
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Computational Cost Analysis and Data-Driven Predictive Modeling of Cloud-based Online NILM Algorithm / Asres,
Mulugeta Weldezgina; Ardito, Luca; Patti, Edoardo. - In: IEEE TRANSACTIONS ON CLOUD COMPUTING. - ISSN
2168-7161. - ELETTRONICO. - 10:4(2022), pp. 2409-2423. [10.1109/TCC.2021.3051766]

Original

Computational Cost Analysis and Data-Driven Predictive Modeling of Cloud-based Online NILM
Algorithm

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCC.2021.3051766

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2862071 since: 2022-12-13T08:18:34Z

IEEE

1

Computational Cost Analysis and Data-Driven
Predictive Modeling of Cloud-based Online-NILM

Algorithm
Mulugeta Weldezgina Asres, Luca Ardito, Member, IEEE and Edoardo Patti, Member, IEEE

Abstract—Online non-intrusive load monitoring algorithms
have captivated academia and industries as parsimonious so-
lutions for household energy efficiency monitoring as well as a
safety control, anomaly detection, and demand-side management.
However, the computational energy cost for executing such algo-
rithms should not overcome the promised energy efficiency from
the disaggregated appliance specific consumption information
feed-backs. Moreover, the energy efficiency of cloud computing
systems is also becoming a concern for the environment due
to carbon emission. This study analyzes the energy spent to
execute NILM algorithms via computation cost estimation and
prediction using computing system-level power monitoring and
data-driven approaches. A generic framework for an automated
algorithm cost monitoring and modeling methodologies is devised
for large load scale deployment of Cloud-based Online-NILM
algorithms. The efficacy of the proposed approach was examined
and validated on two computing system use-cases, i.e., Dedicated
Server and Cloud Virtual Server. The prediction models, devel-
oped using statistical and machine learning tools, demonstrate
the promising applicability of the data-driven approach with a
very high prediction accuracy without detailed knowledge of the
computing systems and the algorithm.

Index Terms—NILM, Load Disaggregation, Data-Driven, Com-
putational Cost, Algorithm, Machine Learning, Cloud Systems.

ACRONYMS

APE Absolute Percentage Error. 12
CI Confidence Interval of APE. 12
MAPE Mean Absolute Percentage Error. 12, 13
MaxAPE Maximum APE. 12, 13
Nh Number of houses. 8, 12
Nhs List of number of houses. 5, 8
Np Number of parallel processors. 8, 10, 11
Nps List of number of parallel processes. 5
Nh capacity Maximum Nh can be processed in dw. 12
PE Processing Energy Cost. 2, 10–12
PT Processing Time Cost. 2, 8, 10–12
PTcode In code processing time measurement. 5, 10
R− value Regression Fit Score. 12, 13
RMSE Root Mean Square Error. 12, 13
dw Online disaggregation time-window. 11, 12
puh per-unit house. 8, 10
syncLen Synchronization pattern length. 7
HAGP House AGgregate Power Loads. 4
Large HAGP HAGP for a given large Nh. 4, 5

M.W. Asres, L. Ardito and E. Patti are with the Dept. of Control
and Computer Engineering, Politecnico di Torino, Turin, Italy (e-mail:
{name.surname}@polito.it).

Unique HAGP Unique online one-hour HAGP loads. 4, 5

CbON Cloud-based Online-NILM Algorithm. 2, 4–8, 12, 13
CVS Cloud Virtual Server. 1, 2, 8–13

DS Dedicated Server. 1, 2, 8–13

FHMM Factorial HMM. 4, 13

HMM Hidden Markov Model. 4

ME Mean Estimation. 8, 12, 13

NILM Non-intrusive Load Monitoring. 1–13

RF Random Forest. 8, 12, 13
ROI Region of Interest. 6–10

WUM WattsUp? Pro Meter. 2, 3, 5–13

I. INTRODUCTION

THE parsimonious non-intrusive approaches have attracted
academia and industries as viable solutions for household

energy efficiency monitoring. These techniques are collectively
known as Non-intrusive Load Monitoring (NILM).

The concept was introduced by Hart [1] as a method for
extracting electrical loads by examining their power consump-
tion signatures within the aggregated load data. The non-
intrusiveness lower complexity during implementation and
maintenance, which immensely reduces incurring costs while
leveraging the convenience of usage as compared to intrusive
sub-metering approaches [2]. Furthermore, the applications
of NILM are suggested beyond energy efficiency into safety
control, anomaly detection, and demand-side management.

Generally, literature dictates consumers’ energy efficiency
can be enhanced by up-to 12% of annual power consumption
with valuable appliance-specific consumption feed-backs [3],
[4]. However, some intriguing questions draw attention: How
much is the computational energy cost for running NILM
systems? Does the energy spent to execute the NILM al-
gorithm have an impact on the expected energy efficiency
obtained from using the disaggregated load information? Can
these energy costs be modeled using data-driven methods
for prediction to meet scaling requirements? This study is
presented to answer these questions and propose generic data-
driven computational cost analysis and modeling approaches
for executing a NILM algorithm. The approaches are aimed

2

at providing relevant insights that aid decisions for effective
deployment strategies of large scale NILM considering com-
putational energy and processing time costs.

Software or algorithm energy cost can be measured or
estimated using various techniques [5]–[18] such as hardware-
based (computing system power measurements or embed-
ded power-sensors on motherboards), model-based (resource
usage models) or software-based (kernel APIs (Application
Programming Interfaces)). A non-intrusive system-level power
measurement technique [5], [6] is adopted in this study due to
its deployment convenience (unlike intrusive embedded power-
sensors), lower requirement for detail knowledge of computing
system (unlike hardware or operating system specific model-
based and Kernel-APIs tools), and general applicability for
servers (unlike platform-dependent software-based methods).
Hence, we employ WattsUp? Pro Meter (WUM) [19] to
monitor the power consumption of the system running the
NILM algorithm.

The main challenge of the hardware-based measurement
approach is the inability for evolution and the difficulty to
scale despite their high precision in energy measurement at
a high level of granularity [18]. This limitation is owing to
intrusiveness (for embedded power chips in the motherboard)
or inferring the power consumption of the monitored algo-
rithm from the dynamic power of the computing system (for
external power meters such as WUM). Hence, we proposed
an automated and effective cost extraction technique based on
synchronization pattern insertion [17] to ensure a scaleable
monitoring system.

Organizations are currently focused on attaining promising
technologies using Cloud systems to reduce their carbon
impact while curtailing operational costs [20]. Hence, we
proposed our cost monitoring system for Cloud-based Online-
NILM Algorithm (CbON), which provides real-time load dis-
aggregation but runs on Cloud premises. In our experiment, we
have monitored, analyzed and modeled Processing Time Cost
(PT) besides Processing Energy Cost (PE) as computational
costs of a use-case CbON algorithm from [21]. The estimated
costs of the algorithm are extracted from the WUM power
monitoring data using our proposed approaches. The study
was carried out considering a large-scale NILM deployment
scenarios, such as a large number of house loads and parallel
processing capabilities.

Finally, our analytical results on two different use-case
computing systems, i.e., Dedicated Server and Cloud Virtual
Server, demonstrate computational costs of a NILM algorithm
can be monitored and modeled effectively with very high
accuracy via data-driven approaches from system power mea-
surements. The efficacy is found to be consistent and robust
that further validates the promising applicability of the data-
driven approach without detailed knowledge of the underlying
computing system.

Our study is focused on CbON algorithms in particular,
yet most of the proposed data-driven methods can be easily
adapted for monitoring Cloud-based applications, other than
NILM. Although energy efficiency studies for Cloud systems
mainly focus on optimizing the energy via task scheduling
algorithms [20], virtualization technologies [14] and load-

balancing across different virtual machines or servers [22],
measuring the energy consumed by a running application can
be remarkably beneficial for Cloud system. Even a miniature
amount of saving per Virtual Machine can add up to a
substantial gain in large-scale Cloud systems [13], [15], [20].

The key contributions of this study are briefed below:
• We present a study on the data-driven computation costs

monitoring, analysis, and predictive modeling of a Cloud-
based Online-NILM Algorithm.

• To the best of our knowledge, our work pioneers a study
in assessing the energy cost of a NILM algorithm.

• We develop a generic end-to-end computational cost
monitoring and modeling methodologies from computing
system power measurement without detailed knowledge
of the underlying system and the NILM algorithm.

The rest of this paper is organised as follows. The back-
ground concepts of the study are briefly discussed in Sec-
tion II. Section III describes the data-set, while Section IV
presents the methodology. Section V discusses the experimen-
tal results. Finally, Section VII provides our concluding re-
marks while threats to validation are highlighted in Section VI.

II. BACKGROUND

This section discusses the background concepts and related
works of the study.

A. Software Energy Measuring and Modeling

Noureddine et al. [18] review different energy measurement
approaches that can be classified as measurement/estimation
and modeling. In the first sub-category, the goal is to determine
the energy consumption through the hardware equipment,
while the latter creates a mathematical model of the software
energy consumption to provide energy data without external
equipment. Hindle et al. [23] proposed an approach to measure
how the energy consumption of software applications varies
through the different versions.

There are three ways, i.e., instant power measurement, time
measurement, and model estimation, for getting power/energy
consumption of software from a device [17]. Table I analyses
the benefits and drawbacks of each technique.

a) Instant Power Measurement: this technique measures
the instantaneous power consumed by a device [5], [6], [11],
[24]. The integral of the power values over a period of
time gives energy. However, the instant power measurements
are precise if the sampling frequency is high. Although
the approach usually operates at the device level, hardware
component-level measurement is possible.

b) Time Measurement: estimate the energy consumption
of a device through measurement of time [25], [26]. If we
assume constant consumption over time, the speed at which
energy is consumed strictly depends on the device’s power
consumption. For this reason, the average power consumed
can be retrieved by measuring the time needed to completely
discharge a battery. The more the battery capacity is precise,
the more the measurement is reliable. The drawback of this
method is that it is challenging to employ it for data centers
because it would require large batteries, and the measurement

3

Measurement
Technique

Pros Cons

Instant Power
Measurement

Precise if the sampling frequency is high Physical instrumentation needed.
Difficult to isolate a single software application’s contribution

Time
Measurement

Precise if the exact energy stored in the battery is
known

Requires many repetitions of long tasks.
Difficult to isolate a single software application’s contribution

Model
Estimation

No instrumentation required.
Easy to isolate a single software application’s con-
tribution

Precision is not always declared

TABLE I: Evaluation of measurement techniques

would be imprecise one in terms of granularity (i.e., it would
be almost impossible to isolate the execution of a given
software program).

c) Model Estimation: consumption measurements
through models are calculated by relating the power
consumption of a particular device with its internal peripheral
usage indicators, such as the CPU states, instructions,
memory or disk accesses, and network adapters. For example,
[10], [13]–[15] discussed software-based method for energy
consumption estimation in Cloud and virtualized environment
from CPU system-logs using platform dependent Kernel
APIs1,2. Similarly, [27]–[29] introduced an approach for
building a power model for Android devices by using APIs
to retrieve a variety of states, including the battery, network
connection, Wi-Fi, and screen.

Model estimation requires choosing a model suitable for the
device on which the software will run and also has overhead
caused when extracting the resource utilization. The overhead
is a critical value because a software process implementing
the model executes the resource usage data collection that
affects the consumption of the device on which it is executed.
Most of the works, proposed to build energy models based
on resource utilization, require a detailed knowledge on the
working principles and states of resources such as CPU [5]–
[11], Memory [5], [12] and Disk [5], [16].

Generally, previous efforts for energy cost estimation of
a running application on data-center or Cloud servers use
energy/power monitoring hardware device or kernel APIs [10],
[13]–[15], [30]. The hardware-based methods either employ
power meters to measure the server instant power directly [5],
[6], [11] or connect power sensors into motherboard [24].
Further detail of the summarized discussion on modeling
approaches from various literature can be found in [5]. Overall,
the main challenges of the methods are related to the overhead
caused by reading the resource usage information (model-
based), intrusive techniques are not widely applicable due
to inconvenience of installation (sensor-chip on the mother-
board), and limited to certain operating systems or vendors
(kernel APIs), and background noise from other processes
and need synchronization along with efficient active region
extraction (computing system-level power).

For our use-case in server systems, we employed our own
customized system-level instant power measurement tech-

1Linux Powertop: https://01.org/powertop/
2Joulemeter: https://www.microsoft.com/en-us/research/project/joulemeter-
computational-energy-measurement-and-optimization/

niques using external power monitoring devices. The approach
was chosen as it can be applied without having detailed
knowledge of the underlying computing system or server.
Moreover, we attempt to mitigate the challenges of system-
level instant power measurement, such as interference from
other running applications besides the target software and
the requirement of a high sampling rate. Furthermore, to
the best of our knowledge, there is no published study on
computational energy cost analysis and modeling for NILM
algorithm.

B. External Power Monitoring Devices

External power recording devices such as WUM [5] and
Plogg [6] have been employed in many studies [5], [6],
[19], [30]–[32], [32], [33]. Their data measurements can be
retrieved via serial, Ethernet, or even Bluetooth connections.
External meters are easy to deploy on any device fed through
a power plug; this simplicity makes them a good alternative
to embedded sensors plugin motherboards. Results from [6]
showed that the external meters could also provide more
accurate measurements than some embedded sensors.

In our study, we used WUM to monitor the power consump-
tion of servers. WUM measures the power/energy consumption
of appliances and devices that plug into electrical outlets for
their power supply [19]. The device can monitor a wide variety
of real-time electricity usage data, including voltage, current
power, and power-factor. It was utilized as an efficient means
of collecting electricity energy reading in various studies [19],
[31], [32] including popular public NILM data-sets such as
UK-DALE [33]. Furthermore, some studies [5], [30], [32] have
adopted it to validate alternative software energy estimation
approaches. Further evaluation of the capability and limitations
of the meter can be found in [19]. We provide specifications
of the WUM, which was employed in our study, in Table II.

Parameters Characteristics
Measurement
Accuracy

+/- 3% (loads above 10 watts), +/-5%
(loads below 10 watts)

Power supply 100-277 Volts AC, 50/60 Hz, 20 amps
Supply voltage
fluctuations

Not to exceed +/- 10% of the nominal
voltage

TABLE II: WUM specification

C. Non-intrusive Load Monitoring Algorithms

NILM algorithms can be categorized as Offline or On-
line systems. Online-NILM methods employ time slice or

4

window-based methods for real-time detection and learning
of appliance consumption [21], [34]–[40]. On the other hand,
Offline-NILM does not perform real-time load monitoring and
typically requires daily readings to execute load disaggrega-
tion [1], [41]. However, the merits of instant load information
have been acknowledged for unlocking new grid services
such as demand-side management, which raises interactivity
in energy awareness, leading to more green behaviors [21],
[34]–[36]. Real-time information is also very crucial for safety
control, such as preventing a fire from forgotten switched
on heating devices. Online-NILM can be deployed at the
measurement edges in smart meters or remotely in Cloud
servers [21], [40]. Cloud-based Online-NILM Algorithm aims
to enable online load detection while reducing the hardware
and software complexity of running Online-NILM algorithms
on edge devices, i.e., smart energy meters.

Most of the NILM state-of-the-art approaches employ Hid-
den Markov Model (HMM) and its variants to provide real-
time online load disaggregation [21], [35]–[40]. Hence, our
previously published Cloud-based Online-NILM Algorithm
using HMM [21], hereafter referred as CbON, was employed
as use-case for our experiments for the computational cost
of NILM algorithms. Our choice for the algorithm is mainly
driven by the relevance of Cloud-based deployment for NILM,
as previously explained, as well as the better efficacy than
other state-of-the-art NILM algorithms with public benchmark
data-sets (see [21] for details). The algorithm combines the
strength of an event-based approach for unsupervised model
development and accurate disaggregation from the supervised
HMM method. Moreover, we had full access to the code
implementation, and the algorithm was deployed in a Cloud
smart metering framework [42].

The NILM algorithm, from [21], was proposed to address
the problem of providing fast and online household appli-
ance load detection. It is composed of two methodologies:
i) Unsupervised event-based profiling and ii) Markov chain
appliance load modeling. The event-based part performs event
detection through contiguous and transient data segments,
events clustering, and matching. The resulting features are
used to build household-specific HMM appliance models. The
load disaggregation is then performed online using an Additive
Factorial HMM (FHMM) from the generated appliance HMM
models for a given aggregate power reading.

Generally, the working flow of the NILM system includes
sending hourly power reading segments from the smart meter
to a Cloud SQL database, and then the CbON algorithm
retrieves the ingested power data and performs load disag-
gregation. Furthermore, the CbON comprises loading settings,
appliance models, and aggregate power consumption during
the given disaggregation window from the database, performs
load disaggregation, and stores results back into the SQL
database. In our cost study, only the computational of the
CbON Algorithm tasks were considered. The CbON has
three sub-modules, i.e., Pre-processing, Dynamic FHMM for
Aggregate Consumption Modeling, and Disaggregation. In
the Pre-processing, a median filter is applied to smooth the
signal by removing spikes and outliers followed by local-
background power estimation. Embarking with the estimation

of the likelihood of appliance activation based on load features,
FHMM generates an aggregate power model by combining the
appliance HMMs. The appliance states and power emissions
from the aggregate model are decoded in the final Disaggrega-
tion stage. Nevertheless, since our proposed approach is data-
driven, a prior detailed knowledge of the NILM algorithm
is not required, and it is treated as a block-box in our cost
monitoring system.

III. DATA-SET DESCRIPTION AND PREPARATION

For our study, we prepared two sets of data, i.e., i) large
scale house energy data-set and ii) monitored computation cost
data-set.

We generate the large scale house energy data-set to provide
computation evaluation at a large scale deployment of the
CbON algorithm. It was developed from some of the widely
used public NILM data-sets with real house energy profiles,
i.e., REDD [43] and UK-DALE [33]. The public data-sets
were also employed in the reference CbON [21] algorithm for
appliance HMM model building. The REDD data-set contains
low-frequency power data for six US houses, while the UK-
DALE data-set comprises five UK houses. Seventy-eight days
of household data were prepared from a period of around
two weeks of data from each of these public data-sets (see
Table III). The daily load data were organized after data
cleaning and focusing on the previously built appliance models
in the target CbON from [21].

Generally, the large scale simulated house aggregate energy
data-set generating algorithm is composed of data chunking,
shuffling, and duplication techniques to synthesize power de-
mands of large number of houses (see Figure 1). The real data
from REDD and UK-DALE are organized in daily format to
form a House AGgregate Power Loads (HAGP) data baseline
(a). Then each daily data (24 hours) is segregated in hourly
fashion using the disaggregation window (dw = 60minutes)
to generate 1872 Unique online one-hour HAGP loads (Unique
HAGP) data-set (b). To generate HAGP for a given large
Nh, i.e. Large HAGP data-set, the Unique HAGP data-set
is randomly shuffled to introduce entropy and duplicated
Nd times in (f), where Nd is a duplication factor which is
calculated as Nh divided by the size of Unique HAGP in (e).

Both Unique HAGP and Large HAGP data-sets contain
only the house identification, houseId, and the start and end
timestamps of the online data window, dw timestamps, to
have a fast and memory-efficient data generation while keeping
similar process flow as the load disaggregation algorithm. The
actual load data is only retrieved from the database using
houseId, and dw timestamps information during load dis-
aggregation when the NILM algorithm is executed. Although
the CbON algorithm was designed to work with 15, 30, 45,
and 60 minutes online data [21], a one-hour window was
used in our experiments due to relatively better disaggregation
accuracy, and lower online data transfer overheads. Moreover,
users less frequently change appliances operation states in the
smaller windows in a typical residential load.

The computation cost data-set was prepared for the cost
analysis and modeling by monitoring the processing time and

5

Public Data-set House IDs Total Number of Days
REDD 1-4, 6 49
UK-DALE 9001 - 9005 29

TABLE III: Number of selected days from public data-sets

Fig. 1: Large HAGP data-set generation

energy consumption of the NILM algorithm in dedicated and
cloud virtual servers in various scenarios such as variation in
the number of houses and parallel processing capabilities.

In our experimental setup, the number of multiprocessing
processes was varied from 1 to 8 (maximum number of
processors in the system) while the number of houses ranges
from 1000 to 2500 with 500 step and large scale scenarios
from 4000 to 10000 with 2000 step. The experiment generated
640 data points for 64 unique scenarios.

IV. METHODOLOGY

The proposed methods for computation cost measuring,
analysis, and predictive modeling of the CbON algorithm are
discussed in this section. In this study, computational costs of
the algorithm when disaggregating one-hour online load read-
ing are analyzed and modeled in terms of the execution time
and energy consumption. The trade-off of multiprocessing sce-
narios (generally, increasing power while reducing processing
time with additional processing cores) is also incorporated to
provide a comprehensive study on the computational costs.
A single execution of the CbON algorithm is composed of
setting and configuration loading, time-window load data and
appliance HMM models retrieval for a given house from
SQL database, load disaggregation (the core section of the
algorithm), and finally, storing disaggregated appliance level
load data back into the SQL.

A. Flow Diagram of the Framework

A general flow diagram of the proposed cost monitoring,
analysis, and modeling framework is illustrated in Figure 2.
The diagram comprises generating the synthesized power read-
ing from a large number of houses (discussed in Section III),
measuring system instant dynamic power consumption using

WUM and extracting of the NILM algorithm costs, and finally,
cost analysis and prediction model development. The major
blocks of the framework are briefly discussed below.

a) External Inputs: comprises external inputs to the cost
monitoring such as the number of houses selections, List of
number of houses (Nhs), Unique HAGP data-set and CbON
algorithm, and load data from REDD and UK-DALE in
database.

b) WUM Interface: consists of tasks involving interac-
tion with the WUM. In the beginning, the power supply is
connected to the computing system or server through WUM
in between. The WUM also connects to the server via USB
connection for configuration management and data acquisition.
Then, WUM settings such as data storage location: meter’s in-
ternal memory, overwrite during memory full: false, sampling
time: 1 second and parameters to record: power in Watts are
configured. Just before the cost measurement starts, the mem-
ory of the WUM needs to be cleared manually, and the meter
automatically starts recording the server’s power consumption.
After the power monitoring finishes, WUM power log from
memory of the meter are exported into an external file, WUM
log CSV file, for later use.

c) Cost Monitoring: Before starting the system power
monitoring, the inputs variables such as Unique HAGP data-
set and CbON algorithm from the External Inputs block are
loaded along with load scales Nhs and multiprocessing Nps
settings. Based on the settings, the target CbON algorithm is
executed while the server system power is being monitored by
the WUM simultaneously. In code processing time measure-
ment using Python Time library, is also employed to further
validate the cost monitoring using WUM.

d) Cost Analysis and Modeling: following the comple-
tion of the cost monitoring, WUM log CSV file and the PTcode

are loaded to develop the (Cost data-set). The cost data-set is
then used for analysis and modeling of the computational costs
of the CbON algorithm.

B. Multiprocessing

At the operating system level, multiprocessing refers to
the execution of multiple concurrent processes in a system
with each process running on separate cores. Though the term
multiprocessing may signify different meanings in different
contexts, in our scenario, it implies parallel execution of
multiple processes using more than one processor. In our
experiments, the CbON algorithm runs on a single process
when disaggregating a single online data segment per house.

We employ Asynchronous Pool Python API to parallelize
execution of the CbON algorithm on input load data from
multiple houses, i.e., data parallelism. Depending on the
platform, multiprocessing can use three ways to start a process,
such as a spawn, fork, and forkserver. However, only spawn
is currently supported on our windows based system. In the
spawn mechanism, a parent process starts a fresh Python
interpreter process, and a child process will only inherit those
resources necessary to run, the process objects excluding
unnecessary handles from the parent process [44]. Hence,
spawning was employed to start the load disaggregation

6

Fig. 2: Computational cost monitoring, analysis and modeling methodology for CbON algorithm

process during multiprocessing in our experiment. The list
of the possible number of processes for multiprocessing is
Np : 1, 2, ..., Np max where Np max is the number of logical
processors in the system. Generally, multiprocessing beyond
Np max is not recommended due to the limited computation
leverage from high context switching [44] though it is possible.

C. Computational Cost Monitoring

Before starting the system power consumption monitoring,
we let the computing system stabilize by waiting to finish
or closing active processes until only background processes
that do not cause significant power fluctuation on the system
remain. This prevents unexpected processes from corrupting
the measurement when server power consumption is monitored
by WUM.

To effectively use WUM for algorithm energy consumption,
a method to synchronize or correlate the start and end times of
the target process within the WUM record is mandatory. Thus,
to determine the Region of Interest (ROI) corresponds to the
NILM process execution, a synchronization marker insertion
(AddSyncMarker) was proposed in [17] inspired by signal
synchronization techniques in digital communication systems.

The technique involves sleep-wake-sleep mode to generate
a kind of square wave in the system power reading (see
Figure 3). The synchronization pattern insertion function block
is called before and after the target algorithm code execution
(see detail in Section IV-D). The square wave patterns provide
marking waveform, which can be easily spotted manually for
simple experiments or using pattern matching algorithms such
as Dynamic Time Wrapping [45] for large scale experiments.
The technique was found to be effective in locating the power
signal of the target process from the system-level power
waveform. However, due to signal corruption from background
processes (e.g., in virtual machine servers), the square-wave
can be distorted, limiting the efficacy of pattern matching
algorithms. Hence, we propose a new synchronization pattern
(see Algorithm 1) that it is easily locatable with simple signal
processing using trend analysis and clustering techniques.

When multiple recursive scenarios are included in a single
cost monitoring experiment, AddSyncMarker is executed at
the beginning and end of each case. Hence, the starting
and ending section of an outer scenario will have one more
synchronization pattern than the inner ones. This allows us
to locate the region of interest in the WUM reading uniquely

7

Fig. 3: Sample WUM synchronization marker illustration [17]

Algorithm 1 Synchronization Marker Insertion
1: procedure ADDSYNCMARKER(syncLen)

. syncLen: Synchronization pattern length

. syncLen in seconds
2: Low(syncLen)
3: High(syncLen)
4: Low(syncLen)
5: procedure HIGH(syncLen)
6: timeout← CurrentT ime() + syncLen
7: while True do:
8: if CurrentT ime() > timeout : then
9: break

10: procedure LOW(syncLen)
11: Sleep(2× syncLen)

using the added length of the consecutive patterns. Our study,
has four different scenarios from top to lower levels, i.e.,
start and end of the entire cost monitoring, experiment rep-
etitions, and the basic scenarios from different load scales
and multiprocessing. Accordingly, the lowest scenario marks
the different number of parallel processes selections with
single synchronization patterns with length of 5 × syncLen
(syncLen is duration the awake section of the pattern, see
Algorithm 1), while the different number of houses selection
scenarios, experiments repetitions, and all the cost analysis
experiments are marked with 10× syncLen, 15× syncLen,
and 20 × syncLen respectively. Experiment repetitions are
incorporated to normalize noisy measurements, especially as
some unexpected background processes can corrupt the WUM
measurement.

D. Region of Interest Extraction from WUM Reading

After system-level power monitoring, the activity regions
which belong to the CbON algorithm need to be extracted
from the timer-series power logs of the WUM using the syn-
chronization patterns. The proposed approach for extraction of
the active time-window section corresponding to the algorithm
under monitoring from the background power consumption
and isolation of ROI for the different experiment scenarios is
discussed in this section.

The extraction embarks by spotting the synchronization
pattern signals, using a pattern extraction algorithm, from
the WUM power reading. The extraction algorithm employs

Algorithm 2 Computational Cost Measuring
1: procedure COSTMEASUREMENT(dw, genHouseIds,Nhs,Nes)
2: Np max ← GetSystemNumberofProcessors()
3: Nps← range(start = 1, end = Np max, step = 1)
4: expIds← range(start = 1, end = Nes, step = 1)
5: syncLen← 4 . in seconds
6: SaveExpSetting(dw,Nes,Nhs,Nps, syncLen)
7: AddSyncMarker(syncLen)
8: procCostTable← []
9: for expId in expIds : do

10: AddSyncMarker(syncLen)
11: for Nh in Nhs : do
12: AddSyncMarker(syncLen)
13: houseIds← GetRandomizedHouseIds(genHouseIds,Nh)
14: for Np in Nps : do
15: AddSyncMarker(syncLen)
16: tstart ← GetTimer()
17: procCost←MultiProcessingNILM(Np, houseIds)
18: tend ← GetTimer()
19: procT ime← tend − tstart

20: procCostTable← join(expId,Np, Nh, procT ime)
21: AddSyncMarker(syncLen)

22: AddSyncMarker(syncLen)

23: AddSyncMarker(syncLen)

24: AddSyncMarker(syncLen)
25: return procCostTable

signal processing techniques from trend analysis and clustering
approaches. The trend analysis generates a trend signal from
the measured power waveform using a rolling median filter.
A simple concept that the synchronization pattern has twice
longer sleep (low-power) duration at start and end of the
pattern than awake (high-power) in the middle, a median filter
with a size slightly higher than three times of the awake
duration will pull down the synchronization pattern into low-
power values while pulling-up the measurements corresponds
to the active NILM process into higher power as the NILM
process has longer awake duration. Then, the probability dis-
tribution function (PDF) of the trend values giving lower peaks
corresponds to low-power synchronization patterns and more
than one higher peaks for the NILM active regions. Finally,
active regions are extracted via clustering the measurement
points into lower and higher power regions by applying a
simple threshold technique. The first local minimum in the
PDF gives the optimal decision threshold to cluster the regions.
In severe signal corruption, some rarely misclassified points
are adjusted in post-processing as they form tiny cluster sizes
compared to adjacent clusters in the time series.

After effectively clustering the power data which corre-
sponds to the NILM process and the background signals, the
extraction proceeds into multilevel recursive synchronization
pattern retrieval and removal from the WUM power data
starting from the earliest level in the time-line, entire cost
monitoring experiment, to the final level, multiprocessing
scenarios, using the duration analysis of the consecutive syn-
chronization patterns (see Algorithm 3).

The multilevel segregation process begins with loading
settings (see line 3 in Algorithm 3). At the start, the sys-
tem background steady-state power (idle state) is removed
to extract the dynamic power components which correspond
to active running processes (see line 4). Then, the decision
threshold for data clustering is determined using a trend
analysis (see lines 5 and 6) followed by clustering of the syn-
chronization patterns and active windows (see line 7). It pro-

8

ceeds to extract the experiment repetition scenarios using total
marker length of adjacent synchronizations (syncDuration)
equals to 15 × syncLen (see line 9), after the isolation of
the granular region of interest, i.e., retrieve the entire cost
monitoring section from the rest of the dynamic power data
using syncDuration >= 20 × syncLen (see line 8). For
each experiment repetition regions (see line 10 - 16), the
different number of houses selection scenarios are extracted
using syncDuration = 10 × syncLen marker length (see
line 12) followed by retrieving the number of processes cases
using syncDuration = 5 × syncLen (see line 15) for each
previously extracted number of houses scenarios (see line 14).
Eventually, the NILM ROIs data-set (see line 17) is prepared
after labeling the regions with the number of experiment
repetition, number of houses, and number of processes.

Algorithm 3 WUM Reading ROI Extraction
1: procedure ROIEXTRACTION(PWUM)
2: PNILM ← []
3: d← LoadExpSetting() . d is syncLen
4: PD, PBG ← RemoveBgPower(PWUM)
5: trendV alues← TrendAnalysis(PD, d)
6: th← DetermineThr(trendV alues) . th is decision threshold
7: clusterIds← ClusteringTrend(trendV alues, th)

. NILM section extraction
8: P∗

NILM ← GetROI(PD, clusterIds, 20d)
. Repeated experiment sections extraction

9: P∗
NILMExps, expIds← GetROI(P∗

NILM , clusterIds, 15d)
10: for expId in expIds : do
11: P∗

Exp = SelectPow(P∗
NILMExps, expId)

. Number houses of selection sections extraction
12: P∗

NILMNhs, NhIds← GetROI(P∗
Exp, clusterIds, 10d)

13: for NhId in NhIds : do
14: P∗

Nh = SelectPow(P∗
NILMNhs, NhId)

. Number of processors selection sections extraction
15: PNILMNps, NpIds← GetROI(P∗

Nh, clusterIds, 5d)
16: PNILM ← join(PNILM , PNILMNps, expId,NhId,NpIds)

17: return PNILM

GetROI - extract region or section of interest
* - has data points belongs to synchronization at inner levels

E. Computation Cost Analysis

Once the active ROIs are extracted from the WUM log,
processing time can be simply calculated from the duration
of the windows. The WUM has used a 1 second sampling
time. Thus, the PT can approximate by the size or length
of power readings samples. To estimate the energy cost, we
use a discrete-based method such as trapezoidal (Equation 1)
to approximate the integral function of the power from the
discrete power readings.

E =

∫ b

a

P (t)dt ≈ h

2

[
P0 + 2

n−1∑
i=1

Pi + Pn

]
(1)

where E is the estimated energy cost during the time t window
of [a, b] while P is the instantaneous power. The Pi is ith

sample of the power reading, h is the sampling interval, i.e. 1
second, and n is the number of samples.

F. Predictive Modeling for Computation Cost

The cost prediction models are vital for providing relevant
cost information in deploying a load disaggregation system.
Such models are crucial in determining cost-efficient configu-
ration and meet scalability requirements.

In this study, the cost data-set was split into training- and
test-set when developing the cost models. Separate prediction
models were trained for processing time and energy costs
for a given number of houses and multiprocessing configu-
ration. The models were validated with an out-of-bag set after
training, which comprises a Nhs with larger load scales. To
make the prediction models robust for in- and out-of-sample
predictions, the targets were converted into per-unit house
(puh) values by dividing them with the Nh. Interestingly, the
puh values are converged into very closely overlapped curves
which varies mainly with number of processes (see Figure 12
and 13 in Section V-A). Once the puh prediction is made using
the models, the final cost estimation is calculated by multiply
the result with the given Nh.

In our study, machine learning is employed to build the
regression prediction models which capture the underlying
relationships between the continuous value target cost variable
and predictor features. Random Forest (RF) is one of the most
popular and versatile machine learning algorithm based on
bagged ensemble decision trees [46], [47]. Moreover, the per-
formance of the RF models is compared with simple statistical-
based models, Mean Estimation (ME) for each unique number
of processors.

a) Statistical model: mean value of the puh costs for
each Np are calculated from the training set to be later used
for prediction. It uses a simple assumption that the puh costs
solely depend on the given Np.

b) Machine learning model: a RF was trained to predict
the puh costs using a predictor feature from Np and nor-
malized Nh. We employed a reciprocating technique, 1/Nh,
to normalize the number of houses to make sure the feature
values bounded into the range of (0, 1]. Since the target cost
functions are found to be not complex with a couple of features
and small data-set, when selecting optimal hyperparameters
configurations for the RF models, Grid − search has been
employed with a four-fold grouped cross-validation based on
the load scales, Nh. We have used Scikit-Learn’s Random
Forests3 to build the RF models using MSE (Mean Square
Error) as a cost function. Some of the main hyperparame-
ters used in the tuning are no estimators, max depth and
min samples leaf .

Appendix C provides more details on notations to elucidate
the proposed methods with mathematical modeling.

V. RESULTS AND DISCUSSION

The term Cloud-based Online-NILM Algorithm (CbON)
usually refers to the Online-NILM algorithm that runs on
remote servers. Energy companies currently deploy data an-
alytics applications such as CbON algorithms in their data
centers either on dedicated servers or virtual machines and
slowly shifting towards Cloud systems. Thus, to demonstrate
the robustness of the proposed cost monitoring and modeling
methodology, we run our experiment on two different use-
cases, i.e., a Dedicated Server (DS) and a Cloud Virtual Server
(CVS). The system specification of the computing systems is
provided in Table IV. The purpose of these separate use-cases

3https://scikit-learn.org/stable/supervised learning.html

9

is not to make a comparison between the two server systems
but rather to demonstrate the robustness of the proposed cost
monitoring and modeling methodology for NILM algorithm
deployments on dedicated servers and Cloud virtual machines.

For prediction model validation at large scale scenarios, the
load scale was varied from 4000 to 10000 houses while the
remaining lower scales from 1000 to 2500 were utilized for
model training. The experiment repetitions are ten and five
times for the DS for the training- and test-set, respectively,
while five and three times are used for the CVS due the limited
storage capacity in the WUM and relatively lower computa-
tional power. Furthermore, as explained in Section IV-C, to
minimize the interference in WUM measurement from other
processes, the network connection of use-case of DS was
disabled, while other virtual machines on the system were
disabled for the use-case of CVS.

System System Specification
DS Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 4

Core(s), 8 Logical Processor(s) and 16GB RAM
using on Windows 10 Pro Version 1803

CVS Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz,
2693 Mhz, 8 Core(s), 8 Logical Processor(s) and
32GB RAM using Windows 10 Pro Version 1903,
running on Oracle VirtualBox 1.2 installed on a
GenuineIntel GNU/Linux Server with 48 CPUs

TABLE IV: Systems used during experimentation

This section is composed of three major parts discussed in
the subsequent subsections, i.e., extraction of computational
power consumption of the NILM algorithm for different
scenarios from WUM reading (ROI extraction), computation
costs analysis, and predictive modeling of the computation
costs. We concisely discuss results for both use-case servers,
i.e., DS and CVS simultaneously.

A. Region of Interest Extraction from WUM Record Data

Using Algorithm 3, explained in Section IV-D, the results of
the WUM power record data segregation, to extracted activity
regions belonging to the NILM algorithm, are portrayed in
Figure 4 - 10 for the two use-case servers. Initially, the dy-
namic power (corresponds to the active processes) is extracted
by removing the background or static power consumption
of the computing system (see Figure 4 for DS). Then, each
regions which corresponds to each experiment scenarios are
extracted using the extraction blocks incorporated in WUM
record data segregation algorithm discussed in Section IV-D.
In Figure 5 and 9, sample of these extracted Region of
Interest (ROI) are depicted. Moreover, the process of isolation
of the synchronization patterns and effectively determining
the cluster decision threshold from the WUM power reading
data using the trend analysis and cluster-based techniques
are illustrated in Figure 6 and Figure 10. The WUM record
data segregation algorithm robustly extracted the experimental
sections in both the use-case servers through locating and
removal of the synchronization signals.

Fig. 4: Background power removal from WUM reading for
DS

(a)

(b)

(c)

(d)

Fig. 5: ROI extraction for DS (a) NILM experiment extrac-
tion, (b) repeated experiment, (c) number houses selection
on expId = 1, (d) and number of parallel processes on
Nh = 1000

B. Computation Cost Analysis

The average computational processing time and energy costs
for a given number of processors in multiprocessing and
number of house variations in load scales are depicted in
Figure 12 and 13 for the DS and CVS, respectively. The results
demonstrate the costs are affected by the number of parallel
processes and the number of house selections. To provide an

10

Fig. 6: WUM record data segregation at Nh = 1000 using
trend analysis and clustering for DS

Fig. 7: Trend PDF and clustering threshold for DS

intuitive analysis, per-unit house (puh) normalized costs are
portrayed in (c) and (d) subplots, respectively. The per-unit
house cost follows exponential decaying patterns and almost
utterly depends on the Np selections. In the CVS, the costs
vary across the different number of processors in a slight dis-
crete manner. The impact of Np selection is more pronounced
on the computational energy, which can be quantified by the
higher Pearson Correlation -0.46 as compare to -0.15 for the
DS. This is might be owing to the architectural difference:
CVS has eight logical processors from eight cores; while the
DS has eight processors from four cores (see Table IV).

Moreover, an interesting comparison of PT from WUM and
PTcode measured using the within a code Python time library.
They are consistently equivalent with less than 0.5% differ-
ence in the average across all the multiprocessing scenarios
(see Figure 14 and Figure 15). This validates the usage of
system-level based measurement with robust ROI extraction
techniques for an algorithm computational cost analysis.

In the DS use-case, the computational costs are significantly
reduced using multiprocessing up-to by 75% for PT . At the
same time a lower gain (because power consumption increases
with additional processors) was achieved around 33% for the
energy consumption as compared with a single processor.

In use-case of CVS, the costs are immensely curtailed using
multiprocessing up-to 86% for PT while 68% leverage was
achieved for energy cost compared with a single processor.
The CVS has longer PT which causes a higher PE than DS
due to the slower processing capability of its CPUs.

Fig. 8: Background power removal from WUM reading for
CVS

(a)

(b)

(c)

(d)

Fig. 9: ROI extraction for CVS (a) NILM experiment extrac-
tion, (b) repeated experiment, (c) number houses selection
on expId = 1, (d) and number of parallel processes on
Nh = 1500

When the energy cost is analyzed relative to the median
one-hour disaggregated house energy load (255 watt-hour) by
the NILM algorithm, the relative cost is below 0.0006% for
the DS and 0.0028% for the CVS use-case (see Table V).
When the idle or static energy consumption of the DS system,
54 watt-hour, is also considered, the energy cost increases
to around 0.0015% for the maximum number of houses
(Nh capacity = 22, 216) that can be processed during the one-

11

Fig. 10: WUM record data segregation at Nh = 1500 using
trend analysis and clustering for CVS

Fig. 11: Trend PDF and clustering threshold for CVS

hour dw with a single processor (Np = 1). The load scale
capacity is estimated from the PTpuh prediction model for a
given Np and dw (see Equation in Table V). The cost can
be reduced to 0.0006% while significantly enhancing the load
capacity to 89, 479 houses if multiprocessing with Np = 8 are
utilized. The CVS has predicted load scale capacity of 6,523
and 46,210 along with energy cost of 0.0104% and 0.0020%
for Np = 1 and Np = 8 respectively. This is mainly due to
the higher static power, 127 watts, and slower processing.

Finally, though the actual energy consumption depends
on the underlying system static and dynamic powers, CPU
processing speed, and multiprocessing implementation, the
experimental results demonstrate that the energy cost of the
NILM algorithms are diminutive as compared to the expected
12% [3], [4] energy efficiency saving in households from using
NILM systems. However, energy-saving from load monitoring
tools creates awareness of energy usage via a shift to efficient
appliances and user behavior changes. This means the actual
efficiency gain from the tools exacerbates once the user
makes the appropriate actions although it may be in the long
run. On the other hand, the computation energy cost of the
monitoring system become relatively significant due to lower
efficiency gain for the users. The effect on carbon emission
from the computing system also becomes more pronounced for
large load scales deployment. Thus, mindful consideration of
multiprocessing, especially with multiple physical cores than
logical ones, needs to be given to leverage performance in sig-
nificantly enhancing the load capacity of the computing system

1 2 3 4 5 6 7 8
Number of Processes

41
357
673
989

1305
1621
1937

Pr
oc

Ti
m

e_
w

ith
W

U
 (s

ec
)

(a)

1 2 3 4 5 6 7 8
Number of Processes

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Pr
oc

Ti
m

e_
w

ith
W

U
 (s

ec
)

Number of Houses
1000
1500
2000
2500

4000
6000
8000
10000

(b)

1 2 3 4 5 6 7 8
Number of Processes

2
16
30
44
58
72
86

Pr
oc

En
er

gy
_w

ith
W

U
 (w

h)

(c)

1 2 3 4 5 6 7 8
Number of Processes

0.0009
0.0010
0.0011
0.0012
0.0013
0.0014
0.0015

Pr
oc

En
er

gy
_w

ith
W

U
 (w

h)

Number of Houses
1000
1500
2000
2500

4000
6000
8000
10000

(d)

Fig. 12: Computational costs for DS: PT (a), PTpuh (b), PE
(c) and PEpuh (d)

1 2 3 4 5 6 7 8
Number of Processes

82
1158
2234
3310
4386
5462
6538

Pr
oc

Ti
m

e_
w

ith
W

U
 (s

ec
)

(a)

1 2 3 4 5 6 7 8
Number of Processes

0.08
0.18
0.28
0.38
0.48
0.58
0.68

Pr
oc

Ti
m

e_
w

ith
W

U
 (s

ec
)

Number of Houses
1000
1500
2000
2500

4000
6000
8000
10000

(b)

1 2 3 4 5 6 7 8
Number of Processes

2
16
30
44
58
72
86

Pr
oc

En
er

gy
_w

ith
W

U
 (w

h)

(c)

1 2 3 4 5 6 7 8
Number of Processes

0.0023
0.0033
0.0043
0.0053
0.0063
0.0073
0.0083

Pr
oc

En
er

gy
_w

ith
W

U
 (w

h)
Number of Houses

1000
1500
2000
2500

4000
6000
8000
10000

(d)

Fig. 13: Computational costs for CVS: PT (a), PTpuh (b),
PE (c) and PEpuh (d)

while optimizing the computational energy consumption.

C. Predictive Modeling for Computation Cost

In this section, the prediction performance of the cost
models from statistical and machine learning models on the
test-set is discussed. The performance metrics employed to
evaluate the prediction cost models are provided in Table VI.

The prediction evaluation demonstrates that the computa-
tional costs of the NILM algorithm can be modeled effectively
with very high accuracy (see Table VII and VIII, and Appendix
provide details). This validates the promising applicability of
the data-driven modeling approach without detailed knowledge
of the underlying running hardware and operating system.
Generally, the machine learning based regression model using

12

NILM PEpuh

Average House Load in
dw (wh)

DS (wh) CVS (wh) DS (%) CVS (%)
Np = 1 Np = 4 Np = 8 Np = 1 Np = 4 Np = 8 Np = 1 Np = 4 Np = 8 Np = 1 Np = 4 Np = 8

255 0.0014 0.0010 0.0010 0.0071 0.0034 0.0023 0.0006% 0.0004% 0.0004% 0.0028% 0.0013% 0.0009%

Nh capacity = DW
PTpuh(Np)

NILM PTpuh Maximum Nh can be processed within dw = 1 hour
DS (sec) CVS (sec) DS (Nh capacity) CVS (Nh capacity)

Np = 1 Np = 4 Np = 8 Np = 1 Np = 4 Np = 8 Np = 1 Np = 4 Np = 8 Np = 1 Np = 4 Np = 8

0.1620 0.0521 0.0402 0.5519 0.1170 0.0779 22216 69077 89479 6523 30763 46210

NILM for Nh capacity+ Static Energy within dw = 1 hour
Average House Load in
dw (wh)

DS (wh) CVS (wh) DS (%) CVS (%)
Np = 1 Np = 4 Np = 8 Np = 1 Np = 4 Np = 8 Np = 1 Np = 4 Np = 8 Np = 1 Np = 4 Np = 8

255×Nh capacity 86.190 124.251 140.705 173.043 231.256 234.439 0.0015% 0.0007% 0.0006% 0.0104% 0.0029% 0.0020%
* Static energy cost for the DS is 54 wh whereas CVS consumes 127 wh.

TABLE V: NILM computational cost analysis as compared to average house energy load

1 2 3 4 5 6 7 8
Number of Processes

0.3
0.2
0.7
1.2
1.7
2.2
2.7

Pr
oc

Ti
m

e
(

) (
se

c)

(a)

1 2 3 4 5 6 7 8
Number of Processes

0.3
0.1
0.5
0.9
1.3
1.7
2.1

Pr
oc

Ti
m

e
(

) (
%

)

(b)

Fig. 14: Comparison of PT for DS measured from WUM and
code-based, difference (a) and in percentage (b)

1 2 3 4 5 6 7 8
Number of Processes

3.3
2.4
1.5
0.6
0.3
1.2
2.1

Pr
oc

Ti
m

e
(

) (
se

c)

(a)

1 2 3 4 5 6 7 8
Number of Processes

0.6
0.2
0.2
0.6
1.0
1.4

Pr
oc

Ti
m

e
(

) (
%

)

(b)

Fig. 15: Comparison of PT for CVS measured from WUM
and code-based, difference (a) and in percentage (b)

RF, leveraged with the additional feature from Nh, outper-
forms the average statistical mode. Generally, the PE models
is under-perform than the PT models. This is because the
energy is a product of two variables, i.e., power and time,
and its value is influenced by the measurement uncertainty
in the processing time as well as in the power consumption.
The overall prediction errors are higher for the CVS. This
was expected as the measurement of the CVS is noisier than
the DS, as well as a lower number of experiment repetition,
was used for CVS due to longer processing time and storage
capacity limitation of WUM as discussed in the introductory
paragraph of Section V-A.

D. Impact of Sampling Rate on Computational Cost

We have briefly discussed below the inferred insights of
the costs of NILM algorithms based on the sampling rate and
disaggregation time-window selections.

A higher load sampling rate tends to achieve better dis-
aggregation performance as more load signatures, such as

Metric Equation

Error ei = yi − ti
Absolute Percentage Error
(APE)

epi =
∣∣∣ eiyi ∣∣∣

Root Mean Square Error RMSE =
√

1
N

∑N
i=0 e

2
i

Mean APE MAPE= 1
N

∑N
i=1 epi

Maximum APE MaxAPE =Max{∀epi}

Confidence Interval of APE
(CI)

CIα = P (ep 6 α)

Regression Fit Score (R−value) R =
∑N

i=1(yi−ȳ)(ti−t̄)))∑N
i=1(yi−ȳ)2

∑N
i=1(ti−t̄)2

*Where yi and it are the actual and estimated values of the ith sample
while , N is the sample size, P is Probability Density Function of ep, and

α is a threshold of the error confidence interval

TABLE VI: Performance metrics

Processing Time
Metric PME PRF Gain Gain%

RMSE (sec) 5.02 3.17 -1.85 -36.80
MAPE (%) 1.12 0.63 -0.49 -43.93
MaxAPE (%) 2.61 1.93 -0.67 -25.82
CI1% 53.13 78.13 25.00 47.06
CI3% 100.00 100.00 0.00 0.00
CI5% 100.00 100.00 0.00 0.00
R− value 1.00 1.00 0.00 0.00

Processing Energy
RMSE (wh) 0.26 0.18 -0.07 -28.08
MAPE (%) 3.03 2.09 -0.94 -31.04
MaxAPE (%) 4.26 3.50 -0.76 -17.76
CI3% 46.88 90.63 43.75 93.33
CI5% 100.00 100.00 0.00 0.00
R− value 1.00 1.00 0.00 0.00

* Gain = PRF − PME where PME and PRF are performance score of
ME and RF respectively, and Gain% = (Gain× 100)/PME .

TABLE VII: Cost prediction performance for DS

transient events and electrical noise, can be retrieved at high
frequencies. Higher sampling frequencies in the range of
10 − 100MHz are usually required as compared to 6 1Hz
for low sampling rates, to achieve the promised accuracy. At
these high ranges, the cost of data size increases along with the
requirement for expensive power meters due to sophisticated
hardware [2]. For CbON, the size of the reading segment may
have a significant impact on data transmission as the transfer

13

Processing Time
Metric PME PRF Gain Gain%

RMSE (sec) 18.38 16.89 -1.50 -8.14
MAPE (%) 1.28 1.08 -0.20 -15.75
MaxAPE (%) 3.23 2.83 -0.40 -12.44
CI1% 43.75 53.13 9.38 21.43
CI3% 96.88 100.00 3.13 3.23
CI5% 100.00 100.00 0.00 0.00
R− value 1.00 1.00 0.00 0.00

Processing Energy
RMSE (wh) 0.85 0.82 -0.03 -3.63
MAPE (%) 2.81 2.54 -0.26 -9.30
MaxAPE (%) 6.35 5.35 -1.00 -15.74
CI1% 15.63 18.75 3.13 20.00
CI3% 62.50 68.75 6.25 10.00
CI5% 84.38 93.75 9.38 11.11
CI10% 100.00 100.00 0.00 0.00
R− value 1.00 1.00 0.00 0.00

* Gain = PRF − PME where PME and PRF are performance score of
ME and RF respectively, and Gain% = (Gain× 100)/PME .

TABLE VIII: Cost prediction performance for CVS

needs to be done frequently for real-time load disaggregation
on remote servers. Moreover, the number of data points in the
given disaggregation window has a proportional impact on the
computation of FHMM based disaggregation algorithms.

Furthermore, the choice of disaggregation time-window also
affects the computational cost and disaggregation accuracy.
An hour window was chosen in our experiments to provide
a good quasi-real-time disaggregation. The one-hour window
produces good accuracy while keeping the cost lower because
of the low probability for user activity changes in smaller time-
windows. Smaller time-windows may have a higher running
cost as the cost due to an increase in the entire disaggregation
algorithm calls outweighs the complexity reduction due to the
relatively shorter sequence length in the FHMM. Moreover, as
appliance features such as duration in HMM-based algorithms
become less distinctive, the guarantee for disaggregation accu-
racy leverage is limited for smaller windows [21]. A sliding-
window function is often invoked to update results when an
additional reading segment arrives for accuracy improvement,
which introduces an extra computational cost.

VI. LIMITATIONS

This section briefly describes the limitations and the possi-
ble cause of errors that could affect our work.

The computational expenses of the Cloud-based Online-
NILM Algorithm are not confined only to the execution of
the algorithm. The cost associated with the transmission of
the reading data from the smart-meter into the Cloud data
store is also non-trivial. In our analyses, we found ingestion
of the disaggregation results back to the SQL database takes
a significant portion of the analyzed execution time. However,
our aim is instead to provide granular estimations for a NILM
algorithm.

Furthermore, system-level power measurement is suscepti-
ble to interference noise of other active processes running in
the system besides the target algorithm. Hence, the computing

system needs to be stabilized to minimize the noise from
corrupting the WUM measurement. Security applications such
as Window Defender and Anti-virus software, as well as an
active network connection, were observed to introduce a noise
during our experimentation. Disabling other active processes
and repeating the experiment a few times, and then averaging
the measurements can be feasible mitigation techniques.

Owing to the sampling rate constraint of the power measur-
ing devices such as WUM, the processing time of the target
algorithm execution requires to be long enough, spanning
multiple samples. Moreover, the execution duration needs
to be longer than the filter size of the trend analysis to
effectively spot synchronization patterns. In our case, the
longer processing duration is achieved by disaggregated loads
from multiple houses in a single run.

We have normalized the impact of the number of houses into
per-unit values, and the cost prediction models are effective for
the out-of-bag unseen larger number of houses in the test cases.
However, normalization of the number of processors is more
challenging, and the behavior is particular to the computing
systems. Defining the maximum parallel processing from the
system’s number of logical processors is recommended, and
including this range into the training set voids the normaliza-
tion difficulty for dedicated servers except during upgrading.
Nevertheless, the number of allocated processors can be ex-
tended easily in Cloud Virtual Machines, and retraining of the
models for the unseen number of processors is essential.

VII. CONCLUSION AND RECOMMENDATIONS

In this study, we present generic data-driven cost monitor-
ing, analyzing, and modeling approaches from system-level
instant power consumption. The proposed methods were tested
and validated on Dedicated Server and Cloud Virtual Server
systems executing a Cloud-based Online-NILM Algorithm for
real-time load disaggregation.

The study demonstrates exciting and accurate results in
analyzing and modeling the computational time and energy
expenses associated with a NILM algorithm at large load
scales from thousands of households. The study will play a
crucial role in providing relevant decision insights that ame-
liorate effective planning and deployment strategies of load
monitoring tools considering the computational energy and
processing time costs in large scale scenarios. Furthermore,
our study will be vital for encouraging the development of load
monitoring algorithms to consider computation cost efficiency
perspective besides their monitoring efficacy.

REFERENCES

[1] G. W. Hart, “Nonintrusive appliance load monitoring,” Proceedings of
the IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.

[2] A. Zoha, A. Gluhak, M. Imran, and S. Rajasegarar, “Non-intrusive load
monitoring approaches for disaggregated energy sensing: A survey,”
Sensors, vol. 12, no. 12, pp. 16 838–16 866, 2012.

[3] C. Klemenjak and P. Goldsborough, “Non-intrusive load monitoring: A
review and outlook,” arXiv preprint arXiv:1610.01191, 2016.

[4] K. C. Armel, A. Gupta, G. Shrimali, and A. Albert, “Is disaggregation
the holy grail of energy efficiency? the case of electricity,” Energy Policy,
vol. 52, pp. 213–234, 2013.

[5] H. Acar, G. Alptekin, J.-P. Gelas, and P. Ghodous, “The impact of source
code in software on power consumption,” 2016.

14

[6] G. Da Costa, J.-M. Pierson, and L. Fontoura-Cupertino, “Mastering
system and power measures for servers in datacenter,” Sustainable
Computing: Informatics and Systems, vol. 15, pp. 28–38, 2017.

[7] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A pre-
liminary study of the impact of software engineering on greenit,” in
2012 First International Workshop on Green and Sustainable Software
(GREENS). IEEE, 2012, pp. 21–27.

[8] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
“Decomposable and responsive power models for multicore processors
using performance counters,” in Proceedings of the 24th ACM Interna-
tional Conference on Supercomputing, 2010, pp. 147–158.

[9] S. Wang, H. Chen, and W. Shi, “Span: A software power analyzer for
multicore computer systems,” Sustainable Computing: Informatics and
Systems, vol. 1, no. 1, pp. 23–34, 2011.

[10] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proceedings of the 1st
ACM symposium on Cloud computing, 2010, pp. 39–50.

[11] S. Collange, D. Defour, and A. Tisserand, “Power consumption of
gpus from a software perspective,” in International Conference on
Computational Science. Springer, 2009, pp. 914–923.

[12] T. Vogelsang, “Understanding the energy consumption of dynamic
random access memories,” in 43rd Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, 2010, pp. 363–374.

[13] I. M. Murwantara and B. Bordbar, “A simplified method of measurement
of energy consumption in cloud and virtualized environment,” in Fourth
International Conference on Big Data and Cloud Computing. IEEE,
2014, pp. 654–661.

[14] I. M. Murwantara and P. Yugopuspito, “Evaluating energy consumption
in a different virtualization within a cloud system,” in 2018 4th Inter-
national Conference on Science and Technology (ICST). IEEE, 2018,
pp. 1–6.

[15] P. Bartalos and M. B. Blake, “Green web services: Modeling and
estimating power consumption of web services,” in 19th International
Conference on Web Services. IEEE, 2012, pp. 178–185.

[16] D. Molaro, H. Payer, and D. Le Moal, “Tempo: Disk drive power
consumption characterization and modeling,” in 13th International Sym-
posium on Consumer Electronics. IEEE, 2009, pp. 246–250.

[17] L. Ardito, R. Coppola, M. Morisio, and M. Torchiano, “Methodological
guidelines for measuring energy consumption of software applications,”
Scientific Programming, vol. 2019, no. 1, pp. 1–16, 2019.

[18] A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of energy
measurement approaches,” SIGOPS Oper. Syst. Rev., vol. 47, no. 3, pp.
42–49, nov 2013.

[19] J. M. Hirst, J. R. Miller, B. A. Kaplan, and D. D. Reed, “Watts up? pro
ac power meter for automated energy recording,” 2013.

[20] S. Atiewi, A. Abuhussein, and M. A. Saleh, “Impact of virtualization on
cloud computing energy consumption: Empirical study,” in Proceedings
of the 2nd International Symposium on Computer Science and Intelligent
Control, 2018, pp. 1–7.

[21] M. A. Mengistu, A. A. Girmay, C. Camarda, A. Acquaviva, and E. Patti,
“A cloud-based on-line disaggregation algorithm for home appliance
loads,” IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3430–
3439, 2018.

[22] Q. Chen, P. Grosso, K. van der Veldt, C. de Laat, R. Hofman, and H. Bal,
“Profiling energy consumption of vms for green cloud computing,” in
Ninth International Conference on Dependable, Autonomic and Secure
Computing. IEEE, 2011, pp. 768–775.

[23] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “Greenminer: A hardware based mining software
repositories software energy consumption framework,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. ACM, 2014, pp. 12–21.

[24] R. A. Giri, I. I. Staff Engineer, and A. Vanchi, “Increasing data
center efficiency with server power measurements,” Document. Intel
Information Technology. IT@ Intel White Paper, 2010.

[25] M. Dong and L. Zhong, “Self-constructive high-rate system energy
modeling for battery-powered mobile systems,” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’11, 2011, p. 335–348.

[26] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to
estimate app energy consumption,” in Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, ser.
Mobicom ’12, 2012, p. 317–328.

[27] A. A. Nacci, F. Trovò, F. Maggi, M. Ferroni, A. Cazzola, D. Sciuto,
and M. D. Santambrogio, “Adaptive and flexible smartphone power
modeling,” Mobile Networks and Applications, vol. 18, no. 5, pp. 600–
609, Oct 2013.

[28] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” in International conference on software analysis,
evolution and reengineering (SANER). IEEE, 2017, pp. 103–114.

[29] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call tracing,” in
Proceedings of the Sixth Conference on Computer Systems, ser. EuroSys
’11. ACM, 2011, pp. 153–168.

[30] T. Do, S. Rawshdeh, and W. Shi, “ptop: A process-level power profiling
tool,” 2009.

[31] M. Berges, E. Goldman, H. S. Matthews, and L. Soibelman, “Training
load monitoring algorithms on highly sub-metered home electricity
consumption data,” Tsinghua Science and Technology, vol. 13, no. S1,
pp. 406–411, 2008.

[32] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Partic: Power-aware response
time control for virtualized web servers,” IEEE Transactions on parallel
and distributed systems, vol. 22, no. 2, pp. 323–336, 2010.

[33] J. Kelly and W. Knottenbelt, “The uk-dale dataset, domestic appliance-
level electricity demand and whole-house demand from five uk homes,”
Scientific data, vol. 2, p. 150007, 2015.

[34] P. Shenavar and E. Farjah, “Novel embedded real-time nilm for electric
loads disaggregating and diagnostic,” in EUROCON 2007-The Interna-
tional Conference on Computer as a Tool. IEEE, 2007, pp. 1555–1560.

[35] M. Berges, E. Goldman, H. S. Matthews, L. Soibelman, and K. Ander-
son, “User-centered nonintrusive electricity load monitoring for residen-
tial buildings,” Journal of computing in civil engineering, vol. 25, no. 6,
pp. 471–480, 2011.

[36] S. Makonin, F. Popowich, I. V. Bajić, B. Gill, and L. Bartram, “Ex-
ploiting hmm sparsity to perform online real-time nonintrusive load
monitoring,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2575–
2585, 2015.

[37] O. Krystalakos, C. Nalmpantis, and D. Vrakas, “Sliding window ap-
proach for online energy disaggregation using artificial neural networks,”
in Proceedings of the 10th Hellenic Conference on Artificial Intelligence.
ACM, 2018, p. 7.

[38] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, “Unsupervised
disaggregation of low frequency power measurements,” in Proceedings
of the SIAM international conference on data mining. SIAM, 2011,
pp. 747–758.

[39] J. Z. Kolter and T. Jaakkola, “Approximate inference in additive factorial
hmms with application to energy disaggregation,” in Artificial Intelli-
gence and Statistics, 2012, pp. 1472–1482.

[40] O. Parson, “Unsupervised training methods for non-intrusive appliance
load monitoring from smart meter data,” Ph.D. dissertation, University
of Southampton, 2014.

[41] S. Drenker and A. Kader, “Nonintrusive monitoring of electric loads,”
IEEE Computer Applications in Power, vol. 12, no. 4, pp. 47–51, 1999.

[42] E. Patti, E. Pons, D. Martellacci, F. B. Castagnetti, A. Acquaviva,
and E. Macii, “Multiflex: Flexible multi-utility, multi-service smart
metering architecture for energy vectors with active prosumers,” in
SMARTGREENS. IEEE, 2015, pp. 1–6.

[43] J. Z. Kolter and M. J. Johnson, “Redd: A public data set for energy
disaggregation research,” in SIGKDD, vol. 25, 2011, pp. 59–62.

[44] G. Zaccone, Python parallel programming cookbook. Packt Publishing
Ltd, 2015.

[45] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intelligent Data Analysis, vol. 11, no. 5, pp.
561–580, 2007.

[46] A. Jaiantilal, Y. Jiang, and S. Mishra, “Modeling cpu energy consump-
tion for energy efficient scheduling,” in Proceedings of the 1st Workshop
on Green Computing. ACM, 2010, pp. 10–15.

[47] J. Chen, B. Li, Y. Zhang, L. Peng, and J.-k. Peir, “Statistical gpu power
analysis using tree-based methods,” in International Green Computing
Conference and Workshops. IEEE, 2011, pp. 1–6.

15

Mulugeta Weldezgina Asres is a Graduate Re-
searcher at the Control and Computer Engineering
Department of Politecnico di Torino. He accom-
plished his B.Sc. in Electrical and Computer Engi-
neering and M.Sc. in Computer Engineering at EiT-
M, Mekelle University. He conducted his Master
Thesis and Post-graduate research on AI-powered
NILM for complex systems at Midori Srl, Italy. His
research interest revolves around Data-Driven AI-
Models, Machine Learning, Deep Learning, Non-
intrusive Load Monitoring, Internet of Things and

Industry 4.0.

Luca Ardito is an Assistant Professor at the De-
partment of Control and Computer Engineering at
Politecnico di Torino, where he works in the Soft-
ware Engineering research group. He received B.Sc.,
M.Sc., and Ph.D. in Computer Engineering from
Politecnico di Torino. His current research interests
are mobile development and testing, green software,
new programming language analysis, and empirical
software engineering methodologies. He is an asso-
ciate editor of IEEE Access since November 2019,
and he is the Young Professional representative for

the IEEE Italy section since February 2020.

Edoardo Patti (M’16) is Assistant Professor at
Politecnico di Torino. He received both M.Sc. and
Ph.D. degrees in Computer Engineering at Politec-
nico di Torino in 2010 and 2014, respectively. His
research interests concern: i) Ubiquitous Computing
and Internet of Things; ii) Smart Systems, Cities and
Mobility; iii) Software architectures with particular
emphasis on infrastructure for Ambient Intelligence;
iv) Software solutions for simulating and optimising
energy systems; v) Software solutions for energy
data visualisation to increase user awareness.

