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Influence of non-local diffusion
in avascular tumour growth∗

Ariel Ramı́rez-Torres1,2, Salvatore Di Stefano1, and Alfio Grillo1

1Dipartimento di Scienze Matematiche “G. L. Lagrange” Politecnico di
Torino, 10129. Torino, Italia

2School of Mathematics and Statistics, Mathematics and Statistics
Building, University of Glasgow, University Place, Glasgow G128QQ, UK

Abstract1

The availability and evolution of chemical agents play an important role in the2

growth of a tumour and, therefore, the mathematical description of their consumption3

is of special interest. Usually, Fick’s law of diffusion is adopted for describing the local4

character of the evolution of chemicals. However, in a highly complex, heterogeneous5

medium, as is a tumour, the progression of chemical species could be influenced by6

non-local interactions. In this respect, our goal is to investigate the influence of such7

type of diffusion on the growth of a tumour in avascular stage. For our purposes, we8

consider a diffusion equation for the evolution of the chemical agents that accounts for9

the existence of non-local interactions in a non-Fickean manner, and that involves no-10

tions of Fractional Calculus. In particular, the introduction of derivatives or integrals11

of fractional type of order α ∈ R has proven to be an effective mathematical tool in the12

description of various non-local phenomena. To achieve our goals, we adopt part of the13

modelling assumptions outlined in previous works of the authors, in which the growth14

of a tumour is described in terms of mass transfer among the tumour’s constituents15

and structural changes that occur in the tumour itself in response to growth. The16

latter ones are characterised by means of the Bilby–Kröner–Lee decomposition of the17

deformation gradient tensor. We perform numerical simulations, whose results indicate18

the relevance of embracing a fractional framework in modelling tumour growth. Specif-19

ically, the real parameter α “dominates” the way in which the tumour grows, since it20

permits to model a variety of growth patterns ranging from the standard growth to no21

growth at all.22

Keywords Tumour growth, non-Fickean diffusion, non-local interactions, inelastic distortions23
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1 Introduction24

For several years now, the scientific literature has experienced an important increase in the math-25

ematical modelling of tumour growth (see e.g. [20, 14, 8, 64, 100, 78, 7, 107, 66, 97, 65] and the26

references therein). However, there is still the necessity for understanding the connections among27

the different processes of chemical, biological and/or mechanical nature that take place at different28

time and length scales and influence the evolution of a tumour.29

From the mechanical perspective, the growth of a tumour is closely related to the appearance30

of transformations of its internal structure that arise in response to mass changes, which may be31

driven by its chemo-mechanical environment and coexist with the “visible” deformation of the32

tumour itself [39, 32, 95]. An important feature of this phenomenology is that the structural33

transformations are often accompanied by the production of residual stresses [98, 72, 52, 28, 101].34

In this respect, we mention the series of experiments conducted by Stylianopoulos et al. [110]35

on tumour spheroids, which indicate the existence of an incompatible, stress-free state for such36

systems and, thus, suggest to interpret growth in terms of inelastic distortions in addition to mere37

changes of shape. This conclusion permits to invoke the Bilby–Kröner–Lee (BKL) multiplicative38

decomposition of the deformation gradient tensor [85, 52, 102]. As long as volumetric growth is39

concerned and, as in the case of the present work, no other types of structural transformations are40

accounted for, the BKL decomposition reduces to decomposing the deformation gradient tensor41

into two contributions. One is related to the changes of the tissue’s internal structure due to the42

gain or loss of mass, and the other one to distortions of purely elastic nature (note that, here and in43

the sequel, we shall use the terms “tumour” and “tissue” interchangeably). We refer to the works44

[102, 52, 94, 27, 101, 56], and to the references therein, for a more complete discussion on the BKL45

multiplicative decomposition.46

It is worth noting that, although the inelastic distortions accompanying growth play an impor-47

tant role on its evolution [61, 6, 4, 51, 80], which may also be partially self-driven [41, 101], it is48

clear that the growth of a tumour is strongly conditioned by the presence of chemical agents of49

various nature, such as nutrients. Therefore, in order to elaborate a model of tumour growth, it is50

crucial to be able to model the evolution of chemical substances. Fick’s law of diffusion is largely51

adopted for this purpose, even though it has often turned out to be inconsistent with the results52

of some observed transport processes [48, 21, 31], which are thus referred to as non-Fickean. In53

fact, non-Fickean diffusion processes have been recognised in several biological tissues, including54

cells [48, 31], neuromuscular junctions [74] and brain tissue [21], among others. In particular, the55

experiments conducted by Danyuo et al. [34] suggest that cancer drug release kinetics in breast56

cancer is non-Fickean.57

A common characteristic of the occurrence of non-Fickean patterns, as suggested in several58

works [73, 84, 48, 67, 45], is the multi-scale and heterogeneous nature of the environment in which59

diffusion takes place. Specifically, Lacks [74] shows that geometric factors, such as tortuosity, could60

cause the diffusion processes occurring in a neuromuscular junction to be non-Fickean. Within this61

view, in the case of a tumour, although to our knowledge there is no experimental evidence that62

correlates non-Fickean diffusion with its internal structure, its microvascular network is known to63

have a strong influence on transport phenomena. In fact, this issue has been discussed in several64

papers, like e.g. [69, 90] and references therein.65

In general, non-Fickean behaviours can be gathered in two categories:66

(i) non-locality in time, which associates the mass flux of a given chemical agent with the67
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concentration gradient of that agent through an integro-differential relationship, such as, for68

example, those involving fractional time derivatives or fractional time integrals [9];69

(ii) non-locality in space, which means that the mass flux vector of a species cannot be expressed70

as a point-wise linear function of the concentration gradient, as Fick’s law would prescribe.71

In this work, we focus on the second type of non-locality, and we are interested in quantifying72

the spatial influence of the mass flux at a given point on “distant” points of a body. However, it73

is important to recall that non-locality is a broad notion [43, 47], which covers a wide spectrum74

of phenomena, from transport processes [44] to plasticity [2, 57] or visco-elasticity [10, 37], and75

depends on the intrinsic structure of the system to which it is referred and/or on its response to76

long-range stimuli. Moreover, non-locality can be introduced in different ways, e.g., by having77

recourse to higher-order gradient theories, as is the case for plasticity [2, 57, 109], or by assigning78

constitutive laws that feature integro-differential operators [71, 43]. In particular, the employment79

of integrals and derivatives of fractional order [92, 9, 12] has demonstrated to be an effective method80

in the description of various non-local phenomena [11, 18, 22], including non-Fickean diffusion81

[26, 82, 35, 86]. As pointed out in [35], the introduction of Fractional Calculus allows for the82

description of non-Fickean transport processes in a natural way, because of their close connection83

with the concept of anomalous diffusion [84].84

Before going further, we notice that in the literature there exist other non-Fickean diffusion85

laws that, however, do not rely on the assumption of non-local effects. In particular, the Maxwell-86

Stefan model [70], which generalises Fick’s diffusion by the consideration of “thermodynamic non-87

idealities”1 and “influence of external force fields”, has been postulated in the study of porous88

media and tumour growth [68].89

1.1 Aim and novelties of our work90

In the present work, on the basis of the indications given above, our aim is to highlight and91

study the influence of the non-local character of diffusion processes that could be acting in an92

avascular tumour. To accomplish this task, we propose a potentially new constitutive relationship93

of fractional type for the mass flux vector. Consequently, we refer only to fractional operators in94

space, so that the model is non-local in space but local in time. In our formulation, the mass flux95

vector of the chemical species, evaluated at a given spatial point, is put in relation, through an96

integral operator, to the concentration gradient of that species, evaluated at all other points of97

the region of space occupied by the tumour. This leads to a generalisation of Fick’s law that can98

be related to Fractional Calculus in a straightforward manner. In particular, this connection will99

become evident in the specification of the mass flux vector for the study of a benchmark problem100

(see Section “Definition of the non-locality function”).101

For our purposes, we adopt part of the modelling assumptions outlined in [80, 101, 56, 91].102

Specifically, we study the tumour as a mixture comprising a fluid phase and a solid phase, and we103

identify its growth with the gain or loss of mass of the solid phase at the expenses or advantage of104

1According to [115], the thermodynamic non-idealities are related to a phenomenon that pertains to a
thermodynamic system, like, for instance, a gas, and that occurs through the “storage of potential energy”
among the molecules of the system itself as a result of the interactions among such molecules. The main
consequence of the non-idealities is that the concentrations of the molecules turn out to be different from
those expected in the absence of the energy storage among them.
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the fluid one. In particular, the model we employ predicts the gain of mass for a sufficiently high105

concentration of chemical agents (in fact, nutrients) and the loss of mass when the concentration106

of these falls below a certain threshold [81, 80]. Moreover, in the case of mass uptake of the solid107

phase, the model accounts for mechanotransduction [81, 80, 50, 56], thereby allowing a modulation108

of growth by means of stress [81, 80], whereas both for positive and for negative growth, the onset of109

structural transformations and their related inelastic distortions are considered. In the remainder110

of this work, we address only the most pertinent considerations and equations, while we refer the111

Reader to [80, 101, 91] for further details.112

Before going further, we find it convenient to highlight the main novelties of our work, which113

can be summarised as follows:114

1. Impact of non-local diffusion on tumour growth. With respect to [80, 101, 56, 91], we study the115

diffusion of the chemical agents in a growing tumour by hypothesising a non-local constitutive116

law for the diffusive mass flux vector. This is done with the purpose of weighing how and to117

which extent the deviation of non-local diffusion from the Fickean one impacts on the main118

descriptors of the tumour’s evolution.119

2. Evolving non-locality driven by the tumour’s dynamics. The model that we are proposing120

requires to solve a type of non-locality that changes with the dynamics of the tumour through121

its motion and growth. To the best of our knowledge, this is a generalisation of a setting122

adopted in several papers (see e.g. [35, 63, 105, 75]), where the non-locality is accounted for123

in advection-diffusion equations without considering the deformation or structural change of124

the media in which such equations are defined.125

3. Non-locality and non-linearity. The core of our work is the equation governing the evolution126

of chemical agents. This is given by an advection-diffusion-reaction equation featuring a127

fractional diffusive mass flux vector and a non-linear reaction term. We solve this equation128

together with all the other balance laws, expressed by non-linear partial differential equations,129

that model the tumour and its growth. Therefore, we solve a system of equations in which130

non-linearity combines with non-locality. To us, this is a novelty because, to the best of our131

knowledge, papers on Fractional Calculus usually solve one equation in conjunction with a132

fractional constitutive law. Furthermore, the nature of the problem we are tackling makes it133

impossible to have recourse to solution techniques based on Fourier and Laplace transforms,134

which are standard for problems of Fractional Calculus that are linear and/or formulated in135

unbounded domains. In our case, however, this assumption would be physically unrealistic136

and we have, thus, to turn to numerical techniques, such as Finite Element (FE) methods.137

We point out that the study of fractional diffusion in bounded domains is delicate because138

of the complexity of the numerics involving operators of fractional type. Nevertheless, in the139

literature there exist some works dealing with fractional diffusion equations on bounded domains.140

The majority of these works employ finite-difference Grünwald-Letnikov discretisation schemes141

(see e.g. [88, 76, 36, 83]), and there also exist studies in which FE methods have been used for142

solving equations of fractional type [99, 63, 49, 44]. However, to the best of our knowledge, there143

is still a lack of studies addressing in detail the numerical issues arising in the context of fractional144

differential equations within a non-linear mechanical framework.145

We also mention that, in this work, we suggest a possible way of formulating non-local diffusion146

on manifolds by adapting the definition of convolution on manifolds given in [106]. Originally, we147
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encountered the necessity of expressing convolution in the non-Euclidean context because we aimed148

at writing our model in fully covariant formalism as a first step towards non-Euclidean settings.149

However, we faced some technical difficulties, which made us opt, for the time being, to give just a150

sketch of the generalisation of non-local diffusion on manifolds. For this reason, we summarised the151

main steps of our generalisation in Appendix A1. Note that Meerschaert et al. [82] did consider152

diffusion-like problems on manifolds but within a different framework.153

Finally, we would like to point out that, throughout this work, the terminologies “mass fraction”154

and “concentration” will be often used interchangeably, and the spatial and temporal dependence155

of the variables are dropped out, unless there is a necessity to account for the non-local character156

of the problem, where this dependence is explicitly specified.157

2 Kinematics158

Let S be the three-dimensional Euclidean space, T an interval of time, and B ⊂ S the reference159

placement of the mechanical system representing an avascular tumour, in which the tumour may,160

or may not, be free of stress. In particular, we consider that the tumour is a saturated mixture161

comprising a solid and a fluid phase. Moreover, the region of S occupied by the system at time162

t ∈ T is referred to as current configuration and is denoted by Bt ≡ χ(B, t), where χ(·, t) : B → S163

describes the motion of the solid phase (for the mixture kinematics, we follow here the same164

approach as the one adopted in [33]). Then, a point x ∈ Bt is given by x = χ(X, t), with165

X ∈ B and t ∈ T . By differentiating the motion χ with respect to X, we obtain the deformation166

gradient tensor, F , defined as the tangent map of χ, i.e., F ( · , t) ≡ Tχ( · , t) : TB → TS ,167

with TB = tX∈BTXB and TS = tx∈S TxS . Thus, tensor F (X, t) characterises the visible168

deformations of the system by mapping vectors of the tangent space TXB into the tangent space169

TxS .170

We also introduce the spatial volumetric fractions of the solid and the fluid phases, given by171

ϕs(x, t) and ϕf(x, t), respectively. Then, we define the apparent mass densities, ϕs(x, t)%s(x, t) and172

ϕf(x, t)%f(x, t), of the solid and of the fluid, where %s(x, t) and %f(x, t) represent the true mass173

densities of the solid and the fluid phase, respectively. We notice that the apparent mass densities174

express, in each case, the phase mass per unit volume of the mixture as a whole, whereas each true175

mass density is the inherent density of the corresponding phase. Furthermore, the saturation of176

the mixture implies that ϕs(x, t) + ϕf(x, t) = 1, for all x ∈ Bt and t ∈ T .177

The velocity of the mixture is v(x, t) :=
∑

k∈{s,f} ϕk(x, t)%k(x, t)vk(x, t)/%(x, t), where vs(x, t)178

and vf(x, t) denote the velocities of the solid and the fluid phases, respectively, and %(x, t) :=179 ∑
k∈{s,f} ϕk(x, t)%k(x, t) is the mass density of the mixture as a whole. We notice that, by intro-180

ducing the solid phase velocity V s(X, t) := χ̇(X, t), where the “dot” symbol denotes differentiation181

with respect to time, the relationship vs(x, t) = vs (χ(X, t), t) = V s(X, t) holds true for all X ∈ B182

and t ∈ T . Furthermore, since the tumour under study is assumed to be a mixture also in B,183

the solid and the fluid coexist at every point X ∈ B. This situation implies that any point x in184

the fluid phase can be also viewed as the image of X through the motion χ and, consequently,185

vf(x, t) = vf(χ(X, t), t) = V f(X, t).186
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2.1 Kinematics of growth187

As suggested in several works, see e.g. [46, 110] and references therein, a relevant feature in the188

growth of a tumour is the manifestation of irreversible changes of its internal structure. To take189

this aspect into account, we employ some concepts taken from the theory of inelastic processes.190

Specifically, for characterising the growth of the tissue under study, we invoke the Bilby-Kröner-Lee191

(BKL) decomposition of the deformation gradient tensor [85, 27, 102, 98, 52], i.e.,192

F = FeFγ , (1)

where the generally non-integrable tensor fields Fe and Fγ describe the elastic accommodation of193

the tumour and the inelastic distortions induced by growth, respectively. We denote by Nt(X)194

the natural state of the body element of the tumour’s solid phase associated with X, and we let195

it represent a stress-free state. We refer to the tensor Fγ(X, t) : TXB → Nt(X) as growth tensor196

and we assume that it comprehends the structural transformations undergone by the tumour in the197

course of its evolution. Then, the accommodating elastic tensor Fe(X, t) maps vectors of Nt(X)198

into vectors of TxS . We refer to the works [102, 52, 94, 27, 101, 56], and references therein, for a199

more complete discussion on the nature and generalisation of the multiplicative decomposition in200

Equation (1).201

In particular, following [80, 101, 56], in the present work we contemplate the case in which the202

growth tensor is a pure dilatation, that is, we impose Fγ = γI, where γ > 0 is referred to as growth203

parameter and I is the second-order identity tensor.204

3 Balance laws205

By adopting the modelling assumptions made in [80, 101, 56], we consider that the fluid phase is206

constituted by chemical agents and “water”, with mass fractions ca and cw, respectively, and such207

that ca + cw = 1. Furthermore, we hypothesise the solid phase to consist of two type of cells, i.e.,208

the proliferating cells, with mass fraction cp, and the necrotic cells, with mass fraction cn, where209

cp + cn = 1.210

3.1 Mass balance laws211

The mass balance laws for the gain and loss of mass of the proliferating and the necrotic cells, and212

for the mass fraction of the chemical species and the fluid phase as a whole are213

∂t(ϕs%scp) + div(ϕs%scpvs) = rpn + rfp, (2a)

∂t(ϕs%scn) + div(ϕs%scnvs) = rnf − rpn, (2b)

∂t(ϕf%fca) + div(ϕf%fcavf + yα) = rap, (2c)

∂t(ϕf%f) + div(ϕf%fvf) = −rs, (2d)

where rpn, rfp, rnf and rap denote rates of mass intake and/or reduction [80, 101, 56]. Specifically,214

they represent the rate at which the proliferating cells turn into necrotic (rpn), the mass from the215

fluid phase that promotes the proliferation of cells (rfp), the necrotic cells that dissolve into the216

fluid (rnf), and the chemical agents that are depleted by the proliferating cells (rap). Moreover,217
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rs := rfp + rnf is the global source/sink of mass of the solid phase as a whole. Particularly, in218

writing Equations (2a) and (2b), we have enforced the consideration that the two cell populations219

move at the same velocity vs. In Equation (2c), the term yα corresponds to the mass flux vector220

of the chemical agents, and since the focus of this work is subordinate to its definition, we prefer221

to make a deeper analysis of its characterisation and physical meaning in a separate section.222

By enforcing that the tissue’s cells are mainly composed by water [19, 80, 51], the true mass223

density of the solid phase, %s, can be regarded as constant and equal to the true mass density of the224

fluid phase, %f , which is set to be equal to the density of water. Thus, by taking into account the225

saturation constraint and the BKL decomposition in Equation (1), Equations (2a)–(2d), written226

with respect to the reference configuration, become227

ċp = [Rpn +Rfp −Rscp][JγΦsν%s]
−1, (3a)

γ̇

γ
= [Rfp +Rnf ][3%sΦsνJγ ]−1, (3b)

%f [J − JγΦsν ]ċa + %fQGradca + DivYα = caRs +Rap, (3c)

DivQ+ J̇ = 0, (3d)

where the material filtration velocityQ, the material mass flux vector of the chemical agents Yα, the228

mass fractions ca and cp, and the material sources/sinks of mass featuring in Equations (3a)-(3d)229

are given by230

Q(X, t) := J(X, t)q(χ(X, t), t)F−T(X, t), (4a)

Yα(X, t) := J(X, t)yα(χ(X, t), t)F−T(X, t), (4b)

ck(X, t) := ck(χ(X, t), t), k ∈ {a,p} (4c)

Rβ(X, t) := J(X, t)rβ(χ(X, t), t), β ∈ {pn, fp, nf, ap, s}, (4d)

with q = ϕf [vf − vs]. We note that, in writing Equations (3a)-(3d), the material volumetric231

fractions Φs(X, t) := J(X, t)ϕs(χ(X, t), t) and Φf(X, t) := J(X, t)ϕf(χ(X, t), t) have been written232

as Φs = JγΦsν and Φf = J − JγΦsν , where Φsν(X, t) := Je(X, t)ϕs(χ(X, t), t) is the “pull-back” of233

the solid phase volumetric fraction, ϕs, to the natural state [101, 56]. In particular, by imposing234

that the temporal derivative of Jγ compensates for the mass source rs [42, 5], it can be deduced235

that the volumetric fraction Φsν is independent of time. However, Φsν may depend on material236

points [56]. Furthermore, since it holds true that Je = J/Jγ , the volumetric fractions of the solid237

and the fluid phase can be expressed entirely in terms of the volume ratios J and Jγ , i.e.,238

ϕs(x, t) = ϕs(χ(X, t), t) =
Jγ(X, t)Φsν(X)

J(X, t)
, (5a)

ϕf(x, t) = 1− ϕs(x, t) =
J(X, t)− Jγ(X, t)Φsν(X)

J(X, t)
. (5b)

3.2 Momentum balance laws239

In this work, we neglect inertial and body forces, so that the momentum balance laws for the240

biphasic medium as a whole and for the fluid phase write [60, 54, 91]241

div(σs + σf) = 0, (6a)
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q = −k gradp, (6b)

where σs and σf are the Cauchy stress tensors of the solid and the fluid phase, p is the hydrostatic242

pressure, Equation (6b) expresses Darcy’s law [60], and k denotes the permeability tensor, which is243

here taken to be symmetric and positive definite.244

Following [60, 15, 53, 101], we assume the fluid phase to be macroscopically inviscid, so that σf245

is purely hydrostatic, and we write246

σf = −ϕfpg
−1, (7a)

σs = −ϕspg
−1 + σsc, (7b)

where σsc is said to be the constitutive part of σs and g−1 is the inverse of the metric tensor,247

g, associated with S . Then, by substituting Equations (7a) and (7b) into Equation (6a), and248

performing the backward Piola transformation of Equations (6a) and (6b), we obtain249

Div(−Jpg−1F−T + P sc) = 0, (8a)

Q = −KGradp, (8b)

where we have introduced the notation250

p(X, t) := p(χ(X, t), t), (9a)

K(X, t) := J(X, t)F−1(χ(X, t), t)k(χ(X, t), t)F−T(X, t), (9b)

P sc(X, t) := J(X, t)σsc(χ(X, t), t)F−T(X, t), (9c)

g(X, t) := g(χ(X, t)), (9d)

to denote, respectively, the pressure expressed as a function of time and of the points of B, the251

material permeability tensor, the constitutive part of the overall first Piola-Kirchhoff stress tensor,252

and the metric tensor expressed as a function of time and of the points of B. Moreover, Equation253

(8b) represents Darcy’s law of filtration, pulled-back to the reference configuration.254

4 Constitutive laws I: Strain energy density and per-255

meability256

Following [80, 101, 56], we hypothesise that the solid phase of the tumour is isotropic and hyperelas-257

tic, and introduce the strain energy densities W and Wν , which are written per unit volume of the258

reference configuration and of the natural state, respectively. To account for the structural changes259

induced by growth, the strain energy density W is expressed as a constitutive function, namely260

W̌, depending on F , Fγ and on material points. Furthermore, we denote by W̌ν the constitutive261

representation of Wν , which is supposed here to depend solely on the tensor Fe. Therefore, the262

following relationship holds [42, 30, 101]263

W̌(F (X, t),Fγ(X, t), X) = Jγ(X, t)W̌ν(Fe(X, t)). (10)

Within a more general framework, the strain energy density W̌ν maintains the explicit dependence264

on X, and Equation (10) does not hold in its present form. This becomes evident when W̌ν is265
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parameterised by point-dependent material coefficients or, by expressing W̌ν as W̌ν = Φsν%sΨ̌s,266

where Ψ̌s is the solid phase strain energy density per unit mass, when Φsν depends on X. However,267

these circumstances are excluded from the setting of this work, as can be deduced by looking at268

Table 1, in which all the material parameters and Φsν are taken as constants.269

Hereafter, we adopt a constitutive law of the type proposed in [62] for W̌ν , i.e.,270

W̌ν(Fe) = Ŵν(Ce) = a0

{
exp(Ψ̂(Ce))− 1

}
, (11a)

Ψ̂(Ce) = a1[Î1(Ce)− 3] + a2[Î2(Ce)− 3]− a3 log
(
Î3(Ce)

)
, (11b)

where Ŵν is the constitutive representation ofW expressed as a function of the elastic, right Cauchy-271

Green deformation tensor Ce = FT
e .Fe = F−T

γ CF−1
γ , C = FT.F is the “classical”, right Cauchy-272

Green deformation tensor, Î1(Ce) = tr (Ce), Î2(Ce) = 1
2

{
[Î1(Ce)]

2 − tr[(Ce)
2]
}

, and Î3(Ce) =273

det (Ce) are the principal invariants of Ce, and, as in [62, 114, 101], the parameters a0, a1, a2 and274

a3 are expressed in terms of Lamé’s parameters λ and µ, i.e.,275

a0 =
2µ+ λ

4a3
, a1 = a3

2µ− λ
2µ+ λ

, a2 = a3
λ

2µ+ λ
, a3 = a1 + 2a2 = 1. (12)

Then, by using Equations (11a) and (11b), the constitutive part of the first Piola-Kirchhoff stress276

tensor reads [101]277

Psc = JγFF
−1
γ

(
2
∂Ŵν

∂Ce
(Ce)

)
F−T
γ . (13)

Furthermore, we require the permeability tensor to be “unconditionally isotropic” [13], i.e.,278

k = k0g
−1, so that the material permeability tensor reads279

K = Jk0C
−1. (14)

In Equation (14), k0 denotes the scalar permeability and is taken here as in [13, 62], i.e.,280

k0 = kR

[
J − JγΦsν

JγϕfR

]m0

exp

(
m1

2

[
J2 − J2

γ

J2
γ

])
, (15)

where m0 and m1 are constant material coefficients, ϕfR := 1−Φsν is a reference value of the fluid281

phase volumetric fraction, and kR is the reference permeability of the medium. In the sequel, both282

kR and ϕfR, and thus Φsν , are assumed to be constant.283

5 Constitutive Laws II: Non-Fickean diffusion284

As pointed out in the Introduction, our aim is to generalise previous models of tumour growth285

[80, 101] by using some of the notions and tools offered by the theory of Fractional Calculus286

[92, 9, 12]. To this end, we introduce a non-Fickean type of diffusion of the chemical agents.287

Specifically, our purpose is to take into account the non-local behaviour of the gradient of the288

chemical agents’ mass fraction, and study its influence on the growth of an avascular tumour.289
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5.1 Non-Fickean mass flux vector290

We propose to express the chemical species’ mass flux vector, yα (see Equation (2c)), in terms291

of a non-local constitutive law of convolution type, in which, in the Euclidean case, the kernel292

of the convolution integral features a power law in the distance between the points x and x̃ of293

each pair (x, x̃) of spatial points occupied by body points. This way, we aim to show how yα,294

evaluated at x, depends on the gradients of concentration evaluated at all other points x̃, and on295

the power law chosen for the convolution kernel. To do this, we face two difficulties: the first one296

is connected to the fact that, since, for the sake of generality, we view the body as a manifold, the297

concept of convolution has to be suitably generalised; the second one is due to the impossibility of298

integrating vector fields on manifolds. Whereas the first issue has been investigated in the literature299

[17, 106, 93], and we refer to the convolution on manifolds put forward in [106], the second issue300

can be circumvented by re-defining the mass flux vector of the chemical agents in weak form, i.e.,301

for each t ∈ T , we define yα through the duality product [16]302

〈yα, grad č〉 := −%f

∫
Bt

{∫
Bt

[grad č(x)]dα(x, x̃, t)[grad ca(x̃, t)]dv(x̃)

}
dv(x), (16a)

dα(x, x̃, t) := fα(x, x̃)dα(x, x̃, t), (16b)

for all č ∈ Č = {č ∈ H1(Bt) : č = 0 on (∂Bt)D}, with Č being the space of all virtual variations303

of the mass fractions, (∂Bt)D the portion of the boundary of Bt on which Dirichlet conditions are304

applied for the mass fraction of the chemical agents, and H1(Bt) is the standard Sobolev space of305

square-integrable functions over Bt whose weak derivatives up to the order one are square-integrable306

over Bt too.307

We refer to the second-order tensor dα(x, x̃, t) as non-local diffusivity tensor, and we express308

it as the product of the scalar quantity fα(x, x̃) and of the tensor dα(x, x̃, t). In particular, for a309

given x ∈ Bt and varying x̃ ∈ Bt, fα(x, x̃), referred to as the non-locality function, measures how310

the intensity of the chemical signal expressed by grad ca(x̃, t) is felt at x. The tensor dα(x, x̃, t),311

instead, is denominated fractional diffusivity tensor. We emphasise that fα is defined for x 6= x̃312

and that, since we are dealing with fractional diffusion, both dα(x, x̃, t) and dα(x, x̃, t) have, in313

general, physical dimensions different from those of the standard diffusivity tensor, depending on314

the prescription of fα and α ∈ R+.315

The way in which fα(x, x̃) is to be understood in the case in which Bt is viewed as a manifold316

is reported in Appendix A1. However, from here on, to avoid the technical difficulties of addressing317

such a general framework, which is out of the scope of this work, we prefer to adopt orthogonal318

Cartesian coordinates. Then, by regarding Bt as a flat subset of S having the same dimensionality319

as S , fα(x, x̃) can be recast in the form fα(x, x̃) = f̂α(x−x̃), where f̂α is introduced to re-define fα as320

a function of the vector x− x̃, i.e., as f̂α : Tx̃S → R (see Appendix A1). Furthermore, we require321

dα(x, x̃, t) to be a two-point tensor of the type dα(x, x̃, t) =
∑3

a,b=1[dα(x, x̃, t)]abea(x) ⊗ eb(x̃),322

where {el(x)}3l=1 and {el(x̃)}3l=1 are the vector bases attached to x and x̃. It is worth noticing323

that, within a Cartesian setting, and for x = x̃, the tensor ea(x)⊗eb(x̃) ≡ ea(x)⊗eb(x) is referred324

to as “Jacoby directional tensor” in [3], where, in a slightly different context, the central Marchaud325

fractional derivative is extended to the case of two- or three-dimensional problems.326

In general, there is no correlation at all between the vector bases {el(x)}3l=1 and {el(x̃)}3l=1327

and, in fact, each basis can be chosen arbitrarily and independently of the other one. Nevertheless,328

{el(x̃)}3l=1 can be enforced to be the result of the parallel transport of {el(x)}3l=1 along the geodesic329
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connecting x and x̃. In particular, in the Euclidean case, the arch of the geodesic connecting x and330

x̃ is the segment of the straight line directed from x to x̃ and the parallel transport of {el(x)}3l=1331

along such a line renders {el(x̃)}3l=1 collinear with {el(x)}3l=1. Hence, for each l = 1, 2, 3, el(x)332

and el(x̃) can be associated with the same direction, hereafter denoted by il, even though they333

remain, implicitly, distinct vectors, attached to different spatial points. Within this approach, we334

hypothesise that dα(x, x̃, t) admits the representation dα(x, x̃, t) =
∑3

b=1 d
b
α(x, x̃, t)eb(x) ⊗ eb(x̃)335

and, since el(x) is collinear with el(x̃), this representation of dα(x, x̃, t) mimics the description of336

an orthotropic tensor function with respect to the set of directions {i1, i2, i3}. Hence, it is “as if”337

we had dα(x, x̃, t) =
∑3

b=1 d
b
α(x, x̃, t)ib ⊗ ib. Then, by using the definitions in Equation (16), we338

identify the components of the fractional mass flux to be given by the following expression339

[yα(x, t)]b := −%f

∫
Bt

f̂α(x− x̃)dbα(x, x̃, t)∂bca(x̃, t) dv(x̃), no sum over b = 1, 2, 3, (17)

and we call the coefficients {dbα(x, x̃, t)}3b=1 fractional diffusivities.340

5.2 Comparison with other works341

Other definitions of fractional mass flux vector can be found that characterise non-Fickean diffusion342

processes (see e.g. [82, 105] and references therein). For instance, Sapora et al. [105] study a343

fractional version of Darcy’s law in one dimension in which the filtration velocity (also known as344

“specific mass flux”) is taken to be proportional to an integral operator that the Authors refer345

to as “Riesz integral” [105] of pressure (note that the definition of Riesz integral given in [105]346

differs by a factor cos(βπ/2), with β ∈ ]0, 1[, from that in [104, 9]). However, when passing to347

higher dimensionalities, it is necessary to extend the concept of fractional differentiation to other348

differential operators like the gradient of a scalar function. In this regard, in [40, 1, 113] the349

fractional gradient of order α ∈ R+ of a scalar function is defined as a co-vector, whose components350

are identified with the fractional partial derivatives, each of which of order α, of the given function.351

In particular, these fractional partial derivatives are taken in the sense of Riemann-Liouville in [40]352

and in the sense of Caputo in [113], whereas the Nishimoto fractional derivative [87] is used in [1],353

for α∈ ]0, 1].354

For the purposes of our work, we adopt the definition given in Equation (17). This definition355

presents some fundamental differences with respect to the definition supplied, for instance, in [105].356

These differences, however, are not only related to the fact that the physical phenomenon addressed357

in [105] is distinct from the one we are studying here. Rather, they are intrinsic in the definition358

of the operator expressing yα, and can be summarised as follows:359

• Equation (17) is conceived in a three-dimensional setting and, consequently, requires an360

integration over the whole configuration of the body, Bt, whereas the definition of the mass361

flux given in [105] features an integration over a bounded interval.362

• In our definition, each fractional diffusivity dbα(x, x̃, t), b = 1, 2, 3, is part of the integrand of363

Equation (17), and cannot be factorised out of the corresponding integral.364

• If, for a given b0 ∈ {1, 2, 3}, the fractional diffusivity db0α (x, x̃, t) could be factorised out of365

the integral in Equation (17) (e.g. by setting db0α (x, x̃, t) ≡ d0α, with d0α constant), and if366
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the only nonzero component of grad c(x̃, t) were ∂b0ca(x̃, t) for all x̃ and t, one would have367

[yα(x, t)]b0 = −%fd0α

∫
Bt

f̂α(x− x̃)∂b0ca(x̃, t)dv(x̃), (18)

where f̂α(x − x̃) is still a function of all the components of the vector x − x̃, rather than of368

its b0-th component only. This property marks a major difference between our approach and369

the model developed in [105], and expresses the fact that, even in the presence of a preferred370

direction (i.e., the one associated with ∂b0ca), one should account for the non-locality in all371

directions.372

Before going further, we notice that, if the fractional diffusivities {dbα(x, x̃, t)}3b=1 are all equal373

to some reference constant value dRα (note that, for simplicity, we call ‘fractional diffusivities’ the374

set of the three principal fractional diffusivities), the mass flux vector yα(x, t) can be expressed (in375

a Cartesian setting) as376

yα(x, t) = −%fdRα

∫
Bt

f̂α(x− x̃) grad ca(x̃, t)dv(x̃). (19)

Moreover, for some suitable f̂α(x − x̃), usually written as a power-law that decays in space, the377

integral on the right-hand-side of Equation (19) can be taken as the definition of a fractional378

gradient of ca of order α, i.e., one can write (in the Cartesian setting)379

gradαca(x, t) :=

∫
Bt

f̂α(x− x̃) grad ca(x̃, t)dv(x̃), (20a)

[gradαca(x, t)]b :=

∫
Bt

f̂α(x− x̃) ∂bca(x̃, t)dv(x̃), b = 1, 2, 3. (20b)

Equations (20a) and (20b) are reminiscent of the definition of fractional gradient of order α supplied380

in [113]. However, an important difference between that definition and ours is that, in [113], the381

components of the fractional gradient of ca (i.e., {[gradαca(x, t)]b}3b=1 in our notation) are identified382

with the Caputo derivatives of ca along the principal directions of the vector basis. This, in turn,383

requires the function f̂α of Tarasov [113] to depend, for each Caputo derivative, solely on the b-th384

component of x− x̃.385

5.3 Backward Piola transform of the mass flux vector386

The backward Piola transformation of Equation (16a) is given by387

〈yα, gradč〉 = 〈Yα,Grad č〉

= −%f

∫
B

{∫
B

[Grad č(X, t)]Dα(X, X̃, t)[Grad ca(X̃, t)]dV (X̃)

}
dV(X), (21)

with č and ca such that č(X, t) = č(χ(X, t)) and ca(X, t) = ca(χ(X, t), t), and we introduced the388

material non-local diffusivity tensor, Dα, the material non-locality function, Fα, and the material389

fractional diffusivity tensor, Dα, as follows390

Dα(X, X̃, t) := J(X, t)Fα(X, X̃, t)Dα(X, X̃, t), (22a)
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Fα(X, X̃, t) := f̂α
(
χ(X, t)− χ(X̃, t)

)
, (22b)

Dα(X, X̃, t) := J(X̃, t)F−1(χ(X, t), t)dα(χ(X, t), χ(X̃, t), t)F−T(X̃, t). (22c)

More specifically, the components of Dα(X, X̃, t) and Yα(X, t) are given by391

[Dα(X, X̃, t)]AB = J(X̃, t)

3∑
b=1

[F−1(χ(X, t), t)]Ab d
b
α(χ(X, t), χ(X̃, t), t) [F−T(X̃, t)]b

B, (23a)

[Yα(X, t)]A = −%f

∫
B
J(X, t)Fα(X, X̃, t)

3∑
B=1

[Dα(X, X̃, t)]AB ∂Bca(X̃, t) dV(X̃). (23b)

Expression (23b) defines the components of the mass flux vector in the material description, whereas392

Dα is the material counterpart of the fractional diffusivity tensor dα.393

In the sequel, we assume the spatial fractional diffusivities to be all equal to each other, i.e.,394

dbα(x, x̃, t) = dα(x, x̃, t), for all b = 1, 2, 3, and that dα(x, x̃, t) is independent of x (more rigorously,395

we should say that dα can be redefined as a function of time and of the spatial variable with respect396

to which the integration is made, i.e., x̃). Consequently, with a slight abuse of notation, we simply397

write dα(x̃, t). Moreover, following [101], we impose that dα(x̃, t) depends on position and time398

through the volumetric fraction of the fluid phase, thereby setting dα(x̃, t) = ϕf(x̃, t)dRα, where399

dRα is a reference fractional diffusivity, which is parameterised by α. Since ϕf(x̃, t) can be related400

to the volumetric deformation of the solid phase and to growth through the expression (5b), we401

obtain402

dα(χ(X̃, t), t) =
J(X̃, t)− Jγ(X̃, t)Φsν

J(X̃, t)
dRα. (24)

These considerations imply that the components of Dα can be written as follows403

[Dα(X, X̃, t)]AB = (J(X̃, t)− Jγ(X̃, t)Φsν)dRα[F−1(χ(X, t), t)]Ab [F−T(X̃, t)]b
B. (25)

We notice that the non-local nature of the problem is also reflected in Equation (25). Indeed, in404

a model accounting only for local interactions, the last two terms of Equation (25) would give the405

inverse of the right Cauchy-Green deformation tensor C, i.e., C−1 = F−1.F−T, since X and X̃406

would coincide. Still, this is not true in our case, since the non-locality changes with the dynamics407

of the tissue. Moreover, even in the case in which all the fractional diffusivities {dbα(x, x̃, t)}3b=1408

were independent of x and x̃, their material counterparts {[Dα(X, X̃, t)]AB}3A,B=1 would still be409

functions of the points X and X̃ because of the motion, χ.410

Remark 1 Due to the non-local nature of the mass flux vector, its Piola transformation needs to411

be performed in two steps, i.e., as many as the integrals appearing in Equation (16a), or Equation412

(21). In particular, the volume ratio J(X, t) is due to the change of measure of the outermost in-413

tegral of Equation (21), which re-defines the duality product between yα and gradč into the duality414

product between Yα and Gradč. In our formalism, this volume ratio is used to define the pull-back415

of the non-local diffusivity tensor, dα, as prescribed by Equations (22a)–(22c). Furthermore, the416

tensor F−1(χ(X, t), t) featuring in Equation (22c) stems from the transformation of the gradient417

of the virtual concentration, č, evaluated at x, i.e., gradč(χ(X, t), t) = Gradč(X, t)F−1(χ(X, t), t),418
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and it contributes, “from the left”, to the calculation of the pull-back of the fractional diffusivity419

tensor. Whereas this first part of the backward Piola transformation of the mass flux vector is420

standard, the second part of it reveals the non-locality of the constitutive law in Equation (21).421

Indeed, the tensor F−T(X̃, t) featuring in Equation (22c) must be evaluated in X̃ because it origi-422

nates from the transformation of the gradient of the concentration (not the virtual one), which is423

part of the integrand of the innermost integral, i.e., the one expressing the non-local constitutive424

law. This tensor contributes, “from the right”, to determine the pull-back of the fractional diffu-425

sivity tensor. Finally, the volume ratio J(X̃, t) is necessary because of the change of measure in426

the innermost integral of Equation (16a) and is employed to define the pull-back of the fractional427

diffusivity tensor, dα. In conclusion, to determine the pull-back of the mass flux vector, a “double”428

Piola transformation has to be performed.429

Remark 2 Looking at the Piola transformation of the mass flux vector, it is worth mentioning430

that the non-locality of the problem, expressed through f̂α as a function of (x − x̃) in the current431

configuration, cannot be described in general as a function of (X−X̃) in the reference configuration.432

Rather, the material non-locality function, Fα, must be conceived as a function of the three variables433

X, X̃ and t since, as prescribed by Equation (22b), it inherits this dependence from the motion, χ,434

in a way that, in general, cannot be reduced to a function of time and of the difference (X − X̃).435

Furthermore, we notice that the non-locality of the problem evolves from the reference to the current436

configuration. Indeed, two points that are “close” in B can either be “far away” from each other437

or become “even closer” in Bt, and vice versa.438

6 Model summary and some numerical aspects439

In this section, we summarise the equations characterising our mathematical model, specify the440

expressions for the sinks and sources of mass, and highlight some computational aspects to be441

taken into account. In the following, we focus on the case in which the considered chemical agents442

are nutrient substances that are necessary to trigger and maintain the growth of the tumour. Hence,443

we shall be referring to “nutrients” in lieu of “chemical agents” from here on.444

6.1 Model equations445

Our model is based on the following set of non-linear and coupled equations446

ċp = [Rpn +Rfp −Rscp][JγΦsν%s]
−1, (26a)

γ̇

γ
= [Rfp +Rnf ][3%sΦsνJγ ]−1, (26b)

%f [J − JγΦsν ]ċa − %f [K Gradp]Gradca + DivYα = caRs +Rap, (26c)

J̇ −Div(K Gradp) = 0, (26d)

Div(−Jpg−1F−T + P sc) = 0, (26e)
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in the (4+3) unknowns U := {cp, γ, ca, p, {χa}3a=1}, and with the source and sink terms [80, 101, 81]447

448

Rfp = Jζfp

〈
ca − ccr

cenv − ccr

〉
+

[
1− δ1〈σ̄〉+

δ2 + 〈σ̄〉+

]
J − JγΦsν

JϕfR︸ ︷︷ ︸
=ϕf/ϕfR

JγΦsν

J︸ ︷︷ ︸
=ϕs

cp, (27a)

Rnf = −Jζnf
JγΦsν

J
(1− cp), (27b)

Rap = −Jζap
ca

ca + c0

JγΦsν

J
cp, (27c)

Rpn = −Jζpn

〈
1− ca

ccr

〉
+

JγΦsν

J
cp. (27d)

In Equations (27a)–(27c), ζfp, ζnf , ζap and ζpn are constants indicating the characteristic time449

scales with which the interstitial fluid is absorbed by the proliferating cells, the necrotic cells450

go into the fluid, nutrients are consumed, and proliferating cells die, respectively. The operator451

〈f〉+ := max{0, f} represents Macaulay’s brackets, which return the positive part of a function f .452

Moreover, ccr is a critical value for the nutrients’ mass fraction and cenv refers to the concentration453

of nutrients present in the surrounding of the tumour. In order for growth to occur, it is necessary454

that Rfp = Jrfp > 0, i.e., it must hold that ca > ccr, provided cenv > ccr. We also mention that the455

mass source Rfp features the term in square brackets depending on σ̄ := −1
3trσ, which is introduced456

in order to describe the fact that growth can be modulated by mechanical stress, thereby giving rise457

to a phenomenon known as mechanotransduction [81, 80, 50, 56]. Finally, the product of the last458

three factors in Equation (27a) describes the fact that, to allow for the transfer of mass from the459

fluid to the proliferating cells, there must be a nonzero volumetric fraction of the fluid phase and460

of the solid phase as well as a nonzero mass fraction of the proliferating cells. Macaulay’s brackets461

in Equation (27d) ensure that the proliferating cells become necrotic, i.e., Rpn < 0 when ca < ccr,462

and Rpn = 0 otherwise. Equation (27b) assumes that Rnf is linear in the volumetric fraction of463

the solid phase and in the mass fraction of the necrotic cells, i.e., 1− cp, while Rap establishes that464

the magnitude with which the nutrients are “eaten” by the proliferating cells depends on the ratio465

ca/c0, with c0 ∈ ]0, 1] being a reference value of the nutrients’ concentration that modulates their466

consumption. We refer the Reader to [81, 80, 101, 56] for further details on these terms, and for467

their generalisation to include growth-induced structural transformations.468

Finally, we recall that the main goal of our model is to quantify the impact of the non-local469

diffusion of the nutrients, accounted for by Yα, on the overall evolution of the tumour, i.e., on all470

the unknowns of the model. We note that, apart from the presence of the fractional mass flux471

vector Yα, our model is the same as the one presented in [80] and extended in [101, 56].472

6.2 Numerical aspects473

The model summarised in Equation (26) features ordinary differential equations, partial differential474

equations and an integro-differential equation of fractional type. Since the model is formulated for475

a bounded domain and many couplings and nonlinearities are accounted for, the usual techniques476

adopted in Fractional Calculus for linear problems, such as the Fourier and Laplace transforms,477

cannot be used. Consequently, we need to resort to numerical techniques. In particular, we solve478
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Equations (26a)–(26e) by means of a FE scheme that we need to adapt to our purposes in order479

to take fractional derivatives into account. Here, we do not intend to go into the details of the480

numerical scheme, which is out of the scope of this work. Nevertheless, we intend to give some481

insights about the most important computational aspects of our work, while the numerical solutions482

are obtained by using COMSOL Multiphysics®.483

Classical FE techniques [55, 103] have been used for solving numerically Equations (26a), (26b),484

(26d) and (26e), while Equation (26c) has required a special care. To this end, we report explicitly485

only the weak formulation corresponding to it. Before doing this, we denote with (∂B)D and (∂B)N486

the Dirichlet and Neumann boundaries of B, respectively, and assume ∂B = (∂B)D t (∂B)N.487

Furthermore, by using the standard formalism for Sobolev spaces [16], and using the space of488

virtual concentrations, ČR := {č ∈ H1(B) s.t. č|(∂B)D = 0}, we have that, for all č ∈ ČR, the489

following weak form applies490 ∫
B
{%f [J − JγΦsν ]ċa − %f [KGradp]Gradca − caRs −Rap} čdV

−
∫

B
YαGrad čdV +

∫
(∂B)N

Yα.N čdS = 0, (28)

where N is the field of unit vectors normal to (∂B)N while Yα is given in Equation (21), so that491

the second volume integral of Equation (28) (without the sign) becomes492 ∫
B
Yα(X, t)Grad č(X, t)dV(X)

= −%f

∫
B

{∫
B

[Grad č(X, t)]Dα(X, X̃, t)[Gradca(X̃, t)]dV(X̃)

}
dV(X). (29)

After applying a backward Euler scheme for the time derivative, a linearisation procedure, and493

Galerkin method, Equation (28) leads to a system of algebraic equations that, except for a non-local494

stiffness matrix, arising from the double integral in Equation (29), is similar to the one obtained in495

standard FE approaches. From a numerical point of view, the non-local stiffness matrix reflects a496

long range coupling among the elements in the spatial discretisation. Indeed, it is worth noting that,497

in the construction of the non-local stiffness matrix, the cross integrations between the piecewise498

polynomial ansatz functions do not vanish as they would in the case of the stiffness matrix of499

a standard diffusion problem. That is, even though two discretisation nodes are far away from500

each other, the entry of the matrix corresponding to these nodes will be non-zero, because of the501

presence of the non-locality function f̂α. This results into stiffness matrices that are denser, the502

stronger the non-locality is. In fact, this is a typical feature of the numerical study of non-local503

differential equations based on the use of FE methods (see for instance [47]). Still, as pointed out504

in [47], standard techniques for the solution of such equations, like Gauss elimination, can be used.505

Before closing this section, we would like to remark that, in the simulations carried out in our506

work, the stiffness matrix associated with Equation (29) is symmetric and positive definite.507
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7 Benchmark problem and considerations on the non-508

locality function509

In this section, we specify a benchmark problem in order to simplify and solve the mathematical510

model given by Equations (26a)-(26e). To this end, we make use of the problem proposed in [5],511

and recently investigated in [101, 56] to account for growth-induced inelastic distortions. By doing512

this, we intend to model the volumetric growth of an avascular tumour in a “jacketed” cylindrical513

sample (its deformation is restricted to be along the longitudinal axis only), and to investigate, how514

and to what extent, the non-local diffusivity properties of the nutrients influence the dynamics of515

the tissue. In the following, we assume that the problem complies with axial symmetry and that516

it is radially homogeneous regardless of how slender the cylindrical sample is. This will require517

suitable a priori restrictions on all the unknowns of the problem.518

7.1 Description of the benchmark problem519

As in [101, 56], we adopt the cylindrical coordinates (R,Θ, Z) and (r, ϑ, z), associated with the520

reference and the current configurations of the tumour, respectively. Moreover, we require the521

motion to satisfy with the conditions522

χr(R,Θ, Z, t) = r = R, (30a)

χϑ(R,Θ, Z, t) = ϑ = Θ, (30b)

χz(R,Θ, Z, t) = z = Z + u(Z, t), (30c)

where u is the unknown axial component of displacement. In this situation, the tumour is allowed523

to expand itself solely along the axial direction and χz is the only unknown component of the524

motion, χ. Additionally, to comply with the axial symmetry and with the radial homogeneity of525

the problem, the pressure p is considered to be a function of the axial coordinate and time only.526

Another restriction pertains to the growth parameter γ, which is also assumed to depend only on527

Z and t (note that since the growth tensor Fγ = γI is spherical, it maintains the symmetries of528

the problem). Similar requirements also apply for the mass fraction of the proliferating cells, cp,529

as well as for the mass fraction of the nutrients, ca.530

The motion we have assumed implies that the matrix representations of the deformation gra-531

dient tensor F and of the right Cauchy-Green deformation tensor C read532

[F ] = diag{1, 1, 1 + u′}, (31a)

[C] = diag{1, 1, [1 + u′]2}, (31b)

where u′ denotes the derivative of u in the axial direction. Since it holds that J = det(F ) = 1+u′ >533

0, u′ must obey the inequality u′ > −1.534

Additionally, the growth tensor admits the diagonal form535

[Fγ ] = diag{γ, γ, γ}, γ > 0, (32)

and, consequently, the elastic right Cauchy-Green deformation tensor Ce has the representation536

[Ce] = diag

{
1

γ2
,

1

γ2
,
[1 + u′]2

γ2

}
. (33)
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Because of Equations (31a), (31b), (32) and (33), of the symmetry properties of the pressure537

term −Jpg−1F−T, and of the constitutive expression (13), the first Piola-Kirchhoff stress tensor538

P = −Jpg−1F−T + P sc has the diagonal representation539

[P ] = diag
{
−Jp + [P sc]

rR,−Jp + [P sc]
ϑΘ,−p + [P sc]

zZ
}
, (34)

where each quantity featuring in each component of P is a function solely of Z and time. Moreover,540

it applies that [P sc]
rR = [P sc]

ϑΘ and, thus, the balance of linear momentum (26e) in cylindrical541

coordinates reduces to542

∂

∂Z

(
−p + [P sc]

zZ
)

= 0. (35)

This result can be found also in other benchmark problems, such as the confined compression543

tests of articular cartilage, under symmetry assumptions similar to those made here. Therefore,544

Equation (35) constitutes a simplification obtained by virtue of symmetry and not by invoking the545

slenderness of the cylinder used in our benchmark (see Table 1).546

Note also that, according to Equations (14) and (15), the conditions imposed on the deformation547

and on the growth tensor are such that k0 depends, through J and Jγ , only on the axial coordinate548

and on time. Moreover, the same conclusion can be drawn for the diffusivity dα, which, with slight549

abuse of notation, we express as dα(Z, t) from here on.550

By following the same reasoning that has led to Equation (35), and noticing that the only551

non-zero component of the mass flux Q is the axial one, i.e., QZ = −KZZ ∂p
∂Z with KZZ =552

Jk0[C−1]ZZ = k0/(1 + u′), the continuity equation (26d) becomes553

∂2u

∂Z ∂t
− ∂

∂Z

(
k0

1 + u′
∂p

∂Z

)
= 0. (36)

The equations for cp and γ, that is Equations (26a) and (26b), are scalar ODEs, and the fact554

that cp and γ depend only of Z and t is consistent with the symmetry properties of all the terms555

featuring in these equations. That said, a remark is in order for Equation (26b) to emphasise that556

the considered benchmark problem remains three-dimensional in spite of the axial symmetry and557

radial homogeneity that it enjoys. Indeed, looking at the source Rfp in Equation (27a), we notice558

that the mechanotransduction term (i.e., the term between brackets in Equation (27a)) features559

the trace of Cauchy stress tensor, which requires the evaluation of all the stress components, i.e.,560

also of those in the radial and circumferential directions, these being non null because the cylinder561

is laterally jacketed. Therefore, we conclude that, even though the cylinder used for our benchmark562

problem is slender, with slenderness ratio 2 · 10−2 (see the geometric data in Table 1), the problem563

itself necessitates to account for all the geometrical dimensions.564

The last equation to consider is the balance law for ca (see Equation (26c)) in which the565

non-standard mass flux Yα features, at least in principle, all the coordinates (i.e., also the radial566

and the circumferential coordinates) through the non-locality function Fα(X, X̃, t) = f̂α(χ(X, t)−567

χ(X̃, t)). To maintain the axial symmetry of the problem and to eliminate the dependence of568

the nutrients’ mass flux on the radial and circumferential coordinates, two paths may be followed.569

One is discussed in Section “Definition of the non-locality function” and, for consistency with the570

symmetry requirements introduced so far, it imposes to rephrase the non-locality function as a571

function of the axial coordinate only. However, another path —valid for the problem at hand—572
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could be to eliminate the dependence of the non-locality function on the radial and circumferential573

coordinate by taking advantage of the slenderness of the cylinder. To this end, we write the non-574

locality function as575

f̂α(x− x̃) = f0α
1

‖x− x̃‖α
= f0α

1

‖(z − z̃)ez + rt‖α
, (37)

where ez is the unit vector along which the cylinder’s axis is directed, f0α, with α ∈ ]0, 1[, is an576

α-dependent coefficient to be individuated, and rt is a vector lying on the cross-section of the577

cylinder. Next, we rescale the axial vector (z− z̃)ez by the undeformed length of the cylinder, i.e.,578

2Lin, and the transverse vector rt by the cylinder diameter prior to deformation, i.e., 2Rin, so that579

Equation (37) becomes580

f̂α(x− x̃) = f0α
1

‖2Linρa + 2Rinρt‖α
=

f0α
(2Lin)α

1

‖ρa + (Rin/Lin)ρt‖α
, (38)

with ρa = (z− z̃)ez/(2Lin) and ρt := rt/(2Rin). Now, since the slenderness ratio Rin/Lin is 2 ·10−2,581

we assume, within the first approximation, that the non-locality function can be truncated at the582

zero-th order in the slenderness ratio, thereby taking the expression583

f̂α(x− x̃) ≈ f0α
(2Lin)α

1

‖ρa‖α
= f0α

1

‖(z − z̃)ez‖α
= f0α

1

|z − z̃|α
. (39)

As discussed below, the coefficient f0α acquires the meaning of a normalisation factor.584

7.2 Initial and boundary conditions585

To solve Equations (26a)–(26e), we impose the same boundary and initial conditions used in586

[101, 56]. Specifically, at the initial instant of time we consider a reference configuration being587

characterised by the following relations588

χr(R,Θ, Z, 0) = R, χϑ(R,Θ, Z, 0) = Θ, χz(R,Θ, Z, 0) = Z, (40)

where R ∈ [0, Rin[, Θ ∈ [0, 2π[ and Z ∈ [−Lin,+Lin], while Rin and 2Lin denote the radius and589

the length of the undeformed specimen. Besides, we enforce that, at t = 0, necrotic cells are590

absent, i.e., cp(R,Θ, Z, 0) = 1, the fluid pressure is zero, i.e., p(R,Θ, Z, 0) = 0, the nutrients’ mass591

fraction equals the environmental one, i.e., ca(R,Θ, Z, 0) = cenv > 0, and the distribution of the592

growth parameter is homogeneous and unitary, i.e., γ(R,Θ, Z, 0) = 1. In addition, we consider the593

following boundary conditions594

(−Jpg−1F−T + P sc).NA = 0, on (∂B)Left and (∂B)Right, (41a)

(−KGradp).NC = 0, on (∂B)C, (41b)

p = 0, on (∂B)Left and (∂B)Right, (41c)

ca = cenv, on (∂B)Left and (∂B)Right, (41d)

Yα.NC = 0, on (∂B)C, (41e)

where NA and NC are fields of unit vectors normal to (∂B)Left ∪ (∂B)Right and to (∂B)C, respec-595

tively, and ∂B = (∂B)Left ∪ (∂B)Right ∪ (∂B)C. Specifically, (∂B)Left and (∂B)Right are the left596

and the right surfaces at the extremities of B, and (∂B)C is the lateral boundary.597
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7.3 Definition of the non-locality function598

A classical approach for defining f̂α is to adopt a power-law that decays in space. To our knowledge,599

this is customary for problems that are a priori formulated as one-dimensional and in which f̂α(x−x̃)600

is assumed to be proportional to the reciprocal of |x − x̃|α, with x and x̃ being points of the real601

line or of an interval of finite length [112, 11, 108, 22, 105]. This choice permits to “import”,602

with slight modifications, the definitions of the fractional derivatives in time (see e.g. [9]) to the603

fractional differentiation in space. However, in some situations it is necessary to assess an a priori604

relationship between the dimensionality of the problem under study and the non-locality that must605

—or may— be resolved, once the dimensionality has been settled. Indeed, in a three-dimensional606

problem endowed with the symmetry and homogeneity properties we are dealing with, the only607

non-zero partial derivative of the concentration is the one along the axial direction. In such a608

situation, the axial mass flux reads609

[yα(x, t)]z = −%f

∫
Bt

f̂α(x− x̃)dα(z̃, t)∂z̃ca(z̃, t) dv(x̃), (42)

whereas the radial and the circumferential components of the flux are zero. Note that we are using610

here the customary formalism for cylindrical coordinates, so that x̃ = (r̃, ϑ̃, z̃). As anticipated611

before, the expression for [yα(x, t)]z reminds the definition of fractional gradient given in [113],612

with the difference that a volume integral is used in (42) and that all the components of x− x̃ are613

considered.614

In spite of the fact that the problem is one-dimensional from the point of view of its symmetries,615

the axial flux is still determined by an integration over the three-dimensional region Bt, and f̂α(x−x̃)616

describes, as it stands, a non-locality in three dimensions (trivially, because x − x̃ is a vector of617

a three-dimensional vector space). Therefore, the component of (x − x̃) along the radial or the618

circumferential direction will influence the axial mass flux, even though the problem was claimed619

to enjoy axial symmetry and to be independent of the radial coordinate. This result, however, may620

be physically unsound. Indeed, one would expect non-locality to be coherent with the symmetries621

of the problem, even though the integral of Equation (42) is over the whole configuration Bt,622

thereby maintaining the physical dimensionality of the problem itself.623

To address this issue, we need to take into account how the symmetries of the problem under624

investigation influence the non-locality in the relationship between yα and ca. Consequently, the625

non-locality function f̂α in Equation (42) is re-defined as626

f̂α(x− x̃) := ĥα(z − z̃) =
1

N (α)

1

|z − z̃|α
, α ∈ ]0, 1[ , (43)

where N (α) is a normalisation factor to be determined. From Equations (42) and (43), we notice627

that the physical dimensions of the fractional diffusivity, dα, are L1+αT−1, where L and T stand628

for the characteristic “length” and the characteristic “time” of the non-local diffusion process,629

respectively. Thus, when α tends to 1 (from below), we recover the physical dimensions of the630

standard diffusivity.631

By substituting Equation (43) into Equation (42), and recalling that Bt = CR× ]− `(t),+`(t)[632

(where CR is the cross-section of the cylinder and 2`(t) is its variable axial length), we obtain the633

much simpler expression634

[yα(x, t)]z ≡ yzα(z, t) = −%fπR
2
in

N (α)

∫ +`(t)

−`(t)

1

|z − z̃|α
dα(z̃, t)∂z̃ca(z̃, t) dz̃. (44)
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For the Equation (44) to be physically sound, it has to return the axial component of the standard635

mass flux vector in the limit α→ 1−. Unfortunately, proving this result for problems defined over636

bounded domains is not possible without knowing ca. On the contrary, this difficulty does not arise637

in problems defined over unbounded domains, because, with the aid of the Fourier transform, it is638

possible to do the following reasoning:639

• Introduce the auxiliary notation ψzα(z̃, t) := −%fdα(z̃, t) ∂zca(z̃, t), and assume to prolong640

yzα(z, t) to the whole real line, so that Equation (44) becomes641

yzα(z, t) = −%fπR
2
in

N (α)

∫ +∞

−∞

1

|z − z̃|α
dα(z̃, t)∂z̃ca(z̃, t) dz̃

= πR2
in

∫ +∞

−∞
ĥα(z − z̃)ψzα(z̃, t)dz̃

= πR2
in [ĥα ∗ ψzα( · , t)](z), (45)

thereby expressing yzα(z, t) as the convolution product between ĥα and ψzα( · , t).642

• Compute the Fourier transform of yzα(z, t) as written in Equation (45), i.e.,643

F [yzα( · , t)](ξ) :=

∫ +∞

−∞
yzα(z, t)exp(−iξz)dz

= πR2
inF [ĥα](ξ)F [ψzα( · , t)](ξ)

= πR2
in

2Γ(1− α)

N (α)
sin
(απ

2

)
|ξ|α−1F [ψzα( · , t)](ξ), (46)

where ξ ∈ R\{0} is the wave number, Γ( · ) is the Euler Gamma function and we used the644

Fourier transform of ĥα, i.e.,645

F [ĥα](ξ) =
2Γ(1− α)

N (α)
sin
(απ

2

)
|ξ|α−1. (47)

Since F [yzα( · , t)](ξ) is proportional to the product of F [ĥα](ξ) and F [ψzα( · , t)](ξ), one can646

identify the non-local contribution of the mass flux with F [ĥα](ξ), given in Equation (47).647

Note that, if dα(z, t) and ca(z, t) are both assumed to be even with respect to z = 0 —an648

assumption that is consistent with the hypothesis, done later, that the considered problem649

is symmetric with respect to z = 0—, F [yzα(·, t)](ξ) can be prolonged to ξ = 0 and is null for650

this value. To see this, we first rewrite F [ψzα(·, t)](ξ) as651

F [ψzα(·, t)](ξ) = −%f

∫ +∞

−∞
dα(z, t)∂zca(z, t) exp(−iξz)dz . (48)

Then, we notice that F [ψzα( · , t)](0) is zero, because dα(z, t) is even and ∂zca(z, t) is odd652

with respect to z = 0 for all times. Moreover, because of this result, it also holds that653

limξ→0 |ξ|α−1F [ψzα(·, t)](ξ) = 0, and, consequently, limξ→0 F [yzα(·, t)](ξ) = 0 too.654
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• Compute the limit of F [yzα( · , t)](ξ) for α→ 1−, and find N (α) such that655

lim
α→1−

F [yzα( · , t)](ξ) = lim
α→1−

F [ψzα( · , t)](ξ)

= F [−%fd1( · , t) ∂zca( · , t)](ξ), (49)

with d1(z̃, t) := limα→1− dα(z̃, t). We emphasise that this limit is taken uniformly with respect656

to the pairs (z̃, t) and, in particular, looking at Equation (24), it turns out to be uniform657

with respect to the motion, so that it is intended as658

lim
α→1−

dα(z̃, t) = lim
α→1−

dα(χz(X̃, t), t) =
J(X̃, t)− Jγ(X̃, t)Φsν

J(X̃, t)
lim
α→1−

dRα

=
J(X̃, t)− Jγ(X̃, t)Φsν

J(X̃, t)
dR1, (50)

where, in our model, dR1 is a constant having the physical dimensions of a standard diffusivity659

coefficient. In particular, to meet this requirement, we choose dRα as660

dRα := dRL
α−1, (51)

with dR being a constant reference value for the standard diffusivity coefficient [13], so that661

dR1 = dR.662

One possible way to comply with Equation (49) is that N (α) satisfies the relation663

lim
α→1−

2Γ(1− α)πR2
in

N (α)
= 1. (52)

Then, for Equation (44) to be (up to the diffusivity dα) Caputo’s symmetrised fractional derivative664

of the mass fraction, ca, which is defined over the interval ] − `(t),+`(t)[, we choose the stronger665

condition666

N (α) = 2Γ(1− α)πR2
in, α ∈ ]0, 1[. (53)

Clearly, Equation (53) represents a “guess”, because we are unable to compute directly the nor-667

malisation factor for a bounded interval. Nevertheless, plugging Equation (53) into Equation (44)668

yields669

yzα(z, t) = − %f

2Γ(1− α)

∫ +`(t)

−`(t)

1

|z − z̃|α
dα(z̃, t)∂z̃ca(z̃, t) dz̃, (54)

which, apart from the spatial dependence of the fractional diffusivity dα(z̃, t), coincides with the670

definition of fractional mass flux in one dimension used by other Authors, see for instance [89, 35]671

and the references therein. Furthermore, in the case in which the fractional diffusivity can be672

factorised outside the integral operator, e.g. by setting dα(z̃, t) = d0α, the axial mass flux becomes673

proportional to the symmetrised Caputo fractional derivative of order α of ca [9].674
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Remark 3 ((On the normalisation factor)) We notice that, apart from the presence of the675

area of the cylinder’s cross-section |CR| = πR2
in, the expression of the normalisation factor N (α)676

given in Equation (53) coincides with the one used in other works (see e.g. [112, 11, 22]). Never-677

theless, by looking at Equation (46), one can see that other definitions of the normalisation factor678

can be employed which satisfy the condition of Equation (49). Indeed, if the limit in Equation (52)679

is rephrased as680

lim
α→1−

2Γ(1− α) sin(απ/2)πR2
in

N̂ (α)
= 1, (55)

where N̂ (α) is the new normalisation factor sought for, then, upon following the reasoning leading681

to Equation (53), one can take N̂ (α) as682

N̂ (α) := 2Γ(1− α) sin(απ/2)πR2
in, (56)

thereby automatically satisfying Equation (55). Then, by using N̂ (α) in Equation (44) in lieu of683

N (α), the axial mass flux can be written as684

ŷzα(z, t) = − %f

2Γ(1− α) sin(απ/2)

∫ +`(t)

−`(t)

1

|z − z̃|α
dα(z̃, t)∂z̃ca(z̃, t) dz̃

= I 1−α
−`(t),+`(t)[−%fdα∂z̃ca](z, t), (57)

where I 1−α
−`(t),+`(t)[−%fdα∂z̃ca] is the one-dimensional Riesz potential of −%fdα∂z̃ca, but with inte-685

gration limits ±`(t) instead of ±∞ (see [104] page 223). For this reason, one may refer to Equation686

(57) as a “truncated” Riesz potential [38].687

At this point, two comments are in order. First, we note that, for α→ 1−, both choices of the688

normalisation factor lead to the same result and, consequently, the mass flux obtained for α→ 1−689

is the same in both formulations. However, something different occurs for α → 0+. Indeed, by690

looking at Equation (46), if the normalisation factor N (α) is used, we obtain, for ξ 6= 0, that691

lim
α→0+

F [yzα( · , t)](ξ) = 0, (58)

which suggests that the flux of the species is null for α→ 0+. On the contrary, if in Equation (46)692

N (α) is replaced with N̂ (α), one obtains, for ξ 6= 0,693

lim
α→0+

F [ŷzα( · , t)](ξ) = |ξ|−1F [−%fd0( · , t) ∂zca( · , t)](ξ), (59)

with d0 = limα→0+ dα, thereby implying, in general, a non-zero flux. In view of the above results and694

of the normalisation factor used by other Authors[89, 35, 11, 105], we prefer to employ N (α) as695

normalisation factor in the remainder of this work. Besides, in this way, the model is able to account696

for a wider range of diffusion situations, from no diffusion to standard diffusion. Nevertheless, for697

completeness in our study, in Section “Results and discussion”, we provide a comparison between698

the approach involving N (α) and that involving N̂ (α).699

Now, the restrictions imposed on the motion imply that the only component of interest of the700

deformation gradient tensor is given by [F (X, t)]zZ = 1 + u′(Z, t). Thus, by taking into account701

Equation (25), the material fractional diffusivity tensor can be rephrased as follows702

[Dα(X, X̃, t)]ZZ = dRα
1 + u′(Z̃, t)− Jγ(Z̃, t)Φsν

[1 + u′(Z, t)][1 + u′(Z̃, t)]
, (60)
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whereas the definition (43) implies that Fα, given in Equation (22b), can be rephrased as a function703

of Z, Z̃ and t, i.e.,704

Fα(X, X̃, t) = Hα(Z, Z̃, t) =
1

2Γ(1− α)πR2
in

1

|Z + u(Z, t)− Z̃ − u(Z̃, t)|α
, α ∈ ]0, 1[ . (61)

Finally, by substituting Equation (60) into Equation (23b), and taking into account relation (22b),705

the only non-zero component of the material fractional mass flux vector, Yα, is the one along the706

axial direction, and represents the backward Piola transform of Equation (44), i.e.,707

Y Z
α (Z, t) = − %f

2Γ(1− α)

∫ +Lin

−Lin

dRα
[1 + u′(Z̃, t)− Jγ(Z̃, t)Φsν ]

|Z + u(Z, t)− Z̃ − u(Z̃, t)|α
c′a(Z̃, t)

[1 + u′(Z̃, t)]
dZ̃. (62)

Looking at Equations (61) and (62), we remark that, in contrast to what is usually assumed in the708

“standard” setting of Fractional Calculus, both Hα and Y Z
α depend on the displacement field, rather709

than depending on the difference between Z and Z̃, only. As anticipated in the Introduction, this710

result is one of the most relevant novelties of our work, as it prescribes that the non-locality evolves711

with the change of configuration of the system. Moreover, since in our framework the displacement712

is driven by growth (even though u and γ are formally independent variables), we conclude that713

the non-locality of the problem is related also to the variation of the tissue’s internal structure, as714

modelled by γ.715

8 Results and discussion716

In this section, we study the impact of the non-local diffusion of nutrients on the benchmark717

problem specified above. For this scope, we distinguish between two mathematical models, both718

characterised by Equations (26a)–(26e). The first model, referred to as fractional model, describes719

the growth of the considered avascular tumour in the case in which the diffusion of the nutrients is720

governed by the non-local constitutive law (62). The second model, denominated standard model,721

describes the growth of the tumour by employing the same governing equations (26a)–(26e), with722

the only difference being that the nutrients’ diffusive mass flux vector is expressed by standard723

Fick’s law, i.e.,724

Y std(X, t) = −%fD(X, t) Gradca(X, t), (63)

where “std” stands for “standard”, and D is the material diffusivity tensor, given by [101, 56]725

D(X, t) = (J(X, t)− Jγ(X, t)Φsν)dRC
−1(X, t). (64)

We notice that both models, i.e., the fractional and the standard one, share the same set of parame-726

ters except for the reference diffusivities dRα and dR. Note also that Equation (64) can be obtained727

from (25) by setting X̃ = X and then taking the limit for α → 1−, i.e., limα→1− Dα(X,X, t) =728

D(X, t).729

For the purposes of our work, one should not fix dRα independently of dR. Indeed, in order to730

compare the results of the non-local model with those of the local one, dRα must depend on dR731

in such a way that it tends to dR in the limit α → 1−. For this reason, and taking into account732
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that there exist several experimental works in which the standard diffusivity of species in biological733

tissues has been measured (see e.g. [62, 59]), we use for dRα the definition given in Equation (51),734

and we set L = 2Lin. In Table 1, we provide the list of all the parameters used in our simulations.735

We remark that, due to the symmetries of the benchmark problem studied in this work, in the736

following we report the profile of the main quantities of interest restricted to half of the domain,737

i.e., [0, Lin].738

Table 1: List of parameters used in the numerical simulations.

Parameter Unit Value Equation Reference

Lin cm 0.500 (44) [101]
Rin cm 1.000 · 10−2 (62) [101]
λ Pa 1.333 · 104 (12) [111]
µ Pa 1.999 · 104 (12) [111]
kR m2/(Pa s) 4.875 · 10−13 (15) [62]
m0 − 0.0848 (15) [62]
m1 − 4.638 (15) [62]
dR m2/s 3.200 · 10−9 (51) [107]
ζfp kg/(m3 s) 1.343 · 10−3 (27a) [25]
ζnf kg/(m3 s) 1.150 · 10−5 (27b) [25]
ζcp kg/(m3 s) 3.000 · 10−4 (27c) [23, 24]
ζpn kg/(m3 s) 1.500 · 10−3 (27d) [25]
ccr − 1.000 · 10−3 (27a) [101]
cenv − 7.000 · 10−3 (27a) [101]
c0 − 1.000 · 10−2 (27c) This work
δ1 − 7.138 · 10−1 (27a) [80]
δ2 Pa 1.541 · 103 (27a) [80]
Φsν − 0.8 (5a) [101]
%s kg/m3 1000 (2) [101]
%f kg/m3 1000 (2) [101]

To start with, in Fig. 1, we report the spatial profile of the nutrients’ mass fraction ca(Z, t).739

Specifically, in the left panel of Fig. 1, we present the results of our simulations for α = 0.1 (dashed740

line) and α = 0.9 (solid line), and for different times. As shown in this plot, the parameter α permits741

to control how the nutrients diffuse into the tumour from the axial boundaries (i.e., the terminal742

cross sections Z = ±Lin). In particular, for α = 0.1 the diffusion of the nutrients is constrained to743

the tumour’s axial boundary, i.e., close to Z = ±Lin, so that their mass fraction is dramatically744

reduced in the internal points of the specimen. In such a situation, the proliferating cells consume745

the nutrients that are already present in the tissue, without the replenishment needed to continue746

their proliferation. On the contrary, for α = 0.9, the nutrients are able to diffuse towards the centre747

of the tumour, so that their consumption is less localised. For clarity, in the plot we prefer to show748

only the curves corresponding to α = 0.1 and α = 0.9. For any other value of α ∈ ]0.1, 0.9[, the749

model is able to describe different diffusion profiles ranging between the ones obtained for α = 0.1750

and for α = 0.9. To us, an interesting feature of the curves corresponding to α = 0.1 is that,751

depending on the point Z at which the nutrients’ mass fraction is observed, the trend of these752
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curves exhibits a different monotonicity in time. Indeed, the nutrients’ mass fraction decreases in753

time close to the boundary Z = Lin, whereas it increases towards the tumour’s centre. Furthermore,754

in the panel on the right of Fig. 1, we compare, for different values of α, the results obtained with755

the fractional model with those obtained with the standard model at time t = 20 d. Specifically, for756

α close to 0, there is almost no diffusion, while, when α is close to 1, the fractional model conducts757

to the standard one, as evidenced by our previous calculations (see Equation (46)).758
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Figure 1: Spatial profile of the nutrients’ mass fraction ca(Z, t) for different values of α and at
different times (panel on the left), and comparison of the results obtained with the fractional
and the standard model at time t = 20 d (panel on the right).

As shown in Fig. 2, the non-local way in which the nutrients diffuse into the tissue affects759

the manner in which the tumour grows. By increasing α and, thus, enhancing diffusion, one also760

increases the availability of the nutrients in the tumour, thereby boosting its growth. On the761

other hand, for α = 0.1, the displacement is hindered and its highest values are attained in a762

neighbourhood of Z = Lin. Indeed, this is where the nutrients enter the tumour and their mass763

fraction still remains high enough to trigger growth, so that the magnitude of the displacement in764

this region of the tumour is higher than elsewhere. However, moving towards the interior of the765

tumour, the fact that the nutrients’ concentration is below the critical threshold brings growth to766

a stop, thereby considerably reducing the magnitude of the displacement. This behaviour shows767

that also the monotonicity in time of the displacement curves depends on the point Z at which768

they are reckoned. More in detail, the reduction of the displacement in the interior of the tumour769

may be due to the loss of mass caused by the lack of nutrients, which implies that the proliferating770

cells start to die, and a region of necrotic cells comes into sight. This behaviour becomes even more771

evident by looking at the left panel of Fig. 3. Moreover, comparing the right panels of Fig. 1 and772

Fig. 3, we notice that the part of the domain in which the necrotic cells appear coincides with the773

one in which the nutrients fall below the critical value ccr, represented with the solid horizontal line774

in the right panel of Fig. 1. By referring to Equation (27d), when ca < ccr, the rate of mass Rpn775

becomes active and, therefore, the proliferating cells change into necrotic cells.776

To continue our analysis, we refer to Fig. 4, where we plot the growth parameter γ. By focusing777

on the panel on the left, we notice, for α = 0.1, a localisation of the variation of the growth778

parameter near the boundary Z = Lin for increasing time, whereas, for α = 0.9, the variation of779

γ is more uniformly distributed in the whole domain. Besides, for α = 0.1, γ is greater than one780

for all Z ∈ [0, Lin] and for all t, even though this is difficult to be observed with the unaided eye.781
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Figure 2: Spatial profile of the axial displacement u(Z, t) for different values of α and at
different times (panel on the left), and comparison of the results obtained with the fractional
and the standard model at time t = 20 d (panel on the right).
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Figure 3: Spatial profile of the proliferating cells’ mass fraction cp(Z, t) for different values
of α and at different times (panel on the left), and comparison of the results obtained with
the fractional and the standard model at time t = 20 d (panel on the right).

This is because, although for t ≥ 1 d the mass fraction of the nutrients is above the threshold782

value ccr mostly near the boundary (see the left panel of Fig. 1), the inner region has undergone783

a growth process at earlier times. Indeed, since the condition ca(Z, 0) ≡ cenv > ccr is respected,784

the mass rate Rfp is greater than zero, and we can conclude that, from the very beginning, the cell785

proliferation is promoted until the nutrients’ concentration falls below its critical value. Note also786

that this is accelerated when α is near zero because of the slow pace with which the nutrients are787

refilled. At this point, the proliferating cells abruptly die, thereby turning into necrotic cells, and788

go into the fluid (see the definition of Rnf), which results in a loss of mass. For α = 0.9, instead, it789

is visible also with the naked eye that γ is greater than unity everywhere in [0, Lin] and for all the790

considered times. Finally, as noticed for the nutrients’ mass fraction and for the displacement, also791

the monotonicity in time of the trend of the growth parameter depends, for α = 0.1, on the point792

Z at which γ is observed. Indeed, γ is monotonically increasing in time for Z close to Z = Lin, and793

monotonically decreasing for Z “moving” towards the centre of the tumour.794

Now, we report the evolution of the pressure, p, in Fig. 5. For both the standard and the795

fractional model, when α is close to 1, the pressure of the interstitial fluid decreases, taking negative796
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Figure 4: Spatial profile of the growth parameter γ(Z, t) for different values of α and at
different times (panel on the left), and comparison of the results obtained with the fractional
and the standard model at time t = 20 d (panel on the right).
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Figure 5: Spatial profile of the pressure p(Z, t) for different values of α and at different times
(panel on the left), and comparison of the results obtained by the fractional and the standard
model at time t = 20 d (panel on the right).

values, from the free boundary towards the tumour’s centre. However, for α tending towards 0 from797

above, the pressure in the interior of the tumour tends to become positive. To explain this event,798

we notice that the proliferating cells absorb fluid from the surrounding environment to fuel their799

growth, which is possible because the fluid flows towards the tumour’s interior. However, due to800

an over-consumption of nutrients, the level of those drastically decreases in the innermost zone801

of the tumour. This situation, as evidenced in our simulations (see Fig. 4), creates a layer of802

proliferating cells near the outer surface (i.e., the cross section Z = Lin), and a region of necrotic803

cells at the centre of the tumour. By looking at Equation (27b), in this circumstance, the necrotic804

cells dissolve into the fluid with rate ζnf , thereby increasing its pressure, which, in turn, generates805

an outward flux (i.e., a flux in the direction opposite to the fluid flow). This sequence of events,806

which are consistent with the biological foundations of nutrient diffusion and necrosis in a tumour807

as explained in [77], arises in the model thanks to the non-local approach presented in this work.808

That is, the non-locality parameter α is responsible for this picture and, thus, through its inclusion,809

the fractional model is able to reproduce a scenario that was not initially considered in the model.810

On the contrary, as the results show, this behaviour would not be observed within a formulation811
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based on standard Fick’s law, at least with our model as is.812

Finally, as we mentioned before (see Remark 3), for completeness in our discussion, we compare813

the results corresponding to the adoption of N (α) versus those obtained with N̂ (α). As shown814

in Fig. 6, top left panel, when the normalisation factor is N̂ (α), we observe, for α → 0+, a less815

pronounced decrease of the nutrients’ mass fraction. This is compatible with the fact that, even for816

very small values of α, there is an incoming mass flux of nutrients through the domain’s boundaries817

that reestablishes the nutrients eaten by the cells. This effect, in turn, tends to disappear when818

the normalisation factor N (α) is employed since, in that case, the mass flux tends to zero in the819

limit α → 0+. Coherently with this observation, we also notice a markedly different behaviour of820

the growth parameter (see Fig. 6, top right panel). Indeed, since the flux of nutrients obtained821

for N̂ (α) does not vanish for α → 0+, and a greater amount of nutrients remains available even822

at time t = 20 d, growth can still occur, as is testified by the dotted line marked with “+”.823

Similar comments pertain also to the description of the displacement (see Fig. 6, bottom left824

panel). Indeed, since growth remains active also for small values of α, the displacement also tends825

to persist even at t = 20 d, and remains relatively large in the neighbourhood of the domain’s826

boundaries, where the availability of nutrients is the highest (because of the Dirichlet condition827

assigned to the nutrients’ mass fraction) and growth is present. These differences notwithstanding,828

it should be emphasised that the qualitative behaviour of the curves describing the nutrients’ mass829

fraction and the growth parameter is the same for both choices of the normalisation factor. On the830

contrary, the behaviour of the pressure (see Fig. 6, bottom right panel) is both qualitatively and831

quantitatively different for α = 0.1. In fact, the use of N̂ (α) nullifies the effect visible at t = 20 d,832

for α = 0.1 and normalisation factor N (α), which consisted in the sign change of the pressure.833

Hence, employing N̂ (α) leaves the pressure negative, thereby triggering no inversion in the flow of834

the interstitial fluid, which continues to flow from the exterior of the tumour into it.835

9 Conclusions836

In this work, we study the influence of a given type of non-local diffusion of nutrients on the growth837

of an avascular tumour. For this purpose, we generalise Fick’s law of diffusion by introducing a838

non-local constitutive relationship for the mass flux vector that, after some considerations, can be839

identified with a fractional derivative of the nutrients’ mass fraction. We call attention to the fact840

that, since we are dealing with growth, we need to describe how the non-locality of the prescribed841

constitutive law evolves with the deformation and the growth-induced inelastic distortions that842

accompany the evolution of the system under study. This consideration implies that the non-843

locality of the presumed constitutive response should be subordinate to the motion χ (see Equation844

(22b)) and, thus, that it cannot depend explicitly on the difference X − X̃ between the reference845

placements of the material points embedded in X and X̃. Furthermore, we note that, as prescribed846

by Equation (25), the non-local character of the mass flux vector also depends on the structural847

changes of the tumour through the determinant of Fγ . To the best of our understanding, the above848

considerations imply substantial differences between our work and other papers on the subject849

found in the scientific literature. Moreover, we suggest a formulation of non-local diffusion on850

manifolds (see Appendix A1).851

To investigate the influence of the non-local diffusion of the nutrients on the tumour evolution,852

we focused on a benchmark problem that allows, due to the enforced symmetries, the reduction853
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Figure 6: Comparison of the spatial profiles of ca(Z, t) (top left), γ(Z, t) (top right), u(Z, t)
(bottom left) and p(Z, t) (bottom right) for the approaches involving N (α) (solid line) and
N̂ (α) (dotted line). In the plots different values of α are used and time is fixed to t = 20 d.

of the original three-dimensional framework to a one-dimensional problem. This has an important854

impact on the selection of the non-locality function, f̂α, which has to be able to capture how the855

geometrical symmetries of the problem affect the description of the non-locality. Particularly, in856

our analysis, we re-obtained the definition of one-dimensional fractional mass flux proposed in other857

works [89, 35].858

In our work, the numerical solution of the set of equations defining the mathematical model859

is found by employing the FE method, which has been adapted for the solution of the fractional860

diffusion equation (26c). In particular, the obtained numerical results show that the non-local861

character of the nutrients’ evolution has a considerable repercussion on the growth of the hypo-862

thetical tumour under study. Specifically, by varying the parameter α∈ ]0, 1[, the model is capable,863

in the limit cases, of generating situations of no diffusion or of restoring Fick’s law. This conclu-864

sion evidences the relevance of embracing a fractional framework in our model, since it permits to865

“control”, through the parameter α, the way in which the tumour grows. Finally, we discussed a866

possible way for defining another normalisation factor, termed N̂ (α), involved in the definition of867

the mass flux vector, and we provided a comparison between the two approaches.868

Certainly, our model can be further generalised and, in the following, we discuss some important869

issues that should be accounted for in forthcoming works. A first issue arises from the fact that,870

once the dimensionality and the symmetries of the problem at hand are specified, Equation (16)871

must be adapted accordingly. This implies that the non-locality function and the normalisation872
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factors should be conceived in a symmetry- and dimensional-dependent fashion2. To find such873

relations is part of our ongoing research. Additionally, in our model, the information on the874

microscopic structure of the tumour is not explicitly taken into account and, thus, its contribution875

is neglected. As pointed out in the Introduction, the multi-scale and heterogeneous character of the876

environment in which diffusion takes place is one of the main factors influencing the occurrence of877

non-Fickean diffusion. Therefore, the adoption of mathematical techniques, such as the Asymptotic878

Homogenisation Method [29], could be capable of incorporating these features into a framework of879

tissue growth [96] and non-local diffusion.880

We further remark that an aspect that is not contemplated in the current formulation of the881

model is that the chemical agents should be both in the fluid phase and in the solid phase, and not882

only in the fluid phase. One of the main drawbacks of this phenomenological consideration is that it883

is not possible to link the mass sources to the chemical potentials of the nutrients, nor is it possible884

to establish a sound and comprehensive thermodynamic framework accounting for interphase mass885

transfers as non-equilibrium processes. This implies that no information, or only a limited amount886

of information, can be extracted from the study of the dissipation inequality of the system (and this887

is not directly due to the fact that growth necessitates the consideration of processes, of cellular or888

molecular type, that could not be accounted for in the model). Therefore, under the circumstances889

of the present model, it is not possible to obtain Equation (16) from the study of the dissipation890

inequality, as it would be the case in the classical procedure that leads to Fick’s law. In this respect,891

one of the technical difficulties that arise in our work is that we cannot invert the balance of linear892

momentum associated with the chemical agents, since the inversion of fractional operators is not893

always permitted. One possible solution, that seems to be thermodynamically acceptable, is to894

adopt a procedure similar to the one depicted in [58], that is, to consider the part of the dissipation895

inequality that is of interest for us, to put it in weak form and to express the flux in terms of a896

non-local constitutive law depending on the gradient of the chemical potential.897

Finally, we would like to mention that in recent years Fractional Calculus has demonstrated to898

be an effective mathematical tool in the description of several phenomena. However, there is still899

an urgency in incorporating this notion in mathematical models that go beyond the classical ones.900

Acknowledgement901

The Authors acknowledge the Dipartimento di Scienze Matematiche (DISMA) “G.L. Lagrange” of902

the Politecnico di Torino, and that the present research has been partially supported by MIUR903

grant “Dipartimenti di Eccellenza 2018–2022” (‘Departments of Excellence 2018–2022’), project904

no. E11G18000350001. The Authors warmly thank Prof. Dušan Zorica for his invaluable help, for905
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A A1 Some aspects of non-locality on manifolds911

In the following, we propose a possible way for the formulation of non-local diffusion on manifolds.912

For this purpose, let us recall that the fractional mass flux vector yα is defined through the duality913

product914

〈yα, grad č〉 := −%f

∫
Bt

{∫
Bt

[grad č(x)]dα(x, x̃, t)[grad ca(x̃, t)]dv(x̃)

}
dv(x), (65a)

dα(x, x̃, t) := fα(x, x̃)dα(x, x̃, t), (65b)

where the non-locality function is given by the following relationship915

fα(x, x̃) := f(0)
α (x0, T x0x (x̃)) . (66)

In Equation (66), the notation T x0x := expx0 ◦ (Pxx0)−1 ◦ exp−1
x is used, and the following operators916

are introduced:917

• Let Tx,δBt be the subset of the tangent space TxBt defined by918

Tx,δBt := {vx ∈ TxBt | 〈vx,vx〉g ≤ δ, with δ > 0}, (67)

and let Ut(x, δ) := {x̃ ∈ Bt| distBt(x, x̃) ≤ δ} be a closed neighbourhood of x having radius919

δ, with distBt : Bt ×Bt → R+
0 denoting the distance function3 on Bt [106]. The operator920

expx : Tx,δBt → Ut(x, δ), (68)

referred to as exponential map, is injective and associates each element of Tx,δBt with the921

point x̃ = expx(vx) ∈ Ut(x, δ), which is the projection of vx onto Ut(x, δ). Note that the922

result of this operation generalises the concept of translation to the case of a manifold. To923

construct expx(vx), we take vx ∈ Tx,δBt and consider the unique solution to the geodesic924

equation (see e.g. [79]), parameterised by η : [0, 1] → Ut(x, δ), and in harmony with the925

“initial” conditions η(0) = x and η′(0) = vx. Then, we identify expx(vx) with η(1), i.e.,926

expx(vx) = η(1) ≡ x̃.927

By construction, the exponential map is invertible and its inverse, i.e., exp−1
x : Ut(x, δ) →928

Tx,δBt, returns a unique tangent vector of Tx,δBt for each point of Ut(x, δ). Therefore, by929

taking x̃ ∈ Ut(x, δ), with x̃ = η(1), it holds that exp−1
x (η(1)) = η′(0).930

931

3Given the geodesic from x to x̃, and denoting by η : [0, 1] → Bt its parameterisation, so that x = η(0)

and x̃ = η(1), we set distBt
(x, x̃) :=

∫ 1

0
‖η′(σ)‖dσ.
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• Let us consider two points of the manifold, e.g. x0, x ∈ Bt, and let ζ : [0, s] → Bt, with932

ζ(0) = x0 and ζ(s) = x, be the parameterisation of the geodesic connecting x0 to x. Moreover,933

let us take the sets of tangent vectors Tx0,δBt and Tx,δBt, with δ > 0. Then, to transport934

parallely the elements of Tx0,δBt into Tx,δBt along the geodesic parameterised by ζ, we define935

the shifter operator936

Pxx0 : Tx0,δBt → Tx,δBt, vx0 7→ Pxx0vx0 = vx. (69)

Clearly, Pxx0 is invertible and its inverse reads (Pxx0)−1 = Px0x : Tx,δBt → Tx0,δBt. In addition,937

Px0x0 is the identity operator from Tx0,δBt into itself.938

939

• To represent fα(x, x̃) properly, we explain in detail our understanding of the procedure940

sketched in [106]. For this purpose, we start recalling that fα(x, x̃) measures how, at time t,941

the value of gradca(x̃, t) is “felt” at x, for all pairs of points x, x̃ ∈ Bt, such that x̃ ∈ Ut(x, δ),942

with δ > 0. This influence has to be described in a way respectful of the geometry of the943

manifold, which can be achieved as follows. Given fα(x, x̃), we select arbitrarily a point944

x0 ∈ Bt and we introduce an auxiliary function f
(0)
α (x0, · ) : Ut(x0, δ)→ R, such that, for an945

appropriate x̃0 ∈ Ut(x0, δ), f
(0)
α (x0, x̃0) = fα(x, x̃). In order for x̃0 to be “appropriate”, it has946

to depend on x and x̃ (and on x0). This can be obtained by calling for the operator947

T x0x := expx0 ◦ (Pxx0)−1 ◦ exp−1
x : Ut(x, δ)→ Ut(x0, δ). (70)

As anticipated above, for each x̃ ∈ Ut(x, δ), exp−1
x returns a vector vx, such that ‖vx‖ ≤ δ.948

Then, (Pxx0)−1 transports vx parallely to x0, so that (Pxx0)−1vx = vx0 . Finally, the operator949

expx0 maps vx0 into x̃0 = expx0(vx0) ∈ Ut(x0, δ). Therefore, it holds that x̃0 = T x0x (x̃),950

thereby explaining how x̃0 depends on x and x̃, for a given x0. More specifically, the action951

of T x0x on x̃ permits to find the only x̃0 such that Equation (66) becomes952

fα(x, x̃) = f(0)
α (x0, T x0x (x̃)) = f(0)

α (x0, x̃0), (71)

where the composition fα(x, · ) = f
(0)
α (x0, · ) ◦ T x0x : Ut(x, δ) → R is implied. The essence of953

this result is that the information on the non-locality of a given phenomenon between x and954

x̃, encompassed by fα(x, x̃), is “transported” to the pair of points x0 and x̃0 (see Fig. 7).955

To conclude, we notice that, in an affine space or, more generally, in a flat subset of an affine956

space, the procedure outlined above boils down to the determination of the unique point x̃0957

such that vx0 = x̃0 − x0 is equipollent to vx = x̃− x, for given x0, x and x̃. Indeed, within958

this framework, T x0x operates in such a way that vx0 = T x0x (x̃)−x0 = x̃0−x0 is parallel to vx959

(because vx is transported parallely along the geodesic —now, a straight line— connecting x960

with x0) and ‖vx0‖ ≡ ‖x̃0−x0‖ = ‖x̃−x‖ ≡ ‖vx‖. Moreover, fα(x, x̃) and f
(0)
α (x0, x̃0) can be961

rephrased as fα(x, x̃) = f̂α(x− x̃) and f
(0)
α (x0, x̃0) = f̂

(0)
α (x0 − x̃0), respectively, and Equation962

(66), or Equation (71), is trivially satisfied. In this respect, we say that Equation (66) adapts963

the meaning of convolution from the case of an affine space to the case of a manifold (see964

Fig. 8).965
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x vx
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U (   ,  )δt x0

Bt

U (  ,  )δt x

ζ

Figure 7: The convolution on manifolds is defined by transporting fα(x, ·) : Ut(x, δ) → R
to every point of Bt, while taking into account the manifold geometry. Thus, given a point
x̃ = η(1) ∈ Ut(x, δ), the operation exp−1

x (x̃) returns the vector vx = η′(0), which is parallelly
transported to vx0 through a geodesic ζ : [0, s]→ Bt connecting x = ζ(s) and x0 = ζ(0), and
the operation expx0(vx0) returns the point x̃0 ∈ Ut(x0, δ). In this way, fα(x, ·) is transported
from Ut(x, δ) to Ut(x0, δ).

x0

x0

ζ

x

x

xx = x-vx x0 0vx0
= -

U (   ,  )δt x0 U (  ,  )δt x

Bt

Figure 8: In a flat subset of an affine space vx0 = x̃0 − x0 is equipollent to vx = x̃ − x.

Therefore, fα(x, x̃) and f
(0)
α (x0, x̃0) can be rephrased as fα(x, x̃) = f̂α(x− x̃) and f

(0)
α (x0, x̃0) =

f̂
(0)
α (x0 − x̃0).
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[71] E. Kröner. Elasticity theory of materials with long range cohesive forces. International1140

Journal of Solids and Structures, 3(5):731–742, sep 1967.1141

[72] Ellen Kuhl. Growing matter: A review of growth in living systems. J. Mech. Behav. Biomed.1142

Mater., 29:529–543, jan 2014.1143
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