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Abstract: This paper presents a preliminary version of an Active Learning (AL) scheme for the1

sample selection aimed at the development of a surrogate model for the uncertainty quantification2

based on the Gaussian Process regression. The proposed AL strategy iteratively searches for new3

candidate points to be included within the training set by trying to minimize the relative posterior4

standard deviation provided by the Gaussian Process regression surrogate. The above scheme has5

been applied for the construction of a surrogate model for the statistical analysis of the efficiency of a6

switching buck converter as a function of 7 uncertain parameters. The performance of the surrogate7

model constructed via the proposed active learning method are compared with the ones provided by8

an equivalent model built via a latin hypercube sampling. The results of a Monte Carlo simulation9

with the computational model are used as reference.10

Keywords: Uncertainty quantification; active learning; surrogate model; Gaussian Process regression;11

switching converter.12

1. Introduction13

Uncertainty quantification represents a key resource for the design of complex electronic devices,14

since it allows quantifying statistically the effect of possible uncertain design parameters (e.g., the15

components tolerances) on the system performance [1].16

Monte Carlo (MC) simulation can be seen as the most straightforward way to carry out the above17

statistical analysis. The underlying idea is to estimate the probability density function (pdf) of the18

outputs of interest by collecting the results of a “large” number of deterministic simulations calculated19

on a random set of configurations of the unknown parameters, drawn according to their probability20

distribution. Within the plain implementation of the MC method, the deterministic simulations are21

run with the so-called computational model. Such deterministic model can be considered as the22

most accurate synthetic approximation of the system under modeling able of providing, for any23

configurations of the system parameters, a prediction of the system outputs. Despite its accuracy, such24

plain implementation of the MC method turns out to be computationally heavy, since, in order to25

guarantee the convergence of the statistical quantities of interest (e.g., means and standard deviation),26

it requires to run a large number of simulations (usually in the order of thousands) with the expensive27

computational model.28

Surrogate models, also known as metamodels, can be considered as an effective solution to reduce29

the computational cost of MC simulations [2]–[6]. They provide a closed-form and fast-to-evaluate30

approximation of the non-linear input-output behavior of the computational model, thus providing an31
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efficient alternative, which can be directly embedded within the MC simulation flow. Surrogate models32

are constructed via either regression or fitting techniques from a limited set of simulation results,33

called training samples, computed with the computational model. Several regressions techniques,34

with different features, have been successfully adopted in many fields and applications for the35

construction of surrogate models ranging from least-squares approaches [2] to the more recent kernel36

and machine learning regressions (e.g., support vector machine [3], least-square support vector37

machine [4], Gaussian Process regression (GPR) [5,6]). However, the use of the most appropriate38

regression technique does not guarantee a good model accuracy, since the latter is also influenced by39

the training samples used to train it. A common approach is to select the training samples based on40

a Latin Hypercube Sampling (LHS) scheme [7], in which the configurations of the input parameters41

used to train the model are selected in order to cover the experimental space as much as possible.42

This work investigates the possible advantages and the performance of an alternative approach for43

the sampling selection given by the combination of an active learning (AL) scheme and the GPR [8–12].44

The effectiveness of the proposed AL technique has been investigated by considering the uncertainty45

quantification of the DC efficiency of a switching converter as a function of 7 uncertain parameters.46

The performance of the model built with the help of the proposed AL scheme are compared with the47

one of an equivalent model in which the training samples are computed via plain LHS, by using as48

reference the results of a MC simulation with the computational model.49

2. Methods50

2.1. Gaussian Process Regression (GPR)51

The discussion starts introducing the GPR. Under the assumption that a generic non-linear52

computational model M, which provides a non-linear input-output map y = M(x) between the53

parameters x ∈ X ⊂ Rd and output of interest y ∈ R, follows a Gaussian Process (GP) prior, a noise-free54

GPR reads [13]:55

y =M(x) ∼ GP(m(x), k(x, x′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

MGPR(x)

(1)

where MGPR(x) ∼ GP(m(x), k(x, x′)) is a GP defined by the trend function m(x) and covariance56

function k(x, x′). A GP extends the concept of a Gaussian distribution from numbers to functions.57

The trend m(x) provides the average function, among the ones drawn from the GP prior, while the58

covariance provides the correlation between the values of such functions at different point (i.e., x and59

x′) in the parameters space.60

The above GP is called prior distribution, since it fixes the properties of the unknown non-linear61

model, before looking at the training data [13]. In fact, different from deterministic regressions (e.g.,62

the support vector machine regression, least-square regression), in which the candidate functions of63

the model are restricted to a specific class of functions (e.g., polynomial, linear, etc..), the GPR model64

considers as candidate functions for our modelMGPR all the possible non-linear functions drawn65

from the GP prior by letting data “speak” and assigns a probability to each of them [14].66

The prior, combined with the information provided by the computational model, allows to
estimate the posterior distribution. Given a set of training samples D1∶n = {(xi, yi)}n

i=1, computed
for a given set of configurations of the input parameters xi ∈ X ⊂ Rd, with the computational model
yi =M(xi), the posterior distribution approximates the output value y∗ =M(x∗) for any input x∗ in
terms of a Gaussian distribution, which reads:

p(y∗∣x∗,D1∶n) ∼ N(µx∗ , σ2
x∗), (2)
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where the posterior mean µx∗ and variance σ2
x∗ write:

µx∗ = m(x∗) + k∗K−1y (3a)

σ2
x∗ = k∗∗ − k∗K−1kT

∗
. (3b)

where y = [y1, . . . , yL]T , K ∈ RL×L is the correlation matrix in which the entries Kij = k(xi, xj), k∗ =67

[k(x∗, x1), . . . , k(x∗, xL)] ∈ R1×L and k∗∗ = k(x∗, x∗).68

The above equations require to specify both the trend and the covariance functions. In this paper,69

we will consider a GPR built from a GP prior with a constant mean function (i.e., m(x) = β0) and a70

Matern 5/2 covariance function with automatic relevance determination (ARD) hyper-parameters [13],71

which writes:72

k(x, x′) = σ2
f (1+

√
5r + 5

3
r2) exp(−

√
5r), (4)

with

r =

¿
ÁÁÁÀ

d
∑
m=1

(xm − x′m)2

σ2
m

, (5)

where σf and σm for m = 1, . . . , d are the hyper-parameters of the covariance. Both the covariance73

hyper-parameters and the GP mean (i.e., σf , σm for m = 1, . . . , d and β0) are estimated during the74

training of the model from the training samples [13].75

The probabilistic interpretation in (2) allows computing for any configuration of the input76

parameters x∗ the confidence interval (CI), such that77

y∗ ∈ [µx∗ − z1- α
2
σx∗ , µx∗ + z1- α

2
σx∗] (6)

with a probability of 100(1− α)%, where z denotes the inverse of the Gaussian cumulative distribution78

function evaluated at 1− α
2 .79

2.2. Active Learning (AL) Strategy80

The statistical information provided by the probabilistic model constructed via the GPR can81

be suitably adopted to efficiently explore the parameter space X , in order to get the optimal set of82

training samples [8–11]. The proposed AL approach is iterative. Given a set of training samples83

D1∶n = {(xi, yi)}n
i=1, a probabilistic model MGPR,n is constructed via the GPR. Then, the algorithm84

searches for a new candidate point xn+1 to be included in the training set at the next iteration, such85

that the posterior standard deviation σx∗/µx∗ with x∗ ∈ X provided by the GPR model MGPR,n86

is minimized [9,11,12]. To this aim, at each iteration, a new candidate configuration of the input87

parameters is selected by solving the following optimization problem:88

xn+1 = argmax
x∗∈X

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σx∗ , for µx∗ = 0

σx∗/µx∗ , otherwise
(7)

Unfortunately, the above optimization problem cannot be solved exactly, since it would require89

to evaluate the relative posterior mean µx∗ and standard deviation σx∗ of the GPR modelMGPR,n for90

any configuration of the input parameters belonging to parameter space (i.e., for any x∗ ∈ X ). Our91

implementation of the above optimization scheme searches on a finite set of points x∗ ∈ X∗, drawn92
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Figure 1. Schematic of the considered buck converter. It is a 12V:5V switching converter operating at
the switching frequency of 100 kHz. For each component, the nominal values are indicated.

according to the parameter distributions via a LHS, where the set X∗ = {x∗,i}n∗
i=1 with n∗ ⋙ n. It is93

important to remark that a large value of n∗ can be used, since the prediction of the posterior mean94

and standard deviation with the considered GPR modelMGPR,n is extremely fast.95

At the next iteration, only the new configuration of the input parameters xn+1 selected during96

the above optimization process will be used as input for the computational model to compute the97

corresponding output yn+1 = M(xn+1) and a new modelMGPR,n+1 is trained with the new training98

set D1∶n+1 = D1∶n ∪ (xn+1, yn+1). The iteration process starts at the first iteration with an initial set D1∶n099

with n0 training samples selected by a generic sampling scheme (e.g., the LHS) and it stops when100

either the model budget in terms of maximum number of training samples nmax or a given tolerance is101

reached.102

3. Results and Discussion103

The AL technique presented in the previous section has been applied for the uncertainty104

quantification of the DC efficiency η, of the switching buck converter shown in Fig. 1, as a function of 7105

parameters (i.e., d = 7). Specifically, the value of the 12 V DC voltage source, the 50µH inductor and its106

10 mΩ equivalent series resistance (ESR), the 44.1µF capacitance and its 20 mΩ ESR, the 1.25 Ω load107

resistance and the 0.3 Ω switch resistance have been modeled as 7 uncorrelated Gaussian variables108

centered at their nominal value and with a standard deviation of 20% of their mean. The above scenario109

has been implemented as a parametric netlist in LTSpice (additional details are provided in [6]). The110

resulting model will be used as the computational model in the following analysis.111

The AL sampling technique presented in Sec. 2 is applied to build a surrogate model for the112

prediction of the converter efficiency. The algorithm starts with n0 training samples provided by the113

computational model and selected via a standard LHS. Then, the AL method is used to select the new114

candidate points in the parameter space and to compute, along with the computational model, the115

corresponding training responses. The iterative algorithm stops when a the maximum number of116

training samples nmax is reached. For the sake of simplicity, in the following results n0 = ⌊2nmax/3⌋.117

The performance of the surrogate mode GPR+AL, in which the GPR is combined with the AL,118

have been investigated for an increasing number of training samples nmax=25, 50, 75 and 100, by119

considering the root-mean-square error (RMSE) computed between the model predictions and the120
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Figure 2. Comparison among the RMSE computed by comparing the results of a 10000 samples MC
simulation with the corresponding predictions of the proposed GPR+AL and GPR+LHS surrogates
for an increasing size nmax of the training set. The means (dots) and standard deviations (bars) of the
RMSE values are computed by considering 5 realizations of the training samples.

corresponding results provided by a MC simulation with 10000 samples. The obtained results are then121

compared with the ones predicted by an equivalent GPR-based model, called GPR+LHS, in which the122

training samples are selected via a plain LHS scheme. Since the accuracy of the resulting surrogates123

necessaryly depends on the specific training samples used to build them, 5 different realizations of the124

training set are considered for each size nmax.125

Figure 2 shows the results of the above comparison in terms of mean values (red and green126

dots) and standard deviations (red and green bars) of the RMSE computed by considering 5 different127

realizations of the training set for each size nmax. The results clearly highlight the improved accuracy of128

the proposed GPR+AL model with respect to the plain GPR surrogate. In fact, the mean values of the129

RMSE computed for the GPR+LHS surrogate are always lower than the correspond ones obtained with130

the the equivalent GPR+LHS surrogate, thus highlighting the benefits of the proposed AL strategy.131

For the sake of illustration, Fig.s 5 and 3 show the scatter plots and the pdfs calculated from132

the predictions of proposed AL+GPR surrogate and the ones of the GPR+LHS surrogate for a single133

set of nmax = 100 training samples, again by using as reference the results of a 10000 samples MC134

simulation with the computational mode. The plots confirm the capability of the two surrogate models135

of providing an accurate prediction of the actual behaviors of the converter efficiency. Also, Fig. 4136

shows an additional comparison between the 99% CI predicted by the two models for 15 validation137

samples randomly selected among the samples used for the MC simulation. According to the results,138

the two surrogate models allow to accurately account for the uncertainty of the model predictions139

since most of the validation samples fall within the CIs predicted by the probabilistic models.140

4. Conclusions141

This paper presented a preliminary version of an AL scheme. The proposed AL algorithm,142

developed for the GPR, has been adopted for the optimal selection of the training samples in order143

to construct an accurate surrogate model of the scalar output of interest. The proposed methodology144

has been applied for the construction of a surrogate model for the uncertainty quantification of the145

efficiency of a buck converter as a function of 7 uncertain parameters. The performance of the resulting146

surrogate have been compared with the ones of an equivalent GPR-based surrogate model in which147

the training samples are selected via a standard LHS scheme. According to the results presented in148

this work, the proposed AL methodology can be considered as a promising candidate approach for the149
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Figure 3. Pdfs of the converter efficiency estimated by the proposed GPR+AL (solid green curve) and
GPR+LHS surrogates (solid red curve) and by a MC simulation with 10000 samples (blue histogram).
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Figure 4. Comparison between the results of 15 simulations with the computational model and the
corresponding mean values and 99% CIs predicted by the proposed GPR+AL (green dots and bars)
and GPR+LHS (red dots and bars)
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Figure 5. Scatter plots of the converter efficiency η computed by considering the correlation between
the results of a MC simulation with 10000 samples and the corresponding mean values predicted by the
proposed GPR+AL (red dots) and GPR+LHS (green dots) surrogates trained with nmax = 150 samples.
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training selection. Additional investigations are needed in order to better understand the performance150

of such methodology in different test-cases and for different dimensionality of the parameter space;151

possible different kinds of non-linear input-output behaviors could also be considered.152

References153

1. R. Spence and R. S. Soin, Tolerance Design of Electronic Circuits. London: Imperial College Press, 1997.154

2. D. Spina, et al., “Variability Analysis of Multiport Systems Via Polynomial-Chaos Expansion,” IEEE Trans.155

Microw. Theory Techn., vol. 60, no. 8, pp. 2329–2338, Aug. 2012.156

3. R. Trinchero, P. Manfredi, I. S. Stievano, and F. G. Canavero, “Machine learning for the performance157

assessment of high-speed links,” IEEE Trans. Electromagn. Compat., vol. 60, no. 6, pp. 1627–1634, Dec. 2018.158

4. R. Trinchero, M. Larbi, H. M. Torun, F. G. Canavero, and M. Swaminathan, “Machine learning and uncertainty159

quantification for surrogate models of integrated devices with a large number of parameters,” IEEE Access,160

vol. 7, no. 1, pp. 4056–4066, 2019.161

5. R. Trinchero, M. Larbi, M. Swaminathan and F. G. Canavero, “Statistical Analysis of the Efficiency of an162

Integrated Voltage Regulator by means of a Machine Learning Model Coupled with Kriging Regression,” in163

Proc. IEEE 23rd Workshop on Signal and Power Integrity (SPI), Chambery, France, 2019, pp. 1-4.164

6. R. Trinchero and F. G. Canavero, “Combining LS-SVM and GP regression for the uncertainty quantification165

of the EMI of power converters affected by several uncertain parameters,” IEEE Trans. Electromagn. Compat.166

(early access). DOI: 10.1109/TEMC.2019.2962899.167

7. M. McKay, R. Beckman and W. Conover, “A comparison of three methods for selecting values of input168

variables in the analysis of output from a computer code”, Technometrics, vol. 42, no. 1, pp. 55–61, 2000.169

8. S. De Ridder, et al., “A Bayesian Approach to Adaptive Frequency Sampling,” in Proc IEEE 23rd Workshop on170

Signal and Power Integrity (SPI), Chambery, France, 2019, pp. 1-4.171

9. J. Schreiter, et al., “Safe exploration for active learning with Gaussian processes,” in Proc. European Conference172

on Machine Learning (ECML), vol. 9284, 2015, pp. 133–149.173

10. H. M. Torun, et al., “Bayesian Active Learning for Uncertainty Quantification of High Speed Channel174

Signaling,” in Proc. IEEE 27th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS),175

San Jose, CA, 2018, pp. 311–313.176

11. E. Pasolli and F. Melgani, “Gaussian process regression within an active learning scheme,” in Proc. IEEE177

International Geoscience and Remote Sensing Symposium, Vancouver, BC, 2011, pp. 3574–3577.178

12. B. Shahriari, et al., “Taking the Human Out of the Loop: A Review of Bayesian Optimization,” in Proceedings179

of the IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016.180

13. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, Cambridge, MA: MIT Press,181

2006.182

14. M. Ebden, “Gaussian Processes: A Quick Introduction”, Aug. 2015. (arxiv:1505.02965)183

© 2021 by the authors. Submitted to Journal Not Specified for possible open access publication184

under the terms and conditions of the Creative Commons Attribution (CC BY) license185

(http://creativecommons.org/licenses/by/4.0/).186

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Gaussian Process Regression (GPR)
	Active Learning (AL) Strategy

	Results and Discussion
	Conclusions
	References

