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a b s t r a c t

The EQuivalent Polynomials library, EQP, herein provided is a powerful tool for the numerical
integration, with classical quadrature rules (e.g. Gauss–Legendre), of a function given by the product of
an arbitrary polynomial times a Heaviside step function. The library can handle a multiplicity of shapes
for the integration domain in one, two and three dimensions. Originally developed by Ventura (Ventura,
2006) to overcome the long-standing problem of integrating discontinuous functions in the context
of the eXtended Finite Element Method, EQP library has been recently generalized to meet the needs
of very different fields, spanning from computational mechanics, to computer graphics, evaluation of
geometric region (mass) properties and computer simulation in general.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Code metadata

Current code version v 1.2
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00060
Code Ocean compute capsule None
Legal Code License GNU General Public License (GPL)
Code versioning system used None
Software code languages, tools, and services used FORTRAN 90
Compilation requirements, operating environments & dependencies None
If available Link to developer documentation/manual www.equivalent-polynomials.net/reference-documentation
Support email for questions giulio.ventura@polito.it
1. Motivation and significance

The numerical integration of polynomial functions is needed to
olve physical models and calculate quantities in many physical
nd engineering fields as well as in computer graphics. Let us
onsider, as a few representative examples, the computation of
he moments and products of inertia entering the inertia tensor
f geometric shapes needed for physics-based animations of rigid
odies [1,2]; the computation of the stiffness matrix of a mechan-
cal system in the framework of the finite element method for the
rediction of the mechanical behavior of solids and structures [3,
]; the calculation of mass, total energy, angular momentum, and
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E-mail address: mauro.corrado@polito.it (M. Corrado).
ttps://doi.org/10.1016/j.softx.2020.100636
352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
entropy to impose the conservation laws governing the dynamics
and thermodynamics of the atmosphere [5].

When the shape of the domain is an elementary geometry
(triangle, parallelogram, parallelepiped) or can be brought back
to an elementary geometry with a transformation, efficient nu-
merical quadrature rules are available for polynomial integrands.
However, when the polynomial shows a jump discontinuity or is
to be integrated over a subdomain, a multiplying Heaviside step
function is introduced. In this case, as numerical quadrature rules
such as the Gauss–Legendre, implicitly introduce a polynomial
approximation of the integrand function, this may lead to large
errors in the computation of the integral. This condition can be
encountered, for instance, in computer graphics, when computing
the geometrical properties of complex bodies that can be seen
as a partition of a regular geometric shape. Let us consider, for

+
instance, the body Ω in Fig. 1, which is obtained by splitting
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Fig. 1. 3D domain Ω crossed by a discontinuity surface Γ .

he cubic domain Ω in two parts by the discontinuity surface Γ .
he geometrical properties of Ω+, such as, for instance, volume,
oments and products of inertia, can be computed through the

ntegral:

=

∫
Ω+

pn(x) dΩ =

∫
Ω

H(x)pn(x) dΩ (1)

here pn(x) is the polynomial function of degree n with respect
o the set of variables x = (x, y, z) needed to compute the desired
geometrical property (pn(x) = 1 for the volume, pn(x) = y2 + z2
or the second moment of area with respect to the x-axis, etc.),
nd H(x) is the standard Heaviside step function, given by Eq. (2).

(x) =

{
1 if x ∈ Ω+

0 otherwise (2)

The positive part of the domain Ω is defined by the n+ vector,
that points inwards Ω+. The vector n+ is orthogonal to the
internal discontinuity surface and, in the 3D case, its components
are expressed by the coefficients a, b and c of the equation of the
surface Γ (Eq. (3)).

ax + by + cz + d = 0 (3)

The above stated problem of numerical integration is com-
monly solved by partitioning the integration domain to generate
quadrature subcells where the integrands are polynomials. How-
ever, it is very difficult to identify and catalog all the possible
shapes of the integration subdomains, especially for 3D geome-
tries. Therefore, a methodology to eliminate the subdivision of the
quadrature domain has been suggested in [6,7], in the context of
the eXtended Finite Element Method (XFEM) [8,9]. The method
has been actively used or discussed in other frameworks also
and some non-exhaustive references are [10–27]. Although the
method has been developed for polynomial integrals, in principle
it can be applied/extended to the piecewise polynomial repre-
sentation of splines for introducing discontinuities or trimmed
domains. In this field a literature on the construction of special-
ized quadrature rules can be recalled [28–31], also addressing the
case of trimmed domains [32]. In fact, the proposed approach is
independent of the particular numerical quadrature employed in
implementation.

The methodology is based on replacing the Heaviside function
H(x) with an equivalent polynomial function H̃(x) such that:∫

Ω

H̃(x)pn(x) dΩ =

∫
Ω−

H(x)pn(x) dΩ +

∫
Ω+

H(x)pn(x) dΩ (4)

The equivalent polynomial H̃(x) depends on Γ , has the same
degree of pn(x) and is represented by polynomial functions:

H̃(x) = c · m(x) (5)

where m(x) collects a monomial basis, e.g. m(x) = (1, x, y, z, x2,
. . .), and c is a vector of coefficients.

Taking into account Eq. (4), Eq. (1) can be rewritten as:

I =

∫
H̃(x)pn(x) dΩ (6)
Ω

2

Since H̃(x)pn(x) is a polynomial function continuous over the
entire domain Ω , it can be exactly integrated with an appropriate
numerical quadrature rule [33]. Note that, in general, the equiv-
alent polynomial function H̃(x) has the same degree as pn(x), so
that the integrand in Eq. (6), compared to Eq. (1), has doubled its
degree. Note that the introduction of the equivalent polynomial
allows integration on the standard domain Ω instead of the non-
standard partitioned subdomain Ω+. This is the advantage of the
equivalent polynomial approach.

The present paper describes a standalone library, EQP, that
provides, for five different shapes of the integration domain Ω ,
namely triangle, parallelogram, circle, tetrahedron and paral-
lelepiped, the expression of the equivalent polynomial function,
H̃(x), as a function of the position of the discontinuity line or
surface, Γ . The details on the mathematical procedure adopted
to determine the expression of the equivalent polynomials can
be found in Refs. [6,7].

2. Software description

The library is built in Fortran, a multi-platform language that
can be coupled with existing libraries. Nonetheless, the structure
of the library is straightforward, so that it can be ported to any
language with negligible effort.

2.1. Software functionalities

Although the purpose of EQP library is to provide the expres-
sion of the equivalent polynomial function H̃(x), for a practical
use the library needs being wrapped into an algorithm that eval-
uates the integral defined in Eq. (6) by applying, for example, the
Gauss quadrature rule. Nonetheless, the library can be directly
included in the algorithm of any quadrature rule able to integrate
pure (non involving discontinuities) polynomial functions.

The functionality of EQP library is herein presented through
a generic example. Let us assume a polynomial pn(X) is to be
integrated over a subdomain Ω̄+ obtained by splitting a paral-
lelepiped Ω̄ with a flat surface Γ̄ , as shown in Fig. 2a. X =

(X, Y , Z) is the global reference system where the problem is
defined. The desired solution can be obtained by applying Eq. (6),
once the equivalent polynomial function H̃(X) is known:

I =

∫
Ω̄+

pn(X) dΩ =

∫
Ω̄

H̃(X)pn(X) dΩ̄ (7)

First, the problem is to be transformed to a quadrature on
a standard domain. Therefore, a change of variables from the
global reference system XYZ to the parent coordinate system xyz
is applied, so to evaluate the integral over a standard regular
geometrical shape, as shown in Fig. 2b. Such a transformation,
in fact, allows to treat a variety of cases with a single parent ge-
ometry. For instance, parallelepipeds having any size and position
in the global reference system can be brought back to the cubic
parent geometry defined in the local reference system (x, y, z) ∈

[−1, +1] shown in Fig. 2b.
The mathematical approach adopted in the library to achieve

the change of variables is the isoparametric mapping routinely
used in the finite element method [34]. Let P(x, y, z) ∈ Ω be
a point in the parent coordinate system corresponding to the
point P̄(X, Y , Z) ∈ Ω̄ in the global coordinate system. The affine
mapping of any P(x, y, z) onto P̄(X, Y , Z) is defined by:

X =

q∑
i=1

Ni(x, y, z)Xi (8a)

Y =

q∑
Ni(x, y, z)Yi (8b)
i=1
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Fig. 2. Mapping of a parallelepiped element: (a) configuration in the global
coordinate system; (b) configuration in the parent coordinate system.

Z =

q∑
i=1

Ni(x, y, z)Zi (8c)

here q denotes the number of nodes (vertices) of the geometric
lement having coordinates (Xi, Yi, Zi) in the global reference
ystem, and Ni(x, y, z) denotes the interpolation function in terms
of the local coordinates for the i-th node of the parent element.

Analogously, the equation of the discontinuity Γ̄ (X), defined
by the user in the global reference system, has to be transformed
into Γ (x), defined in the parent coordinate system (see Fig. 2). In
the library, this is done by:

• computing the signed distances Di between Γ̄ (X) and the
nodes of the integration domain in the global reference
system;

• writing the coefficients a, b, c and d of Γ̄ (X) in terms of Di
by solving a system of linear equations;

• replacing the variables X, Y, and Z of Γ̄ (X) with the ex-
pressions in Eq. (8), thus obtaining Γ (x), defined by new
coefficients a′, b′, c ′ and d′ dependent on Di.

For instance, in the triangle case it is obtained:

a′
= D2 − D1 (9a)

b′
= D3 − D1 (9b)

c ′
= D1 (9c)

After Γ̄ (X) is transformed into Γ (x), the proper expression of
he equivalent polynomial function H̃(x) is provided by the library
ith reference to the parent domain coordinate system.
Then, the coordinate and integration domain transformation

s introduced in the quadrature through the Jacobian matrix,
ontaining the partial derivatives of the interpolation functions
i, differentiated with respect to the parent system variables
, y, z [35]:

I =

∫
Ω̄

H̃(X)pn(X) dΩ̄ =

∫
Ω

H̃(x)pn(x)|J|dΩ =

gp∑
j=1

wjH̃(xj, yj, zj)pn(xj, yj, zj)|J(xj, yj, zj)|
(10)

being |J| the determinant of the Jacobian. The integral of Eq. (7) is
evaluated in Eq. (10) with the standard form of Gauss–Legendre
numerical quadrature [36]. In Eq. (10), gp denotes the number of
Gauss–Legendre quadrature points and wj their weights.

It is worth underlining again that the library integrates over
the entire domain Ω̄ and yields the result of the integral over
the subdomain Ω̄+. Therefore, the equation of the discontinuity
3

has to be properly defined in order to have the unit vector n+

ointing in the desired subdomain direction. For instance, the
valuation over the domain Ω̄− can be done by simply changing
ign to all the discontinuity coefficients. Moreover, note that it is
ot mandatory the discontinuity to intersect Ω̄: when this does
ot happen the result of the quadrature will be zero if Ω̄+

= ∅

or will coincide with the integral over Ω̄ if Ω̄+
= Ω̄ .

As it can be inferred from Refs. [6,7], the degree and the com-
position of the polynomial function that can be exactly integrated
with the proposed approach depend on some conditions imposed
to determine the equivalent polynomial. The parent geometrical
shapes that are included in the current version of the library and
the monomials which the polynomial function to be integrated
can be composed of are listed in Table 1. Note, however, that it is
possible to extend the Library to any polynomial degree in each
of the examined domains.

2.2. Software architecture

The software library architecture is straightforward. The main
library file is eqpol.f90. It contains the algorithms to transform the
equation of the discontinuity from the global to the parent coor-
dinate system, to get the coefficients and evaluate the equivalent
polynomial function H̃(x). It is completed by other files containing
the algebraic expressions of the coefficients needed to define the
equivalent polynomial function.

For the sake of demonstration of use, the library is com-
plemented by a main program file main.f90 and a module file
mapping_module.f90 that are not part of the library, but allow to
compute the integral in Eq. (10) in some example cases.

The practical use of the library foresees the following steps:

1. preliminary data preparation:

• selection of the domain of integration (see Table 1);
• individuation of the domain nodal coordinates in the

global reference system, or center and radius for the
circular domain;

• individuation of the discontinuity plane coefficients in
the global cartesian reference;

2. transformation to the parent (standard) domain and evalu-
ation of the equivalent polynomial coefficient vector by the
subroutine Heqpol_coefficients

3. quadrature through any selected rule, e.g. Eq. (10), with the
values of the equivalent polynomial at quadrature points
provided by function HeqPol and the value of the transfor-
mation determinant of the Jacobian given by the function
det_J.

The current version of the library allows to evaluate the exact
quadrature result under the following hypotheses:

• the transformation Jacobian in Eq. (10) is constant (this al-
ways applies to the domains: triangle, circle, parallelogram,
tetrahedron, parallelepiped);

• the polynomial pn is a linear combination of the monomials
listed in Table 1.

Note that, in case a user wants to integrate the core of the
library directly in his own algorithm of quadrature, two calls have
to be foreseen: a call to the subroutine Heqpol_coefficients for each
integration domain (step 2 above), and another to the function
HeqPol for each quadrature point (step 3 above). The function
det_J is not included in the core of the library since it should be
part of the quadrature algorithm.
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Table 1
Domain of integration, domain type, parent domain, monomial basis.
Fig. 3. Parallelogram (etype 21): (a) configuration in global coordinate system; (b) configuration in parent coordinate system.
t

. Illustrative examples

The following examples are based on the Library usage exam-
le file main.f90. For the presented examples the Library provides
xact results up to machine precision.

.1. Parallelogram

In this example, the parallelogram shown in Fig. 3(a) is con-
idered. Dimensions are meters. The element is splitted by the
ine of equation 4X + Y −26 = 0 into Ω̄+ and Ω̄−. The goal is to
ompute the area and the inertia tensor of Ω̄+. The parallelogram
s mapped by the software onto the parent coordinate system, as
hown in Fig. 3(b), where H̃(x) is computed and the integration
s performed.

Once the library example program is launched, the input data
re provided by typing on the screen:

QUIVALENT POLYNOMIAL LIBRARY
type (20,21,22,30,31): 21
,b,c: 4,1,-26

here the number 21 identifies the parallelogram, and the num-
ers 4, 1, −26 are the coefficients of the straight line in the
lobal coordinate system. After that, the library asks to input
he nodal coordinates of the integration domain in the global
oordinate system:
4

Insert element coordinates following
the scheme shown below:
4----------3
| |
| |
| |
1----------2
X(1), Y(1): 4,4
X(2), Y(2): 7,5
X(3), Y(3): 8,8
X(4), Y(4): 5,7

At this stage the user can choose to integrate all the monomi-
als listed in Table 1 for the selected geometry type, a monomial
of those that will appear on the screen, or a polynomial defined
in the user_fun.txt file as linear combination of the monomials
listed in Table 1. For instance, if the user wants to compute the
area A of the Ω̄+ region, the monomial p = 1 should be entered
in the user_fun.txt file, whereas, the monomials y2, x2 and xy have
o be entered to obtain the tensor of inertia I . The area and the
tensor of inertia of Ω̄+, calculated with respect to the XY axes
and reported by the Library output, are:

A = 6.418 m2 (11)

I = ρs

[
254.436 −254.281

−254.281 258.876

]
(units: kg m2) (12)

where ρ represents the surface density (kg/m2) of the material.
s
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Fig. 4. Cube splitted by a plane surface: (a) positive part, Ω̄+ , domain of
integration; (b) negative part, Ω̄− , excluded from integration.

3.2. Parallelepiped

A 3D example is herein analyzed: a cube of side 2 m is cut by
a surface of equation −X − Y − Z + 5.5 = 0, as shown in Fig. 4.

The input procedure is similar to the previous example and is
presented below.

EQUIVALENT POLYNOMIAL LIBRARY
etype (20,21,22,30,31) : 31
a,b,c,d : -1,-1,-1,+5.5

Insert element coordinates
following the scheme shown below:

5-----------8
/| /|

/ | / |
6-----------7 |
| 1--------|--4
| / | /
|/ |/
2-----------3
X(1), Y(1), Z(1): 3,1,0
X(2), Y(2), Z(2): 3,3,0
X(3), Y(3), Z(3): 1,3,0
X(4), Y(4), Z(4): 1,1,0
X(5), Y(5), Z(5): 3,1,2
X(6), Y(6), Z(6): 3,3,2
X(7), Y(7), Z(7): 1,3,2
X(8), Y(8), Z(8): 1,1,2

The volume V and tensor of inertia I of Ω̄+ (Fig. 4(a)) calcu-
ated with respect to the XYZ axes and reported by the Library
utput are:

= 5.458 m3 (13)

= ρ

[ 25.008 −17.791 −7.838
−17.791 25.008 −7.838
−7.838 −7.838 39.456

]
(units: kg m2) (14)

here ρ represents the volumetric density (kg/m3) of the mate-
ial.

. Impact

EQP library is a useful tool to integrate discontinuous functions
ith any numerical quadrature approach without splitting the

ntegration domain. Its efficiency has been already proven in the
ield of computational mechanics (XFEM/GFEM) [6,7]. However,
ts impact is much wider, since the numerical integration of

olynomial functions is a common problem in many fields. The

5

pplications herein envisaged concern the context of compu-
ational geometry, where EQP library can be used to calculate
he geometrical properties of complex figures, obtained by cut-
ing elementary shapes, such as squares or cubes, with plane
urfaces and, eventually, combining them together. Besides, the
eculiarities of the library can be exploited in simulations that
nvolve a dynamic change of shapes and position of the objects
uch as, for instance, the breaking of an object or discretization
ells into several pieces. In this context, for instance, there are
lready experiences of using XFEM to simulate brittle fracture and
urface crack patterns in 3D elements without re-meshing [37],
ptimizing the approach proposed in [38].
Therefore, EQP library might be integrated in many modern

omputational tools for a wide range of application areas.

. Conclusions

The EQP library presented in this paper is a ready-to-use
ool that simplifies considerably the numerical computation of
ntegrals of polynomial functions over subdomains obtained by
plitting a standard quadrature domain, by reverting them to
ntegrals of an equivalent polynomial over the entire domain.
he strength of EQP resides in the computational speed, the
limination of complex subdomains computation, and the abso-
ute generality and extendibility of the mathematical approach
ehind it. Due to all these advantages, it is expected that EQP
ay become a common tool for a broad range of applications.
uture developments of the software are envisaged by adding
ew improved algorithms for automatically filtering, calibrating,
apping and combining the existing geometric shapes to easily
reate multi-body complex geometries.
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