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Abstract: Proteins are the fundamental entities of several organic activities. They are essential for a 

broad range of tasks in a way that their shapes and folding processes are crucial to achieving 

proper biological functions. Low-frequency modes, generally associated with collective move-

ments at terahertz (THz) and sub-terahertz frequencies, have been appointed as critical for the 

conformational processes of many proteins. Dynamic simulations, such as molecular dynamics, are 

vastly applied by biochemical researchers in this field. However, in the last years, proposals that 

define the protein as a simplified elastic macrostructure have shown appealing results when deal-

ing with this type of problem. In this context, modal analysis based on different modelization 

techniques, i.e., considering both an all-atom (AA) and coarse-grained (CG) representation, is 

proposed to analyze the hen egg-white lysozyme. This work presents new considerations and 

conclusions compared to previous analyses. Experimental values for the B-factor, considering all 

the heavy atoms or only one representative point per amino acid, are used to evaluate the validity 

of the numerical solutions. In general terms, this comparison allows the assessment of the regional 

flexibility of the protein. Besides, the low computational requirements make this approach a quick 

method to extract the protein’s dynamic properties under scrutiny. 

Keywords: lysozyme; modal analysis; B-factor; finite element model; all-atom model; 

coarse-grained model 

 

1. Introduction 

Most of the known biological functions are only conceivable because of the wide 

range of operations performed by proteins [1,2]. The folding and unfolding process is 

one of these aspects that must be understood to comprehend how these macromolecules 

operate at the nanometer scale. The protein conformational states are not static and they 

depend on many factors, such as the surrounding environment and temperature [3]. The 

study of the three-dimensional protein structure is rather complex, allowing many dif-

ferent approaches to the problem. The application of coarse-grained systems usually 

enables the analysis of larger proteins composed of several hundred amino acids with 

relatively low computational effort, typically providing global descriptions [4]. For spe-

cific problems, the atomically-detailed models can, to some extent, contribute to further 

and more accurate information [5]. To this purpose, molecular dynamics (MD) dives 

deeper into higher accuracy evaluation of the actual phenomena in place. However, its 

high computational burden often prevents its applicability in studying the large-scale 

slow motions of the protein, which are known to be correlated with the biological func-

tion. 

In the last decades, it was shown that simplified calculations based on the assump-

tion of a harmonic potential can provide accurate insights into protein dynamics. Normal 

Citation: Giordani, G.; 

Scaramozzino, D.; Iturrioz, I.; 

Lacidogna, G.; Carpinteri, A. Modal 

Analysis of the Lysozyme Protein 

Considering All-Atom and 

Coarse-Grained Finite Element 

Models. Appl. Sci. 2021, 10, x; doi: 

FOR PEER REVIEW 

Received: 11 December 2020 

Accepted: 5 January 2021 

Published: date 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2021 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 

mailto:gustavo.giordani@ufrgs.br


Appl. Sci. 2021, 10, x FOR PEER REVIEW 2 of 22 
 

mode analysis (NMA) was developed for this purpose as a simplified yet powerful tool 

to extract the functional modes of the protein structure. Levitt et al. showed that NMA 

with internal coordinates is particularly suited for modeling the collective motions, ena-

bling the visualization of biologically relevant modes, and it is complementary to the 

more time-consuming MD simulations [6]. However, these NMA calculations still relied 

on a detailed knowledge of the complex semi-empirical potentials that characterize the 

interactions amongst all the atoms of the system. Afterward, it was shown by Tirion that 

a simplified single-parameter harmonic potential is good enough to reproduce the slow 

dynamics of the protein correctly while avoiding the expensive and sometimes inaccu-

rate NMA energy minimization of the reference structure [7]. Subsequently, it was rec-

ognized that even coarse-grained representations of the protein, only based on the posi-

tion of the Cα atoms of the crystal structure, lead to useful predictions of the slow protein 

dynamics as well as the observed fluctuations [8–10]. These models are known as the 

Elastic Network Models (ENMs), and various developments have been carried out in the 

following years by various research groups [11–17]. The great amount of work in ENM 

development was because, despite their inherent simplification, these structural models 

were found to provide impressive insights on the biological mechanisms and flexibility 

of the protein [18–28]. 

It is astonishing that such simplified models, purely based on Structural Mechanics 

concepts, allow us to understand protein motions and biological activity, which are very 

complex in nature. The present work encompasses the protein’s representation as a sim-

ple truss-like domain, similar to macroscale structures in the field of civil engineering, 

using a finite element (FE) approach. The protein’s dynamic properties are extracted by 

carrying out the modal analysis of the system and considering different initial assump-

tions. Then, the results of the calculations are compared to experimental data and the 

outcomes of other numerical studies. Many authors have indicated that underdamped 

frequencies describing collective modes at GHz and THz frequencies may be relevant to 

the biochemical function [29–35]. The hen egg-white lysozyme is the chosen protein for 

this study due to the extensive bibliography and experimental results related to it. This 

protein has an essential role in breaking bacterial cell walls and can be found in human 

milk and tears. The geometric description of the crystallized form can be found in the 

Protein Data Bank (PDB code: 4YM8) [36] and consists of 129 amino acids and approxi-

mately 1000 heavy atoms. 

Experimental approaches have also been widely applied to extract the dynamic 

properties of the lysozyme. THz time-domain spectroscopy (TDS) is one of the capable 

tools, providing information regarding inter-molecular and intra-molecular motions of 

crystalline materials at THz frequencies [29]. However, water absorption has a massive 

influence on the results. Various authors have also considered the application of Raman 

spectroscopy, developed explicitly to capture information at frequencies below 1 THz 

and with the low influence of the liquid levels [32,33,35,37–39]. This type of ultra-low 

vibrational spectroscopy technique collects information about the protein motions 

through the phenomenon of inelastic scattering of the incident light. The formed Raman 

plot results from the difference in intensity between the incident light and the scattered 

photons for a given sample [40–43]. The necessity to collect low frequencies comes in 

place due to studies pointing to the biological functions and protein activation at those 

levels. Raman spectroscopy measurement for the lysozyme was carried out by Carpinteri 

et al. [32]. The data collected from the samples showed peaks close to the region of 0.84 

THz, which were assumed to be associated with global expansion/contraction vibrational 

modes. The other extracted peaks lying in the range between 24 and 50 THz were found 

to be related to specific amino acid groups [32]. 

This work focuses on the numerical evaluation of the lysozyme vibrations, where 

the selected protein was modeled as an all-atom and coarse-grained truss-like structure. 

A FE code was developed in MATLAB, extracting the dynamic properties through modal 
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analysis. For visualization purposes, the ANSYS APDL and Chimera software were ap-

plied to display clear views of the results. 
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2. Methodology 

A basic introduction about modal analysis and the conditions of constructing a FE 

truss-like structure is carried out in this section. The reader can find here detailed infor-

mation about all the simplifications and assumptions of the models, which are crucial for 

a correct interpretation of the results. 

2.1. The Truss-Like Structure, the Connectivity Assumption and Modal Analysis 

This work focuses on the all-atom and coarse-grained elastic schemes for the protein 

structure. The assumptions are the same for both cases, with small variants between 

them. The all-atom model considers each heavy atom as the node of the truss, whereas 

the coarse-grained takes one point for each amino acid (residue) as a point mass. In the 

real structure of proteins, peptide bonds connect various amino acids in different pat-

terns, forming secondary structures like α-helices and β-sheets. Figure 1a displays the 

tertiary structure of the lysozyme, describing the closely packed domain. However, these 

structures are not taken into account directly for the generation of the numerical models. 

 

Figure 1. (a) The ribbon structure of the hen-egg white lysozyme (PBD code: 4YM8); (b) all carbon, 

nitrogen, oxygen, and sulfur atoms and their covalent bonds; (c) the 129 nodes and the indication of 

the cutoff (sphere of influence) which is used to generate the elastic connections in the 

coarse-grained model. 

The criterion of geometrical proximity generates the connections between the nodes, 

i.e., a cutoff value sets a spherical horizon from every designated node. In Figure 1c, the 

sphere of influence is shown graphically. Links are created from the central node con-

necting it to the surrounding ones lying below the selected cutoff value. The connections 

are defined as massless elements, having only axial stiffness kij and no bending, shear, or 

torsional rigidity. In this type of analysis, only the axial rigidity EijAij, which is defined by 

the Young’s Elastic Modulus Eij and cross-sectional area Aij, is essential [44]. The 3D rep-

resentation of the 6 × 6 stiffness matrix of the elastic element connecting nodes i and j is 

shown in Equation (1), where x, y, and z are the global coordinates of the node in the 3D 

space, and Lij the length of the elastic connection. 
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It has to be noted that both in the all-atom and coarse-grained model used in this 

work, a unique value of the axial rigidity EA has been set for all the elastic connections, 

consistently with some previous works [15,32,34], i.e., EijAij = EA. In this way, the axial 

stiffness of each connection kij turns out to be inversely proportional to the length of the 

connection itself Lij. The definition of nodal locations is discussed in the next section, 

depending on the considered model (all-atom or coarse-grained). 

The masses are concentrated at the nodes; therefore, the lumped mass assumption 

can be set, originating diagonal mass matrices and facilitating the numerical solution. The 

all-atom model uses the atomic mass of each atom at the specific position as provided in 

the PDB file (PDB code: 4YM8) [36]. On the other hand, for the coarse-grained structure 

scheme, the amino acid masses are condensed in a single representative point. 

A linear elastic structure assumes a direct superposition process to obtain the global 

stiffness K and mass M matrix. The multi-degree of freedom (MDOF) system, in our case, 

is addressed as a free MDOF structure where no damping ζ is considered in the equa-

tions of motion. The solution for Equation (2) involves sinusoidal displacement functions, 

where the amplitude vector a and frequency vector ω are associated with each DOF. The 

non-trivial solution only is achieved when the determinant of Equation (3) is equal to 

zero, leading to the characteristic free-vibration equation. For a system counting N nodes 

in the three-dimensional space, the problem is characterized by 3N DOFs. The extraction 

of 3N eigenvectors and 3N eigenvalues allows us to obtain the undamped mode shapes 

and natural frequencies, respectively [45]. 

                                         (2) 

                                   (3) 

Since there are no external boundary restrictions defined for the structure, i.e., the 

protein is not externally constrained, the first six eigenvalues/eigenvectors of the solution 

are discarded. As a matter of fact, these are just due to the rigid translational and rota-

tional modes caused by the lack of any external restriction and, consequently, the corre-

sponding modes are just free-body vibrations at zero frequency. 

2.2. Definitions about the All-Atom Model 

Figure 1b presents the all-atom 3D model of the lysozyme with atomic positions. All 

the 1000 heavy atoms, i.e., carbon, nitrogen, oxygen, and sulfur atoms, are displayed. In 

this case, the hydrogen atoms are disregarded due to their low mass participation. The 

largest longitudinal dimension of lysozyme is also shown in the figure, which corre-

sponds to 46 Å, i.e., 4.6 nm. The connections shown in Figure 1b, taken from the Chimera 

software, display the covalent bonds among the protein’s heavy atoms. Carpinteri et al. 

developed a frame-like model of the lysozyme using only the covalent bonds, as pre-

sented in Figure 1b, with a frame structure with extremely high flexural and polar mo-

menta of inertia, in order to evaluate the expansion/contraction vibrations in the THz 

range [32]. Nevertheless, these connections are not the only ones used in this study. In 

fact, applying an equivalent truss-like description with such short-range connections is 

not possible due to the resulting lack of rigidity of the overall system. Spheres of influ-

ence (cutoffs) are generated using truss elements with 4, 6, 8, 10, 12, 15, 20, 25, and 30 Å. 

Consequently, 2994 modes (3 × 1000−6) can be extracted from each truss-like configura-

tion for further investigation. 

2.3. Definitions about the Coarse-Grained Model 

Figure 1c shows an example of the lysozyme structure with 129 nodes intercon-

nected. Each node corresponds to a representative point of each amino acid. The applied 

cutoffs are the same used in the work of Scaramozzino et al. [15], i.e., 8, 10, 12, 15, and 20 

Å. However, contrary to this previous work, the nodal masses are not averaged with a 

constant value for all residues. Conversely, the actual mass of each amino acid is set ac-
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cording to its actual constituents, i.e., all the atomic masses are compressed at the repre-

sentative node. This approach generates an averaged mass of around 18.48 × 10−26 kg, 

with a standard deviation of 5.4 × 10−26 kg throughout the protein structure. A total of 381 

modes (3 × 129−6) are then extracted in these circumstances from each truss-like 

coarse-grained configuration. 

Traditionally, the coarse-grained representations of the protein structure define the 

residues located at the Cα atoms, which lie on the protein backbone [9,10,15]. In this 

analysis, we take a different approach; namely, the representative position of each amino 

acid is located at its center of mass (CM), which is typically the assumption taken in 

macroscopic structures. The proposal came after observing that, within the distribution 

of the B-factors, the Cα atom is rarely the node with the highest fluctuation (see below). 

As a matter of fact, it is reasonable that the highest fluctuations should be biased towards 

the external side chains, especially for the larger amino acids, due to the increased flexi-

bility of the side chains compared to backbone atoms. Operatively, the CM of each amino 

acid’s position is simply calculated based on the mass-weighted average locations of all 

constituent atoms. The positions of the CMs are then used to build the truss-like 

coarse-grained model and ultimately extract the dynamic properties of the protein. 

2.4. The Experimental Debye-Waller Factors or B-Factors 

Numerical results from dynamic calculations are commonly compared with ex-

perimental data used in organic chemistry and correlated fields. The B-factor, also called 

the temperature factor or Debye-Waller parameter, is one of the main research lines when 

dealing with proteins and their flexibility. It is influenced by the dynamic disorder 

caused by the temperature and the static disorder [46]. Equation (4) shows the most 

widespread form for this factor, where a is the mean displacement caused by thermal 

motion extracted by crystallography attenuation of X-ray or neutron scattering. It basi-

cally represents the displacement variation from the equilibrium position of a given atom 

[47]. 

  
    

 
       (4) 

The researchers use the Debye-Waller factor for a wide range of different purposes. 

Some of them use the Debye-Waller factor to infer the flexibility of atoms, chains, or re-

gions. Many studies initially considered only the B-factor of the Cα atoms, as these are 

usually associated with the most representative atom of the amino acid within the pro-

tein backbone [48–50]. However, nowadays, the temperature factor is found in the PDB 

file for all atoms for every single static configuration of the protein. It must be pointed out 

that the provided X-ray data accuracy is not better than 10% [47] and the collected results 

must be used with care [51–53]. The resolution is one of the parameters that has a signif-

icant effect on the experimental results. Scholars have also indicated that highly flexible 

regions, having B-factors generally higher than the other areas of the protein, can behave 

like hinges that drive the motion associated with the protein conformational change [54]. 

The B-factor can be theoretically computed using the results derived from the dy-

namic analysis by applying a direct summation of the eigenvectors. Equation (4) is 

adapted into Equation (5) and used in this work to calculate the B-factors arising from the 

normal modes, as reported in [15,55]. The computed B-factor for every node i is the result 

of the summation of the 3N−6 non-rigid mass-weighted modes n. The sum can be trun-

cated for values lower than 3N−6, usually decreasing the necessity to add higher fre-

quencies, as Bi grows according to the inverse square of the angular frequency ωn. The 

term kb in Equation (5) indicates the Boltzmann constant (~ 1.38 × 10−23 J/K) and T is the 

absolute temperature in Kelvin. 
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Alongside the fact that the goal is to compare segments of the same protein, a better 

form to analyze the local flexibility is through the normalized B-factor (B′). This is defined 

via Equation (6), where σ is the standard deviation and μ is the average value of the 

B-factors profile. 

    
       

    
 (6) 

2.5. Collectivity of the Protein Motions 

The modal analysis provides a lot of information about the structural motion, but 

plenty of data needs to be interpreted according to the desired goal. In the case of protein 

dynamics, and specifically for an equivalent truss-like structure, the main interest is to 

find collective motions. The motion of only one or a few fragments usually does not 

provide insights about the structure’s slow dynamics, which is the one more related to 

biological behavior. For this reason, we are mainly interested in concerted motions that 

involve major parts of the protein. The mode collectivity index κ [18,56] has been re-

garded as an adequate tool for this purpose. In this study, the index generates a value, 

between 1/N and 1 (N being the number of nodes), for each mode n based on the degree 

of the collectivity of the investigated motion. 

The eigenvector associated with the mode n is transformed into a vector with the 

absolute displacements of the N nodes. The displacement components dni must be nor-

malized in a pni form following Equation (7). The mode collectivity index κ can then be 

calculated according to Equation (8), where κn will vary from 1/N up to 1. Higher collec-

tivity indexes can conventionally be associated with more global motions, while smaller 

ones are commonly related to more localized movements. The exponent γ permits to 

amplify signals for larger components of pni. In this analysis, γ is kept as a unitary value. 
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  (8) 

The analysis of the collectivity index throughout the extracted modes can indicate 

the most collective motions and therefore, identify the potential modes relevant to the 

biological mechanism. This can be obtained for each considered cutoff value, and struc-

ture representation (all-atom or coarse-grained), allowing us to compare the different 

cases. 

2.6. The Scaling Procedure 

The protein analysis typically deals with orders of magnitude of 10−26 kg for the 

masses (Da), 10−10 m for the distances (Å), and 1012 Hz for the frequencies (THz). An ex-

emplification given with simple vibrational analysis is provided by Carpinteri et al. [32], 

demonstrating how these values are established for large proteins and chemical groups. 

While performing the numerical calculations with such orders of magnitudes, the results 

could be affected in terms of precision when using such very low and high numbers. 

Therefore, a scaling procedure should be implemented to avoid possible numerical 

problems. Extensive details about the adopted scaling procedure can be found in 

Carpinteri et al. [32,34]. 

3. Results and Discussion 
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3.1. All-Atom Model 

The 1000 heavy atoms of the lysozyme have their temperature factors (B-factors) 

available in the PDB file. These experimental values were used as the reference bench-

mark to fix the value of the adopted axial rigidity EA. This procedure was performed to 

establish a quantitative comparison between the calculated and experimental values of 

the B-factors. Note that the resulting axial rigidity EA does not necessarily have a physi-

cal meaning since it only represents the mean rigidity of all the elastic connections sim-

ulating the complex chemo-physical interactions among the atoms. Although shorter 

links can be associated with covalent bonds, the longer ones are related to weaker inter-

actions due to electrostatic and Van der Waals effects. These are not easily quantifiable 

with the use of a single-parameter harmonic potential; therefore, the value of the axial 

rigidity set here is only understood as the average strength of the generated elastic con-

nections. 

Nevertheless, the choice of the EA value has a certain influence on the obtained vibrational fre-

quencies. Moreover, choosing the value of the axial rigidity to have consistency between the mean 

values of the numerical and experimental B-factors leads to some consequences in the relationships 

between the different cutoffs. Table 1 shows the obtained axial rigidity and average stiffness for the 

considered cutoff values concerning the all-atom models. These values demonstrate that the mean 

rigidity decreases as the number of connections increases. Therefore, increasing the network’s 

connectivity leads to the necessity of considering weaker elastic connections to have the same av-

erage thermal fluctuations. 

Table 1. The defined axial rigidity and stiffness for each case regarding the all-atom models. The 

axial rigidity was selected to match the mean B-factor extracted experimentally for all heavy atoms. 

Cutoff (Å) Axial Rigidity EA (N) Nº of Connections Average Stiffness k (N/m) 

4 3471.7 × 10−10 5979 1.36 × 103 

6 0.6470 × 10−10 19,151 0.1675 

8 0.2436 × 10−10 39,456 0.0485 

10 0.1462 × 10−10 69,143 0.0236 

12 0.1046 × 10−10 106,767 0.0143 

15 0.0739 × 10−10 175,875 0.0083 

20 0.0527 × 10−10 301,919 0.0047 

25 0.0450 × 10−10 408,088 0.0035 

30 0.0424 × 10−10 46,6426 0.0031 

As shown in Table 1, the model with a cutoff value of 4 Å presents a very low 

number of connections with respect to the other cases, which can generate some prob-

lems considering uniaxial elements. For this reason, this model is found to require a very 

high value of axial rigidity (~1360 N/m) due to the low number of generated connections. 

Such configuration is not tied enough to allow a suitable truss structure. On the other 

side, the model with a cutoff value of 30 Å constitutes more than half of the maximum 

body length (46 Å) and it creates a massive number of connections. However, the axial 

stiffness is proportional to the inverse of the connection length, making most of the 

longer links less critical for larger cutoffs. 

The results from the analysis involving the B-factors for all heavy atoms are dis-

played in Figure 2. Three sets of plots are arranged to facilitate the visualization. In Fig-

ure 2a, the normalized B-factors arising from the lower cutoffs, i.e., 4, 6, and 8 Å, are 

shown. Figure 2b shows the ones with the medium cutoff values, i.e., 10, 12, and 15 Å. In 

Figure 2c, the ones with the higher cutoffs, i.e., 20, 25, and 30 Å. The vertical lines re-

ported in each graph indicate the location of the 129 Cα atoms along the sequence of all 

heavy atoms. It was observed that the B-factors at the Cα locations do not necessarily 

reach their highest value for the considered amino acid. As briefly remarked in Section 

2.3, this interesting feature led us to address a change in the node position for the con-
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struction of the coarse-grained model (see Section 3.2) and consider the CM of the amino 

acid as the representative node. 

By observing Figure 2a, it is evident that the curve related to the model with the 

cutoff of 4 Å presents exceptionally high peaks in four positions. This effect occurs be-

cause these protein regions are too loose due to the very short-range connections, leading 

to tremendously localized flexibility. This massive deviation causes the necessity to apply 

the high rigidity value cited in Table 1 to match the average value of the experimental 

B-factors. Therefore, the application of such a small cutoff value is clearly not adequate 

for the proposed technique and the investigated protein, thus demanding larger spheres 

of influence. 

The 6 Å and 8 Å cases are capable of providing more information about global and 

localized flexibility. Most of the peaks in the computed profile of numerical B-factors ex-

hibit some similarity with the experimental ones. The remaining cutoff values, i.e., 10, 12, 

15, 20, 25, and 30 Å, present very similar profiles, matching pretty well with the experi-

mental B-factors. However, the amplitude of flexibility in some regions changes to some 

extent depending on the specific case, i.e., the specific cutoff value. As can be appreciated 

by comparing Figure 2a–c, the augment of the sphere of influence adds more details to 

the B-factors curves. Some of these increments are subtle, but they can contribute to the 

changes in the shape of the profile. These modifications can also highlight minor peaks 

not captured with other selected cutoffs. 

 

Figure 2. The numerical and experimental B-factor for all cases under analysis. The vertical lines 

indicate the Cα nodes. The experimental B-factors are shown with dotted-black lines. Three plots 

are displayed to avoid overlapping and facilitate visualization: (a) 4, 6, 8; (b) 10, 12, 15; (c) 20, 25, 

and 30Å. Additionally, three sections are amplified for a better view of specific regions of the pro-

tein. 

Three sections are also amplified in the lower panel of Figure 2 for better visualiza-

tion: atoms 50–250, 350–600, and 750–1000. Overall, it can be noted that the trends pro-

vided by the numerical solutions meet fairly accurately with the experimental one. Some 

specific observations are cited: 

o in the region 50–250, the major experimental peaks agree with the numerical ones 

from the model with a cutoff value of 10 Å onwards. For small fluctuations, it is 

hard to confirm a good representative relationship between the solutions; 
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o in the region 350–600, node 379 shows a high experimental B-factor, but none of the 

numerical solutions provides such increased flexibility. The models are not able to 

capture this particular behavior. This can either be due to deficiencies in the simpli-

fied truss models or measurement errors in the experimental B-factors. Some other 

smaller peaks have similar patterns. At node 478, the effect that arises from in-

creasing the cutoff value is clearly seen; 

o in the region 750–1000, nodes 991 and 992 present a substantial peak in all cases 

that go beyond the top of the chart. In that region, a dent extends outside the glob-

ular body region, making it similar to a cantilever beam attached to the main struc-

ture. This is commonly associated with the first natural mode of numerical solu-

tions and it has high participation in many modes. At first sight, this solution does 

not present a real behavior according to the experimental B-factors. It is possible 

that damping related to the surrounding environment may play a role, leading to 

this discrepancy. 

The Pearson correlation coefficient is also applied to measure the correlation be-

tween the profile of experimental and numerical B-factors. Figure 3 displays the coeffi-

cients among all the numerical B-factors as well as against the experimental profile. The 

agreement between models with near-size cutoff values is confirmed, while larger dif-

ferences in the selected cutoff make the numerical B-factors less correlated with each 

other. This observation is remarkably straightforward when comparing the models with 

extreme cutoff values, i.e., 4 and 30 Å. 

Comparing the experimental value from the 10 Å case onwards demonstrates a 

correlation coefficient higher than 0.56. The correlation coefficients of larger cutoff values 

are similar to those obtained with the coarse-grained model based on the Cα location [15]. 

However, one must observe that this scenario, i.e., the all-atom calculation, uses 1000 

nodes, instead of only 129 nodes as in the coarse-grained approach. Therefore, an overall 

correlation of 0.70 obtained over 1000 locations should be more informative than the 

same correlation obtained over 129 points. Moreover, it has also been found that, when 

small portions are analyzed in separate domains, the agreement between numerical and 

experimental can be superior to 0.85 locally. 

 

Figure 3. The Pearson correlation coefficient between the different numerical B-factors and with the 

experimental ones for the all-atom scheme. 

The analyzed data in terms of computed B-factors indicates the local flexibility ac-

cording to the complete summation of modal shapes, as reported in Equation (5). How-

ever, the computed B-factors considering all the 3N−6 modes do not necessarily provide 

information about the individual modal motions or whether which modes represent the 

protein flexibility. As a matter of fact, the B-factors profile results from a summation of 

2994 non-rigid modes. Each mode’s contribution is weighted with the inverse of the 

squared angular frequency, as shown in Equation (5), but it is generally unknown how 
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many modes are vital to providing accurate results when comparing the numerical pro-

file to the experimental values. 

For this reason, the effect of the number of modes has been investigated for the 12 Å 

case. The results are displayed in Figure 4. Figure 4a reports the computed B-factors by 

adopting only the lowest 10 modes. The following plots, i.e., Figure 4b–f, show the cases 

when 50, 300, 1000, 2000, and all 2994 modes are considered, respectively. As can be ob-

served from these graphs, the initial low-frequency modes are not sufficient to accurately 

represent the curve of experimental B-factors, compared to the complete solution shown 

in Figure 4f. The profile starts to display a better correlation when more than 300 modes 

are taken into account. Still, small peaks reach a more precise representation for more 

than 2000 modes. 

These graphs demonstrate that, although the low-frequency modes are the most 

involved in the B-factors’ definition due to their lower frequency values, the application 

of just the initial modes for such calculation is not necessarily adequate when using the 

all-atom representation. Higher modes might have a nonnegligible influence in terms of 

local flexibility, thus modifying the overall trend of the B-factor curve. 

 

Figure 4. The numerical and experimental B-factor for the 12 Å case. The plots vary the number of 

modes added for the B-factor calculation. At (a) 10 modes, (b) 50 modes, (c) 300 modes, (d) 1000 

modes, (e) 2000 modes, and (f) 2994 modes. 

The collectivity index reported in Equation (8) was also used to assess the degree of 

the collectivity of each vibrational mode. Figure 5 shows the distribution of the collectiv-

ity indexes across all the obtained mode shape for each selected cutoff value. It can be 

noted that, as the sphere of influence due to the selected cutoff increases, the collectivity 

indexes of the lysozyme motions experience a downward shift towards lower values. 

This observation also indicates that the modal shapes are not equivalent among the cut-

offs. The vertical red dashed lines in Figure 5 indicate the five modes with the highest 

collectivity index for each displacement fields shown. The cases with cutoff values equal 

to 6, 8, 12, and 15 Å are presented. 
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Figure 5. The mode collectivity index κ for all cutoff values according to the respective natural 

frequency range. The red dashed lines indicate the modes represented in Figure 6 for 6, 8, 12, and 

15Å cases related to the most significant collective motions. 

Figure 6 shows the protein structure, densely packed in black colors. The colored 

vectors represent the normalized displacement related to modal shapes according to in-

creasing cutoffs. The visual verification of the collective motions can be seen in Figure 

6a–d. In the 6 Å and 8 Å cases, the first significant mode is very similar to previously 

reported binding cleft opening and closing at 0.12 THz [6,15,57]. However, as the cutoff 

increases, the modes do not present the same mechanism. At first sight, it seems that the 

relationship between modes is just similar for close cutoff cases. As the difference in-

creases, the mode shapes are different and cannot be related in a one-by-one fashion. The 

displacement field in Figure 6a (6 Å) is more homogeneous over the whole structure, 

while in Figure 6d (15 Å), the large displacements are localized in a specific region; 

therefore, the amplitude of the vectors almost vanishes over the body, leading to insig-

nificant relative motion for most of the structure. In this case, only localized vectors in-

dicated in red circles can be seen, pointed at the bottom part of the figures. The increasing 

number of generated links locks the global motions, leading to more localized modal 

shapes (see Figure 5). 

The participation of modes at higher frequencies in conventional mechanical and 

civil structures is not a common feature. Usually, a few initial modes are enough for a 

proper description of the dynamics of the system. Figure 7 displays the entire frequency 

spectra of the lysozyme for all cases. The lowest frequency for the 6 Å case is found to 

correspond to 0.025 THz, while a convergence towards 0.36 THz is found for the model 

with a cutoff value of 30 Å. The increment of the cutoff creates higher frequency values 

for approximately the first 150 modes. After this point, a switch happens and the lower 

cutoffs assume the higher frequencies, as can be appreciated from Figure 7. This is be-

cause the larger axial rigidities in the models with lower cutoff values cause higher nat-

ural frequencies for the initial modes, but this also causes a smaller difference between 

the lower and higher values, shortening the total frequency range. The difference be-

tween the initial and the final eigenvalues are concentrated in one order of magnitude. 

For example, the lowest frequency for the 12 Å case corresponds to 0.18 THz, while the 

highest one is found at 1.6 THz. It is essential to observe that the frequencies shown be-

low are highly dependable on the adopted model’s stiffness (see Table 1). 
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Figure 6. Representation of the modes with the highest collectivity index displayed in Figure 5. 

Cases represented are for: (a) 6 Å, (b) 8 Å, (c) 12 Å and (d) 15 Å. 

Another important aspect concerns the spectral frequency density. The distribution 

is generally associated with a Gaussian curve for globular proteins, as suggested by other 

authors [8,58]. The lysozyme is an enzyme densely packed in a spherical form. A large 

part of the known proteins exhibits a globular shape and a sequence of 20 basic amino 

acids form the α-helices and β-sheets that can be assumed as randomly spread in the 

body. ben-Avraham stated that “there is, statistically speaking, a large degree of homo-

geneity between different proteins. Thus, the vibrational spectrum ought to be essentially 

the same for all proteins“ [58]. Therefore, we expect to obtain similar dynamic properties 

that allow us to compare different proteins using the same baseline. NMA was applied 

by ben-Avraham to extract the spectra of vibrational modes of many proteins showing a 

normal distribution at least for the lower frequencies [58]. The analysis of Haliloglu et al. 

[8] and Atilgan et al. [10] made use of the Gaussian Network Model (GNM) and Aniso-

tropic Network Model (ANM) respectively, and also provided evidence for these char-

acteristic curves considering the equilibrium position of the Cα atoms. 
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The all-atom models generate the spectra presented in Figure 7. The increasing cut-

off leads to the distribution of frequencies towards a normal distribution for the lower 

cutoff values. The 12 Å and 15 Å match this description with a well-behaved Gaussian 

density distribution. At the 20 Å scheme, a new hump starts to emerge, as shown more 

clearly in the cases related to the cutoffs of 25 Å and 30 Å. The form progressively 

changes to a bi-modal distribution. The reasons behind this behavior are still unknown to 

the authors and need further investigation. 

 

Figure 7. The frequency density distribution for the all-atom scheme and the corresponding modes 

for the whole spectrum of 2994 frequencies. A closer view of the initial 250 modes is also presented 

at the top-left. 

3.2. Coarse-Grained Model 

The mass-weighted experimental B-factors in the CM of each residue were used as 

reference values to compute the axial rigidity EA of the elastic connections generated for 

the coarse-grained model. Similar to what occurs in the all-atom model, this procedure is 

performed to establish a comparison between the B-factors’ numerical and experimental 

values, and the resulting value of EA leads to a not negligible influence on the obtained 

frequency values. Table 2 shows the axial rigidity and average stiffness values for each 

cutoff value. Again, the mean rigidity is found to decrease as the number of connections 

increases. 

Table 2. The defined axial rigidity and stiffness for each case. The values were selected to match the 

average B-factors extracted experimentally. 

Cutoff 

(Å) 

Axial Rigidity EA-CM 

(N) 
Nº of Connections 

Average 

Stiffness k 

(N/m) 

Axial Rigidity EA-Cα 

(N) [15] 

8 4.56 × 10−10 627 0.783 8.31 × 10−10 

10 1.95 × 10−10 1109 0.283 2.35 × 10−10 

12 1.13 × 10−10 1771 0.142 1.24 × 10−10 

15 0.69 × 10−10 2938 0.0723 0.71 × 10−10 

20 0.45 × 10−10 5043 0.0382 0.45 × 10−10 

The work of Scaramozzino et al. [15] considers the mass of each residue centered at 

the Cα location and with a constant value throughout the protein structure. In Table 2, we 

can see that using the CM, the axial rigidity is lower for smaller cutoffs. This effect results 

from a reduced standard deviation of the B-factors when using a CM-based description, 

which in turn allows reducing the individual rigidity values to obtain the same averaged 
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B-factor. As an example, the 8 Å case was found to provide a standard deviation of 28% 

lower for the B-factor curves using the CM, with respect to the Cα representation. On the 

other side, for higher cutoffs, e.g., 20 Å, the variation is reduced, leading to almost the 

same values for both methods. From this observation, it can be concluded that the pro-

posed change has a more significant impact on the rigidity values for the cases with a 

lower number of connections. The construction of a model based on the CM locations 

stabilizes the structural state decreasing the oscillations in flexible regions. On the other 

side, for higher cutoffs, the difference using the CM and the Cα scenarios is lower. In 

terms of flexibility, the higher number of connections imposes more restrictions on the 

system, making the actual position of the nodes less critical. 

The normalized B-factors are presented in Figure 8a for all cutoffs applying the data 

provided in Table 2, with respect to the model based on the CM locations. The compari-

son is also made with the results of Scaramozzino et al. [15], concerning the model based 

on the Cα sites, as reported in Figure 8b. From these figures, it is possible to observe less 

variance between the different numerical curves for the CM-based model. An example 

can be given by observing what happens at node 117. The peak at 8 Å is not seen for the 

other Cα-based cutoffs when compared to the CM-based models. Therefore, the applica-

tion of the CM modeling technique appears to smooth the jump between the different 

horizons and provide more robustness to the model, i.e., less dependence on the specific 

cutoff value. Furthermore, it seems that the application of the CM-based scheme also al-

lows smoothing the highest peaks that are found in the Cα-based numerical B-factors (see 

Figure S1 in the Supplementary Material). 

 

Figure 8. (a) The center of mass (CM) of each amino acid is taken to calculate the numerical 

B-factors. The experimental value is also weighted according to the mass of each atom composing 

the residue. (b) The results from Scaramozzino et al. [15] considering the Cα location. 

The Pearson correlation coefficient between the numerical and experimental 

B-factors is then used to confirm the previous comments and it also allows us to establish 

the agreement between the curves quantitatively. In Figure 9a, the correlation coefficient 

among each numerical solution and with the Cα experimental B-factors are reported. The 

same output is presented in Figure 9b for the CM-based scenario. From the analysis of the 

obtained Pearson coefficients, the previous arguments are confirmed. For example, the 

correlation among the generated numerical models with 20 Å and 8 Å cutoff increases 

from 0.816 for the Cα-based models to 0.882 for the CM-based ones. The remaining values 

of the correlation coefficients among the various numerical solutions show similar be-

havior. Therefore, it follows that using the CM locations as the nodes of the truss-like 

structure leads to fewer dependencies of the results on the specific cutoff value. Addi-

tionally, the difference between experimental and numerical values also has less influ-

ence in the CM-based scenario. For example, the coefficient gap between 8 Å and 20 Å is 

60% lower for the CM-based approach. 
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Figure 9. The Pearson coefficient comparing different numerical solutions and with the experi-

mental B-factors. (a) Adopting the Cα scheme. (b) Adopting the CM-based strategy. 

Similar to Figure 4, the effect of the number of modes for evaluating the numerical 

B-factors has been investigated for the 12 Å case of the coarse-grained model. Figure 10a 

reports the computed B-factors by adopting only the lowest 5 modes. The following 

plots, i.e., Figure 10b–f, show the case when 10, 35, 130, 250, and all 381 modes are con-

sidered, respectively. Similar to what was found for the all-atom model, the initial 

low-frequency modes are not sufficient to represent the curve of experimental B-factors 

alone. However, the convergence towards the final profile obtained with all 381 modes in 

the coarse-grained representation is faster, and a lower number of modes is needed to 

reach the final curve. Note that, after adding the first 130 modes, the profile basically 

does not show any additional significant changes. 

 

Figure 10. The numerical and experimental B-factor for the 12 Å case. The plots vary the number of 

modes added for the B-factor calculation. At (a) 5 modes, (b) 10 modes, (c) 35 modes, (d) 130 

modes, (e) 250 modes and (f) 381 modes. 

Figure 11 displays the collectivity index for the coarse-grained structure for the 

CM-based scenario. Smaller cutoffs produce index values around 0.9 for a large portion 

of the frequency spectrum, meaning that highly collective motions can be detected when 

using the coarse-grained strategy. On the other side, as the cutoff increases, the curves’ 

overall behavior translates downwards (similarly to what is found in the all-atom mod-

els), reducing the collectivity of the motions. The same behavior was found considering 

the Cα-based configuration (see Figure S2 in the Supplementary Material). 

The highest collectivity values are marked with a dashed-red line and the respective 

mode shapes are represented in Figure 12. The illustrated nine cases indicate the protein 

regions with high (red) and low (blue) flexibility. Cutoffs of 15 Å and 20 Å have a diffuse 

distribution of motions without global motions. This is caused because, for higher cutoff 

values, the protein’s inner regions are highly constrained by many connections, allowing 

only local movements at the structure’s external parts. On the other side, for the 8 Å case, 
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the complete system has the freedom to vibrate for a wide range of frequencies, demon-

strating many cooperative modes. 

 

Figure 11. The mode collectivity index κ for the coarse-grained model with the CM-based config-

uration. The x-axis represents the frequency spectrum for each cutoff. The red dashed lines indicate 

the most collective modes described in Figure 12 for 8, 10, 12, and 15Å cases. 

Finally, Figure 13 shows the frequency spectrum for all modes and selected cutoffs 

for the CM-based scheme. The histograms for each curve are also added, which indicate a 

change in shape with the increasing cutoff value. The dispersion decreases while a nor-

mal distribution becomes more evident for the cutoffs of 12 Å. Note that adopting the 

coarse-grained strategy, the Gaussian distribution of the frequency values is more 

prominent for all selected cutoffs than the previously analyzed distributions for the 

all-atom model (see Figure 7). 
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Figure 12. Examples of mode shapes with high global motions according to the collectivity index 

presented in Figure 11 (red dashed lines). The CM-based scenario is addressed. 

 

Figure 13. The modes and the natural frequencies for the whole spectrum of 381 modes. All cases 

based on the different cutoffs are displayed. A closer view of the first 50 modes is also presented at 

the top-left of the main plot. The six histograms show the frequency distribution for each cutoff. 

4. Conclusions 

The application of a network of links interconnecting nodes that mimic the protein 

atoms (all-atom model) or residues (coarse-grained model) was studied in this work. The 

static geometrical description made available in the PDB file for the crystallized hen-egg 

white lysozyme was used to analyze the dynamic properties of the resulting structure. 



Appl. Sci. 2021, 10, x FOR PEER REVIEW 19 of 22 
 

Each node was interconnected with close neighbors by establishing a sphere of influence, 

i.e., a cutoff radius that defines the connectivities. The all-atom geometry was composed 

of 1000 heavy atoms, while the coarse-grained domain comprised the 129 amino acids of 

the protein. Various conventional dynamic properties were extracted and analyzed with 

different tools. 

Regarding the application of the all-atom model, it was found that the computed 

B-factors displayed an overall behavior similar to the experimental ones. Some spurious 

peaks were created, but the protein flexibility was globally well captured with this mod-

eling technique. The effect of the number of eigenvectors considered in the B-factor 

summation process was also investigated and discussed. It was found that the applica-

tion of only the initial low-frequency modes is not necessarily sufficient enough to cap-

ture all the significant peaks. It was shown that more than half of the 2994 extracted 

modes should be used to obtain a good approximation with the experimental values 

when using the all-atom representation. 

The collectivity index analysis showed that the modes are relatively localized with 

the all-atom modeling strategy. Additionally, it was observed that the mode shapes do 

depend on the selected horizon. However, lower cutoffs presented the classic cleft mode 

observed in many other studies. From the 15 Å case onwards, this specific modal shape 

was lost, and collective motions were also reduced. Therefore, it seems that increasing the 

number of elastic connections creates a locking process that only allows localized 

movements to occur in single modes. 

The range of frequencies from the first mode up to the last one was found to span 

within one order of magnitude. Moreover, it was observed that all the 2994 natural fre-

quencies were highly packed. The increase of the adopted cutoff value was found to in-

crease the structure’s global stiffness, reducing even further the spanning of the full fre-

quency range. These frequency spectra tended to follow a clear normal distribution for 

the cases between 12 Å and 15 Å. The literature indicates this behavior due to the similar 

form and constituents composing globular proteins. However, the reasons for the pres-

ence of a normal distribution are still in debate without a clear answer to that. This dis-

cussion can be deepened in future studies. 

Regarding the application of the coarse-grained model, it was found that the appli-

cation of the real residue masses to the structure’s nodes, which correspond to the actual 

masses of each amino acid, did not lead to significant changes in the dynamic output. By 

comparison with the previous work from Scaramozzino et al. [15], who considered a 

uniform mass for all the residues, no significant difference was found as far as the mode 

shapes and B-factors profiles were concerned. This leads to conclude that the structure’s 

mass is reasonably uniformly distributed within a globular protein; therefore, there is no 

need to consider the actual mass values when adopting a coarse-grained modeling ap-

proach. 

The main divergence from the previous work originated when considering a dif-

ferent location for the node representing each amino acid within the structure. The usual 

strategy for this purpose has relied on the node’s location at the position of the Cα atom 

[8–10,15]. In this work, we considered the case where the representative node is placed at 

the Center of Mass (CM) of each amino acid. This strategy was found to cause lower local 

flexibility, leading to lower values of the adopted axial stiffness, especially for the models 

with smaller cutoff. Consequently, the B-factor profiles were found to be more robust for 

changes in the cutoff value, which might allow extracting properties that have fewer 

dependencies on the applied sphere of influence. Other coarse-graining mapping strate-

gies, where the position of the beads depends on the biochemical features of the amino 

acids, might as well be investigated. However, the overall low-frequency dynamics of the 

protein is not expected to change drastically, as the three-dimensional shape of the pro-

tein structure remains basically the same. 

The collectivity index was applied for the coarse-grained model as well, and the 

analysis showed that more collective, i.e., global motions, can be detected when using a 
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coarse-grained strategy. Nevertheless, specific mode shapes also depend on the selected 

cutoff value. Finally, the spectral distributions of the natural frequencies were investi-

gated for the adopted cutoff values, and again the characteristic Gaussian behavior was 

clearly found in the frequency distribution. 

It has to be noted that in the present analysis, a single conformation of the lysozyme 

at the fixed temperature of 293 K (PDB code: 4YM8) was investigated. However, the 

conformation of the protein can depend on the value of the temperature at which the 

X-ray experimental takes place, and so do the values of the B-factors [59]. Therefore, the 

investigation of multiple conformations at different temperatures might reveal slightly 

different outcomes regarding protein flexibility and the obtained vibrational frequencies, 

which will be the object of future studies. Nevertheless, the advantage of the presented 

approach, which is common to all ENMs [7,9,10], is that all crystal structures obtained at 

different temperatures can be directly taken as the structures corresponding to the energy 

minimum and undergo the same calculations presented above. The effect of temperature 

will thus be taken into account: (1) implicitly, by considering a different tempera-

ture-dependent crystal structure and (2) explicitly, by calculating the absolute values of 

the B-factors with the selected value of temperature, as reported in Equation (8). 
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