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ABSTRACT: Large-scale membrane technology has been widely implemented and rapidly 

growing for roughly 40 years. However, considering its entire life cycle, there are aspects 

characterized by low sustainability, and this industry certainly cannot be defined as green. In the 

membrane manufacturing process, raw materials mainly rely on non-biodegradable petroleum-

based polymers and hazardous solvents. These materials are thus connected to the energy crisis 

and are associated to burdens relatd to their disposal, while also osing risks to workers and the 

environment. Therefore, bio-based polymers and green solvents should be employed in the 

membrane preparation process and replace traditional ones. Moreover, the wastewater generated 

from membrane fabrication processes contains organic solvents and should be efficiently treated 

or recycled before discharge. Finally, a large number of spent membrane elements should also be 

reused and recovered, rather than landfilled. This review critically evaluates the recent advances 

in methods to improve the sustainability of membrane technology, specifically emphasizing the 

progresses made around the above aspects, and analyzes the needs for membrane industry 

transformations in the light of circular economy.  
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INTRODUCTION 

Membrane technology has been increasingly applied in diverse industrial processes, for example, 

in water treatment and gas separation, in the chemical and pharmaceutical industry, in the food 

and beverage industry, for hemodialysis, or textile processing. 1-3 In the water treatment field, 

membrane technology plays a key role to promote safe potable water supply, wastewater reuse, 

desalination, and environmental protection. 4-6 Hydrogen recovery, nitrogen enrichment, oxygen 

separation, carbon dioxide capture, and natural gas purification, can be realized efficiently by gas 

separation membranes. 7, 8 In addition, membrane technology has also been applied in metallurgy, 

energy, electronics, and progressively more novel fields. 1  

Membrane technology has several key advantages over traditional technologies. 9 Membrane-

based separation is characterized by sharp selectivity, while being associated with simple 

equipment and conveniently compact structures. 10 It is also highly adaptable and flexible in terms 

of installation and operation. Furthermore, low energy consumption, low pollution, and little use 

of chemicals in membrane separation processes reduce the total CO2 emission and environmental 

effects compared to traditional technologies. 8, 9, 11, 12 Although advantages of membrane 

technology are apparent, drawbacks are gradually exposed in large-scale production and 

deployment. For instance, petroleum-based non-biodegradable polymers are the typical materials 

used for membrane fabrication. And large amounts of toxic organic solvents are involved in the 

membrane manufacturing process, posing a series of health and environmental risks. In another 

typical example, hollow fibers modules are difficult to repair if broken, and this feature shortens 

their average life-time. In the light of the increasingly severe energy crisis and environmental 
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pollution problems, improving the sustainability of membrane technology and promoting the green 

transformation of this engineering field is imperative.  

In Figure. 1a, promising strategies focusing on cradle-to-grave considerations are summarized, 

considering membrane manufacturing, use, and end-of-life management. These approaches are 

guided by the Twelve Principles of Green Chemistry, which are shown in Figure. 1b. 13, 14 We 

believe that gradual improvements of already existing manufacturing platforms are likely to be 

implemented in the foreseeable future. 
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Figure. 1 Sustainable membrane industry transformation strategies from manufacturing to end-of-

life management. (a) Strategies to improve the sustainability of membrane technology. (b) The 

Twelve Principles of Green Chemistry. 

 

We propose five ways to improve the sustainability of the membrane manufacturing process. 

The first is using polymers from renewable sources (also called bio-based polymers) to partly or 
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entirely substitute non-biodegradable petroleum-based ones. Bio-based polymers may be used as 

membrane materials, nonwoven membrane supports, or additives. Nowadays, the typical polymers 

employed for membrane manufacturing are: poly(vinylidene fluoride) (PVDF), polyethersulfone 

(PESU), polysulfone (PSU), poly(ethylene terephthalate) (PET), and poly(ethylene glycol) (PEG) 

(Figure. 2a). These materials are non-renewable and difficult to degrade: both their production and 

disposal are not sustainable. Partial substitution may be a relatively easy first step in the efforts to 

completely substitute these materials. 15-17 However, it is worth noting that not all bio-based 

polymers are biodegradable. Some non-biodegradable bio-based polymers, such as bioderived 

PET, can be applied to fabricate membranes for wastewater treatment, whereby biodegradable 

membranes are not always suitable. Polymers can also be recycled or reused in circular economy. 

18 

 

Figure 2. (a) Traditional polymer materials for membrane fabrication. (b) The main outcome of a 

survey from Razali et al. regarding the way in which membrane manufacturing companies dispose 

of the wastewater from the phase inversion coagulation bath. 19 



 8 

Furthermore, greener solvents should be used to substitute traditional ones. Traditional solvents 

typically used for membrane fabrication, such as N, N-dimethylacetamide (DMAc), 1-methyl-2-

pyrrolidinone (NMP), and dimethylformamide (DMF), are harmful to the environment, and pose 

risks to the health and safety of membrane manufacturing workers. 13, 20, 21 Their detailed dangers 

are listed in Table S1 (Supporting Information, SI), and the European REACH Regulation 

identifies them as substances of very high concern (SVHC). 22 In the last decade, there have been 

some advances around the use of green solvents for membrane fabrication, and a series of nontoxic, 

biodegradable, and recyclable green solvents (e.g., PolarClean and Cyrene) have been applied and 

shown to provide comparable or even superior performance compared with traditional solvents. 9, 

23-26 

Thirdly, the wastewater (mainly containing organic solvents and polymers) generated from 

membrane fabrication should be treated and recycled. It is estimated that membrane production 

generates over 50 billion liters of wastewater annually worldwide, contributing to more than 95% 

of the total waste generated during the membrane fabrication process. 19, 27 However, only 31% of 

this waste is being somehow treated nowadays, 19 as presented in Figure 2b. The fourth strategy in 

the manufacturing process is reducing the number of steps for membrane fabrication, which would 

translate into a reduction of toxic waste, energy consumption, and costs. From this point of view, 

tuning of the membranes via blending is a best option rather than post-fabrication surface grafting, 

while surface physical coating is to be preferred over elaborate chemical functionalizations 

involvoing several pre- and post-modification steps. Finally, the membrane casting solutions 

should be dissolved at room temperature to reduce energy consumption. 

In the membrane operational phase, we propose four strategies to improve sustainability. First, 

measures to reduce the energy consumption should be taken into consideration, including 
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optimizing the transmembrane pressure, membrane modules structure, physical backwashing time, 

and other operating parameters. Artificial intelligence and related in silico fields may provide 

further help improving the efficiency of the membrane fabrication process. Second, daily 

maintenance is of vital importance to extend the service time of membrane modules. Third, 

integrity testing and continuous monitoring are useful to ensure the stable and efficient operation 

of membrane modules, and guarantee the suitable quality of the permeate. The direct integrity 

testing is a physical process that is sufficiently sensitive to detect a 3-µm breach in membrane 

modules, and it should be conducted at least once per day. The continuous indirect integrity 

monitoring is the measurement of the product stream quality parameter, and should be performed 

at least every 15 min. The membrane fibers, fabricated by high-molecular-weight polymers, are 

difficult to repair once they are fractured. In order to prolong their lifetime and improve 

sustainability, readily repairable polymer materials or self-healing materials for membrane 

fabrication are of interest for many researchers and engineers. 28, 29 Fourth, in the chemical cleaning 

process, the chemicals should be as few as possible. 

The end-of-life management of spent membrane modules is also an important aspect given that 

large numbers of membrane elements are discarded annually. Considering reverse osmosis (RO) 

alone, over 14,000 tons of RO modules are discharged annually worldwide, while this number is 

even higher for ultrafiltration (UF) and microfiltration (MF) membranes. 1, 30 All these numbers 

are continuously increasing. Typical methods to dispose of these spent membrane elements are 

landfill or incineration, neither of which is satisfactory from a sustainability viewpoint. When 

landfill disposal is chosen, one must consider that the current petroleum-based elements do not 

degrade biologogically and will persist in the environment, threatening the soil and underground 
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water. As for incineration, this process produces air pollution and greenhouse gases. The correct 

end-of-life management methods should encompass reuse, recycling and recovery (Figure 3b).  

 

Figure 3. (a) From linear processes to circular processes in the chemical sector. 14 (b) Membrane 

industry transformation: from linear process to circular process. 

This review covers the following cutting-edge aspects required to improve the sustainability of 

membrane technology: i) bio-based polymers for membrane manufacturing, ii) green solvents for 

membrane manufacturing, iii) treatment and recycling of the wastewater from membrane 

manufacturing, iv) the application of artificial intelligence in membrane technology and v) end-

of-life management of spent membrane modules. We believe that lower toxicity, lower 

environmental persistence, smart platforms, and circular economy are key factors of the next-
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generation membrane technology. 31 This review introduces recent advances around these aspects 

to provide some inspiration for membrane scientists and enterprise manufacturers, guiding and 

promoting the sustainable transformation of the entire industry. 

BIO-BASED POLYMERS FOR MEMBRANE MANUFACTURING 

In the last decades, petroleum-based polymers have dominated the membrane market. There is 

no doubt that these polymers are economical, versatile, as well as thermally and chemically stable, 

32 but their negative impacts on the environment is not negligible. The exploitation, transportation, 

and refining processes of crude oil may cause marine pollution and air pollution, as well as an 

increase in the carbon footprint. Also, petroleum is non-renewable and is depleting worldwide. 33  

To cope with these problems, we should incorporate bio-based polymers into the membrane 

preparation process. Some bio-based polymers are found naturally, such as cellulose and chitosan, 

while biosynthetic routes may be pursued to obtain many others. These materials usually exhibit 

high hydrophilicity, biocompatibility, and biodegradability, as well as low toxicity, carbon 

footprint, and environmental impact. Bacterial fermentation, vegetables, and animals are the 

dominant resources of bio-based polymers, as depicted in Figure 4. 
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Figure 4. The structural formula of typical bio-based polymers derived from (a) bacterial 

fermentation products, (b) vegetable sources, and (c) animal sources.  

Bio-based Polymers from Bacterial Fermentation  

Poly(lactic acid) (PLA). PLA is an environmentally benign aliphatic polyester. It derives from 

the activity of lactic acid bacteria using agricultural products and by-products as initial substrate, 

such as corn, sugarcane, and sugar beets; it is biodegraded naturally by hydrolysis, generating H2O, 

CO2, and humus. 34 PLA has suitable mechanical and physical properties, which can be compared 

to those of many petroleum-based polymers. The price of PLA was very high before the late 1980s; 

35 however, a patented, low-cost continuous production process was developed by Cargill Dow 

LLC, decreasing the price and promoting commercial production and promotion of PLA. 34 Today, 
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the applications of PLA have expanded to packaging, the medical and the automotive industries, 

textiles, films, personal hygiene products, and 3D printing, 34, 36-38 showing a bright future.  

Thanks to its good biocompatibility, PLA in membrane fabrication was first applied in health 

and medical sciences, as a scaffold for human cell growth and as a support for the controlled release 

of medicines. 39-41 In addition, PLA can be effectively used alone or blended with other polymers 

to fabricate MF and UF membranes via various methods: non-solvent induced phase separation 

(NIPS), 42 thermally induced phase separation (TIPS), 35, 43 vapor-induced phase separation (VIPS), 

38, 44-46 and electrospinning. 41, 47 In the future, 3D or 4D printed membrane may be produced with 

PLA, which is a promising green method for membrane manufacturing. In composite membranes, 

support layers can be fabricated by the same routes. For example, Le Phuong et al. 27 fabricated 

sustainable, biodegradable, nonwoven composite membrane supports from PLA and bamboo fiber 

(consisting of cellulose, lignin, and hemicellulose), which provided a sustainable alternative for 

conventional membrane backing materials. A schematic of the fabrication procedure is shown in 

Figure S1 (SI). 

Polyhydroxyalkanoates (PHAs). PHAs can be produced from renewable resources, such as 

lipids, carbohydrates, alcohols, and organic acids. 48 They are environmentally friendly bio-based 

polymers with suitable biocompatibility and biodegradability. 48-50 Therefore, their main 

application is in the biomedical field. 51-53 More than 150 kinds of different monomer structures of 

PHAs have been reported. 54 However, only a few have been commercialized: poly(3-

hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(3-

hydroxybutyrateco-3-hydroxyhexanoate) (PHBHHx). 55  

There has been little research on PHAs for membrane fabrication. It is worth noting that PHAs 

are totally insoluble in water and most organic solvents, except some halogenated solvents, such 
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as chloroform. 32 Therefore, PHB, PHBV, and PHBHHx membranes can be produced by VIPS 

with chloroform as the solvent. 49, 51 However, given that chloroform is toxic, this specific system 

is not sustainable. Whether there is a possibility of PHAs application in membrane engineering 

and in other fields is a question worth exploring.  

Poly(butylene succinate) (PBS). PBS is one of the most promising biodegradable aliphatic 

polyesters with suitable biocompatibility, biodegradability, excellent processability, as well as 

thermal and chemical resistance. 56, 57 It can be obtained by polymerization of butanediol and 

succinic acid, both of which are from bio-based renewable resources. The cost of PBS is relatively 

low compared to many other biopolymers. 58 

There has been some research around the use of PBS to fabricate membranes. Jeong et al. 56 

prepared the first PBS membranes by electrospinning, obtaining uniform nanoporous threads by 

dissolving PBS in chloroform. 59 However, it was found that the membranes were soft and had low 

separation performance. 60 Therefore, gelatin, a natural protein, was used to blend with PBS or as 

a coating layer to improve its mechanical properties. 57, 61 Overall, PBS membranes have been 

limited due to the poor mechanical properties. To overcome this issue, PBS may be blended with 

PLA, 62-64 PESU, 65 or cellulose acetate (CA) 66, 67: the resulted membranes have shown improved 

mechanical characteristics.  

Bio-based Polymers from Vegetable Sources  

Cellulose and Its Derivatives. Cellulose, the most abundant polymer on earth, is a linear 

polysaccharide primarily derived from plant fiber, for example, wood, cotton, bamboo, straw, 

reeds, hemp, mulberry bark, and bagasse. In addition, it can also be generated by bacteria (e.g., 

Acetobacter xylinum or Acanthamoeba castellani) and algae (e.g., Valonia ventricosa). 68, 69 

Cellulose exhibits suitable hydrophilicity and biocompatibility, excellent mechanical strength (the 
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ultimate tensile strength of cellulose is estimated to be 17.8 GPa, seven times higher than that of 

steel), 70 and easy chemical modification with low production cost. However, its high crystallinity 

and strong intermolecular hydrogen bonds reduce the solubility in common solvents, limiting the 

membrane fabrication. 71 The solvents that have been used to obtain cellulose-based membranes 

are listed in Table 1.  

 

Table 1. Solvents Used for Cellulose Membrane Manufacturing 

Solvents Classification Features Ref. 

NMMOa Organic solvent 
Commercially 

used 
72 

Hydrazine/LiSCN, 

NaSCN, or KSCN 
Hydrazine/thiocyanate salt Toxic 73 

DMAc/LiCl Organic solvents with 

dissolved salts 
Toxic 

70 

NMP/LiCl 74 

NaOH/ urea/ DI water 

(7:12:81 by wt.%) 
Alkali 

Low cost and 

low toxicity 

75 

LiOH·H2O/urea/DI water 

(8:15:77 by wt. %) 
71 

AMIMClb 

Ionic liquid 

Low toxicity, 

expensive, and 

difficult to 

commercialize 

76 

[EMIM] [OAc]c 77, 78 

[DMIM][DMP]d 79 

[EMIM] [DEP]e 79 

[C4mim] [Cl]f 80 

Note: NMMOa: N-methylmorpholine-N-oxide 

AMIMClb: 1-allyl-3-methylimidazolium chloride 

[EMIM] [OAc]c: 1-ethyl-3-methyl imidazolium acetate 

[DMIM][DMP]d: 1,3-dimethylimidazolium dimethyl phosphate 
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[EMIM] [DEP]e: 1-ethyl-3-methyimidazolium diethyl phosphate 

[C4mim] [Cl]f: 1butyl-3-methylimidazolium chloride 

 

Creatively, Eggensperger et al. 28 utilized the symbiotic culture of yeast and bacteria with 

kombucha tea, and the cellulose fibers they produced can form a living water filtration membrane 

(Figure S2, SI). The surface of the membrane can heal after a puncture or incision. This interesting 

self-healing living membrane avoided petroleum-based polymers and harmful solvents, and the 

low-tech process may potentially bring accessible water treatment to anyone and anywhere. 

Cellulose derivatives have been developed to overcome some cellulose limitations. Such 

derivatives are the products of esterification or etherification of hydroxyl in cellulose 

macromolecules, 69 and some have been used as membrane materials, such as cellulose acetate 

(CA), cellulose acetate butyrate (CAB), 81 hydroxyethyl cellulose (HEC), 82 cellulose triacetate 

(CTA), 83 and ethyl cellulose (EC). 84 CA, the most common and promising cellulose derivative, 

can be produced by treating cellulose with acetic acid, acetic anhydride, and sulphuric acid as a 

catalyst. 85 It can be dissolved in many common organic solvents, such as acetic acid, acetone, 

DMAc, DMF. Also, it has a tunable polymeric network with pore sizes customizable over a wide 

range for MF, UF, NF, RO, and FO membrane fabrication. 86-88 Abundant research has 

encompassed the fabrication of CA membranes for oil/water separation, 89, 90 desalination, 91 and 

wastewater treatment. 92, 93 Important drawbacks of CA membranes are that they function well in 

a narrow pH range of 3-8 and have limited lifespan. Cellulose derived bio-based nanomaterials, 

namely nanocellulose, including nanofibrillated cellulose (NFC), cellulose nanocrystal (CNC) and 

bacterial nanocellulose (BNC), are also emerging green materials for membrane fabrication. 94, 95 



 17 

Their inherently high crystallinity and hydrogen-bonding propensity promote the formation of 

films with excellent gas-barrier properties. 95 

Lignin. Lignin is the second most abundant polymer on earth after cellulose, serving as 

structural support to cell walls. 96 It can be biodegraded by some microorganisms, such as white-

rot fungi. Lignin has high potential, being the only renewable aromatics feedstock. 97, 98 However, 

it is also among the most challenging bio-based polymers because of its complexity. Currently, 

commercial lignin-based polymeric products are almost negligible in volume.  

In the membrane manufacturing process, lignin has been blended with other polymers, such as 

poly(vinyl alcohol) (PVAL) 99 and polyacrylonitrile (PAN), 100 to compensate for the poor 

mechanical properties of lignin fibers. Moreover, it has also been used as a component of non-

woven membrane supports. 27 Lignin is a promising membrane or non-woven support material, 

but the research is limited due to its complexity in extraction, purification, effective blending, and 

defragmentation. 18 The current utilization of lignin is in two major approaches, both of which 

suffer from challenges: lignin as a whole, or defragmentation of lignin into monomers and then 

polymers. Using lignin as a whole may lead to poor performance, while defragmentation is too 

costly. 18, 101 More efforts from chemistry, materials, and processing should be made to transform 

lignin into available materials. 

Alginate. Alginate is a natural polysaccharide extracted from brown algae. It can combine with 

Na+ or Ca2+ and produce sodium alginate (NaAlg) or calcium alginate (CaAlg). Alginate is non-

toxic and has suitable biocompatibility, 102 with potential applications in the biomedical field for 

cell growth, drug delivery, and tissue engineering. 103  

Alginate has been increasingly employed in membrane fabrication processes in the last two 

decades. Its unique structure promotes the absorption of water, dyes, and heavy metals. 104 
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Alginate-based materials can be applied in pervaporation dehydration, water treatment, oil-water 

separation, and organic solvent nanofiltration. Alginate membranes in pervaporation dehydration 

have outstanding separation characteristics, exceeding PVAL, ion-exchange resins, and other 

polysaccharides, such as chitosan and cellulose. 105 In water treatment applications, alginate 

membranes can adsorb trace heavy metals and dyes. 102 Alginate membranes are also ideal 

candidates for oil-water separation owing to their superhydrophilic and underwater 

superoleophobic properties. 106 However, it should be noted that alginate intrinsic water-soluble 

properties are associated with the presence of carboxyl and hydroxyl groups, which also lead to 

chemical instability in aqueous conditions. 107 Therefore, it may a good idea to blend polyanionic 

alginate with polycationic chitosan or to cross-link it with polyvalent metal cations (e.g., Ca2+), 

forming a stable and insoluble polyelectrolyte complex or strong gel in water. 107, 108 The alginate 

layer treated by calcium ions also demonstrated good stability for organic solvent nanofiltration. 

109 

Starch. Starch, containing about 30% amylase, 70% amylopectin, and less than 1% lipids and 

proteins from plants, is an abundant natural polymer with high biodegradability and low cost. It 

has been widely used in the food industry to provide functional properties. 110 However, when used 

for membrane fabrication, starch has some intrinsic shortcomings. First, it is very hydrophilic, 

leading to low stability under different environmental conditions. Second, its mechanical strength 

and elongation behavior are poor. In order to overcome these problems, starch may be blended 

with other polymers, such as chitosan, CA, and PVAL. Plasticizers may also be incorporated, 

including glycerol and sorbitol. 32, 110-112 

Polyisoprene. Polyisoprene is produced from the trees Hevea brasiliensis (cis-polyisoprene) or 

Pallaquium gutta (trans-polyisoprene). 32 In addition, it can also be obtained from petroleum 
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refining, but synthetic polyisoprene has inferior performance than natural polyisoprene in strength 

and processability. Polyisoprene has wide applications in producing tires, shoes and boots, 

machinery, medicines, sports equipment, and latex. 

The reports on fabricating polyisoprene membranes have been very few and focused on self-

assembly. Mulvenna et al. 113 synthesized polyisoprene-b-polystyrene-b-poly(N,N-

dimethylacrylamide) (polyisoprene–PS–PDMA) triblock polymers. Then, this polymer was used 

to prepare membranes by NIPS and self-assembly. This membrane may be used in water treatment, 

pharmaceutical separations, sensors, and drug delivery. Zhang et al. 114 fabricated polyisoprene–

PS–PDMA hollow fiber membranes, exhibiting high flux and high selectivity in nanofiltration. 

Additionally, polyisoprene-b-polystyrene-b-poly-4-vinyl pyridine membranes 115 and polystyrene-

b-polyisoprene-b-polystyrene (SIS) membranes 116 were fabricated, showing tunable structures.  

Bio-based Polymers from Animal Sources  

Chitosan (CS). CS is obtained from chitin via deacetylation. The amino group in the CS 

molecule is more active than the acetyl amino group in the chitin molecule, imparting CS with 

excellent biological function and chemical modification potential. 117 When the deacetylation of 

chitin reaches 60% degree, it becomes CS, 118 but only with the degree of more than ~70%, this 

material can be used as a valuable industrial product. Chitin exists in the outer shells of crustaceans, 

the cell membranes of fungi and algae, the shells and bones of mollusks, and the cell walls of 

higher plants, hence it is widely distributed in nature. CS is non-toxic, biodegradable, has suitable 

biocompatibility and low cost. It can be used as a membrane material for biomedical applications, 

pervaporation, water treatment, gas separation, as well as proton exchange of fuel cells, 

supercapacitors, and solid-state batteries. 119 
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CS-based membranes in water treatment have been mainly applied with two objectives: (i) 

adsorptive membranes for phase transfer of contaminants from the aqueous solution, and (ii) 

composite NF/RO/FO membranes for surface separation with high solute rejection. CS-based 

membranes have interesting ability to adsorb contaminants, especially heavy metals, because the 

amino and hydroxyl groups of CS can serve as coordination sites. 120, 121 The main application of 

CS membranes in pervaporation has been to dehydrate aqueous-organic mixtures, and CS is 

arguably the most studied biodegradable material for pervaporation membranes.  

However, pure CS membranes will suffer from excessive swelling and poor mechanical 

resistance in aqueous solutions, both phenomena impairing their performance. Therefore, avoiding 

CS as the bulk membrane material and using it only as the skin layer of composite membranes 

may be the best option. A CS skin layer can be reinforced by cross-linkers, such as glutaraldehyde, 

glyoxal, formaldehyde, epichlorohydrin, and isocyanates, to suppress excessive swelling, while a 

proper support layer can improve the overall mechanical property of composite membranes. 122 

The amino groups of CS also make this polymer a promising membrane material for CO2 gas 

separation, because these moieties act as fixed carriers to facilitate the transport of acidic gases 

through membranes. However, it was found that the gas permeability of dry CS membranes is very 

low due to their dense structure. Some studies induced swelling of CS membranes with water vapor 

to cope with this problem, and the swollen membranes exhibited higher CO2 gas permeabilities 

and selectivities. 15-17  

Collagen. Collagen exists in animal connective tissues in the skin, tendons, cartilage, and bones. 

In fact, animal production processes produce large amounts of collagen-rich solid waste. The 

recycling of this waste will also prevent the spread of harmful pathogens in the environment. 123 

Collagen-based membranes are widely studied in tissue engineering due to low immune response, 
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which can be used as a substrate or scaffold for cell attachment, proliferation, and 

differentiation.124-126 

Other collagen-based membrane applications include pervaporation 127, 128 and oil/water 

separation, 123, 129 but studies have been limited because collagen-based membranes biodegrade 

rapidly, and are sensitive to extreme pH and high temperature conditions. Moreover, collagen 

generally fails to achieve desired mechanical characteristics, being unable to retain its structural 

integrity and owing to swelling in aqueous environments. 130 

Sericin. Silk fiber is a natural polymer produced by Lepidopteron insects of the family 

Bombycidae and Saturniidae, and it is composed of a fibrous core protein fibroin with sericin 

protein surrounding it. 131 In the textile industry, sericin is the waste of degumming processes. 

However, it has some other applications in skin care, food, tumour suppression and wound healing, 

or as antioxidant, anti-apoptotic, and anticoagulant. 132-134  

As for membrane fabrication, sericin is hydrophilic and water-soluble. Pure membranes are 

easily swollen, thus associated with weak mechanical properties. 32 However, the structure of 

sericin consists of polar side chains rich in hydroxyl, carboxyl, and amino groups that enable easy 

cross-linking, copolymerization, or blending with other polymers to prepare membranes with high 

performance. 131 Sericin membranes may be applied in the biomedical field or for CO2 separation, 

because the serine and glycine amino acids in its polypeptide chain can facilitate CO2 transport. 

Prasad et al. 135 fabricated a CS/sericin/Na2CO3 active layer on a PESU support for CO2/N2 

separation. 

Dopamine (DA) and Other Biophenols. Recently, dopamine-based bioinspired coatings have 

been widely used for membrane surface modification.136-139 They is utilized to achieve the superior 

bioadhesion properties of marine mussel byssus. 140 Via self-polymerization in an aerobic, alkaline 
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environment, polydopamine (PDA) layer can be formed, with high binding strength to almost all 

substrates, including hydrophobic membrane surfaces. PDA layers are characterized by long-time 

stability, easy of production, high hydrophilicity, antifouling and antibacterial properties. 

For example, Wang et al. 136 reported a simultaneous polymerization of dopamine and 

hydrolysis of commercial tetraethoxysilane in a facile single-step process on PVDF substrates, 

dramatically enhancing the hydrophilicity and oil-in-water emulsion separation ability of the 

membrane. These authors also proved that other molecules dissolved with DA can be immobilized 

onto the substate during the PDA polymerization process. Other biophenols, including tannic acid, 

vanillyl alcohol, eugenol, morin, and quercetin, were investigated as membrane surface coatings, 

showing suitable performance in organic solvent nanofiltration. 138 

Recycled Materials for Membrane Manufacturing 

Although most recycled materials do not belong to the category of bio-polymers, and would 

thus persist in the environment, their utilization for membrane fabrication is also one of the way 

forward, especially in instances when biodegradable membranes cannot be employed (e.g., 

wastewater treatment). Recycled PET can be obtained from commercial water bottles, and it has 

in fact been used as feedstock for membrane fabrication. 141, 142 Polystyrene (PS) from plastic cups 

was also blended with CA to fabricate MF or UF membranes. 143 

Challenges and Outlook 

In summary, bio-based polymers may be used as membrane materials or nonwoven membrane 

supports, showing a bright future. Bio-based membranes have been widely investigated for 

application in the medical field. Their biocompatibility, biodegradability, and non-toxicity are 

ideal characteristics for drug delivery, hemodialysis, blood oxygenation, and tissue engineering. 
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Moreover, bio-based membranes can also be applied in water treatment, oil-water separation, 

pervaporation, organic solvent nanofiltration, and gas separation, but there are some typical 

drawbacks: i) bio-based membranes usually have inferior mechanical properties (see in Table 2) 

and poor performance in harsh chemical environments; ii) the membranes can be biodegraded, 

thus their long-time durability is often impaired, especially in wastewater treatment applications 

and organic solvent nanofiltration; iii) some biopolymers used as membrane material partially or 

completely dissolve in water, thus the related membranes will swell in aqueous environments; iv) 

the hydrophobic membranes for membrane distillation, membrane crystallizers, membrane 

contactors etc. can hardly be prepared by bio-based polymers; v) the production of bio-based 

polymers is still small and the price of these materials is high, reducing their economic interest 

over petroleum-based materials (see in Table 2). 

To overcome these problems, adding additives (e.g., natural plasticizers, nanoparticles), cross-

linking with cross-linking agents, blending with other polymers, or fabricating composite 

membranes whereby the biopolymer is used only in one of the different layers, are all feasible 

options to increase the membrane performance. Phuong et al. 144 reported that 23% of the papers 

dealing with organic solvent nanofiltration membranes used renewable or biodegradable materials, 

demonstrating solvent-resistant properties. However, the robustness of these materials has yet to 

be fully demonstrated. There is no doubt that further research is needed to obtain bio-based 

membranes having comparable or even superior performance with respect to petroleum-based 

membranes. Hybrid membranes consisting of petro- and bio-based polymers together, or bio-based 

non-biodegradable polymers, or polymers from recycled materials may represent a first step with 

commercial success. Another critical factor is cost, which requires carrying out technological 

innovation in production, constantly reducing the cost and expanding output. 145 
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Table 2. Properties of Some Bio-based Polymers and Petroleum-based Polymers. The Presented 

Values are Collected from Other Studies. 146, 147 

Polymer 
Density 

(g/cm3) 

Melting point 

(C) 

Tensile strength   

(MPa) 

Young modulus 

(GPa) 

Price 

(USD/Kg) 

PLA 1.21-1.25 150-162 40-60 3-4 3-5 

PHB 1.18-1.26 168-182 24-40 3.5-4 4 

PHBV 1.23-1.25 144-172 20-25 0.5-1.5 3.5 

PBS 1.26 114 34 0.441 NA 

CA 1.3 230-300 NA NA 10-100 

Lignin NA NA NA NA < 0.5 

Sodium 

Alginate 
NA NA NA NA 12-35 

Starch 1-1.39 110-115 5-6 0.125-0.85 2-5.5 

CS 1 102.5 NA NA 20-40 

PP 0.9-1.16 161-170 30-40 1.1-1.6 1.1-1.5 

PVDF 1.75-1.79 160-175 30-70 1.8-2.5 19-32 

PESU 1.37-1.51 365-388 85-125 2.7 9-26 

PSU 1.24-1.34 315-371 70-107 2.5-8.5 19-30 

PVC 1.38 185-205 41-52 2.9-3.4 0.6-1.5 

PAN 1.184 317 NA NA 4-4.25 

 

GREEN SOLVENTS FOR MEMBRANE MANUFACTURING  

The current membrane fabrication process relies heavily on traditional solvents chloroform, 

DMF, NMP, and DMAc, posing risks to the environment and human health. Using green solvents 
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to substitute traditional ones is the inevitable trend in the future in both NIPS and TIPS processes. 

In NIPS, one of the prerequisites is that the polymer must dissolve in the solvent. The affinity 

between solvent and polymer also influences the phase separation pathway and the performance 

of the resulting membranes; therefore, selecting a proper green solvent with suitable affinity with 

the polymer is critical. Such affinity can be described by the Ra value, which is calculated by the 

Hansen solubility parameters (HSP) using the following equation: 148 

( ) ( ) ( )
22 2

a d1 d2 p1 p2 h1 h2R = 4 δ -δ + δ -δ + δ -δ                                                                                     (1) 

where dδ ,
pδ , and hδ  are the dispersion parameter ( dδ ), the polar parameter (

pδ ), and the hydrogen 

bonding parameter ( hδ ). 148 A small Ra value indicates high polymer-solvent compatibility, and 

the polymer will most probably be soluble in that solvent, as shown in Figure 5. 

 

Figure 5. The radius of interaction of the Hansen solubility sphere (R0) and the position of a good 

and a bad solvent for a specific polymer. 149 

TIPS is another method commonly used to fabricate membranes. The polymer is dispersed in a 

diluent at high temperature. Then, the homogenous dope solution is cooled to low temperature, 

and phase inversion is thus induced. Because of the high temperature, the polymer concentration 
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can be higher than in NIPS (up to 50%), leading to denser membrane surface, better mechanical 

strength, narrower pore size distribution, and a lower probability of defect formation compared to 

membranes fabricated via NIPS. In contrast, TIPS is associated with more energy consumption. 

The diluents mostly used in TIPS are harmful, including dioctyl phthalate (DOP), dibutyl phthalate 

(DBP), dimethyl phthalate (DMP), diethyl phthalate (DEP), diphenyl ketone (DPK), diphenyl 

carbonate (DPC), glycerin triacetate (GTA), NMP, and DMAc. 

In this chapter, we discuss green organic solvents, deep eutectic solvents (DES), polyelectrolyte 

complexation, and solvent-free system. The HSP values of several green solvents and of typical 

polymers are summarized in Table 3 and Figure 6. 

 

Table 3. HSP Values and Radius of Interaction of the Hansen Solubility Sphere (R0) of the 

Polymers and HSP Values of Green Solvents. 

Polymer or 

Solvent 

dδ  

(MPa1/2) 

pδ  

(MPa1/2) 

hδ  

(MPa1/2) 

R0 

(MPa1/2) 
Ref. 

CTA 18.4 11.9 10.1 NAl 149 

CA 18.6 12.7 11 8.8 148 

PVDF 17.2 12.5 9.2 5 150 

PESU 19.6 10.8 9.2 6.2 148 

PSU 19.7 8.3 8.3 8 148 

Matrimid® 5218 18.7 9.5 6.7 NA 151 

PVC 17.6 7.8 3.4 8.2 148 

PAN 21.7 14.1 9.1 10.9 148 

Lignin 20.61 13.88 15.25 11.83 148 

Chitosan 21.9 32.5 24.6 NA 149 
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Ethyl lactate 16 7.6 12.5 - 148, 152 

Methyl lactate 15.8 6.5 10.2 - 153 

PolarCleana 15.8 10.7 9.2 - 150, 154 

DMSOb 18.4 16.4 10.2 - 
155 

TEPc 16.8 11.5 9.2 - 156 

γ-BLd 19 16.6 7.4 - 157 

PCe 20 18 4.1 - 149 

ATBCf 16.02 2.56 8.55 - 157 

ATECg 16.6 3.5 8.6 - 158 

TECh 16.5 4.9 12 - 158 

TEGDAi 16.45 2.14 9.78 - 159 

Cyrenej 18.8 10.6 6.9 - 160 

DMIk 17.6 7.1 7.5 - 161 

TamiSolve® 

NxG 
17.8 8.2 5.9 - 

162 

Note: PolarCleana: methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate 

DMSOb: dimethyl sulfoxide 

TEPc: triethyl phosphate 

γ-BLd: gamma-butyrolactone 

PCe: propylene carbonate 

ATBCf: acetyl tributyl citrate 

ATECg: acetyl triethyl citrate 

TECh: triethyl citrate 

TEGDAi: triethylene glycol diacetate 

Cyrenej: 1,6-anhydro-3,4-dideoxy–D-glycero-hex-3-enopyranos-2-ulose (or 

dihydrolevoglucosenone) 

DMIk: dimethyl isosorbide 

NAl: not available  
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Figure 6. (b-e, g-i): Three-dimensional Hansen solubility parameter spheres of typical polymers 

(red dots: inside the sphere; green dots: outside the sphere). (a, f, j): Three-dimensional Hansen 

solubility parameters of green solvents and CTA, matrimid○R 5218, and chitosan (the radiuses of 

the Hansen solubility spheres of these polymers are not available). (k): Three-dimensional Hansen 

solubility parameters of all green solvents and all polymers.  
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Green Organic Solvents 

Methyl/ethyl Lactate. Methyl lactate and ethyl lactate are lactate acid esters, which are bio-

based non-toxic solvents with low vapor pressure. They can be biodegraded via the activity of 

hydroxyl radical by photochemical oxidation in the vapor phase. 153, 163  

Concerning membrane manufacturing, both methyl lactate and ethyl lactate are good solvents 

for cellulose-based polymers, such as CA. 9 The HSPs are given in Table 3. Gonzalez et al. 164 

prepared CA UF membranes with LiCl as additive and methyl lactate as solvent. They evaluated 

the pollution potential and the ecotoxicity of this membrane, and both were determined as 

negligible. Further, a cellulose diacetate (CDA) UF membrane prepared with LiCl and methyl 

lactate was assessed via holistic metrics-based approach, considering technical, environmental, as 

well as health and safety (EHS) issues. Results showed that this membrane had great renewable 

intensity and required a low number of solvents for its preparation. 152 Moreover, CA NF 

membranes prepared by methyl lactate were also reported. 153 There are also some studies on the 

use of ethyl lactate, such as for the synthesis of tris (2,4,6-trimethoxyphenyl) phosphonium 

functionalized poly(2,6-dimethyl-1,4phenylene oxide) (PPO–TPQP) anion exchange membranes, 

165 polycaprolactone (PCL) membranes, or PCL membranes loaded with hydroxyapatite (HA) 

nanoparticles scaffolds. 166 

PolarClean. Methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv® PolarClean, 

abbreviated as PolarClean) is a new highly promising member of the green solvent family. This 

solvent is miscible with water and is derived from 2-methylglutaronitrile (MGN), a by-product in 

the hydrocyanation of butadiene used to manufacture adipodinitrile (ADN). 167, 168 It is completely 

biodegradable (97% after 18 days) with no environment and health hazards. 169 It is non-flammable 

and has very low vapor pressure. 169 The boiling point of PolarClean is 280 C. According to the 
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Rhodia raw material database, PolarClean can reduce the carbon footprint compared to other 

traditional solvents. 

Hassankiadeh and co-workers fabricated PVDF hollow fiber membranes via a combined NIPS-

TIPS (N-TIPS) method using PolarClean as the green diluent. 169 This is the first report using 

PolarClean for membrane fabrication. It was found that the PVDF/PolarClean system resulted in 

a dense membrane structure, while additive poly(N-vinylpyrrolidone) (PVP) increased the 

membrane porosity. Jung et al. 150 reported PVDF flat sheet membranes fabricated with PolarClean 

via N-TIPS method. This membrane was modified by use of one of the following additives: 

Pluronics F-127, PVP, LiCl, or glycerol. The Pluronics F-127-modified membrane exhibited the 

highest water permeability, with values up to 2800 L m−2h−1bar−1, with narrow pore size 

distribution. Jung and co-workers also fabricated PVDF hollow fiber membranes from PolarClean. 

170 Recently, Tocci et al. 171 found the PolarClean can promote the β-phase formation of PVDF 

membrane.  

PolarClean has good affinity with many polymers other than PVDF, and it has been used for 

membrane fabrication with PESU, 172 CA, 173 PSU, 173-175 PVC 154 and novel Matrimid® 5218 151 

via NIPS method. The affinity of PolarClean with these polymers is shown in Table 3. Considering 

its versatility, PolarClean is regarded as a promising alternative for traditional solvents. However, 

the multicomponent nature and multi-step synthesis of this solvent are an obstacle for its 

widespread use, and the price is still high (9.5 USD/kg, while traditional solvents, such as NMP 

or DMF, are usually in the range of 2–4 USD/kg). 172 Cseri and co-workers 176 recently proposed 

a more advanced and shorter synthetic route, which was more sustainable than the patented route, 

showing great potential in reducing costs.  
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Dimethyl Sulfoxide (DMSO). DMSO is a nonhazardous, biodegradable, and recyclable solvent, 

which is extracted from lignin or synthesized by oxidation of dimethyl sulfide. It has a high boiling 

point (189 °C at 760 mmHg) and a very low vapor pressure (0.6 mmHg at 25 °C). Moreover, it 

has good solvent power for many polymers. Until now, there have been works on CA, 177 CTA, 

178 PVDF, 177, 179, 180 PAN 177, 181, PESU 23, 177, 182, 183, polyimide (PI), 184 PVC, 155 and Nafion 185 

membranes fabricated using DMSO as the solvent, proving its versatility. 186 Mu and co-workers 

177 fabricated PVDF, CA, PESU, and PAN microporous membranes using a simple freeze-gelation 

method. Moreover, Meringolo et al. 179 prepared PVDF membranes with DMSO as the solvent via 

a combined vapor-induced phase inversion (VIPS) and NIPS method (V-NIPS). No chemical 

additive was used and the resulting membrane exhibited a permeate flux up to 12.1 kg m−2h−1 with 

salt rejection of 99.8% in membrane distillation (MD). These tests showed comparable 

performance to that observed with commercial PVDF membranes. 

Using DMSO as solvent, Evenepoel et al. 23 fabricated PESU UF membranes, which showed a 

higher permeability and rejection of bovine serum albumin (BSA) and rose Bengal (RB) compared 

to an analogous membrane fabricated from NMP. Prihatiningtyas et al. 178 fabricated 

CTA/cellulose nanocrystals (CNNs) pervaporation membranes via VIPS method, and the effect of 

solvents, including DMSO, dioxane, NMP, and DMF, was investigated. Among all solvents, the 

DMSO-based membranes resulted in homogeneously distributed CNCs on the membrane surface 

and a matrix with self-assembled structure.  

The cost of DMSO is much lower than that of many other green solvents, and nearly at the same 

level of traditional solvents. It has been reported that the approximate price of the following green 

solvents is: 1.6 USD/kg for DMSO, 2.6 USD/kg for triethyl phosphate, 1.9 USD/kg for acetyl 

tributyl citrate, 19.4 USD/kg for triethylene glycol diacetate. 155 
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Triethyl Phosphate (TEP). While TEP is a safer solvent for human health and worker safety 

compared to traditional solvents, it cannot be defined as “green”. TEP is harmful when being 

swallowed or when in contact with the eyes. 187 Also, the use of TEP will expand the amount of 

phosphorus in the earth crust in the long term. 9 However, only taking into account the direct harm 

to people and the environment, TEP is still a better alternative to other toxic solvents. Moreover, 

it has a high boiling point (215 C). 187  

TEP has good affinity with PVDF (see in Table 3), so the research on TEP has mostly focused 

on PVDF membrane fabrication. Karkhanechi and co-workers found that the TEP-based dope 

solution was more viscous than the NMP solution. Therefore, a macrovoid-free structure was 

observed. 188 However, Chang et al. 156 reported a more porous PVDF membrane structure 

resulting from a TEP-based system with respect to an NMP-based system. They prepared PVDF 

hollow fiber membranes with no additive for application in MD, which not only possessed robust 

mechanical properties but also exhibited an average flux of 20 kg m−2h−1 at a feed temperature of 

60 °C, with near complete NaCl rejection. Other studies 189-192 compared PVDF membranes 

fabricated using TEP with other obtained with toxic solvents, namely, hexamethyl phosphoramide 

(HMPA), trimethyl phosphate (TMP), DMF, DMAc, and NMP, showing that TEP was a good 

solvent for PVDF, leading to a symmetric structure with interconnected pores. The comparison 

between TEP and DMSO as the solvent for PVDF membrane fabrication was also investigated, 

and it was found that DMSO resulted in higher porosity. 193 A combined V-NIPS method was also 

used to fabricate PVDF membranes with TEP as the solvent, promoting the formation of a highly 

porous surface.193-196 In addition, there are some reports of fabrication of PVDF membrane via N-

TIPS method. The membrane fabricated by NIPS often had numerous finger-like voids, leading to 
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poor mechanical strength. The combined method effectively prevented this phenomenon and 

promoted the formation of an interpenetrating network structure. 197 

Gamma-Butyrolactone (γ-BL). γ-BL is a non-toxic solvent with high boiling point (204 C) 

and high flashing point (98.3 C), and it can be mixed with water. Interestingly, it can easily 

dissociate lithium salts. 198 In industry, γ-BL is a common solvent as a superglue remover, a paint 

stripper, and an aroma in foods. For membrane fabrication, there have been some reports on the 

use of γ-BL as a non-toxic solvent. Bey et al. 199 first used γ-BL to fabricate polyetheretherketone 

(PEEK) hollow fiber membranes via NIPS. This membrane was successfully used for 

chromium(VI) removal from aqueous solutions with an extraction value of up to 99%. 

Polyetherimide (PEI) gas separation membranes were also prepared using γ-BL. 200 Experiments 

showed that PEI could not be dissolved in other green solvents, such as methyl lactate, ethyl lactate, 

propylene carbonate (PC), tributyl o‑acetylcitrate (ATBC), tributyl citrate (TBC) and TEP, even 

at temperatures up to 140 °C. However, PEI was dissolved in γ-BL at 100 °C. The membrane 

obtained from this dope solution had a denser layer than that present in the membrane fabricated 

with NMP, resulting in slightly better hydrogen-methane selectivity but much lower permeability. 

201 

Organic Carbonates. Stable organic carbonates are obtained from the diesterification of 

carbonic acid with hydroxy compounds, and their general structure is R1-O(C=O)O-R2. 
149, 202 

Their synthesis in supercritical CO2 may be considered as environmentally friendly. The most 

common carbonate solvents are propylene carbonate (PC), glycerol 1,2-carbonate, and butylene 

carbonate. These cyclic carbonates are non-toxic, eco-friendly, and biodegradable, with high 

boiling points. Organic carbonates for membrane fabrication have been rarely reported. PC has 

been used as a diluent for PVDF membrane fabrication via TIPS. 203 Moreover, Rasool et al. 149 
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studied seven kinds of organic carbonates, namely, dimethyl carbonate (DMC), diethyl carbonate 

(DEC), PC, 1,2-butylene carbonate (BC), glycerol 1,2-carbonate, 1,2-hexylene carbonate, and 

styrene carbonate (SC), to dissolve PESU, PSU, PAN, PVDF, CS, PI, CTA, and CA at room 

temperature. Experiments showed that CA was the only polymer that could be dissolved in 

carbonates BC and DMC, while other polymers were not dissolved in any of the solvents. Since 

the affinity of these organic carbonates and polymers were poor, traditional solvent NMP was 

mixed with organic carbonates for membrane preparation via NIPS. Membranes with either 

spongy or macrovoid structures were successfully prepared, and the filtration experiment results 

were satisfactory, as depicted in Figure 7. 

 

Figure 7. Permeance versus rejection of membranes prepared from carbonate-based solvents or 

carbonate/traditional solvent mixtures, categorizing them as either NF or MF/UF membranes. 149 

 

Acetyl Tributyl Citrate (ATBC), Tributyl Citrate (TBC), Acetyl Triethyl Citrate (ATEC), 

and Triethyl Citrate (TEC). ATBC, TBC, ATEC, and TEC, are all family members of citric acid 
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esters, commercially known as “Citroflex”. They are non-toxic and eco-friendly. ATBC is a widely 

used plasticizer in food contact polymers, medical plastics, aqueous pharmaceutical coatings, 

extracorporeal tubing, wraps and films, beverage tubing, and children’s toys. 204 It can be used as 

a diluent for PVDF UF membrane fabrication via TIPS method. Cui et al. 205 firstly used ATBC 

for the preparation of PVDF flat sheet and hollow fiber membranes, proving that it was a 

competitive and promising compound. Then, Hassankiadeh et al. 204 reported the poor mechanical 

strength of PVDF membranes fabricated using ATBC. Therefore, Kim et al. 206 increased the 

PVDF concentration up to 50 wt. %, obtaining membranes with suitable mechanical strength. 

ATBC was also used for poly(ethene-co-chlorotrifluoroethene) (E-CTFE) membrane preparation. 

207 The resulting membrane possessed a spherulite structure, high surface hydrophobicity, suitable 

mechanical strength, promising permeate flux (22.3 L m−2h−1), and near complete salt rejection in 

MD. 

TBC is another ester diluent used to manufacture PVDF membranes. Liu et al. 208 first reported 

PVDF membrane preparation using TBC, with di-(2-ethylhexyl) phthalate (DEHP) as the non-

solvent. Then, Zhang et al. 209 studied the kinetics of a PVDF/TBC system with five different 

PVDF concentrations (30 wt.%, 40 wt.%, 50 wt.%, 60 wt.%, 70 wt.%, 80 wt.%) for four different 

cooling rates (5 C/min, 10 C/min, 15 C/min, 20 C/min). It was found that PVDF took a shorter 

time to crystallize as cooling rate and polymer concentration increased.  

As for ATEC and TEC, it is known that the solubility power to PVDF is improved in the order 

ATBC< ATEC <TEC, by calculation of the Hanson solubility parameter (Table 3). Sawada et al. 

158 explored the effect of different diluents on the morphology and performance of the membrane. 

It was found that PVDF/ATEC and PVDF/TEC membranes formed spherulites, while 

PVDF/ATBC membranes formed only fibrillar structures. These three membranes had similar 
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porosity (56.1–58.9%) with average pore size in the order: ATBC (0.82 μm) < ATEC (2.88 μm) < 

TEC (4.29 μm).  

Triacetate Ester of Glycerol (Triacetin). Triacetate is slightly miscible with water but highly 

miscible with alcohol and ether. It can be used as an additive in food, perfumes, and cosmetics. 9 

As for membrane fabrication, triacetin has been used for PVDF membrane preparation via TIPS 

method. 24, 210 Ghasem et al. investigated the effects of quenching temperature, 211 PVDF 

concentration 212, and polymer extrusion temperature 213 on the performance of PVDF membranes 

for CO2 absorption and removal. The results showed that the membrane obtained at lower 

quenching temperatures was dense, leading to low gas permeability. Complete removal of CO2 

was possible using a membrane contactor deploying PVDF hollow fiber membranes fabricated at 

high quenching temperatures. As the PVDF concentration in the dope solution increased, CO2 flux 

decreased, due to a thicker and denser outer skin layer. Moreover, it was found that the PVDF 

membranes exhibited improved removal efficiency of CO2 with increased extrusion temperature. 

Triethylene Glycol Diacetate (TEGDA). TEGDA is not classified as dangerous to the 

environment, being associated with no acute or chronic effects on health. It is neither a ‘PBT’ 

substance (Persistent, Bioaccumulative and Toxic) nor a vPvB substance (Very Persistent and 

Very Bioaccumulative). 159 TEGDA is generally employed as a plasticizer, and only one report 

can be found of its use as a low toxic diluent for PVDF membrane fabrication via TIPS method. 

159 The crystals of this PVDF membrane were α phase and a specific fibrillar structure was formed, 

which yielded PVDF membranes with high elongation and permeability properties. 

Dihydrolevoglucosenone (Cyrene™). Cyrene™, or 1,6-anhydro-3,4-dideoxy–D-glycero-hex-

3-enopyranos-2-ulose, is a sugar-based solvent derived from cellulose. 160 The synthesis route only 

contains two steps, as depicted in Figure 8a, ensuring atom economy and low environmental 
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impact. Also, there are no nitrogen or sulphur heteroatoms in Cyrene™, which prevents NOx and 

SOx emissions upon incineration. Moreover, it is non-toxic, and it has high boiling point (227 C) 

and high flashing point (108 C) at 760 mmHg, with very low vapor pressure (0.28 Pa at 25 C). 

Cyrene™ is considered as a prospective green alternative to traditional solvents NMP, DMAc, and 

DMF in membrane fabrication process, due to similarities with these compounds in terms of 

solubility parameter, polarity, density, and miscibility with water.  

Marino et al. 214 employed Cyrene™ for the first time to manufacture PVDF and PESU 

membranes via V-NIPS method. Without any pore forming agent, a short exposure time (0-5 min) 

to relative humidity of 55% achieved tunable pore sizes from 0.55 μm to 0.03 μm (PVDF 

membrane) and from 0.12 μm to 0.02 μm (PESU membrane). Therefore, the pure water 

permeability could also be controlled. This work identified the feasibility of Cyrene™ in the 

fabrication of water treatment membranes. A recent study found that Cyrene™ is capable of 

dissolving PVC and CTA at 60 C, but the resulting polymer inclusion membranes (PIMs) were 

inhomogeneous and opaque, exhibiting different appearances from those fabricated from 

traditional solvents. However, they worked adequately for Zn(II) extraction. 215 Cyrene™ is a 

promising green solvent for membrane manufacturing, but only two research works have been 

reported, and more efforts to improve its applicability are encouraged.  
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Figure 8. (a) Scheme for the production of Cyrene™ and its σ-surface (COSMO surface). 160 (b) 

Dimethyl isosorbide as a green solvent for PVDF and PESU ultrafiltration and microfiltration 

membrane preparation via N-VIPS method. 161 

 

Dimethyl Isosorbide (DMI). DMI is another sugar-based green solvent, synthesized via 

methylation of the anhydro sugar isosorbide or directly derived from D-sorbitol, which is ranked 

in the top-10 biobased platform chemicals. 216 DMI is non-toxic and water-soluble with high 

boiling point of 235-237 °C at 760 mmHg. 161 Russo et al. published the only research so far on 

DMI for membrane fabrication. 161 They confirmed that DMI possess the required 

physical/chemical properties to cast PVDF and PESU membranes in terms of Hansen solubility 

parameters, relative energy difference, and viscosity. Membranes were manufactured via V-NIPS 

method without any pore forming additive: porous structures with a tunable pore size in the range 

of UF and MF could be obtained by controlling exposure time to humidity. The process is depicted 

in Figure 8b. DMI is a new green solvent with a bright future in membrane preparation strategies. 

TamiSolve® NxG. TamiSolve® NxG is a non-reprotoxic and biodegradable solvent. It exhibits 

similar properties of traditional organic, polar aprotic solvents for membrane fabrication, such as 

NMP. TamiSolve® NxG has been used for poly(vinylidene fluoride-hexafluoropropylene) P(VDF-

HFP) membrane fabrication for use in direct contact membrane distillation (DCMD), showing 

comparable performance to commercial PP membranes. 162 

Deep Eutectic Solvents (DESs) 

In 2003, Abbott et al. 217 first published a paper on DESs as an alternative option to ionic liquids 

(ILs). DESs consist of a mixture of organic compounds, and comprise strong hydrogen bond 
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interactions between suitable hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs). 

217, 218 They share many properties with ILs (e.g., low melting point, low vapor pressure, and high 

thermal stability), but they are less toxic, more biodegradable and eco-friendly, and associated with 

lower costs. 219 In addition, they possess the additional features of ease of preparation, 100% atom 

economy, extensive tunability, and universal dissolution abilities. 220 A large number of HBAs and 

HBDs are available to prepare DESs (Figure S3, SI). Among them, the top candidates are choline 

chloride (ChCl) and urea for HBA and HBD, respectively. 

The environmental impacts of DESs have been investigated in terms of biodegradability and 

toxicity. Taking into consideration the properties of singular components of DESs, DESs should 

more biodegradable and lower toxic than ILs. Cholinium-based DESs suffered a degradation of up 

to 80% after 21 days. 218 Meanwhile, the toxicity of DES was found to be dependent on its 

composition and concentration. It was reported that cholinium-based DESs has a greater cytotoxic 

effect than their singular components. However, the authors observed no toxic effect on the studied 

bacteria. 221 Overall, DESs are greener solvents than ILs in terms of environmental, as well as 

health and safety (EHS) impacts.  

Recently, the applicability of DESs has been explored in membrane technology, mainly 

focusing on using DESs as additives, as surface modifiers, or for liquid membranes fabrication. 

Jiang Bin et al. 222 223 first used DESs as additives in membrane casting solutions for PESU UF 

membranes fabrication. They found that DESs played a role as pore forming agents rather than as 

surface modifiers. A small amount (2 wt.%) in the casting solutions greatly enhanced the water 

permeability values, but the anti-fouling properties of the membranes were not improved. Recently, 

Seyyed Shahabi et al. 224 added a choline chloride-urea based DES to the MPD aqueous solution 

to modify the PA layer of RO membranes during synthesis via interfacial polymerization. They 
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observed a smoother surface, enhanced water flux and salt rejection, with respect to membranes 

obtained without DES. Maalige et al. 225 reported three different choline chloride-based DESs as 

surface modifiers for surface treatment and cleaning of thin-film composite polyamide membranes 

(TFC-PAs). The enhanced surface wettability and surface smoothness of the DES-treated 

membranes resulted in remarkable increases in the flux rate and flux recovery without substantial 

changes in the solute rejection efficiencies. This phenomenon was attributed to the presence of H-

bonding between DES and PA moieties. DESs have also been investigated for liquid membranes 

fabrication. 226-228 They were imbedded into the pores of a solid porous framework via immersion 

or pressure impregnation. These liquid membranes may be used for efficient CO2 separation, 

ethylene/ethane separation, or fuel cell application on account of their enhanced proton 

conductivity. 

However, to the best of our knowledge, DESs have never been investigated as the main solvents 

to prepare membranes. The Hansen solubility parameters of ChCl-based DESs are depicted in 

Table 4, translating into a relatively far distances from polymers materials (seen in Table 4). 

Therefore, maybe such specific DESs do not have good solvent power to typical polymers. 

However, given that the properties of DESs can be easily tuned by changing the HBD and HBA 

components, there may be combinations resulting in mixtures that would dissolve polymers for 

membrane manufacturing. Whether this proposal is feasible, however, remains to be explored. 

 

Table 4. The Average Molar Mass (Mave) and Hanson Solubility Parameters (δt) of Choline 

Chloride-based DESs. 229 

HBA HBD 
HBA: HBD 

(molar ratio) 

Mave 

(g/mol) 

δt 

(MPa1/2) 
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choline chloride urea 1:2 86.57 31.8 

choline chloride ethylene glycol 1:2 87.91 29.1 

choline chloride glycerol 1:2 107.93 31.5 

choline chloride Malonic acide 1:1 121.84 35.6 

choline chloride Oxalic acide 1:1 114.83 33.4 

 

Polyelectrolyte Complexation Induced Aqueous Phase Separation 

Water is the greenest and most abundant natural solvent in the world. The possibility to utilize 

water as both solvent and nonsolvent for membrane fabrication has attracted considerable interest. 

Traditional polymers, for example, PVDF, PVC, PESU, PSU, cannot dissolve in water. 

Polyelectrolytes (PEs) are charged polymers with either positive or negative charges on their 

repeating units, surrounded by small counter-ions, which stand out due to their water solubility. 

When two oppositely charged polyelectrolytes are mixed, they can form a water-insoluble solid 

known as polyelectrolyte complex (PEC), which can be cast as a thin film. Sadman et al. 230 used 

the coacervate of anionic poly(styrene sulfonate) (PSS) and cationic poly(N-ethyl-4-

vinylpyridinium) (QVP-C2) dissolved in KBr solution to form a complex coacervate. The behavior 

of the complex in highly concentrated KBr was exploited to form membranes with porosities 

ranging from nanometers to micrometers of size using water-water phase inversion via immersion 

precipitation in a low ionic strength solution (the schematic is shown in Figure S4, SI). Recently, 

Baig et al. 231 reported a similar approach by using water solutions with different pH values. They 

prepared a homogeneous solution of the strong polyanion PSS and the weak polycation 

poly(allylamine hydrochloride) (PAH) at high pH, whereby PAH is not charged (pKa ~ 8.8). The 

solution was cast and immersed in a low pH bath to charge the PAH and resulted in controlled 
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precipitation, forming a porous water-insoluble PEC membrane. By tuning parameters, such as PE 

concentration and molecular weight, the membrane pores can be tuned from MF, UF, to NF. This 

novel membrane fabrication process eliminates the use of organic solvents and the membranes can 

be cast with tunable pore size ranging from MF to NF. However, this process still has some 

drawbacks. Extensive time and cumbersome protocols are needed for solution preparation and for 

the following coagulation process, thus impairing mass production. 

Solvent-free Systems for Hydrophobic or Hollow Fiber Membrane Manufacturing 

Melt spinning and cold stretching (MSCS) is regarded as the simplest membrane fabrication 

method given that it does not involve any phase inversion process. During this process, the polymer 

melt is spun at a temperature close to its melting point and then the micropores of the membrane 

are formed by the mechanical force acting on the material in a subsequent cold-stretching step. 232 

Because no solvents or additives are required, this method is both economical and clean. However, 

the membrane fabricated by MSCS usually suffer from poor filtration performance and membrane 

fouling problems. To address these issues, Ji et al. 233 used poly(ethylene oxide) (PEO) as pore 

forming agent and melted it together with PVDF, obtaining a membrane with tunable pore size 

and tensile strength. The mean pore size of the prepared membranes with 100% stretching was 

about 0.317 μm, which showed a high dye rejection (< 93.9 %) for Direct Black 19. On the basis 

of the MSCS method, some new ideas have emerged: melt/solution integrated homogeneous-

reinforcement method, homogeneous braid reinforced hollow fiber membranes, melt spinning-

stretching interfacial phase separation method, and nanofibers-covered hollow fiber membranes 

via continuous electrospinning, which should improve the membrane performance while also 

relying on the sustainability of the process. 232 
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The methodologies discussed above can also be undertaken for hydrophobic membrane 

fabrication. In the very next future, engineers will produce more hydrophobic porous membranes 

for novel membrane operations, such as membrane distillation, membrane crystallizers, membrane 

contactors. It might be more complicated to consider the appropriate green solvents and polymers 

than in the case of hydrophilic membranes. Solvent-free methodologies might be useful for their 

large scale productions. However, the massive energy required to melt the polymers should be 

considered. 

Challenges and Outlook 

In the European Union, the use of NMP has been restricted. The regulations state that, as of May 

2020, NMP can no longer be used in a concentration above 0.3%, unless the manufacturers and 

consumers take appropriate risk management protocols. It is obvious that a similar fate awaits 

other traditional solvents with environmental and health risks. Therefore, it is urgently important 

to substitute traditional solvents with greener ones in the chemical industry, including the 

membrane manufacturing processes. However, this substitution must be based on two conditions: 

i) the membrane performance is not impaired and, if possible, it is improved; ii) the price of green 

solvents is competitive. Some research has clearly shown that both goals are achievable 

simultaneously. A membrane performance comparison when applying green solvents or traditional 

solvents is summarized in Table S2 (SI), indicating competitive and even better performance when 

green solvents are used. Cseri et al. 234 reported that there is no direct correlation between the 

sustainability and the price of solvents. Replacing a traditional solvent with a greener alternative 

may thus be cheaper in some cases. Another important factor is that life cycle assessment (LCA) 

is needed to compare “green” and traditional membranes. The production, use, and disposal phases 

all need to be assessed, with detailed statistics of environmental impacts. This LCA method may 
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provide a robust comparison between traditional and green solvents, and illustrate when the use of 

green solvent would indeed reduce the environmental impacts of the membrane. 

SOLVENT WASTEWATER TREATMENT AND RECYCLING 

Wastewater is an inevitable problem during the membrane preparation processes, especially 

those based on NIPS method. It has been reported that 100–500 L of wastewater is generated per 

square meter of membrane, and the contamination in wastewater generally exceeds the minimum 

allowable level of 100 ppm. Therefore, treatment is required before disposal. However, the reality 

is that over 69% of the wastewater produced by membrane fabrication factories is discharged 

without effective treatment. 19 This wastewater generally contains organic solvents and a small 

amount of additives and polymers. Its direct discharge endangers aquatic life and damages the 

ecosystems, seriously reducing the sustainability of membrane technology. If the wastewater were 

to be treated effectively, the in-house reuse could be accomplished, and the concentrated organic 

solvents could be recycled. However, purification should be accomplished with low price and high 

efficiency. 

To date, there have been few reports presenting organic wastewater treatment from the 

membrane fabrication process. Razali et al. 19 used adsorption and seven different classes of 

adsorbents, namely, graphene, polymers with intrinsic microporosity, molecularly imprinted 

polymers (MIPs), zeolites, metal organic frameworks, activated carbon, and resins, to remove 

NMP or DMF from membrane industrial wastewater. Results showed that most adsorbents 

exhibited feasible performance to treat the membrane wastewater, and over 99% of the organic 

impurities in the wastewater were successfully removed; the recycled water may be reused without 

adverse effects on the performance of the membranes. Meanwhile, the adsorbent regenerability 
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was confirmed for up to 10 wastewater treatment cycles. This is an effective technology with low 

price, applicable in the membrane fabrication process. In another study, the wastewater was treated 

by membrane filtration, and both the extracted resource and water were recycled into membrane 

fabrication process. 233 

THE APPLICATION OF ARTIFICIAL INTELLIGENCE IN MEMBRANE 

TECHNOLOGY 

In recent decades, artificial intelligence (AI) technology and related in silico fields have 

developed rapidly and made important breakthroughs. Membrane scientists have started applying 

AI to membrane preparation as well as membrane operation for the purpose of optimizing the 

processes and their improving efficiency.The major challenge in these efforts is the lack of a 

reliable model predicting the influence of the preparation parameters on the resulted membrane 

performance. 235Different interconnected parameters affect the membrane performance 

simultaneously and in a complex way. This issue requires designers having a systematic 

knowledge of the field as well as available data about the various parameters relative to membrane 

fabrication (e.g., polymers, solvents, additives, temperature, humidity), and those relative to the 

final membrane performance. Also, AI is based on big data analysis. Therefore, compiling as much 

data as possible and finding meaningful correlations of the complex and multi-dimensional system 

is of vital importance to modeling and model domestication. 

There have been some breakthroughs in this field  recently. Zhou et al. 236 used models to 

evaluate the performance of 12,723 MOF adsorbents or membrane materials from the CoRE 2019 

database for D2/H2 separation. The subsequent machine-learning methods enabled predictions of 

novel nanoporous materials features. Rall et al. 235 used artificial neural networks and machine-
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learning techniques to realize the simultaneous optimization of the membrane and the separation 

process relative to layer-by-layer NF membrane modules. Other works utilized AI for performance 

prediction of organic solvent nanofiltration membranes 237 as well as for  PVDF, PESU, PSU 

micro/ultra/nano-filtration membranes. 238 AI technology and related in silico fields have great 

potential to improve the efficiency of membrane technology, coupling the membrane fabrication 

step with the design of the membrane processes. There are  possibilities for exploration, and to 

push artificial intelligence in the realm of membrane technology. 

END-OF-LIFE MANAGEMENT OF SPENT MEMBRANE MODULES  

Membrane elements have limited lifetime. For RO membranes, it is typically 3-7 years, while 

for MF and UF membranes, it is usually 7-10 years. 1 For gas separation membranes, the lifetime 

is much shorter due to their exposure to harsh conditions. Therefore, large quantities of membrane 

elements are discarded annually. Specifically, over 14,000 tons of RO membrane modules are 

disposed of every year, while for UF and MF membranes this number is even higher. For 

hemodialysis, over 600,000 tons of potentially hazardous dialyzer waste is produced every year, 

while the waste from gas separation activities is about 10 times less than that from RO operations. 

1, 30 All these numbers are unceasingly increasing.  

Although faced with a tremendous amount of waste, engineers have paid little attention to the 

end-of-life management and the environmental impact assessment of membrane modules. 1 

Usually, the solid wastes are disposed in landfills or by incineration, but both treatment methods 

pose risks to the environment. The waste management hierarchy of the European Directive 

2008/98/EC (Figure 9a), proposes the priorities and the most sustainable strategies for the 
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management of spent membrane modules. The CO2 emissions and resource depletion for each 

strategy are summarized in Figure 9b.  

 

Figure 9. (a) Waste management hierarchy from most to least preferred options. 239 (b) Greenhouse 

gas emissions and resource depletion for the disposal of one RO membrane element. 240 (c) 

Composition of a typical RO membrane element 239 and (d) mass of waste material requiring 

landfill disposal for each of end-of-life scenarios for one RO membrane. 240 

Reduction  

Reducing the amount of wasted membrane elements is the first priority, and several approaches 

can be taken to this purpose. Firstly, the membrane should be made with high performance, 

including suitable mechanical property, superior anti-fouling properties, and minimal aging or 

swelling. These characteristics would ensure a relatively long lifetime. Secondly, the choice of 
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daily operational parameters is important and membrane lifetime can be extended under lower 

transmembrane pressure and mild conditions. Daily maintenance is also critical to rapidly identify 

damaged fibers and repair them in time. Thirdly, as detailed in Bio-based Polymers for Membrane 

Manufacturing, bio-based materials can be included into the membrane manufacturing process to 

replace petroleum-based ones, with the goal of biodegradation after disposal, thus reducing the 

ultimate amount of solid waste.  

Spent Membrane Reuse  

The reuse of membrane elements means their direct application in lower throughput systems. 

Although a spent RO membrane usually no longer satisfies the initial selectivity criteria, it can still 

maintain more than 96% rejection rate, and it may be applied in seawater pretreatment or selective 

demineralization of brackish water. Direct RO reuse has both the greatest reduction in CO2 

emissions and fossil fuel depletion among all strategies (Figure 9b).  

Membrane Element Recycling  

Recycling of RO membranes includes direct recycling and indirect recycling. Direct recycling 

means the chemical conversion of RO membrane into NF or porous UF membranes. 241-243 Most 

RO membranes are composed of a thin and dense PA layer, a thicker porous PSU layer, and a non-

woven polyester backing layer. By controlled degradation of the PA layer, RO membranes may 

be converted to NF or UF membranes. It was reported that the best chemical agent to degrade PA 

layer is sodium hypochlorite (NaOCl): the exposure level (ppm·h) determines the permeability 

and rejection of the resulting membrane. 241 Potential applications for the converted RO 

membranes are in pre-treatment filtration for desalination, advanced treatment of wastewater, and 

freshwater production in rural zones. 244 According to Figure 9b, this conversion is only slightly 
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worse than RO reuse method in terms of sustainability, due to the extra chemical treatment steps 

involved.  

Indirect recycling means mechanical and chemical recycling of all plastics of membrane 

elements, containing not only PA, PSU and polyester, but also PP for the feed spacer, polyester 

for the permeate spacer, acrylonitrile butadiene styrene (ABS) for the permeate tube and end-caps, 

fibreglass for the outer casing, and glued parts containing proprietary epoxy-like components. The 

composition of a typical RO membrane is shown in Figure 9c. All these materials may be extracted 

and recycled via diverse recycling routes, such as mechanical recycling and chemical recycling 

(recycling to monomer). 245  

Energy Recovery  

If or when reusing and recycling markets cannot absorb all membrane waste, energy recovery 

could be a valid solution to provide heat energy for electricity generation or other heat-related 

processes. 246 Incineration, syngas production, and electric arc furnace (EAF) are categories of 

energy recovery. Incineration is the most convenient for electricity generation. However, because 

of lack of selectivity, pollutant emissions in the gas stream may be very high, especially in terms 

of dioxins and fly ash, as well as considerable CO2 emissions. The gasification process provides 

greater environmental benefits compared to incineration, owing to electricity production through 

the combustion of the generated syngas. 239, 246 The third energy recovery approach involves the 

use of the membrane material as polymeric carbon source in EAF for steelmaking, to reduce the 

use of metallurgical coke. 240 

Waste Materials Requiring Landfill  
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The waste materials include components that cannot be treated (e.g., the fiberglass in EAF), and 

the residue waste generated from the recovery, recycling, or treatment processes themselves (e.g., 

slag from the gasification and incineration processes). These waste materials need ultimately to be 

landfilled, and the mass of waste for each end-of-life strategy is demonstrated in Figure 9d. 

Although membrane reuse and recycling provide prominent environmental benefits, they will still 

produce large amounts of waste requiring eventual disposal. Therefore, if the absolute priority is 

the aversion of waste from landfills over all other impacts, incineration, or better, incineration 

following reuse/recycling remains the best option. 

Challenges and Outlook 

End-of-life membrane management is crucial to transform a traditional linear process to a 

circular process. Different strategies may be adopted, while landfill is the worst one in terms of 

environmental effects. However, when it comes to the mass of waste requiring landfill, 

incineration generates the least amount of mass, while membrane reuse alone is associated to the 

second largest after direct landfill. Therefore, the best scheme for end-of-life management needs 

to combine the actual situation and the final demand. Obviously, obtaining both economic gains 

and environmental benefits is the ideal goal. In this process, life cycle assessment (LCA) is useful 

to compare the different options quantitatively and to identify the optimal scheme. 

However, current reports on membrane elements end-of-life management are limited, and the 

few that are available all focus on RO membranes, neglecting other membrane types. Facing with 

the continuous growth of discarded membrane elements, we should take more efforts to conduct 

research of their end-of-life management and promote practical applications of the spent modules, 

thus greatly increasing the sustainability of the membrane industry. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

When confronted with increasingly serious energy crisis and environmental pollution, green 

chemistry and green engineering may provide important help in our endeavor to overcome these 

challenges. The Principles of Green Chemistry advocate the use of renewable materials and 

production processes with lower impact on the environment. Membrane technology has been 

implicitly considered as a green and sustainable technology. However, starting from membrane 

manufacturing all the way to membrane disposal, there are problems that negatively affect the 

sustainability of this industry. 

The use of petroleum-based polymers as membrane materials is related to a series of 

environmental issues, and bio-based polymers are feasible options to improve membrane 

sustainability. However, some drawbacks currently hinder the deployment of biopolymers, such 

as poor mechanical properties, long running instability, and high costs. There is no doubt that 

further research is needed to master membrane preparation using bio-based materials while 

simultaneously achieving comparable or even superior performance with respect to current 

petroleum-based membranes. Bio-based membranes may be more readily applied in the medical 

fields and other fields that are not impaired by microbial degradation. 

The utilization of green solvents to substitute current toxic ones is another important strategy to 

improve the sustainability of the membrane manufacturing process. However, environmental 

advantages alone most likely cannot enable the widespread adoption of green solvents, and other 

factors related to performance, health, and cost should also be taken into account. Therefore, 

identifying suitable green solvents for membrane fabrication is a challenge. More sustained studies 

are needed to identify alternative solvents and exploit their advantageous properties in membrane 

manufacturing. Given the fact that there are still challenges to the effective application of green 
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solvent alternatives, the treatment and recycling of organic solvent wastewater may be a viable 

approach to reduce pollution. If the wastewater is treated effectively, the reuse of wastewater may 

be accomplished, and the concentrated organic solvents may be recycled. However, reports in this 

field are very limited, and more research is urgently needed to find ways to purify the wastewater 

at low price and with high efficiency. AI technology and related in silico fields have great potential 

to improve the efficiency of membrane fabrication and operation,. The literature in this field is 

emerging, and we believe that more efforts can push artificial intelligence in the realm of 

membrane technology. 

The end-life-management of spent membrane elements is another important issue of great 

concern. The reduction, reuse, recycling, and/or energy recovery of used membrane elements, 

rather than their direct landfill or incineration, should be pursued to drive membrane technology 

into a circular economy approach. 

That being said, quantification of the real impacts of new materials or processes and evaluation 

of their sustainability are complex analyses, and a complete LCA, including the production, use, 

recycling, and disposal phases should be established to consider the real burdens related to 

membrane technology. One cannot judge whether a solvent is greener or not merely considering 

one or a few metrics. LCA can more robustly inform as to which raw materials or processes 

contribute the most impacts; engineers should thus target those to rapidly reduce the associated 

problems, by applying the strategies that are found to contribute the most to reduce such impacts. 

An important limitation is that the necessary data and information to perform robust LCA studies 

are difficult to obtain, both in databases or from experiments, and progressively better and more 

appropriate databases should be established.  
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In the future, the definition of membrane performance should be expanded, including 

sustainability considerations. This transformation requires the innovation of science and 

technology coupled with new emerging systems thinking and systems design, resulting in a 

positive impact on a global scale. 
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SYNOPSIS  

Recent advances in methods for increasing the sustainability of membrane technology, covering 

membrane manufacturing process, use process and end-of-life management. 


