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Abstract. Osteochondral defects are focal areas of damage involving articular cartilage and 
sub-chondral bone. Tissue engineering scaffolds are used to improve the organism regenera-
tion ability for this kind of injury, serving as biocompatible structures for cell viability and 
differentiation. Since biomechanical cues such as substrate stiffness, loading conditions and 
fluid permeation are fundamental for successful tissue repair, understanding how these features 
vary in the scaffold is of primary importance. Here we present a mathematical model based on 
porous media mechanics for the analysis of a tissue engineering scaffold. We consider a three-
layered scaffold mimicking a complete osteochondral tissue and vary the mechanical properties 
of the intermediate layer over a physiological range. Our results show that the interstitial fluid 
pressure and the vertical component of the solid effective stress depend significantly on the 
stiffness and permeability of the intermediate layer under mechanical loading. By properly tun-
ing these material properties, regimes of slow or fast temporal variations of mechanical stress 
can be obtained in the scaffold layer of interest. 
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1 INTRODUCTION 
Osteochondral defects are deficiencies that involve both the articular cartilage and the sub-

chondral bone underneath. While articular cartilage has poor healing capabilities, osteochondral 
injuries reveal a better attitude for spontaneous repair thanks to the mesenchymal stem cells 
(MSCs) that can reach the defect from the nearby bone marrow. MSCs can differentiate and 
synthetize new bone and cartilage tissues. However, this natural reparative ability gives rise to 
the formation of tissue layers that are biomechanically inferior and demonstrate to degrade over 
time with extensive fissuring and fibrillations [1]. Tissue engineering (TE) of osteochondral 
composites can offer a possible solution to this limit. Scientific advances in our knowledge of 
biomaterials, stem cells, growth and differentiation factors, and the fast improvement in biore-
actor technology offer great opportunities to fabricate tissues in the laboratory from combina-
tions of engineered extracellular matrices (scaffolds), cells, and biologically active molecules. 
Healing and regeneration of osteochondral defects are not trivial, as the process requires an 
avascular collagen deposition on the cartilage region concurrently with a vascular calcification 
in the bone stratum. TE scaffolds provide a suitable frame for cell attachment and differentia-
tion, offering segregated skeletons for the various cell populations requiring different biochem-
ical and biomechanical environments. Up to now, several approaches have been proposed for 
the fabrication of osteochondral composites, revealing that the regeneration process and its re-
quirements are not fully understood yet. Experimental studies [2] have shown that several fac-
tors influence the quality and durability of the repair tissue, such as the type of scaffold [3], in 
vitro cultivation time [4], cell sources [5], [6], and type of loading [7]–[11]. Merely experi-
mental approaches to define the effects of the various factors can be very expensive in time and 
money, and sometimes would not provide a full understanding of the process. To fill this gap, 
mathematical modelling and computational simulation can be very useful, as they allow an easy 
manipulation of the parameters and a high number of tests at no practical cost and, furthermore, 
can guide the preparation of real experimental tests. In this paper, we present a model based on 
porous media mechanics for the analysis of a biomimetic scaffold for the treatment of oste-
ochondral defects. In the following, we consider a three-layer scaffold mimicking a complete 
osteochondral tissue, composed of the articular cartilage layer, the subchondral bone layer and 
a calcified cartilage interface (tidemark) between the two distinct regions. 
 

2 MATHEMATICAL MODEL 
We derive the mathematical model of the tissue scaffold from the work in [12]–[15], con-

sidering the scaffold as a biphasic porous material. Here, we restrict our study to the simplest 
case of isotropic porous medium. We are aware, however, that transversely isotropic models of 
articular cartilage have been proposed e.g. in [14], [15] (see also the references therein). Alt-
hough an anisotropic description of the tissue scaffold is more realistic, we prefer to consider 
only an isotropic model, because we should otherwise distinguish between the anisotropy of 
the cartilage from that of the tidemark and of the bone. A model capable of capturing these 
details is part of our current studies. The following equations are formulated for each of the 
scaffold subdomains, i.e. cartilage (C), tidemark (T) and bone (B). Neglecting growth and mass 
exchange processes, the mass and linear momentum balance laws for the α-th phase are given 
by: 

 
 𝜕"(𝜀%𝜌%) + div(𝜀%𝜌%𝒗%) = 0, (1) 
 div	𝝈% +𝒎% = 0, (2) 
 𝒎3 +𝒎4 = 0, (3) 
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with α=s, f for the solid and fluid phase, respectively. In (1)-(3), 𝜀% is the volumetric fraction, 
𝜌% is the mass density, 𝒗% is the velocity, 𝝈% is Cauchy stress tensor, and 𝒎% is the internal 
force density that the α-th constituent exchanges with the other one. Furthermore, we require 
the saturation condition 

 
 𝜀3 + 𝜀4 = 1. (4) 

 
Note that, by summing (2) over the two phases and applying the closure condition in (3), it 

is possible to write the balance of linear momentum for the whole mixture as: 
 
 div(𝝈3 + 𝝈4) = 0. (5) 

 
Then, we regard the fluid phase as macroscopically inviscid and we assume the constituents 

to be incompressible. In this way, the stress tensors of the solid and the fluid phase can be 
expressed as: 

 
 𝝈3 = −𝜀3𝑝4𝑰 + 𝝈3:44, (6) 
 𝝈4 = −𝜀4𝑝4𝑰, (7) 

 
in which 𝑰 is the identity tensor, 𝑝4 represents the fluid pressure, and 𝝈3:44 is referred to as the 
effective Cauchy stress tensor of the solid phase. The latter quantity is determined as 

 
 

𝝈3:44 =
1
𝐽 𝑭 =2

𝜕𝑊
𝜕𝑪 A𝑭

B 
(8) 

 
with 𝐽 being the determinant of the deformation gradient tensor, 𝑭, 𝑊 the strain energy density 
of the solid phase, and 𝑪 the right Cauchy-Green deformation tensor. In the following, we 
choose the Holmes-Mow strain-energy density [16], i.e. 

 
 𝑊 = 𝑎D[exp(𝜓) − 1],			𝜓 = 𝑎K(𝐼K − 3) + 𝑎N(𝐼N − 3) − 𝛽 ln(𝐼R), (9) 

where 𝐼K, 𝐼N and 𝐼R are the invariants of 𝑪 and 𝑎D, 𝑎K, 𝑎N and 𝛽 are coefficients related to material 
properties by the relations [14]: 

 
 𝑎D = 	

2𝜇 + 𝜆
4𝛽 ,			𝑎K = 	𝛽

2𝜇 − 𝜆
2𝜇 + 𝜆,			𝑎N = 	𝛽

𝜆
2𝜇 + 𝜆 ,			𝛽 = 𝑎K + 2𝑎N, 

 
in which 𝜆 and 𝜇 are the Lamé constants of the respective scaffold layer. Note that, by substi-
tuting (6) and (7) in (5), it is possible to write the linear momentum balance for the biphasic 
system in terms of the effective Cauchy stress: 

 
 divV𝝈3:44 − 𝑝4𝑰W = 0. (10) 

 
Regarding the fluid problem, summing (1) over the two phases yields 
 

 div(𝒒) + div(𝒗3) = 0, (11) 
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where 𝒒 = 𝜀4(𝒗4 − 𝒗3). We assume that the standard assumptions leading to Darcy’s law are 
valid [17], [18], and we write: 

 
 𝒒 = −𝒌grad	𝑝4 (12) 

 
where 𝒌 is the hydraulic conductivity tensor of the system. Note that if, in the terminology of 
Ateshian and Weiss [19], the hydraulic response of the biphasic mixture is "unconditionally 
isotropic", 𝒌 can be expressed as a function of the third invariant of 𝑪, i.e., 𝒌 = 𝑘𝟎(𝐽)𝑰. Fol-
lowing [13], [16], we assume for 𝑘D the relation: 

 
 

𝑘D(𝐽) = 𝑘_ `
𝐽 − 𝜀3D

1 − 𝜀3D
a
bc

exp d
𝑚K

2
(𝐽N − 1)f, 

(13) 

 
where 𝑘_ is the reference hydraulic conductivity of the material, 𝑚D and 𝑚K are material pa-
rameters and 𝜀3D is the volume fraction of the solid phase in the reference configuration. To 
complete the mathematical model, we recall that the sets of equations are accompanied by the 
following interface conditions, which apply at the internal boundaries separating the three sub-
domains C, T, B: 
 

 
 ⟦𝒗h ∙ 	𝒏⟧lmn = 0,                                                                                             (14) 

o𝜀p𝒗p ∙ 	𝒏qlmn = 0,                                                                                             (15) 

oV𝝈h +	𝝈pW	𝒏qlmn = 0,                                                                                             (16) 

o𝑝pqlmn = 0.                                                                                                   (17) 

 
 

Here, the symbol ⟦∙⟧ represents the jump at the interface 𝐼rs for its argument (𝛾, 𝛿 = C, T, B) 
and n is the unit vector normal to 𝐼rs. 

Figure 1A displays a schematic of the scaffold and its positioning in the body, together with 
the disposition of the three layers. Since the scaffold has a cylindrical structure, we enforce 
axial symmetry in the following. The scaffold geometry is represented in Figure 1B, with the 
unit expressed in millimeters. The layers have a similar height, with the tidemark possessing 
the smallest value. Figure 1C represents the boundary conditions applied at the scaffold surface 
during the analysis. We enforce no fluxes at the top and bottom surface, whereas impose zero 
fluid pressure on the lateral surface. In addition, we impose zero vertical displacements on the 
top surface and a boundary force on the bottom one. The remaining surface is left free to de-
form. We consider a time dependent loading of the scaffold, as shown in Figure 1D. The max-
imum vertical load is linearly ramped over time from 0 to 1 seconds; then, the load is kept 
constant until 6 seconds and finally linearly reduced to zero at 7 seconds. Figure 1E shows the 
points in the scaffold in which we evaluate the model observables during the simulation. We 
select two points for each layer, one at the center and the other close to the lateral surface of the 
scaffold. The properties of the materials constituting the scaffold layers are summarized in Ta-
ble 1. We vary the properties of the tidemark over a wide range and report the results of the 
analysis in the Results section. 
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Parameter  Value  Description  Reference 
𝜆v  2.02 [MPa]  Cartilage Lamé's first parameter [9] 
𝜇v  4.31 [MPa] Cartilage Lamé's second parameter  [9] 
𝜆"  (0.03, 0.34, 3.46)x103 [MPa]  Tidemark Lamé's first parameter Model specific 
𝜇"  (0.04, 0.4, 4.06)x103 [MPa] Tidemark Lamé's second parameter  Model specific 
𝜆w  9.51x103 [MPa]  Bone Lamé's first parameter [9] 
𝜇w  6.34x103 [MPa] Bone Lamé's second parameter  [9] 
𝑘_x 5x10-15 [m4/(Ns)] Cartilage reference hydraulic conductivity [9] 
𝑘_y (0.01, 0.1, 1)x10-15 [m4/(Ns)] Tidemark reference hydraulic conductivity Model specific 
𝑘_z 1x10-17 [m4/(Ns)] Bone reference hydraulic conductivity [9] 
𝜀3D 0.2 Initial solid volume fraction  Model specific 
𝑚D 8.48x10-2 Parameter for the hydraulic conductivity [16] 
𝑚K 4.63 Parameter for the hydraulic conductivity [16] 
𝐿 150 [N] Vertical loading force Model specific 

 
Table 1: Summary of the parameters used in the model. 

 

Figure 1: A Schematic of the three-layered scaffold and positioning in the body (image adapted 
from [20]). B Scaffold geometry, with lengths expressed in mm. C Boundary conditions of the Fi-
nite Element problem. D Time dependence of the boundary load applied at the bottom surface of 
the scaffold. E Points in the scaffold in which the model observables are evaluated over time. 
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3 RESULTS 

Figure 2 shows the contour plots of the Interstitial Fluid Pressure (IFP) 𝑝4 and the Vertical 
Effective Stress (VES) 𝜎}:44 at different time points during the simulation. We used an interme-
diate value for the tidemark stiffness and permeability, keeping the other parameters as in Table 
1. During the loading phase (0 < t < 1s) the IFP decreases in the region of the bone close to the 
tidemark layer, whereas it increases close to the bone bottom surface (Figure 2A). The pressure 
difference relaxes over time, until it changes sign in the unloading phase. The tidemark layer, 
on the other hand, withstands a pressure increase over time, as the interstitial fluid flows down-
wards from the cartilage. The latter layer is the most compliant and experiences a steady in-
crease in IFP during the loading phase. Figure 2B shows model results for the vertical compo-
nent of the effective stress. Note that solid stress and interstitial pressure have opposite signs 
for compression, as customary in porous media literature. The increase of IFP during loading 
leads to tensile stresses at the bottom of the bone layer, which relax and change sign towards 
the end of the simulation. The opposite occurs in the region of the bone close to the tidemark 
layer, where initial compression of the solid component is followed by tension in the unloading 
stage. The situation is similar for the other layers, where the VES mirrors the IFP response over 
time. 

We performed a parametric analysis by varying the tidemark stiffness and hydraulic con-
ductivity over a wide range. Results for IPF and VES are reported in Figures 3 and 4 at the 
different observation points defined in Figure 1E. We used red, blue and green to identify dif-
ferent degrees of solid skeleton stiffness (red: low, blue: intermediate, green: high) whereas a 
gradient of color hue is used to represent increasing hydraulic conductivity (darker colors for 

Figure 2: Contour plots of IFP and VES at different time points in the simulation. We used the 
values 𝜆"=3.46x102 MPa, 𝜇"=4.06x102 MPa, 𝑘~"=10-16 [m4/(Ns)]. The other parameters are as in 
Table 1. 
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higher hydraulic conductivity values). Figure 3A and 3B show that the properties of the tide-
mark layer do not influence significantly the IFP in the cartilage layer in the central and side 
points of the scaffold. On the other hand, profound changes are visible in the tidemark layer 
itself. Figure 3C displays similar IFPs for low stiffness and low and intermediate hydraulic 
conductivities. On the contrary, the IFP increases with increasing hydraulic conductivity for 
increasing stiffness of the layer. The opposite behavior occurs in the side point, displayed in 
Figure 3D. As the layer becomes more permeable, the fluid flows faster out of the scaffold and 
the IFP is reduced. Figures 3E and 3F show the IFP response for the bone layer. Low tidemark 
stiffness leads to negative pressures in the pores in the loading stage, which turn positive at later 
times. The comparatively high stiffness of the tidemark, on the other hand, increases the rigidity 
of the whole structure and contributes to higher IFPs from the beginning of the loading. Figure 
3F shows that close to the scaffold free surface the IFP in the bone layer does not depend sig-
nificantly on the properties of the tidemark. 

Figure 4 shows the results of the analysis in terms of VES. Also in this case, Figure 4A and 
4B display that the stress in the cartilage depends weakly on the properties of the tidemark 
layer. Figure 4C on the other hand reveals significant variation in the stress for the different 
material parameters. The VES decreases with increasing stiffness of the intermediate scaffold 
layer and for decreasing hydraulic conductivities. This is particularly true in the central region 
of the scaffold, whereas the stresses close to the scaffold free surface range between -2 and -1 
MPa (Figure 4D). In a similar way, the stresses in the bone do not depart too much from one 
another, both in the center and side of the scaffold as shown in Figures 4E and 4F.  
 
4. CONCLUSIONS 

We presented a parametric study analyzing the impact of poromechanics on a biomimetic 
scaffold designed for the treatment of osteochondral defects. We tested the effects of different 
material properties of the intermediate layer of the scaffold (tidemark) on the interstitial fluid 
pressure and vertical effective stress in several scaffold points. Our results demonstrate that, by 
changing the stiffness and hydraulic conductivity of the tidemark, the pressure and stress pro-
files change significantly both in the tidemark itself and in the bone layer. On the contrary, the 
two observables depend only weakly on the tidemark properties in the cartilage layer, both in 
the central and lateral part of the scaffold. The analysis also shows that small variations of fluid 
pressure and vertical effective stress in the bone (center and side) can be obtained for high 
stiffness and low hydraulic permeability of the tidemark. On the other hand, large variations in 
pressure and stress are possible for low and intermediate tidemark stiffness for all the analyzed 
hydraulic conductivity levels. 
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Figure 3: IFP variation over time at the observation points defined in Figure 1E. A, C, E refer to points at the 

center of the scaffold, whereas B, D, F to points close to the scaffold free surface. The color legend is as follows: 
red, blue and green lines are used for increasing tidemark stiffness, respectively. In addition, darker color hues 

are used to denote increasing hydraulic conductivity of the tidemark layer.  
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Figure 4: VES variation over time at the observation points defined in Figure 1E. A, C, E refer to points at the 

center of the scaffold, whereas B, D, F to points close to the scaffold free surface. The color legend is as follows: 
red, blue and green lines are used for increasing tidemark stiffness, respectively. In addition, darker color hues 

are used to denote increasing hydraulic conductivity of the tidemark layer. 
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