parameters to flow 

conditions and system properties data. Moreover, the setting of these values based on 

empirical approach will result in a loss of fully predictive capabilities of the simulations. 
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In addition to the droplets size distribution, the oil droplets averaged flow field was 

measured, and negligible differences were found with respect to the water averaged flow 

field. In fact, the droplet and the seeding particles relaxation times are very similar, due to 

the droplet small size. The axial profiles collected at different axial coordinates of 

dimensionless axial and radial mean velocity are shown in Fig. 10, together with 

dimensionless axial and radial mean velocity profiles obtained from the simulation with 

G1.  

 

Fig. 10 - Axial profile of axial (top) and radial (bottom) non-dimensional mean velocities of oil (black circles) and water 

(white triangles)as obtained from the experiments and of oil (solid line) and water (dashed line) from the numerical 

simulation with G1. Data are obtained on a plane midway two consecutive baffles at different dimensionless radial 

coordinates. 
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Fig. 10 shows that diesel fuel and water dimensionless averaged velocity profiles 

obtained from the experiments almost perfectly overlap, confirming that the slip velocity 

between the two-phases is negligibly small. The maximum standard deviation obtained 

from triplicate measurements is 0.06Vtip for the diesel fuel and 0.03Vtip for the water, and 

the average standard deviation for the diesel fuel is 0.013Vtip, while for the water it is 

0.007Vtip. Numerical and experimental results are in acceptable agreement, with just some 

differences in the profile shape and in the maximum radial velocity, due to differences in 

the spatial resolution of experiments and CFD.  The maximum deviation registered is found 

between the diesel fuel experimental and numerical radial velocities at r/T = 0.22, with a 

value of 0.27𝑉𝑡𝑖𝑝 while the average deviation is 0.0077𝑉𝑡𝑖𝑝. 

Numerical diesel fuel and water dimensionless averaged velocity profiles as predicted 

by G1 perfectly overlap, reproducing the experimental findings. 

7 Scalar correction 

The strong dependency of the turbulent variables prediction on the grid size and 

today’s practical impossibility to reach grid independency on turbulent variables in 

industrial scale equipment drive the need to find a method to obtain reliable DSD prediction 

with any grid size. Gao et al. (2016) proposed a correction on the turbulent dissipation rate 

based on the ratio between the experimental power number and the power number as 
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obtained from the integral of the turbulent dissipation rate on the whole volume. Following 

the discussion of Section 6.3, a refined correction is proposed, based on the maximum 𝜀, 

rather than on the average over the whole volume. In fact, as already mentioned, the 

breakup rate in the bulk is four orders of magnitude smaller than the maximum breakup rate 

found in the tank. On the other hand, the average breakup rate in the volume swept by the 

impeller blades is approximately 30% of the maximum breakup rate. Having a non-

negligible breakup rate in the impeller region,  𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟  was used to derive the proposed 

scalar correction. 

Two different aspects have been addressed in deriving the correction, the former being 

the derivation of a set of grid independent breakup kernel parameters and the latter being 

the identification of a grid dependent scalar correction factor. 

The first step to derive the grid independent breakup kernel parameters requires to 

evaluate 𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟  from the three grids G1, G2 and G3 and then calculate the Richardson 

extrapolation (Roache, 1998), as shown in Fig. 11. 
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Fig. 11 – Average turbulent dissipation rate in the volume swept by the impeller blades as predicted by the three grids 

(squares) and Richardson extrapolation (diamond). 

The Richardson extrapolation allows to obtain a presumed value at zero grid spacing 

(infinitely fine mesh) from values obtained at higher grid spacing. Exploiting this estimate 

and the fact that the turbulent dissipation rate from G3 predicts a DSD that is in better 

agreement with the experimental data (Fig. 8) a set of breakup kernel parameters for an 

infinitely fine mesh, 𝐶1
0, 𝐶2

0, 𝐶3
0, was then calculated. In fact, as already pointed out in 

Section 6.4, the three parameters of the breakup kernel are not grid independent. Thus, the 

breakup kernel parameters for an infinitely fine mesh are obtained as: 

𝐶1
0 = 𝐶1 (

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝐺3

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝑅𝐸⁄ )

1/3

= 3.68(15.16
28.55⁄ )

1/3
= 2.98       (18) 

𝐶2
0 = 𝐶2 (

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝐺3

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝑅𝐸⁄ )

−2/3

= 0.0775(15.16
28.55⁄ )

−2/3
= 0.12  (19) 
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𝐶3
0 = 𝐶3 (

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝐺3

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝑅𝐸⁄ )

−1/3

= 0.2(15.16
28.55⁄ )

−1/3
= 0.25  (20) 

Where 𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝐺3  and 𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟

𝑅𝐸  are the 𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟  as obtained with G3 and from the 

Richardson extrapolation respectively. The exponents of the terms between brackets are 

derived from the functional form of the breakup kernel in Eq. (10). The underlying 

hypothesis for the derivation of 𝐶1
0, 𝐶2

0, 𝐶3
0 is that using 𝐶1, 𝐶2, 𝐶3 reliable results are 

produced when the simulation predicts an average turbulent dissipation rate in the volume 

swept by the impeller blades equal to 𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝐺3 .  

Having derived a set of potentially grid independent parameters, a grid dependent 

scalar correction, 𝐹𝐺𝑖 , for the turbulent dissipation rate in the kernel is suggested when large 

vessel volumes, computational limitations or time constrains do not allow a grid 

independent solution. For a simulation performed with a generic grid Gi, giving a value of 

turbulent dissipation rate in the volume swept by the impeller blades equal to 𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝐺𝑖 , the 

correction can be obtained as: 

𝐹𝐺𝑖 = 𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝑅𝐸  𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟

𝐺𝑖⁄  (21) 

 

It is worth observing that for different impeller types, the 𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝑅𝐸 can be obtained from 

preliminary small scale simulations at equal Reynolds number, thus limiting the 

computational cost.  

As a result, the following modified form of Eq. (11) can be adopted: 
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𝑔 = 𝐶1
0 (𝜀𝐺𝑖𝐹𝑖)

1/3𝑒𝑟𝑓𝑐 ( √
𝐶2

0σ

ρ𝐶(𝜀𝐺𝑖𝐹𝑖)2/3𝑑𝐷
5/3 +

𝐶3
0μ𝐷

√ρ𝐶ρ𝐷(𝜀𝐺𝑖𝐹𝑖)1/3𝑑𝐷
4/3)  (22) 

With 𝜀𝐺𝑖 being the local turbulent dissipation rate obtained with the grid 𝐺𝑖 and 𝐶1
0, 𝐶2

0 

and 𝐶3
0 are the grid independent kernel parameters. 

The correction method proposed might be particularly useful for the simulation of 

large-scale equipment, where ensuring grid independent solution would require 

unaffordable long computational times. 

8 Conclusions 

In this work, RANS TFM simulations coupled with a PBM for the determination of the 

DSD of diesel fuel in water in a mechanically stirred tank were run in OpenFOAM. The 

PBM was solved in the simplified case of negligible coalescence events with QMOM and 

the resulting DSDs were compared to experimental data collected from ad hoc experiments.  

Focusing on a single operating condition allowed to thoroughly investigate the effect of 

the turbulent variables on the breakage phenomena and on the resulting DSD, in the context 

of the RANS CFD-PBM simulations. 

The turbulent flow field predicted by the simulations was systematically validated with 

numerical data from the literature and with original and published experimental 

measurements, finding an acceptable agreement. 
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Different computational grids were tested, to explore the effects of the prediction of the 

turbulent variables on the numerical results. The adoption of a fine grid that satisfactorily 

predicted the turbulent flow field resulted in a larger underprediction of the DSD, with 

respect to a coarser grid, meaning that the parameters in the breakup kernel are grid 

dependent and they are not suitable for very fine grids. 

 In the discussion section, the turbulent dissipation rate field and the resulting breakage 

phenomena were analyzed, confirming that the turbulent dissipation rate and the breakup 

frequency are order of magnitude higher in the proximity of the impeller than in the bulk 

and that the volume swept by the impeller is responsible for almost the totality of the 

breakup events. 

A way to deal with the grid dependency is hypothesized, calculating a set of grid 

independent breakup kernel parameters and adopting the scalar correction for the turbulent 

dissipation rate in the breakup kernel proposed by Gao et al. (2016), deriving it from local 

quantities rather than volume averaged ones. 
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10 Nomenclature 

𝐶 Off-bottom clearance 

𝐶1, 𝐶2, 𝐶3 Alopaeus breakage kernel parameters 

𝐶1
0,𝐶2

0, 𝐶3
0 Alopaeus breakage kernel parameters for an infinitely fine mesh 

𝐶1𝜀, 𝐶2𝜀, 𝐶𝜇 𝑘 − 𝜀 turbulence model parameters 

𝐶𝐷 Drag coefficient 

𝑑𝐷 Drop diameter 

𝑑𝑖 
Nodes of quadrature 

𝐷 Impeller diameter 

𝑬  Rate of deformation 

𝑭 Interphase momentum transfer term 

𝑭𝑑𝑟𝑎𝑔,𝐶𝐷 Interphase drag force 

𝐹𝐺𝑖 
Grid dependent scalar correction for the grid Gi 

𝒈 Gravity vector 

𝑔 Breakup frequency 

𝐺1, 𝐺2, 𝐺3 Finest, intermediate, and coarsest grid used for the simulations 

ℎ1, ℎ2, ℎ3 G1, G2 and G3 spacing of the nodes on the impeller blade 

𝐻𝐿 Liquid height 

𝐻𝑇 Tank height 

𝑘 Turbulent kinetic energy 

𝑀𝑘 Reduced NDF moment of order k 

𝑛 Number density function 

𝑁 Impeller rotational speed 

𝑁𝑝 Power number 

𝑁𝑞  Order of approximation of the NDF 

𝑃 Pressure 
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𝑃𝜀 Impeller power consumption from the volume integral of 𝜀 

𝑟 Radial coordinate 

𝑅𝑒 Reynolds number 

𝑅𝑒𝑝 Particle Reynolds number 

𝑡 Time 

𝑇 Tank diameter 

𝒖𝑪 Continuous phase velocity vector 

𝒖𝑫 Dispersed phase velocity vector 

𝑢′𝑅𝑀𝑆 Continuous phase RMS of the fluctuating axial velocity 

𝑈 Continuous phase average axial velocity 

𝑉𝑡𝑖𝑝 Impeller tip speed 

𝑣′ Continuous phase RMS of the fluctuating radial velocity 

𝑉 Continuous phase average radial velocity 

𝑉𝑖
𝑜𝑖𝑙 Diesel fuel volume fraction of the i-th diameter bin 

𝑤 Impeller blade height 

𝑤𝑖  
Weights of quadrature 

𝑧 Axial coordinate 

  

Greek letters 

𝛼𝐶 Continuous phase volume fraction 

𝛼𝐷 Dispersed phase volume fraction 

𝛽 Daughter distribution function 

𝜀 Turbulent dissipation rate 

〈𝜀〉 Volume averaged turbulent dissipation rate 

𝜀𝐺𝑖 Local ε as obtained with the Gi grid 

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟  Average ε in the volume swept by the impeller 

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝐺𝑖  εimpeller as obtained with the Gi grid 
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𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
𝑅𝐸  Richardson extrapolation of εimpeller 

𝜀𝑚𝑎𝑥 Maximum ε in the system 

λ Wavelength 

𝜇𝐶 Continuous phase dynamic viscosity 

𝜇𝐷 Dispersed phase dynamic viscosity 

𝜇𝑡 Turbulent viscosity 

𝜌𝐶  Continuous phase density 

𝜌𝐷  Dispersed phase density 

𝜎 Interfacial tension 

𝜎𝑘, 𝜎𝜀 𝑘 − 𝜀 turbulence model parameters 

𝝉𝑫 Dispersed phase viscous stress tensor 

𝝉𝒕 Reynolds stress tensor 

𝜓 Generic variable 
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