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Abstract This study proposes a new process‐based framework to characterize and classify runoff events
of various magnitudes occurring in a wide range of catchments. The framework uses dimensionless
indicators that characterize space–time dynamics of precipitation events and their spatial interaction with
antecedent catchment states, described as snow cover, distribution of frozen soils, and soil moisture
content. A rigorous uncertainty analysis showed that the developed indicators are robust and regionally
consistent. Relying on covariance‐ and ratio‐based indicators leads to reduced classification uncertainty
compared to commonly used (event‐based) indicators based on absolute values of metrics such as duration,
volume, and intensity of precipitation events. The event typology derived from the proposed framework
is able to stratify events that exhibit distinct hydrograph dynamics even if streamflow is not directly used for
classification. The derived typology is therefore able to capture first‐order controls of event runoff
response in a wide variety of catchments. Application of this typology to about 180,000 runoff events
observed in 392 German catchments revealed six distinct regions with homogeneous event type frequency
that match well regions with similar behavior in terms of runoff response identified in Germany. The
detected seasonal pattern of event type occurrence is regionally consistent and agrees well with the
seasonality of hydroclimatic conditions. The proposed framework can be a useful tool for comparative
analyses of regional differences and similarities of runoff generation processes at catchment scale and their
possible spatial and temporal evolution.

1. Introduction

Understanding event runoff generation processes at catchment scale is crucial for gaining insights about
event‐to‐event variability of runoff response and solutes export from catchments (McGlynn &
McDonnell, 2003). This knowledge is instrumental in a wide variety of applications ranging from hydrolo-
gically sound flood frequency predictions (Merz & Blöschl, 2008) to the derivation of effective indicators
for water quality assessment at management (i.e., catchment) scale (Minaudo et al., 2019). In a changing
world, understanding generation processes of runoff events is pivotal for elucidating mechanisms behind
intensification and shifts in the seasonality of river flows (Blöschl et al., 2017), trends in long‐term flood ser-
ies (Slater & Wilby, 2017), and possible changes in the magnitude of flood hazard in the future (Turkington
et al., 2016). Therefore, the development of a general framework for understanding and comparing typical
runoff event generation processes and event runoff response at large (i.e., from catchment to regional) scales
is an important task. Such a framework would be a valuable tool to link a wide variety of event runoff gen-
eration processes to individual catchment responses at the event time scale. It would also enable a detailed
analysis of the transformation of dominant processes from small to large runoff events, thus unveiling pos-
sible differences between processes responsible for the occurrence of unexpected extreme and ordinary
events (e.g., Rogger et al., 2012; Smith et al., 2018).

Classification frameworks are essential for reducing information into a manageable amount of classes by
grouping together similar objects, and are widely used in hydrological science (e.g., Knoben et al., 2018;
Sawicz et al., 2014; Sivakumar & Singh, 2012; Wagener et al., 2007). Process‐based classification of hydrolo-
gical events, such as river floods and hydrological droughts, also gained momentum in the last decades (e.g.,
Merz & Blöschl, 2003; van Loon & van Lanen, 2012) as it provides a basis for understanding the observed
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variety of hydrological behaviors and their causes. Large scale studies dealing with process‐based classifica-
tion of hydrological events usually focus on large runoff events (e.g., maximum annual floods). Applications
at regional (e.g., Diezig & Weingartner, 2007; Hirschboeck, 1987; Nied et al., 2014; Sikorska et al., 2015),
country‐wide (Berghuijs et al., 2016; Merz & Blöschl, 2003), continental (Berghuijs et al., 2019), and even glo-
bal scales (Stein et al., 2019) exist. A comprehensive overview of existing causative flood classification
approaches is given by Tarasova et al. (2019). Yet a consistent framework for process‐based characterization
and classification of runoff events that, beside flood events, analyzes a wide range of runoff magnitudes and
is suitable for varied catchment sizes is still lacking.

Although the above‐mentioned flood classifications could theoretically be used to sort generation processes
of a larger sample of runoff events (i.e., including small events), they mostly adopt spatially and temporally
lumped characteristics of precipitation events (e.g., catchment‐ and event‐averaged amount of rainfall),
often neglect pre‐event wetness states, and are therefore unsuitable to capture the spatiotemporal interac-
tions of rainfall and soil moisture (Tarasova et al., 2019). This is, however, known to be a key driver of runoff
generation. For example, Freyberg et al. (2014) found that only a small fraction (1–26%) of the total catch-
ment area generates streamflow during rainfall events in a small pre‐alpine catchment. Similarly,
McGlynn and McDonnell (2003) showed that contribution from riparian zones dominates runoff for smaller
events, while hillslope runoff generation increases for larger events in a New Zealand catchment. According
to Seo et al. (2012) and Mei et al. (2014), space–time dynamics might also be crucial to correctly mimic mag-
nitude and timing of flood events.

In recent decades, high‐resolution observed and simulated hydrometeorological data sets became available
(e.g., Zink et al., 2017), thus providing tools to analyze variations of runoff generation processes at catchment
scale and their drivers (Viglione, Chirico, Komma, et al., 2010; Woods & Sivapalan, 1999). This advances aim
to bridge the gap between small scale studies that investigate runoff generation processes by means of
detailed observations (e.g., Jencso et al., 2009; Rinderer et al., 2019; Tromp‐van Meerveld & McDonnel,
2006) and large scale studies which offer predictions of future changes of these processes purely based on
modeling approaches (e.g., Donnelly et al., 2017; Gosling et al., 2017).

Another drawback of most existing flood classification frameworks is the use of classification thresholds
that are only valid for specific regions. This limits the transferability of the frameworks to other regions
and hinders their application at larger (e.g., global) scales. To overcome this issue, Stein et al. (2019) intro-
duced thresholds expressed as catchment‐specific percentiles of the considered indicators. However, the
application of percentiles might be less justified when a wider sample of runoff events is considered
and variability of indicators based on absolute values (e.g., maximum precipitation intensity and volume
of precipitation events) are much higher than for samples that include only maximum annual flood
events. Therefore, it is important to develop a framework that relies primarily on dimensionless indicators
and is transferable across climatic conditions and to catchments and events of different sizes
(Tarasova et al., 2019).

The quality of data‐based characterization and classification schemes largely depends on the quality of the
available data and the robustness of the applied classification methods with respect to several aspects of
uncertainty (Tarasova et al., 2019). In fact, classification results are sensitive to the uncertainty of input
data from different sources (e.g., different observed temperature or precipitation data (Kampf &
Lefsky, 2016), various soil moisture, and snowmelt simulations (Stein et al., 2019), to the choice of
indicators used to characterize event types and to the values of thresholds applied to attribute events to
different classes (Sikorska et al., 2015; Stein et al., 2019). All these aspects must be examined to provide
a robust characterization framework and guidelines for selection of input data, indicators, and their
corresponding thresholds.

Finally, existing automated event classification frameworks (e.g., Sikorska et al., 2015; Stein et al., 2019) uti-
lized predefined classification trees, whose structures were devised based on hydrological reasoning about
possible runoff generation processes. The underlying assumption is that similar hydrometeorological and
catchment state conditions within an individual catchment (i.e., the blocks of the classification tree) result
in similar hydrological responses (e.g., Sikorska et al., 2015). Although this assumption is rarely tested
(Tarasova et al., 2019), proving its soundness would confirm the validity of the classification and lay the
foundation for transferring classification results to ungauged locations.
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This study aims to amend gaps and limitations of the existing classification frameworks discussed above.
First, we propose a new multilayer framework (section 3.1) for process‐based characterization of runoff
events of various sizes (i.e., a large numbers of events are analyzed in addition to peaks over thresholds or
events with large magnitude and recurrence intervals). The proposed framework relies on a set of transfer-
able dimensionless indicators which describe the nature of the inducing meteorological event, its spatiotem-
poral dynamics and the interaction of precipitation and catchment wetness state, and does not use
streamflow data. We test the effects of the uncertainty of input data and chosen indicators, as well as their
sensitivity to the choice of classification thresholds, and compared their performance to that of traditional
indicators relying on absolute values and lumped characteristics of inducing events and catchment states
(sections 3.3 and 4.1). By using the proposed characterization framework, we then derive an event typology
for Germany (section 3.2). We investigate the adequacy of the hypothesized runoff generation processes by
testing whether the derived event types group events with similar hydrograph dynamics (section 3.4).
Finally, we examine spatial and temporal (seasonal) patterns of event type occurrence in a wide set of
German catchments (section 3.5) and thus reveal spatial heterogeneity and temporal variability of dominant
catchment‐scale streamflow generation processes across Germany (section 5).

2. Data and Study Area

The event classification is performed on the set of 183,955 runoff events occurred in 392 German catchments
(Figure 1) during the course of 22 years (1979–2002) of observations reported by Tarasova, Basso, Poncelet,
et al. (2018). Catchment sizes range from 36 to 23,843 km2. The median area of catchments in the data set is
494 km2. Runoff events were identified from continuous hydroclimatic time series using the procedure illu-
strated in Tarasova, Basso, Zink, et al. (2018). First we separated base and quick flows using a simple smooth-
ing algorithm (IH, 1980); then we attributed precipitation to each quick flow event if it occurred within the
seasonal lag time of the respective catchment (Mei & Anagnostou, 2015); finally we identified single‐peak
components of multiple‐peak events by using a set of iteratively adjusted refinement thresholds. The itera-
tive procedure is based on an equality test between the two distributions of event runoff coefficients derived
from a reference single‐peak and a refined single‐peak event groups. For a detailed description of the event
separation procedure, we refer the reader to Tarasova, Basso, Zink, et al. (2018).

The initial rainfall‐runoff event attribution described above essentially defines the lag time from the starting
point of the considered runoff event backwards within which rainfall events are searched at each individual
location (i.e., gauge). However, inducing events (i.e., precipitation) in the headwaters might start earlier than
the observed streamflow reactions at the outlet of large river networks (Diederen et al., 2019). Therefore, pre-
cipitation events considered for the same runoff event at upstream and downstream locations might differ
when the start of the precipitation event lays inside the search distance defined by the lag time for the
upstream location, but is outside of this distance for the downstream location (see supporting
information Text S1 and Figure S1 for a visual explanation). To remedy this issue in the case of nested catch-
ments, individual runoff events were organized along the river network they belong to and the starting
points of runoff events at downstream locations were adjusted in a way that the earliest starting date among
upstream locations was assigned to all the downstream locations. These starting dates of runoff events were
then used to search for the corresponding precipitation event for each individual catchment according to the
seasonal median lag time as described above (see also supporting information, Figure S1b). The search time
range backwards was bounded by the starting date of the precipitation event at the upstream location. The
above‐described procedure ensures that no precipitation is accidentally discarded in larger catchments and
allows for characterizing nested catchments consistently. We used the identified beginning and end dates of
the attributed precipitation event to subset daily gridded products of hydrometeorological variables and
compute event‐based indicators according to the proposed characterization framework.

We used daily gridded rainfall data (1‐km grid) from the REGNIE (Regionalisierte Niederschlagshöhen) data
set (Rauthe et al., 2013) provided by the GermanWeather Service, and snowmelt and soil moisture time ser-
ies (on a 4‐km grid) simulated by the mesoscale Hydrologic Model (mHM; Samaniego et al., 2010; Kumar
et al., 2013) along with air temperature interpolated using external drift kriging (Zink et al., 2017). For uncer-
tainty analysis and robustness check, we additionally used a precipitation data set interpolated by means of
external drift kriging (as reported in Zink et al. [2017]), a temperature data set interpolated by using the
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inverse distance method, 100 equifinal realizations (i.e., 100 different simulations resulted from using 100
different representative parameter sets) of the mHM (Zink et al., 2017), as well as simulations of the
alternative distributed regionally calibrated hydrological model SALTO (Merz et al., 2020), which has a
structure similar to the conceptual Hydrologiska Byråns Vattenbalansavdelning (HBV)
model (Bergström, 1995).

The uncertainty analysis (section 3.3) was performed in 75 catchments (19% of all study catchments)
belonging to four large river basins in Germany (i.e., the Sieg, Naab, Neckar, and Weser Rivers,
Figure 1). Overall, it considered 38,289 individual runoff events (21% of all runoff events in the data set).
The size of catchments ranges from 218 to 2,825 km2 for the Sieg River (4 catchments, 2,462 events), from
588 to 5,096 km2 for the Naab River (7 catchments, 2,937 events), from 135 to 12,670 km2 for the Neckar
River (19 catchments, 10,711 events), and from 36 to 21,583 km2 for the Weser River (45 catchments,
22,179 events). The selected catchments represent the whole range of catchments sizes and hydroclimatic
conditions in the German data set.

Similarity of hydrograph dynamics for each event pair in each individual catchment (section 3.4) was calcu-
lated for events that are at least 5 days long (see supporting information, Text S3). In total, 100,750 events
(55% of all runoff events) were analyzed through this procedure.

Figure 1. Study catchments (thin black outline) and four test river basins: the Sieg, Naab, Neckar, and Weser Rivers.
Gray points indicate location of gauging stations. Red lines indicate the borders of four main German natural regions:
the North German Plain, Central Uplands, South German Scarplands, and Alpine Forelands.
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3. Methods
3.1. A Process‐Based Framework for Characterization of Runoff Events

Here we propose a multilayer framework for process‐based characterization of runoff events based on a con-
sistent set of indicators which capture space–time dynamics of rainfall and snowmelt, spatial organization of
antecedent catchment wetness states, snow cover and soil freezing conditions, as well as the spatial interac-
tion of precipitation and soil moisture within catchments (Figure 2a).

The idea underlying this characterization approach is that runoff events can be categorized by a set of indi-
cators, each describing a single aspect of the transformation of rainfall into runoff. For example, one indica-
tor characterizes the spatial extent of the precipitation field during the event, while another describes the
temporal evolution of the precipitation rate during the event. The set of observed runoff events is split at each
layer based on crisp predefined thresholds (e.g., Brunner et al., 2017) applied to the layer‐specific dimension-
less indicators (Table 1), and runoff events are labeled accordingly (Figure 2a). The combination of states
categorized at each layer composes the overall character of runoff generation processes during a given event.

In the proposed framework, streamflow data are not utilized for characterization, but only used to define
start and end date of the events (see section 2). In addition, we used streamflow data to validate the proposed
classification (section 3.4) by analyzing the similarity of event hydrographs of the derived event types (
section 3.2).

In the first layer of the characterization framework, we analyzed the nature of the meteorological inducing
event. An event was considered a pure snowmelt (Snowmelt) event if the volumetric ratio of
catchment‐averaged event snowmelt and total precipitation is larger than a prescribed threshold value
(i.e., 0.95). Such high threshold value was selected to identify events that are solely triggered by melting pro-
cesses and where the contribution of rainfall is minimal. This choice as well as the choice of later described
thresholds is unavoidably subjective. The sensitivity of all thresholds was therefore examined in a thorough
uncertainty analysis (see sections 3.3 and 4.1). Similarly to snowmelt events, we used the volumetric ratio
between catchment‐averaged event rainfall and total precipitation to identify purely rainfall events
(Table 1 and Figure 2a). Among their mixtures (i.e., when the volumetric portion of both rainfall and snow-
melt in the total precipitation event volume was higher than 0.05, Mixture of Rainfall and Snowmelt),
Rain‐on‐snow events were identified by using the spatial covariance of pre‐event snow water equivalent
and event rainfall volume normalized by the product of their average values (Table 1). Spatial covariance
was calculated as a grid‐wise covariance of two gridded variables for a certain time step (i.e., in this case posi-
tive values of spatial covariance indicate that, within a catchment more rainfall fell on the areas where more
snow water equivalent was accumulated before the beginning of the event).

Rain‐on‐ice (e.g., Wendi et al., 2019) occurs when rain falls on frozen surfaces (e.g., frozen soils) and was here
distinguished from rainfall events using the spatial covariance of event‐averaged rainfall volume and

pre‐event degree of soil freezing (SF0) defined as SF0 ¼ ∑
n

i¼0
Tij j , where T is air temperature (°C) of a

snow‐free pixel and n is the number of days with air temperature below −2 °C during the 5 days preceding
the start of a rainfall event (Flerchinger et al., 2005).

We also considered the temporal organization of the inducing event by analyzing the coefficient of varia-
tion in time of the catchment‐averaged precipitation rate and the ratio of maximum intensity to total
volume of the inducing event (rainfall, snowmelt, or mixture depending on the nature of the inducing
event; Table 1). For this ratio‐based indicator the classification threshold was set to its mean value (i.e.,
0.5). When the ratio of maximum intensity to total volume of the inducing event is higher than 0.5, it indi-
cates that more than 50% of event precipitation volume occurred in a single time step. Therefore, with
regard to their temporal organization events can be intensity‐dominated or volume‐dominated
(Figure 2a), essentially corresponding to different runoff generation mechanisms (i.e., infiltration‐excess
and saturation‐excess; Dunne, 1978; Horton, 1933).

Moreover, we analyzed the space–time organization of the inducing event using the coefficient of variation
in space of precipitation volume and event‐averaged spatial covariance of precipitation fields between con-
secutive time steps (Table 1). Using these two indicators, an event can be characterized as Local Steady, Local
Unsteady, Extensive Steady, and Extensive Unsteady (Figure 2a). For a Local event precipitation, volume is
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Figure 2. (a) A multilayer framework for process‐based characterization and categorization of runoff events. Indicators and categorization thresholds used for
each layer of the framework are summarized in Table 1. (b) A decision tree to perform hierarchical classification of runoff events. The amount of possible
combinations (i.e., event types) was reduced by lumping together hydrologically similar (i.e., by hypothesizing possible runoff generation processes at catchment
scale that correspond to each type of runoff events, see Table 2) and rarely occurring combinations.
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unevenly distributed in the catchment and mostly concentrated in a small portion of it, thus possibly hinting
towards local runoff generation. For an Extensive event, precipitation volume is instead evenly distributed in
the catchment, thus possibly suggesting extensive runoff generation. For a Steady event, daily precipitation
volume mostly occurs in the same part of the catchment during consecutive days of a wet spell, with higher
likelihood of having saturated areas in this part of the catchment. On the contrary, the location of the daily
precipitation volumes during consecutive days of a wet spell varies (i.e., the centroid of the precipitation
moves) for an Unsteady event, thus suggesting that different portions of the catchment are wetted.

The second characterization layer sorts events according to their corresponding pre‐event catchment wet-
ness state (Figure 2a). We labeled event conditions as Wet or Dry based on catchment‐averaged antecedent
soil moisture. By using simulated soil moisture, we inevitably introduce model‐specific bias into the charac-
terization framework. Simulated soil moisture essentially shows the current state of the soil moisture storage
unit according to accounting schemes that are widely used in computational hydrology (e.g.,
Bergström, 1995). If the nonlinear storage‐discharge relationship used in the model differs in different catch-
ments (e.g., supporting information Figure S2), using percentiles of soil moisture as threshold to define wet
and dry states might be inappropriate. To properly account for the nonlinear behavior of the soil moisture
storage reservoir, we used the measure of maximum curvature κ (see e.g., Rogger et al., 2013) of a fitted expo-
nential function that describes the nonlinear relation between event runoff coefficient (rc) and antecedent
soil moisture (sm; Tarasova, Basso, Zink, et al., 2018 and Figure S2) as a classification threshold. For soil
moisture states below the point of maximum curvature, event runoff coefficients tend to increase slowly with
increasing soil moisture (representing dry catchment states), while beyond this point event runoff coeffi-
cients increase rapidly with soil moisture (representing wet catchment states; Rogger et al., 2013).

Curvature at each point of the function rc = f(sm) is calculated as κ ¼ f smð Þ00j j
1þ f smð Þ0ð Þ2
� �3

2
, and its maximum value

is calculated for each catchment in the data set. More details on the threshold used to define the wetness
state of a catchment are provided in supporting information Text S2.

We also characterized the spatial interaction between inducing event and antecedent catchment wetness
state. We used the spatial coefficient of variation as an indicator of Uniform or Patchy spatial organization
of the soil moisture (Table 1), and in case of detected spatial inhomogeneity, the spatial covariance of event
precipitation volume and pre‐event soil moisture state (Table 1) was used to detect spatial overlapping of
saturated areas and area wetted by the current precipitation event. In terms of spatial interaction, each event
can be characterized as Uniform, Patchy Overlap, or Patchy No Overlap (Figure 2a).

For all covariance‐based indicators, we set the threshold at zero, because positive values of spatial covariance
correspond to the occurrence of spatial overlap of the investigated hydrometeorological variables. For indi-
cators based on the temporal coefficient of variation the threshold was set to 1 (i.e., the case when the mean
is equal to the standard deviation) for all catchments. The spatial coefficient of variation instead showed
dependence on catchment size, with larger catchments always having higher values of the spatial coefficient
of variation compared to smaller ones. Therefore, we selected the second quartile (i.e., the median) as thresh-
old for the indicators based on the spatial coefficient of variation (Table 1).

3.2. Hierarchical Event Classification: The Event Typology of Germany

A goal of this study is to investigate the occurrence of different runoff generation processes, their spatial pat-
terns and seasonality in Germany. The combination of states categorized at each layer of the proposed char-
acterization framework (e.g., Rain.Intensity.Local.Steady.Dry.Uniform; section 3.1) thoroughly describes the
runoff generation process occurring during a given event. Not every combination of possible occurred for
each catchment in the data set (e.g., almost all rain‐on‐snow events are volume‐dominated events occurring
on wet conditions). Therefore, we reduced the amount of possible combinations of mechanisms by hypothe-
sizing plausible runoff generation processes at catchment scale (Table 2), and lumping together similar and
rarely occurring combinations during the hierarchical classification (Figure 2b).

The classification tree derived in this study is referred in the following as event typology for Germany
(Figure 2b and Table 2). Notice that the complexity of the characterization framework can be adapted for
the specific task at hand, for instance if a certain sample size is required for each event type (e.g., for deriving
mixed distributions for flood frequency analysis; e.g., House & Hirschboeck, 1997), or if certain
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characteristics are crucial despite their rarity (as in the case of sediment transport by intensity‐dominated
events (Basso et al., 2015)).

3.3. Uncertainty Analysis and Robustness Check of the Proposed Framework

The proposed characterization framework (section 3.1) relies heavily on the quality of the observed and
simulated input data. Therefore, we performed a rigorous uncertainty analysis and robustness check. We
analyzed two different uncertainty aspects in the case of 75 test catchments belonging to four river basins
that represent the variety of climatic conditions, catchment characteristics and sizes in the data set (see
section 2). First we quantified the input data uncertainty by measuring the discrepancy (defined as the por-
tion of inconsistently categorized events among all events) in the characterization obtained at each layer
when varying one of the following components:

1. Input data source (interpolation method):we used two Germany‐wide gridded precipitation products (i.e.,
Rauthe et al., 2013; Zink et al., 2017) that were produced through different interpolation methods of sta-
tion observations. The test was performed at 4‐km resolution due to the coarser resolution of the preci-
pitation product provided by Zink et al. (2017). In a similar fashion, we analyzed effects on the results
of the characterization due to different interpolationmethods applied in the considered temperature data
sets. In both cases only the interpolation method differed while the amount of data was not altered.

2. Data resolution: the original spatial resolution of observed and simulated data used for event character-
ization was upscaled by a factor of 2 (i.e., we analyzed the effect of a coarser spatial resolution).

3. Parameter set: we used snowmelt and soil moisture data simulated by 100 different representative para-
meter sets (i.e., 100 equifinal realizations of parameters in terms of streamflow efficiency for major
German river catchments) of the mHM model (Kumar et al., 2013; Samaniego et al., 2010; Zink
et al., 2017).

4. Model structure and calibration technique: we used simulated snowmelt and soil moisture of two region-
ally calibrated distributed conceptual hydrological models, namely, the mHM and SALTO (Merz

Table 2
Event Types and Corresponding Hypothesized Runoff Generation Processes at Catchment Scale

Event type Hypothesized runoff generation processes

Snowmelt Radiation‐induced snowmelt (usually Wet.Volume.Steady)

Rain‐on‐ice Frozen soils prevent infiltration of rainfall (usually Wet.Intensity.Uniform)

Rain‐on‐snow Several possible ways of runoff generation ranging from situations when snowpack prevents infiltration
of rainfall or instead either stores substantial portion of rainfall water or is degraded due to
rainfall‐induced snowmelt (usually Wet.Volume.Extensive.Steady.Uniform)

Mixture of Rainfall and Snowmelt Radiation‐induced snowmelt and simultaneous in time but not in space rainfall (usually Wet.Volume.Local.Unsteady)

Rain.Wet.Intensity.Local Local runoff generation; pre‐event saturation or infiltration excess; possible connectivitya

Rain.Wet.Intensity.Extensive Extensive runoff generation; pre‐event saturation or infiltration excess; possible connectivity

Rain.Wet.Volume.Local.No.Overlap Local runoff generation, event‐fed saturation, possible connectivity

Rain.Wet.Volume.Local.Overlap Local runoff generation, pre‐event saturation, established connectivity

Rain.Wet.Volume.Extensive.No.Overlap Extensive runoff generation, event‐fed saturation, possible connectivity

Rain.Wet.Volume.Extensive.Overlap Extensive runoff generation, pre‐event saturation, established connectivity

Rain.Dry.Intensity.Local.Steady Local runoff generation; possible infiltration excess or event‐fed saturation; no connectivity

Rain.Dry.Intensity.Unsteady Local runoff generation; possible infiltration excess; no connectivity

Rain.Dry.Intensity.Exrtensive.Steady Possible extensive runoff generation; possible event‐fed saturation and infiltration excess;
possible event‐induced connectivity

Rain.Dry.Volume.Local Local event‐fed saturation; no connectivity

Rain.Dry.Volume.Extensive.Steady Extensive event fed‐saturation; possible event‐induced connectivity

Rain.Dry.Volume.Extensive.Unsteady Extensive runoff generation; possible pre‐event saturation; possible event‐induced connectivity

Note. Due to the small number of events induced by snowmelt, rain‐on‐ice, rain‐on‐snow and mixtures of rainfall and snowmelt compared to pure
rainfall‐induced events, no further splitting was performed (see Figure 2b), but their most frequent attributes are noted in brackets.
aHere by connectivity, we refer to a catchment state when a direct linkage between runoff source areas and the stream is established (Jencso et al., 2009;
Rinderer et al., 2019).
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et al., 2020) models. The comparison was performed at 8‐km resolution due to the coarser resolution of
the latter model outputs. Both models were driven by the same input data.

In a second step we focused on the uncertainty of the categorization itself (i.e., the results of binary splits)
evaluating the robustness of thresholds and selected indicators bymeans of Monte Carlo experiments similar
to the procedure described by Sikorska et al. (2015):

1. Thresholds uncertainty: we performed a Monte Carlo experiment by substituting the former crisp thresh-
olds (e.g., the original value of the threshold for the temporal coefficient of variation of the precipitation
rate, which was equal to 1, see Table 1) with random variables with probability density functions defined
as truncated normal distributions (Sikorska et al., 2015). The distribution was bounded at 0 for all thresh-
olds since negative values are physically not possible for ratio‐ and coefficient of variation‐based indica-
tors. For covariance‐based indicators, negative values are possible but disagree with the intended
meaning of the indicators (i.e., spatial coincidence), and therefore, these thresholds were bounded at 0
as well. The experiment was run 10,000 times, and every time, a new value for each threshold was
sampled randomly and used to perform the categorization based on the proposed multilayer framework.
Different from Sikorska et al. (2015), we analyzed the uncertainty at every characterization layer sepa-
rately, since our framework is envisaged in a way that overcompensation through other thresholds is
not possible (i.e., once attributed to a group within a characterization layer, an event cannot change its
attribution). In this way we were able to quantify robustness of each layer of the proposed framework.

2. Uncertainty of indicator choice: we chose alternative indicators for each characterization layer that poten-
tially allows for similar stratification of events and that were previously used for causative classification
of river flood events (Tarasova et al., 2019). In particular, we compared ratio‐based indicators with their
counterparts based on absolute values (e.g., ratio of snowmelt and rainfall is substituted by their absolute
values; Table 1). Covariance‐based indicators were instead compared with indicators based on the por-
tion of overlap (e.g., instead of normalized spatial covariance of precipitation volume and antecedent soil
moisture, the portion of overlapping precipitation fields and wet areas are used). In the same fashion,
indicators that were based on the spatial coefficient of variation are tested (e.g., instead of the spatial coef-
ficient of variation of precipitation volumes we used extent of the precipitation field relative to the catch-
ment area; Table 1). For indicators of catchment‐averaged wetness state, we used the antecedent
precipitation and snowmelt index (Kohler & Linsley, 1951), which is often used as a substitute of soil
moisture (Keller et al., 2017). To avoid possible biases in the application of these absolute indicators in
a wide set of catchments, their thresholds were defined as catchment‐specific percentiles (Stein
et al., 2019). First, we compared the results of categorization using these alternative indicators and the
original indicators. In the following step, we performed analysis of their threshold uncertainty using a
Monte Carlo experiment as described above for the original indicators.

3.4. Validation of the Derived Event Typology: Similarity of Hydrograph Dynamics of Event Types

The validity of the hypothesized runoff generation processes (Table 2) cannot be verified at catchment scale
(i.e., we cannot observe these processes at this scale). However, if a set of indicators used for event charac-
terization is able to capture distinct runoff generation processes, similarly classified events should exhibit
similar hydrological response (Sikorska et al., 2015). The proposed framework is essentially runoff‐free
(i.e., runoff data are used only for identifying beginning and end of events and in the regional calibration
of the hydrological models which provide soil moisture and snow cover data sets). Therefore, we can validate
the derived event typology (section 3.2; Figure 2b) by testing if the identified event types group events with
distinct hydrological response, which is comprehensively described by event hydrographs
(Blöschl et al., 2013).

To quantify and compare dynamics of event hydrographs within each study catchment, we used cross recur-
rence plots (CRPs) and recurrence quantification analysis (RQA; Marwan et al., 2007). CRPs aim to describe
the degree of similarity/dissimilarity between (nonlinear and nonmonotonic) time series of complex envir-
onmental systems and their recurring patterns. They were successfully applied in several disciplines of envir-
onmental sciences (e.g., Aceves‐Fernandez et al., 2011; Eroglu et al., 2016).

The CRP similarity quantification method is based on the time delay embedded phase space representation
of time series, in our case event discharge hydrographs (Wendi et al., 2019). Essentially, every point of an
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event hydrograph (i.e., streamflow at every time step Q(t), Figure 3a) is represented in the m‐dimensional
phase space (e.g., a three‐dimensional phase space on Figure 3b) by plotting the original values of event
hydrograph separated by the time delay τ and connecting these points as a trajectory (Figure 3b). Time
delay embedding provides an opportunity to account for the multidimensional relationships between
different points in time within the events. This means that temporal evolution of discharge including
effect of antecedent conditions is accounted for (Wendi et al., 2019).

Streamflow hydrographs are compared to each other based on the Euclidean distance of their phase space
trajectories (Figure 3b). In phase space domain, two event hydrographs that have similar temporal dynamics
of streamflow have very close trajectories (Figure 3b, top panel). Instead the trajectories of two hydrographs
with disparate streamflow dynamics are far away from each other in the phase space domain (Figure 3b, bot-
tom panel). CRP is finally used to visualize the aforementioned similar trajectories corresponding to their
time of similarity occurrence (Figure 3c). These are trajectories within the user‐defined distance
range/radius (ε), and when the condition is met it is indicated as value 1 or otherwise 0 on a CRP. A CRP
is a two‐dimensional binary matrix with x and y‐axes representing the time of two compared events.
When two identical event hydrographs are compared (even if they are time shifted), a single diagonal line
appears on the CRP and indicates the time when two trajectories are similar (Figure 3c, top panel).
Instead, when two dissimilar hydrographs are compared the line on the CRP plot becomes nonexistent
and/or not diagonal (Figure 3c, bottom panel).

Figure 3. Cross recurrence plot (CRP) illustration for quantifying similarity of runoff dynamics between (a) event hydrographs (events A and B). Top panels
illustrate how two identical hydrographs with different time of occurrence (blue line and shaded area in top panel a) are compared in their three‐dimensional
phase space where the axis correspond to the original hydrograph values separated by the time delay τ and 2τ (top panel b) and CRP (top panel c). The bottom
panels illustrate the same comparison, but for two hydrographs with different runoff dynamics. Any identical or similar piece of the phase space trajectory which
falls within the distance range/radius (ε; displayed in yellow in the top panel) is converted into a diagonal line in the CRP. These diagonal lines thus summarize
the similarity of runoff dynamics between the compared hydrographs. Two perfectly identical runoff dynamics (top) have a DET of 1, while dissimilar dynamics
yield low DET values (in our example DET = 0). Portion of CRP shaded in red indicate the information loss resulted from the time delay embedding method.
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The resulting patterns within a CRP (Figure 3c) can be quantified by RQA, which is essentially used as a
similarity measure between two event hydrographs. The chosen measure, called determinism (DET; see
Text S1, Figure 3c), intrinsically varies between 0 and 1 and defines a range from low to high (or identical)
similarity in the dynamics of the two times series (Marwan, 2010). It is worth to note that CRP and RQA can
effectively compare pairs of event hydrographs regardless of their possibly different duration
(Wendi et al., 2019).

For detailed information on construction of CRP and performing RQA, we refer the reader to the work of
Wendi et al. (2019). The parameterization of CRP used in this study is described in supplementary informa-
tion Text S3.

To use DET as a similarity metric of hydrograph dynamics of event types, we calculated DET for each event
pair in every catchment separately. Once events were classified, we calculated the average hydrograph simi-
larity DETintra among event pairs belonging to the same type (e.g., Rain‐on‐snow) in each individual study
catchment. Similarly, we calculated the similarity DETinter between event pairs belonging to different types
(e.g., Rain‐on‐snow and Rain‐on‐ice). In each catchment,DETintra shows how similar events of the same type
are whileDETinter shows how similar are events classified into different types. IfDETintra> DETinter, stream-
flow dynamics of events that are classified into the same type are more similar than those of events that are
classified into different types. Fulfillment of this condition would support our assumption that the different
hypothesized runoff generation processes (Figure 2b and Table 2) determine distinct streamflow dynamics.

3.5. Exemplary Application of the Derived Event Typology in Germany

The event typology derived in section 3.2 was applied to classify runoff events for the set of German catch-
ments (see section 2). Here our goal was to analyze spatial patterns of event type occurrence, their season-
ality in Germany, and to obtain typical runoff characteristics for each event type.

To identify regions with similar event type occurrence, we clustered all catchments in the data set according
to their distribution of event type occurrences. A simple k‐mean clustering approach (Hartigan &
Wong, 1979) was used. The number of clusters was determined using silhouette index (Rousseeuw, 1987).

We analyzed the seasonality of the dominant event types by defining the most frequent type within the
whole study period in a particular season (i.e., for summer [June–August], autumn [September–
November], winter [December–February], and spring [March–May]) and catchment. Additionally, we eval-
uated interannual variability of event type occurrence for each season using a variability measure for cate-
gorical variables (Kader & Perry, 2007):

u2 ¼ 1 − ∑
j

i¼1

ki
n

� �2

; (1)

where u2 is called coefficient of unalikeability (Perry & Kader, 2005), which is a measure of categorical
variability for a variable that has j number of categories (i.e., number of possible event types), n observations
(i.e., total number of events in a certain season for the whole observation period), and ki number of objects
(i.e., events) within a category (i.e., event type) i. Essentially, the coefficient of unalikeability defines how
often the category of observations varies and can be interpreted as a portion of possible comparisons (i.e.,
event pairs) which are unalike (Kader & Perry, 2007). When one event type dominates in a certain season,
the value of u2 is close to 0. When several event types are equally dominant for a certain season, u2 increases
towards the maximum value of 1.

For each classified event, we derived typical event runoff characteristics that describe event runoff response.
Here we considered event runoff coefficient (dimensionless), time scale (days), rise time (dimensionless),
peak discharge (mm/day), and total volume of runoff event (mm). These runoff event characteristics are fun-
damentally different from the indicators of the proposed framework and can be used to shed light on event
runoff response (see, e.g., Tarasova, Basso, Zink, et al., 2018) among different event types. The event runoff
coefficient is a volumetric ratio between event runoff and event precipitation. It characterizes which portion
of precipitation is stored and which portion instead contributes to event runoff. The event time scale is a ratio
between event volume and peak discharge (Gaál et al., 2012). It is related to both the shape and duration of
the event hydrograph. Shorter event time scales are expected when fast runoff generation processes (i.e.,
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overland flow and fast subsurface stormflow) dominate, while longer time scales indicate the dominance of
slow runoff components. The event rise time characterizes the duration (in days) from the beginning of the
event till the day when peak discharge is observed (Bell & OmKar, 1969) normalized by the overall duration
of the event in days. Therefore, it indicates how fast the peak discharge is reached. The peak discharge and
total runoff event volume characterize the magnitude of the event. Since these characteristics depend on
size, landscape, and climatic settings of each catchment (Tarasova, Basso, Poncelet, et al., 2018), we scaled
them to obtain zero mean and unit variance for their samples in each catchment and thus make them com-
parable across settings.

4. Results and Discussion
4.1. Uncertainty Analysis and Robustness Check of the Proposed Framework

We performed an uncertainty analysis and robustness check for four test river basins (75 catchments in total)
to evaluate possible regional inhomogeneity in the uncertainty of the results of the proposed characteriza-
tion framework (Figure 4). We quantified the uncertainty as the portion of discrepancy (i.e., portion of
events that is differently categorized) for each catchment among cases that use different input data, thresh-
olds, or indicators.

The choice of the precipitation product (i.e., the method used to interpolate data from rainfall gauges;
Figure 4, productP) greatly affects categorization of events in terms of the space–time organization, while
their temporal organization and the nature of inducing events are only slightly affected. These results are
somehow expected, as interpolation methods largely decide the spatial organization of precipitation (i.e.,
the data used in the space–time organization layer). However, given the large density of rain gauges in
Germany, different interpolation methods are likely to provide similar results in terms of
catchment‐averaged precipitation rates (i.e., data used in the inducing event and temporal organization
layers, Table 1). Increasing availability of radar data, which are believed to accurately detect the spatial struc-
ture of rainfall events (Rabiei & Haberlandt, 2015), might improve consistency also for what concerns the
space–time organization of events. Conversely, the choice of the temperature product (i.e., interpolation
model; Figure 4, productT) and the spatial resolution of input data (Figure 4, resolution) do not affect classi-
fication results in the examined catchments.

Parametric uncertainty has minor effects on event characterization (Figure 4, parameters). In case of wetness
state characterization, the visible stability of the performance is an outcome of the choice made to define the
classification threshold specifically for each model simulation. We set the threshold equal to the simulated
soil moisture value that corresponds to the point of maximum curvature of the catchment‐specific function
describing the relation between soil moisture simulated by a specific model parameter set and observed
event runoff coefficients (see section 3.1). Except for the spatial organization of pre‐event catchment states,
the uncertainty linked to different hydrological models is comparable with the effect of parametric uncer-
tainty of the initially selected model (Figure 4, parameters and model).

There is also no evidence of regional differences in the framework, save for the temporal organization layer.
Indicators of temporal organization in the Sieg and Naab River basins seem to be sensitive to variations of
their thresholds. A similar pattern of discrepancy is observed for the original and alternative indicators, sig-
naling that the problem probably does not lie in the indicators themselves. However, we could not identify
the exact reason of this discrepancy.

Covariance‐ and ratio‐based indicators proved to be less sensitive to the choice of specific thresholds than
indicators based on coefficient of variations (Figure 4, thresholds). Generally, the choice of indicators plays
a crucial role for the characterization results, except for the temporal organization of inducing events
(Figure 4, alternative indicators). According to the Monte Carlo experiment, the tested alternative indicators
(which are based on absolute values and use catchment‐specific percentiles of these values as thresholds) are
less stable than the original indicators (Figure 4, alternative indicators’ thresholds). This means that selecting
quartiles as thresholds, even if it supports regional homogeneity of classification rules for indicators based on
absolute values (Stein et al., 2019), makes characterization results very sensitive to the choice of thresholds.
In fact, this behavior also emerges for the original (i.e., dimensionless) indicators in the space–time organi-
zation layer (Local vs. Extensive), where a quartile of the spatial coefficient of variation was used as threshold
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to avoid biases due to threshold selection in catchments of different sizes. This resulted in the larger
threshold sensitivity compared to other dimensionless indicators, which do not use thresholds based on
quartiles (Figure 4, thresholds).

4.2. Validation of the Derived Event Typology: Similarity of Hydrograph Dynamics of Event Types

The results of the RQA averaged for all catchments in the data set show distinct differences in the event
hydrographs generated during wet and dry conditions (Figure 5a, red pixels in the lower right corner).

Figure 4. Quantification of input uncertainty and robustness of the characterization framework for four test river basins (75 catchments in total): the Sieg, Naab,
Neckar, and Weser rivers. Categorization discrepancy (i.e., portion of all events that is differently categorized) was calculated for each layer of the framework (i.e.,
inducing event, temporal organization, spatial organization, space–time organization, wetness state, and spatial interaction; see rows of the figure). The portion of
discrepancy may vary from 0 to 1. High discrepancy indicates that categorization results are highly sensitive to the specific choice of the tested feature (i.e., input
data, thresholds, or indicators). Different features were examined (see columns of the figure): Different precipitation (productP) and temperature (productT)
products, original spatial resolution of products upscaled by a factor of 2 (resolution), set of 100 different soil moisture and snow water equivalent realizations
simulated by 100 equifinal parameter sets of the mHM model (parameters), simulations of soil moisture, and snow water equivalent from the alternative SALTO
model instead of the original mHM run (model). We performed the robustness test for thresholds (thresholds) by means of a Monte Carlo experiment, where values
of thresholds were randomly sampled from distributions assigned to the respective indicators (see Table 1). We averaged the categorization discrepancy over
10,000 Monte Carlo runs. The gray background highlights categorization discrepancy when alternative indicators listed in Table 1 (alternative indicators) were
used instead of the original indicators. The robustness test for their thresholds (alternative indicators thresholds) shows average categorization discrepancy of
10,000 Monte Carlo runs.
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Events that occurred during dry conditions tend to have more diverse intra‐type dynamics than events
occurred during wet conditions (i.e., wet events have lower DETintra values on the diagonal of the matrix
than the dry ones, Figure 5a). This can be explained by the fact that during wet cases a larger portion of
catchment is contributing to runoff generation than during dry cases, thus resulting in more
homogeneous runoff generation conditions.

Generally, Local rainfall events show much more variability in runoff dynamics (i.e., on average lower
values of DET, Figure 5a) compared to their Extensive counterparts, indicating that the exact location of rain-
fall in the catchment for Local events might be the dominant control of a particular event runoff dynamic in
both dry and wet cases.

Inter‐ and intra‐type similarities are comparable for events that are generated during dry conditions, indicat-
ing that events generated during dry conditions have somewhat similar dynamics which are not affected by
the space–time properties of rainfall events. This phenomenon is consistently observed in most of the catch-
ments (i.e., low coefficient of variation of DET values in the lower left corner, Figure 5b). On the contrary, a
clear difference among intensity‐ and volume‐dominated events can be observed for events generated during
wet conditions (i.e., large differences between DETintra and DETinter values for Rain.Wet.Intensity and Rain.
Wet.Volume than compared to their dry counterparts, Figure 5a).

Interestingly, very distinct characteristics also distinguish runoff events that are generated when there is
high or low spatial interaction between rainfall and wet areas (i.e., most of rainfall occurs in the parts of
catchment that is respectively wet or dry) as the DETinter between Overlap and No Overlap events is rather
low (i.e., dark orange colors, Figure 5a), while the corresponding DETintra of these types are very high
(i.e., light yellow colors on the diagonals, Figure 5a). Rain‐on‐ice events have a very specific dynamics that
is to some extent similar to Rain‐on‐snow and Mixture of Rainfall and Snowmelt events. Pure Snowmelt
events have evenmore specific hydrograph dynamics that does not match any other event type, as evidenced
by the presence of light yellow colors (i.e., high DET) only in the diagonal of Figure 5a. However, in some
catchments, the variability of runoff dynamics within Snowmelt event type can be higher than on average

Figure 5. Matrix of intra‐type and inter‐type value of determinism (DET, see section 3.4, Text S3, and Wendi et al. [2019]), which measures the similarity of
hydrograph dynamics of event pair (DET = 0 corresponds to a low similarity in the dynamics): (a) mean and (b) coefficient of variation of the average values
of DETinter and DETintra for all catchments. The diagonal shows DETintra (black outline), and horizontal and vertical bars show DETinter. Events of a certain type
exhibit more similar runoff dynamics compared to other event types if the value on the diagonal is higher than the values of the corresponding horizontal and
vertical bars (these conditions are indicated by hatched squares). The matrix of coefficient of variations shows the variability of DETintra (diagonal values, black
outline) and DETinter (values on horizontal and vertical bars) in the set of study catchments. The hierarchical classification tree corresponds to the decision tree in
Figure 2b.
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for the whole data set (Figure 5b). Interestingly, there is more resemblance between Rain.Wet.Volume.
Extensive.Overlap and events that involve snowmelt (i.e., Rain‐on‐snow and Mixture of Rain and
Snowmelt) compared to other rainfall‐induced events (i.e., yellow colors of DETinter between these types,
Figure 5a), indicating that the runoff generation conditions in these cases (despite the differences in the nat-
ure of the inducing event itself) are controlled by similar space–time dynamics of inducing event and wet-
ness state of the catchment. This appears to be consistent for most of the analyzed catchments in the data set
(i.e., low values of coefficient of variation of DETinter for these three event types, Figure 5b).

5. Exemplary Application of Event Typology in Germany

In this section we applied the event typology (Figure 2b and Table 2) derived for the set of German catch-
ments for investigating the spatial distribution of event type occurrence, the seasonal variations of the domi-
nant event types in Germany, and their runoff characteristics. These are exemplary applications, which are
reported and discussed here to give a taste of the possible uses of such a typology.

5.1. Spatial Patterns of Event Types

To analyze spatial patterns of event types in Germany, all catchments in the data set were clustered accord-
ing to the frequency of occurrence of their event types. We identified six clusters (Figure 6a) with distinct
distributions of event types (Figure 6b). The resulting spatial clustering of catchments resembles the one
obtained by using event runoff characteristics (i.e., mean, variability, and seasonality of event runoff coeffi-
cient, time scale, and rise time) that is in turn comparable to the spatial variability of catchment and climatic
descriptors (see Tarasova, Basso, Poncelet, et al., 2018, Figure 5).

The first cluster mostly consists of mountainous catchments of the Alpine Foreland, Black Forest, and
Rhenish Massif (Figure 6a). Here almost 25% of events are either Rain‐on‐snow or Mixture of Rainfall and
Snowmelt (Figure 6b). A big portion of rainfall events occurs during wet conditions and only less than
25% of events occurs during dry conditions. This can be explained by the fact that this cluster largely corre-
sponds to the group of catchments with small subsurface storage and in‐phase seasonality of soil moisture
and rainfall (i.e., substantial rainfall amount falls during the cold season when evaporation is low and soils
are wet) (Tarasova, Basso, Poncelet, et al., 2018). This explains the high portion of rainfall events on wet con-
ditions (Figure 6, green and blue colors). Around 5% of all events are volume‐dominated rainfall events in
wet conditions, when most of rainfall occurs on less saturated soil (i.e., events categorized as No Overlap).
This indicates that the corresponding runoff events might be the result of event‐fed saturation in
these catchments.

Cluster 2 combines wet lowland catchments of the western North German Plain, mid‐range catchments of
the western Central Uplands, and the South German Scarplands. Here the role of events involving snow,
especially Rain‐on‐snow events, is lower than in the previous cluster as the elevations are limited. More than
40% of rainfall event occurs during wet conditions due to in‐phase seasonality of rainfall and soil moisture
(Tarasova, Basso, Poncelet, et al., 2018). Volume‐dominated rainfall events clearly prevail during both dry
and wet conditions. Event‐fed saturation during wet conditions when large portions of catchments are active
and contribute to runoff generation is probably a rare situation in these catchments as only a small portion of
events is categorized as No Overlap events. However, during dry conditions when the distribution of active
runoff generation zones is very heterogeneous, local event‐fed saturation is the most frequent runoff genera-
tion mechanism (i.e., there is abundance of Rain.Dry.Volume.Local and Rain.Dry.Volume.Extensive.Steady
event types).

Cluster 3 encompasses mountainous catchments of the eastern Central Uplands (i.e., the Harz, Ore
Mountains and Thuringian Forest) and the Alpine Forelands. Similarly, to Cluster 1, almost 25% of events
are associated with Rain‐on‐snow and Mixtures of Rainfall and Snowmelt. However, rainfall events are dis-
tributed almost equally between dry and wet conditions indicating large variability in the extent of area
that actively contributes to streamflow generation in these catchments compared to Cluster 1. Almost 25%
of all events are generated by means of localized event‐fed saturation during dry conditions when the con-
nectivity among active runoff generation areas is poor (Rain.Dry.Volume.Local and Rain.Dry.Volume.
Extensive.Steady events). During wet conditions, both extensive and local runoff generations are almost
exclusively controlled by the spatial interaction between soil moisture state and rainfall amounts (i.e.,
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Rain.Wet.Volume.Local.Overlap and Rain.Wet.Volume.Extensive.Overlap prevail among events occurring in
a wet catchment state).

The fourth cluster combines the catchments of the central parts of the North German Plain, the hilly catch-
ments of the Central Uplands and South German Scarplands and the lower Alpine Foreland. A larger por-
tion of rainfall events occurs during dry conditions indicating that generally only small portions of
catchments contribute to streamflow generation. As in all other regions in Germany, during wet conditions
(that are usually in the cold period of the year) volume‐dominated events prevail. However, in this cluster
both local and extensive volume‐dominated rainfall events are only generated when there is strong interac-
tion with soil moisture (i.e., pre‐event saturation is necessary for runoff generation).

The fifth cluster consists of the dry lowland catchments in the east of the North German Plain and the South
German Scarplands. Here only a small portion of events belongs to Rain‐on‐snow orMixture of Rainfall and
Snowmelt types. Only few rainfall events occur during wet conditions, as seasonality of soil moisture and
rainfall is not synchronized. Around 25% of all events are intensity‐dominated rainfall events with prevailing
local runoff generation and possible infiltration excess. Most of volume‐dominated rainfall events during dry
conditions have local character (i.e., large portion of Rain.Dry.Volume.Local) possibly indicating very spa-
tially heterogeneous runoff generation patterns that largely depend on the intensity of inter‐event evapora-
tion controlling pre‐event soil moisture state.

The sixth cluster covers a large portion of the Alpine Forelands, as well as Loess Belt catchments that drain
mid‐range Mountains of the Central Uplands (e.g., the Harz, Thuringian Forest). For this cluster,
Rain‐on‐snow and Mixtures of Rainfall and Snowmelt events play an important role as their portion is the
largest compared to other clusters. The portion of rainfall events during wet conditions is rather small

Figure 6. Regional pattern of event type frequency in Germany: (a) spatial distribution of six homogeneous clusters in terms of frequency of event types and (b)
frequency of event types per cluster for all events.
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because rainfall and soil moisture are not seasonally synchronized. Steady rainfall events during dry
conditions are very frequent, potentially indicating the occurrence of orographic slow‐moving storms,
which are mainly volume‐dominated but can occasionally have an intensity‐dominated structure. Almost
20% of all rainfall events are intensity‐dominated indicating that infiltration excess is a possible runoff
generation mechanism in these catchments.

The above‐mentioned evidences of similarity among regions with homogeneous event type frequency and
archetypical catchment behavior in terms of event runoff response (as reported in Tarasova, Basso,
Poncelet, et al., 2018) indicate that on one hand the similarity of event runoff response might be controlled
by the occurrence of similar event types, and on the other hand that catchments with similar physiographic
and climatic conditions are likely to have similar distribution of event type frequency.

5.2. Seasonality of Dominant Event Types

Event type occurrence naturally varies throughout the year (Figure 7). In large parts of Germany,
Rain‐on‐snow and Mixture of Rainfall and Snowmelt are the two most typical event types in winter

Figure 7. Seasonality of event types in Germany: (a) dominant type (i.e., most frequent type in the season) and (b) variability of event type occurrence for each
season defined as coefficient of unalikeability (see section 3.5 and Kader and Perry [2007]). This metric defines the portion of all event pairs in the season that are
unalike. When one event type dominates in a certain season, the value of the coefficient of unalikeability is close to 0. When several event types are equally
dominant for a certain season, the value of the coefficient increases towards the maximum value of 1.
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(Figure 7a). However, in the western part of the North German Plain, where snowfalls seldom occur, exten-
sive steady rainfall on wet conditions is the most common winter event type. In spring, the situation
changes, and extensive steady rainfalls on wet conditions dominate the whole Western part of Germany,
indicating the dominance of Western cyclones and resulting synoptic precipitation (Hofstätter et al., 2016).
Similar rainfall events also prevail in the Eastern part of Germany, but the catchment wetness state is gen-
erally lower (Figure 7a). The Southern part of Germany (i.e., the Alpine Forelands and Bavarian Forest) and
the eastern part of the Central Uplands are still dominated by Rain‐on‐snow events in spring (Figure 7a), as
snowpack is still present in areas with higher elevation. In summer, the character of precipitation changes,
leading to dominance of local volume‐dominated rainfall events on dry conditions. The frequent occurrence
of intensity‐dominated events in the Eastern part of Germany indicates the importance of convective preci-
pitation for runoff event generation in warm periods of the year. In autumn, increased precipitation in
mountainous catchments of the Alpine Foreland, Black Forest, and Rhenish Massif leads to abundance of
rainfall events on wet conditions. Lower catchments still remain dry, but rainfall events mostly have exten-
sive coverage. The transformation from dry to wet state in most of the catchments and the change from local
to extensive rainfall events in autumn lead to increased variability of event type occurrence (Figure 7b).
Similarly, the variability is high in spring when event types change from events which involve snow to
rainfall‐induced events. The variability of event type occurrence is lower in summer when rainfall events
on dry conditions dominate. Except for the western part of the North German Plain, where air temperature
is fluctuating around critical values for snowfall, the lowest variability is observed in winter when the bulk of
events results from processes which involve snow (Figure 7b).

5.3. Runoff Characteristics of Event Types

Here we analyzed five runoff event characteristics (i.e., event runoff coefficient, time scale, rise time, peak
discharge, and total event volume; see section 3.5) of the derived event types. These characteristics describe
short‐term runoff dynamics, which might shed light on the nature of precipitation partitioning and storage
in the catchments and indicate principal mechanisms of water release during events (Tarasova, Basso, Zink,
et al., 2018). In addition to the set of all events, subsamples of larger (i.e., runoff events with peak discharge
higher than the third quartile) and smaller (i.e., runoff events with peak discharge smaller than the third
quartile) events are also considered in this analysis with the purpose to investigate possible differences
among runoff generation mechanisms of small and large events.

Generally, the majority of all runoff events in Germany and especially of small events results from rainfall
events occurring during dry soil moisture conditions (Figures 8a and 8c; warm colors). Rainfall during
wet conditions (indicated by green and blue palette), and especially Rain‐on‐snow and Mixtures of Rainfall
and Snowmelt (violet colors), are muchmore common among larger events (Figure 8b). Only a small portion
of events was classified as Rain‐on‐ice and pure Snowmelt event types (Figure 8a), indicating that these are
rare runoff generation processes in Germany. Nonetheless, a portion of larger events are generated by these
processes (Figure 8b) indicating that rare processes might still be responsible for generation of large flood
events (e.g., Stein et al., 2019).

A clear increase of event runoff coefficients is observed from dry rainfall events to wet rainfall events
(Figure 8) indicating that a substantial portion of rainfall is stored during dry conditions. The highest runoff
coefficients are observed for Rain‐on‐ice and events which involve snow (i.e., Mixtures of Rainfall and
Snowmelt, Rain‐on‐snow and Snowmelt). These event types are often characterized by very wet conditions
(Table 2). Moreover, frozen soils and snow cover might also hinder infiltration of rain water, which then
immediately contributes to runoff. When events of all sizes are considered, a very similar pattern is revealed
for peak discharges and runoff event volumes (Figure 8a). Interestingly, when only larger events are
considered, smaller runoff volumes are typical for intensity‐dominated rainfall events, but there are little
differences between event runoff volumes of extensive rainfall events during wet conditions (dark blue
colors) and all events which involve snow. This can be explained by the fact that these events are indeed
similar in terms of space–time organization of the precipitation events and wetness state of the
catchments (Figure 5a).

Differences in peak discharges among event types for larger events almost vanish compared to the case when
all events are considered. However, volume, intensity, and duration of the corresponding precipitation
events (Figure 9b) indicate distinct differences among event types even for large events.
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Intensity‐dominated rainfall events on dry conditions are characterized by higher precipitation intensities
than their counterparts with wet conditions. Similarly, volume‐dominated rainfall events on dry
conditions have higher precipitation event volume than their counterparts with wet conditions
(Figure 9b), but show little difference in the event runoff volumes (Figure 8b), likely because the storage
available in dry conditions is of the order of the difference between rainfall amounts of the two states.

The event time scale of intensity‐dominated rainfall events (yellow and green palette) is smaller than the one
of their volume‐dominated counterparts (red and blue palette; Figure 8). These differences are especially dis-
tinct for larger events (Figure 8b). Event time scale of Rain‐on‐snow andMixtures of Rainfall and Snowmelt is
usually longer than for rainfall events (Figures 8a and 8c), but this tendency is less pronounced for larger
events (Figure 8b).

When events of different magnitudes are considered together (Figure 8a), no clear differences in event rise
time are detectable (Figure 8a). However, for larger magnitudes, intensity‐dominated rainfall events seem to
have shorter rise time than volume‐dominated ones (Figure 8b), showing that when runoff is generated by
intensity‐dominated events fast flow paths can be activated.

Distinct runoff characteristics of event types are valuable features for constructing event type‐based design
hydrographs (e.g., Brunner et al., 2017). The above‐mentioned disparate runoff and precipitation character-
istics of event types provide useful information on how runoff characteristics might change in the future
given the expected change in precipitation properties (e.g., if intense rainfall events become more frequent
in the future (Kendon et al., 2014).

Figure 8. Hydrological response of event types in terms of their runoff event characteristics (i.e., event runoff coefficient, time scale, rise time, peak discharge, and
volume): (a) all events; (b) events with Qpeak > Q75; and (c) events with Qpeak < Q75. Runoff event characteristics are standardized by scaling all events to zero
mean (by subtracting the mean of the sample from the original values) and unit variance (by dividing them by the standard deviation) for each catchment to make
them comparable. Legend shows color coding of event types that is also valid for Figure 9.
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6. Conclusions and Outlook

A new process‐based framework for characterizing runoff events and deriving event typologies was pro-
posed. The indicators used in the framework categorize runoff events based on space–time dynamics of
observed precipitation and simulated snowmelt and soil moisture and their mutual interactions within river
catchments. A rigorous uncertainty analysis shows that the indicators of the proposed characterization fra-
mework are robust and regionally consistent. The adoption of dimensionless covariance‐ and ratio‐based
indicators reduces classification uncertainty compared to commonly used indicators relying on absolute
values of metrics such as rainfall volume, duration, or intensity. This indicates that the proposed character-
ization framework is a reliable tool that could be used for regional studies on runoff generation processes and
for investigating their temporal evolution in the past as well as in the future.

Figure 9. Precipitation properties of event types that were not used for event characterization (i.e., maximum precipitation intensity, total volume of precipitation
event, and duration of precipitation event): (a) all events; (b) events with Qpeak > Q75; and (c) events with Qpeak < Q75. Maximum precipitation intensity, total
volume of rainfall, and duration of precipitation events are standardized by scaling all events to zero mean (by subtracting the mean of the sample from the
original values) and unit variance (by dividing them by the standard deviation) for each catchment to make them comparable. The color‐coding of this figure
corresponds to the color key in Figure 8.
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The analysis of CRPs showed that the event typology derived in this study proves able to stratify events with
distinct hydrograph dynamics, even though streamflow was not directly used for classification. This indi-
cates that the derived event typology effectively captures first‐order controls of event runoff response in a
wide variety of catchments. Application of the derived event typology to a country‐wide data set from
Germany revealed six distinct regions characterized by different dominant event types, which match well
with the corresponding regions exhibiting similar runoff response. Unveiled seasonal patterns of event type
occurrence show high spatial coherence that agrees with the seasonality of hydroclimatic conditions prevail-
ing across Germany. These are valuable findings for regionalization of hydrological signatures and predic-
tion of the seasonal character of the runoff response in ungauged locations.

The proposed framework, which allows for a consistent characterization and comparison of runoff events of
various sizes and recurrence intervals in a wide range of German catchments, is expected to perform simi-
larly well in regions where hydrometeorological data of comparable quality in terms of density of observa-
tions, spatial and temporal resolution of the input data is available.

Instead, application of the framework to regions with extremely pronounced seasonality (e.g., snow‐ or
monsoon‐dominated river regimes) might not be trivial, since the very definition of runoff event in these
areas differs from the one adopted for temperate climates (e.g., a runoff event can last several months mak-
ing computation of temporal and spatial organization of the corresponding inducing event and wetness state
ambiguous using the proposed indicators).

Thanks to the adaptive structure of the proposed characterization framework, the complexity of derived
event typologies can be adapted to specific applications or adjusted in case of known problems in the relia-
bility or availability of input data. The characterization framework and the derived event typology can be
further applied for understanding regional differences of runoff and flood events and detect temporal
changes of the dominant flood generation processes. This might help explain previously detected disparate
trends in unstratified floods. The same approach could be also applied for disentangling the variability of
solutes and particulates exports from catchments during different runoff event conditions (as recently sug-
gested by Karwan et al. (2018) and Knapp et al. (2020)), thus providing additional insights on variability
of water quality metrics observed in streams.
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