
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Owl: Congestion Control with Partially Invisible Networks via Reinforcement Learning / Sacco, Alessio; Flocco, Matteo;
Esposito, Flavio; Marchetto, Guido. - ELETTRONICO. - (2021). (Intervento presentato al convegno IEEE INFOCOM
2021 - IEEE Conference on Computer Communications tenutosi a Virtual Event nel 10-13 May 2021)
[10.1109/INFOCOM42981.2021.9488851].

Original

Owl: Congestion Control with Partially Invisible Networks via Reinforcement Learning

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/INFOCOM42981.2021.9488851

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2862067 since: 2021-09-15T15:49:41Z

IEEE

Owl: Congestion Control with Partially Invisible
Networks via Reinforcement Learning

Alessio Sacco† Matteo Flocco? Flavio Esposito? Guido Marchetto†
†Politecnico di Torino, Italy ?Saint Louis University, USA

Abstract—Years of research on transport protocols have not
solved the tussle between in-network and end-to-end congestion
control. This debate is due to the variance of conditions and
assumptions in different network scenarios, e.g., cellular versus
data center networks. Recently, the community has proposed a
few transport protocols driven by machine learning, nonetheless
limited to end-to-end approaches.

In this paper, we present Owl, a transport protocol based on
reinforcement learning, whose goal is to select the proper con-
gestion window learning from end-to-end features and network
signals, when available. We show that our solution converges to a
fair resource allocation after the learning overhead. Our kernel
implementation, deployed over emulated and large scale virtual
network testbeds, outperforms all benchmark solutions based on
end-to-end or in-network congestion control.

Index Terms—TCP, congestion control, reinforcement learning

I. INTRODUCTION

A performing congestion control protocol is fundamental
for proper network operation as it ensures telecommunication
stability, fairness in computer network resource utilization,
high throughput, and a low switch queuing delay. Although
many solutions have been proposed in the last decade, Trans-
port Control Protocol (TCP) still constitutes the overwhelming
majority of current Internet and Long Term Evolution (LTE)
communications, and the vast majority of congestion control
mechanisms are implemented on TCP [1].

Despite the wide deployment of TCP, various studies have
shown how it performs poorly in scenarios that require adapt-
ability or that departs from the original network conditions
on which it was designed in the ’70s [2]–[6]. In particular,
problems may occur in cellular and wireless networks, where
TCP misinterprets the stochastic packet losses as congestion,
hence leading to performance degradation [6]. This issue
has motivated many authors to propose innovative congestion
control approaches that follow a domain-specific design phi-
losophy, in which the design is limited to a specific network
scenario and it leverages its specific characteristics to boost
the performance. Examples are in data centers [7], [8] and
edge networks [5], [6].

The challenge of adequately updating the congestion win-
dow (cwnd) in resource-constrained networks, such as wireless
networks and IoT, is exacerbated by inherent problems arising
from their limited bandwidth, processing, and battery power,
as well as from their dynamic conditions [9]–[11]. The deter-
ministic nature of TCP is indeed more prone to cause cwnd

synchronization problems and higher contention losses, due to
node mobility that continuously modifies wireless multi-hop
paths [12], [13]. Several TCP variations (e.g., PCC [14] and
Copa [15], to mention a few) have been recently proposed
to overcome these shortcomings. Nevertheless, the fixed rule
strategies used by these solutions are often inadequate to adapt
to the rapidly changing environment.

To solve the problem of an adequate congestion window
update strategy, we present Owl, a novel transport protocol
based on reinforcement learning (RL). Differently from other
Machine Learning-based approaches for transport protocols,
we conduct online training at the source and decide the next
value of cwnd using also an in-network mechanism, when
available. Many transport protocols have been designed, with
reinforcement learning [16], [17] or without for a network-
aware solution [7], [18], [19]. The most recent solutions using
RL, however, do not exploit network intelligence fully.

An optimal cwnd update increases the throughput and
fairness while reducing the number of packets lost and delay.
Our transport protocol Owl is able to achieve these goals
by learning from several end-to-end and in-network metrics.
In particular, our contributions are summarized as follows.
We designed and implemented as a kernel module Owl1, a
new congestion control protocol that leverages partial network
knowledge to train a reinforcement learning model based on
Deep Q-Learning [20], improving the network performance
with respect to recent work [21]. The outcome of Owl model
is the next congestion window value, a crucial and volatile pa-
rameter for any reliable telecommunication. We then evaluate
our solution extensively: first, we compare Owl with other
sixteen transport implementations. Some of these solutions
were designed for wireless networks, such as Sprout [5] or
the more recent ABC [18], while others [22]–[25] were chosen
since they are widely deployed in several Linux distributions.

Our performance results (obtained using emulations with
real available traces from Verizon and T-Mobile and a de-
ployment over the GENI testbed [26]) show that Owl has
consistently bandwidth and delay improvements across sev-
eral scenarios. We also evaluate the parameters of our deep
neural network used in our reinforcement learning and tested
Owl’s fairness performance, finding that our transport protocol
behaves less aggressively than others.

1As owls that (are wise and) can see with poor light conditions, our protocol
operates with partially visible networks.

Besides, we evaluate the impact of partial network visibility,
and we demonstrate that our agent can efficiently operate with
partial or even without in-network congestion signals. Lastly,
we show that the sender can learn the optimal congestion win-
dow adjustment strategies in a variety of network deployments
and can adequately react to network changes.

The remainder of the paper is outlined as follows. Section II
presents the related work and most relevant mechanisms
we compare with. In Section III we explain our problem
formulation with reinforcement learning while Section IV
describes our protocol design and shows the rate stability
analysis. Section V summarizes our implementation, which is
then evaluated in Section VI, where we show the benefits of
our protocol. Finally, in Section VII we conclude the paper.

II. RELATED WORK

Congestion control and avoidance problems have been
widely discussed in the literature due to the great importance
in reliable data transmissions. To solve the optimal congestion
window inference problem, recent machine learning-based
algorithms have been proposed with promising results in
different network scenarios. In this section, we focus on
highlighting how these solutions differ from our protocol.
Congestion Control is a fundamental service offered by TCP,
so much so that significant improvements and variations have
been proposed over the years. A few examples are TCP
Vegas [24], Compound [27], Fast [28], BBR [25], and Data
Center TCP (DCTCP) [7]. Rather than relying on indications
of lost packets to adjust the cwnd as traditionally happens,
BBR considers RTT and average delivery rate measurements
to decide how fast to send data over the network. This
enables BBR to be resilient to the bufferbloat problem, but
it frequently exceeds the link capacity, causing excessive
queuing delays [18]. Other protocols, e.g., Compound [27]
and Fast [28], instead attempt to optimize losses, but they
rely on some predefined functions or rules to handle network
conditions.

In summary, all these solutions share the limitation of a
fixed-rule strategies, that is, their performance is challenged in
networks that require rapid adaptations. Our solution, instead,
uses a (reinforcement) learning approach to overcome this lim-
itation and predicts the best cwnd update at each transmission
event.

Recent end-to-end congestion control solutions, such as
Remy [4], PCC [14], PCC-Vivace [29], define an objective
function to optimize the process of online actions definition,
e.g., on every ACK or periodically. Remy [4], for example,
offline trains every possible network condition to find the
optimal mapping with the sender’s behavior. These mappings
are stored a-priori in a lookup table, and rely on what has been
seen and hence can accommodate new network conditions only
by recomputing the lookup table.

On the other hand, PCC [14] and PCC-Vivace [29] perform
online optimizations. For instance, PCC can rapidly adapt
to the varying conditions in the network by aggressively
searching for more accurate actions to change the sending

rate. However, these online rules are often complex and
require considerable lags in estimating all the parameters to
be accurate.

Based on a similar utility-based behavior idea, Copa [15]
employs a delay-based congestion control algorithm, by ad-
justing the cwnd depending on whether the current rate is
lower or higher than a well-defined target rate. This approach
allows converging quickly to the correct fair rates, even in the
face of significant flow churn. Our protocol also uses a utility-
bases approach, but exploiting a deep neural network to better
adapt to a specific network, leaving the utility customization
as a policy that can be tailored to more specific requirements.
Learning for Congestion Control. As a recent trend, Machine
Learning (ML) has been widely applied to various problems
arising in network operation and management [30]. We use
ML to adapt the cwnd estimation. Other approaches based
on reinforcement learning have been proposed to address this
problem. The majority of these approaches are specifically de-
signed to cope with a resource-constrained network, including
IoT [9] and WANETs [10], [12], [13], [31]; others instead
address a wider range of network architectures [4], [14], [32].
Recently, RL has permeated many congestion control mecha-
nisms, such as Aurora [21], where the previous Performance-
oriented Congestion Control (PCC) protocol was extended
with a Deep-RL approach. Our RL approach differs from
others for the agent state: we effectively combine features from
both the transport and the network layers, without significant
burdens to the Linux kernel module.
In-Network versus End-to-End Congestion Control. Sev-
eral protocols leverage the Explicit Congestion Notification
(ECN) to provide network-level feedback to end hosts. For
example, DCTCP [7] modifies the Red Early Drop thresholds
of ECN to achieve high throughput, high burst tolerance,
while keeping queues empty hence experiencing low latency.
ABC [18] instead improves on ECN by sending accelerate
and brake signals instead of merely random early drop sig-
nals, and hence more accurately adjusts the source sending
rate. As ABC, Owl also uses network-level information as
well (when available), however, our feedback comes from
a network controller, e.g., a measurement agent or an SDN
controller, that computes statistics about device utilization.
Also, Owl does not need any modifications to packets headers
or custom routing devices logic, which leads to challenging
deployments. In fact, Owl only relies upon client-side changes
and a network statistics collector, a standard operation across
multiple network scenarios. On the one hand, our network-
level feedback carries more information than a simple bit in
the TCP header. On the other hand, Owl functions properly
also without network knowledge, while ABC and other ECN-
based approaches require network knowledge to work.

III. PROBLEM FORMULATION AND REINFORCEMENT
LEARNING MODEL

The proposed congestion control algorithm behind
Owl computes the next cwnd values by leveraging statistics
gathered by the sender. In this section, we overview the

reinforcement learning model that we use and describe the
overall idea of our approach.

A. Reinforcement Learning Model

In every reinforcement learning problem [33], an agent, i.e.,
a decision-maker, tries to learn the behavior of a dynamic
system interacting with it in multiple iterations. Specifically,
at each iteration, an agent receives the current state and the
reward from the dynamic system and outputs an action that
optimizes a given objective.

Thus, state and reward are the values that the agent receives
from the system, whereas the action is the only input that the
system acquires from the agent. A reward value indicates the
success of the agent’s action decisions, and the agent learns
which actions to be selected to provide the highest accumu-
lated reward over time, i.e., the long-term revenue. Hence,
the critical feature for reinforcement learning is to perform
incentive solution searching with regards to the system reward.

Q-Learning [34] estimates the value of executing an action
from a given state. Such estimations are referred to as state-
action values, or sometimes simply Q-values, Q(s, a). This
quality function represents the quality for taking action a at
the current state s. Q-values are learned iteratively by updating
the current Q-value towards the observed reward and estimated
utility of the resulting state s′ according to:

Q(s, a) = Q(s, a)+α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
, (1)

where α ∈ [0, 1) is the learning rate that determines the
override extent of the newly acquired information to the old
one, γ ∈ [0, 1) is the discount factor that determines the
importance of future rewards, and r is the reward at time t.
In this case, the agent utilizes the highest quality function at
state s′ regarding all possible actions.

To handle the complexity of having to keep a separate state-
action pair for too many states, models that approximate the
Q-values are beneficial. To solve our congestion inference
problem, we select a Deep Q-Learning approach [20], in which
the model is a neural network parameterized by weights and
biases collectively denoted as θ.

B. Congestion Control via Reinforcement Learning

We now overview our primary components in the RL
method, starting with our considered state set, then with the
set of actions on the congestion windows, and finally, with the
utility that drives the choice of the next protocol action.
State Space. Table I summarizes the features that we selected
to build our model state space. We consider both end-to-end
statistics (features 1 to 8) and network-level statistics (features
10 and 11). Thus, the former set of features is collected at
the sender side at each time interval, any jiffy, where jiffy is
the finest time granularity on Linux systems. Instead, the last
two features represent the partial information coming from
the network (feature 10), and a parameter stating the quantity
of knowledge, as a percentage of the whole network (feature
11), respectively. For each switch under control, let Pin be the

TABLE I: The network statistics gathered for estimating the
upcoming performance.

Features of the Owl congestion window predictor

1 Time-stamp [jiffies]
2 Congestion Window Size (cwnd) [packets]
3 Round Trip Time (RTT) [ms]
4 RTT variation between two consecutive samples [ms]
5 Maximum Segment Size (MSS) [bytes]
6 Number of delivered packets
7 Packets lost during a transport session
8 Current packets in-flight
9 Number of retransmissions [packets]
10 Partial Network Knowledge (PNK) [packets]
11 Percentage of known network [%]

total number of packets received in a given time interval (one
second in our implementation), and Pout the total number of
outgoing packets. We then define diff as |Pin − Pout|. Our
Partial Network Knowledge (PNK) represents an indicator
of the known level of congestion within the network. In
particular, given a source receiving statistics or updates from
z switches on the path between a source and a destination,
PNK is computed using the following equation:

PNK = max(diff1, diff2, ..., diffz). (2)

PNK informs about the current congestion level, and conse-
quently, the loss rate occurring in the network. We choose
PNK as it is easy to compute and accessible by a vast
number of protocols and network measurement applications,
such as OpenFlow or NetFlow. Further information regarding
the network environment whereby our protocol performs best
is in Section IV-A. Nonetheless, we remark that Owl can also
be configured as an end-to-end protocol, in case the network
knowledge is hidden or impractical to obtain.

In defining our states, we also consider a history window of
k values for each chosen feature as our state. This approach
helps our algorithm to predict the network conditions ade-
quately and to adjust the congestion window accordingly. The
neural network of our deep reinforcement learning algorithm
receives a matrix N by k, where k are the historical values for
each of the N features. In our experiments, k has been set to
5 (more details in Section VI-D). We augment our state space
with a history of generic length k to help the agent’s learning.
However, we do not set this hyperparameter to a large value
since that prevents the state from growing unreasonably, and
because forgetting history faster is beneficial.
Actions. The congestion window (cwnd) is one of the per-
connection state variables that is used by TCP to limit the
amount of data a sender can transmit before receiving an ACK.
TCP was designed based on specific network conditions and
handles all packet losses as network congestion. Therefore,
TCP in wireless lossy links unnecessarily lowers its rate by
reducing the cwnd at each packet loss, negatively affecting the
end-to-end performance. Hence, we exploit an online training
algorithm based on RL to update the cwnd properly.

The selection of actions is the key to the proposed al-
gorithm’s effectiveness. The list of actions specifies how
Owl should change the cwnd in response to every packet
acknowledge. The set of acceptable congestion window values
is large and tied to the reward of the RL system. Hence, there
is no unique solution across every network condition. After an
empirical evaluation, we converged on the set that has given
us the highest utility, that is:

A = {−10,−3,−1, 0, 1, 3, 10}. (3)

We allow the agent to change the cwnd in any direction with
different intensities. The first three options reduce the size
of the congestion window with a distinct extent, whereas the
last three increase it by three different values. The last action
does nothing to the size of the cwnd, letting it remains the
same as before. We want to encourage the agent to explore
diverse ways to influence the connection by assigning different
magnitudes to the performed change. Indeed, not only the
learning agent should predict when increasing or decreasing
the cwnd, but also to what extent. For example, our algorithm
must learn when the network state suggests that a large part of
the bandwidth is unused to aggressively increment the window
size, while it must only slightly increase it when the network
approaches any congestion. Our network module starts with
an initial cwnd of 10.

Due to the opted approach, the protocol learns how to make
control decisions from experience and, thus, eliminates the
need for necessary pre-coded rules to adapt to the variety
of network environments. Finally, we converged to the action
set in Eq. 3 after having performed a substantial number of
empirical trials. Nevertheless, the action set A is a policy that
can be tailored to specific use cases, by either modifying values
of the congestion window size (as we did) or acting upon
other TCP parameters, e.g., timeout estimation or slow-start
threshold.
Utility function (RL reward). The selection of the congestion
control schema relies on a utility function that models the
application-level goal of “high throughput and few losses”. In
particular, the utility U of sender i is a function of throughput
λ and packet loss rate p, as follows:

Ui = λi − δiλi
(

1

1− pi

)
, (4)

where p ∈ [0, 1) and δ is an adjustable coefficient determining
the importance of the components. For example, a larger δ
implies that lower packet delays are preferable. The goal
of each sender i is to maximize its utility function Ui. In
what follows, we better motivate the reasons behind such an
expression.

IV. PROTOCOL DESIGN AND STABILITY ANALYSIS

In this section, we present the mechanisms composing
our protocol, whose design aims to continuously select the
next action, i.e., congestion window size, that maximizes
the value of our utility function. Our protocol evaluates the
reinforcement learning action based on the reward perceived

TCP module

State s:
RTT
Thr
Loss
…

Observe state s

Deep Neural Network

SENDER Reward r

Take action
a = new cwnd

RECEIVER

Partial Network
Knowledge

Network
Measurements

Agent

Fig. 1: Owl Overview: reinforcement learning sender’s agent
interaction with the network.

by the sender, used to select the next cwnd adjustment. We
also describe the overall procedure with particular focus on
the utility’s motivation, leading to stability.

A. Owl Protocol Design

In Figure 1, we detail the main actions performed by the
sender. The collected metrics are fed to the Neural Network,
and the protocol starts (Algorithm 1).

Algorithm 1 Owl cwnd update

1: Let S and D be the target source and destination
2: F← flow connecting S and D
3: Collect state vector s at time t for flow F
4: cwnd?(t) ← cwnd_Prediction(s, t)
5: Set cwnd to cwnd?(t)

Specifically, we collect the state of the end-to-end commu-
nication, e.g., RTT and throughput, exploiting the TCP Linux
API. Concerning the network feedback, the network measure-
ment agent computes PNK by controlling the underneath
topology, and notifies it to the sender. We argue it is not
always possible to obtain the entire path between the source
and the destination. However, even when the network feedback
is incomplete or unavailable (the neural network does not use
the in-network features), our protocol still provides valuable
results (Section VI).

Once Owl has collected such values, it selects the next
cwnd by choosing the “action” according to the Q-table.
The algorithm to predict the next cwnd value is detailed in
Algorithm 2. In particular, the algorithm avails the states,

Algorithm 2 cwnd_Prediction(s: state, t: time)

1: At time t = 0 initialize Q(s, a) = 0 and set reward r as
in Eq. (4)

2: At time t :
3: Observe r as a consequence of the last action
4: Update Q(s, a) function according to Eq. (1)
5: cwnd?(t) ← softmax(a,s,t)
6: return cwnd?(t)

actions, and reward to select the best value and update the

Q-table. The prediction of the best cwnd occurs every time a
packet is acknowledged to guarantee an adequate refresh of
the cwnd used in the congestion avoidance phase. The state
set is then updated to assure k historical values for each metric
at any interval.

B. Stability Analysis

In this subsection, we show that processes running our
protocol converge to a stable rate assignment. In particular, no
sender has the incentive to deviate its sending rate from the
strategy defined by our Owl protocol objective function, hence
reaching a Nash equilibrium. At the equilibrium condition,
we have the n-tuple of sending rates defined as (λ1, ..., λn).
Formally we have that:

Ui(λ1, ..., λi, ..., λn) > Ui(λ1, ..., x, ..., λn), (5)

for any sender i and any non-negative sending rate x, and so
the following theorem holds.

Theorem IV.1. (Stability). Consider n senders sharing a
bottleneck link, and λi to be the rate of sender i; if for every
sender i the objective function is defined by Equation 4, the
sending rates converge to a stable equilibrium. Moreover for
every sender i, we have:

λi =
C
(
n
δi
− ẑ
)

n+ 1
, (6)

where ẑ =
∑
j 6=i

1
δj

.

Proof. We need to show the existence of a Nash equilibrium,
i.e., no sender can increase its objective function value by
unilaterally changing its rate. We consider a network model
with n competing senders sharing a bottleneck link of capacity
C and a FIFO-queue. Assuming a tail drop queue eviction
policy, the loss rate function can be described as:

pi =

{
1− C∑

i λi
if
∑
i λi > C

0 otherwise
(7)

Let us denote the arrival rate in the queue by S =
∑
i λi.

Since the term 1 − C
S = S−C

S is independent of i and it is
equal for all senders, all senders should experience the same
loss rate, we denote pi simply by p. By substituting these new
terms into Equation 4, we obtain:

Ui = λi − δiλi
S

C
.

First we compute the partial derivative, ∂Ui

∂λi
, and we split

S into the two addends S = λi +
∑
j 6=i λj . Thus, for each i

yields:

∂Ui
∂λi

= 1− 2
δi
C
λi −

δi
C

∑
j 6=i

λj .

We then compute the second derivative of Ui, with respect
to the rate, and we obtain the negative quantity − 2δi

C . Hence,
the utility is concave and the Nash equilibrium is achieved
if, and only if, ∂Ui

∂λi
= 0. Next, to find the rate at which the

equilibrium condition is achieved, we introduce ẑ defined as
ẑ =

∑
j 6=i

1
δj

. Hence we have:

1− 2
δi
C
λi −

δi
C

∑
j 6=i

λj = 0

2λi +
∑
j 6=i

λj =
C

δi

The solution to the stated system of linear equations is:

λi =
C
(
n
δi
− ẑ
)

n+ 1
,

which is the desired sending rate of sender i.

V. OWL PROTOTYPE IMPLEMENTATION

Network Scenario. In designing our protocol, we considered
practical scenarios in which networks are partially unknown.
Wide-area networks may require (undesirable) cooperation and
coordination of multiple (federated) gateways, and unstable
network conditions may hide information. Part of our evalu-
ation in Section VI focuses on the performance analysis of
our protocol with such partial network knowledge, showing
that the in-network information may add value if available,
but it is not required as in other in-network congestion control
mechanisms.

To analyze and respect this partial unavailability constraint,
we designed and implemented a system in which a software-
defined network (SDN) controller acts as a measurement
collector and manages only some of the deployed (virtual)
switches. While we use an SDN controller in our implemen-
tation, our approach is not limited to this specific technology.
The controller interacts periodically with the switches to
collect statistics about the number of packets transmitted and
received. Such statistics are then used by our implementation
to learn and predict the end-to-end action to take given the
level of congestion. In our implementation, the controller
receives packets’ statistics from all switches with a (re-
configurable) sampling rate of one-second, a good trade-off
between overload and freshness of information. The controller
also runs a simplistic web server and exposes REST API to
obtain these values, which are part of the input of our RL
algorithm.
Kernel Module. The Owl module is responsible for setting
the optimal congestion window. To operate, it obtains net-
work states by communicating with a measurement agent,
for example, an SDN controller. Figure 2 shows the main
architecture components of our implementation. Our prototype
is composed of two main processes: one running in the kernel
and one in user-space. The kernel module exploits functions
included in the classical tcp cong.c to have access to the
underlying congestion control functionalities of TCP. Like any
other module, our kernel implementation can be mounted as
a pluggable congestion control algorithm. It can set and get
end-to-end transport states such as Sequence Number, ACKed
Packets, RTT, and efficiently compute the throughput.

Cwnd update logic

User Space

Controller

Communication

Trained model

Reinforcement Learning

Historical values

Application

requirements

Throughput Estimate

Prediction and

Inference Logic

Socket Interface

RTT Estimate

Netlink server

Kernel Space

Netlink clientACKed Packets

RTT

Throughput
Current cwnd

New cwnd

Fig. 2: Owl has a component that runs in the Linux kernel,
and a component that runs at user-space to collect statistics to
be used by our reinforcement learning algorithm.

The application process running in user-space collects in-
formation about the current TCP socket and uses them to
build the input matrix of a Deep Neural Network running the
reinforcement learning algorithm. The module takes actions in
line with the RL feedback and modifies the cwnd as a reaction
to events (Section III).

Storing the required states to run a reinforcement learning
algorithm and to keep communications with the network
controller can be costly at the kernel level. On the other hand,
a user-space application can leverage a more extensive set
of libraries to fit the learning algorithm’s needs. Besides, the
transmission of packets to/from the network controller could
arise issues and requires proper management without having
to switch from user-space to kernel-space. For this reason,
we implemented the network management components of our
congestion control algorithm at the user-space and marshall
current TCP socket states between user-space and kernel via
the Netlink service, commonly used for this purpose.

The reinforcement learning-based congestion controller ac-
cumulates network statistics from ACKs over a fixed period
and sends the action asynchronously in a separate thread. The
speed in retrieving data from the kernel is indeed higher than
the rapidity of the reinforcement learning processing.

VI. PROTOCOL EVALUATION

To evaluate our proposal, we tested Owl against sixteen
other transport protocols. In this section, we describe such an
evaluation scenario and our application testbed deployment,
followed by our performance results.
Evaluation Settings. To assess our congestion algorithms
in comparison with other solutions over LTE networks, we
built the services using a virtual network testbed and the
Mahimahi emulator [35], a recent cellular link emulator that
allows testing with real cellular traces from two of the largest
US telecommunication providers, Verizon and T-Mobile. The
network is emulated through namespaces, via Mininet [36].
The transmission goes through a Software-Defined Network
(SDN), where switches interact with a centralized controller
(in our implementation, we used Ryu). We also evaluate the
performance over real hosts, and we deployed Owl over the

GENI testbed [26]. Throughout our experimental campaign,
we use the utility function described in Eq. 4, where δ has
a value of 0.7. If not otherwise specified, we set a default
percentage of known paths to be 80%. To evaluate each
protocol, we average 35 experiments in which each sender-
receiver pair runs TCP iperf3 for 100 seconds.

A. Trace-Driven Emulation Results

To understand how Owl performs compared to other so-
lutions, we deployed our protocol over an emulated network
created with Pantheon [37], a well-known fairly recent testbed
developed to evaluate congestion control schemes. In par-
ticular, we compared Owl against sixteen other protocols,
divided into five categories: (i) end-to-end TCP designs:
Cubic [22], Vegas [24], BBR [25], Copa [15], PCC [14]
and its variants; (ii) end-to-end cellular, i.e., LTE protocols:
Verus [6], Sprout [5]; (iii) Machine Learning-based transport
protocols: Indigo [37] and Aurora [21]; (iv) explicit conges-
tion control: ABC [18] and (v) mixed schemes: LEDBAT [38],
SCReAM [39], WebRTC [40], Tao-VA [41]. For our LTE
evaluation settings, we use the publicly available [35] Verizon
and T-Mobile traces, with separate packet delivery for uplink
and downlink. The traces were captured directly on those
networks. These traces are also loaded on our local SDN-
based virtual network testbed. Our OpenFlow controller is only
aware of the virtual switches (instances of Open Virtual Switch
(OVS) [42]) that are connected to the SDN controller. For
in-network algorithms, such as ABC, we emulate compliant
routers as Mininet hosts that marks the packets according to
the algorithm’s logic.

Figures 3a-b shows that Owl performs efficiently in all
tested scenarios. In the case of Verizon LTE traces (Fig-
ure 3a) Owl achieves both good throughput and 95th percentile
per-packet-delay, and no other solution has shown a better
combined throughput-delay performance. Even though the RL
reward was designed to achieve high throughput and low loss
rate, we can observe that our mechanism can simultaneously
obtain a low RTT, as a consequence of the imposed utility.
Similar conclusions hold even for T-Mobile traffic (Figure 3b),
where Owl provides a desirable trade-off between throughput
and delay. It is worth noticing that none of the other algorithms
outperform Owl in both tested environments: our solution
appears to be more stable across traces.

Figure 4 shows the shortcomings of transport protocols in
use and the lack of adaptation required for a good transport
protocol. The Figure 4a represents a sample of the throughput
evolution over the Verizon LTE downlink traces for 60 sec-
onds. For the sake of clarity, we report only our comparison
to Cubic, as it is the default in many Linux implementations,
and PCC, as it one of the best performing within utility-based
approaches. Owl adapts its sending rate so as to closely match
the bottleneck link’s available bandwidth (dashed black line in
the figure). In contrast, Cubic slowly reacts to changes in the
network, and PCC partially approximates the link capacity.
Our protocol can cope with rate variations in a reactive

23456
95th %tile Q delay (ms)

0

10

20

30

40

50
T

hr
ou

gh
pu

t(
M

bp
s)

Sprout
Owl

Cubic

VegasBBR

Copa

Aurora

FillP-Sheep
Indigo

LEDBAT PCC-Allegro

ABC

SCReAM

TaoVA-100x

VerusPCC-Vivace

WebRTC

(a) Verizon LTE

20406080100
95th %tile Q delay (ms)

0

5

10

15

20

T
hr

ou
gh

pu
t(

M
bp

s)

Sprout

Owl
Cubic

Vegas

BBR Copa

Aurora
FillP-Sheep

Indigo

LEDBAT

PCC-Allegro

ABC

SCReAM
TaoVA-100x

Verus

PCC-Vivace

(b) T- Mobile LTE

6789
Packet Loss (%)

40

42

44

46

48

50

52

T
hr

ou
gh

pu
t(

M
bp

s)

Owl

Cubic

Vegas

BBR
PCC

(c) GENI Testbed.

Fig. 3: (a)-(b) LTE Trace-driven emulation. Owl vs. previous schemes (using RL or not) tested over two cellular network
traces (top-right are better). In both cases, Owl outperforms our benchmark, and has the highest fairness, on average, in both
our tested use cases (Section VI-A). (c) GENI testbed evaluation. Throughput-loss rate trade-off for kernel-level solutions
over real networks. Owl optimizes the two quantities simultaneously (Section VI-B).

0 10 20 30 40 50 60
Time, s

20

40

60

T
hr

ou
gh

pu
t,

M
bp

s

Owl
Cubic
PCC
Capacity

(a) Verizon LTE

0 20 40 60 80 100 120
Time, s

0.35

0.40

0.45

0.50

0.55

U
til

ity

Owl
Cubic
PCC
Aurora
ABC

(b) AT&T LTE

Fig. 4: Our protocol best follows the available bandwidth. (a) A 60-seconds throughput’s evolution compared to the actual
link capacity. Owl fits best the Verizon LTE trace; while, especially for Cubic, overshoots in throughput lead to large standing
queues. The curves shown have been selected for visual clarity. (b) A 120-seconds utility’s evolution. Owl guarantees an
adaptive response to the network dynamic changes.

manner and closely approximates the desired behavior by
learning the optimal action.

This result is also confirmed in Figure 4b where we plot the
utility (Eq. 4) obtained with different algorithms over AT&T
LTE downlink. This time, we compare against ABC [18] as
it is the most representative of explicit congestion control and
Aurora as a novel RL-based congestion control algorithm.
Likewise, we can observe how Owl regularly provides a higher
utility than the benchmarks over time. This is due to the ability
of the framework to learn the optimal behavior during training
and then react efficiently during network dynamics. We can
also observe how Aurora and Cubic fail to promptly react to
the events.

Next, we discuss our experiments regarding the impact
of the required network state knowledge that Owl needs to
train the RL system effectively. Figures 5 display the (a)
throughput and the (b) RTT, when different transport protocols
run over a network composed of 20 nodes emulated on
our local Mininet virtual network testbed. Specifically, we
compare against Cubic as a reference end-to-end congestion

control, Aurora, as a reference RL-based congestion control,
and ABC, as a reference in-network control. The performance
of Cubic and Aurora are not affected by the lack of in-network
knowledge since they are both end-to-end congestion control
algorithms. On the other hand, ABC performs worse than Owl
when the number of ABC-compliant routers is relatively low.
Our results validate that the value of PNK is beneficial to
the algorithm, but our protocol works even as a pure end-to-
end strategy. Our measurements reveal that even when less
than 50% of the switches are utilized to collect statistics,
our solution outperforms both end-to-end approaches (like
Cubic) and novel in-network protocols (like ABC). On the
other hand, if a partial network knowledge (more than 50%) is
available, Owl drastically speeds up the transmission in terms
of throughput and reduces latency. The worst result occurs
approximately when half of the devices are controlled, as
the agent cannot assign the proper importance to the com-
ing information, resulting in occasionally misleading values.
Nonetheless, even though in this scenario the information does
not help improve the overall performance, Owl has results that

0 10 25 40 50 80 100
Known Network (%)

20

25

30
T

hr
ou

gh
pu

t,
M

bp
s

Owl
ABC

Aurora
Cubic

(a)

0 10 25 40 50 80 100
Known Network (%)

0

1

2

3

4

R
T

T,
s

Owl
ABC

Aurora
Cubic

(b)

5 10 15 20 25 30
Number of switches

30

40

50

60

T
hr

ou
gh

pu
t(

M
bp

s)

Owl-100
Owl-0
ABC

Cubic
Aurora

(c)

Fig. 5: Network Knowledge Impact on Performance. (a) Throughput and (b) RTT of Owl protocol for increasing percentage
of known network. Somehow surprisingly, the highest performance gaps with respect to other algorithms are obtained when the
percentage of network knowledge is either low or very high. (c) Throughput performance with or without network knowledge
averaged over different network topologies and increasing number of informing switches.

are comparable to other protocols.
Throughput Performance with respect to network size.

In this experiment we compare Owl against a few repre-
sentative protocols as we increase the number of informing
switches over randomly generated topologies, i.e., links are
randomly generated while we fix the network size. The link
capacity is also uniformly distributed at random between 50
and 100 Mbps. We are interested in assessing the impact
of the network size on our congestion control algorithm. To
this aim, we compare the perceived throughput when our
solution has no in-network congestion feedback, and when
the network is as informative as it can be, i.e., the in-network
feedback arrives from 100% of the switches. In Figure 5c,
these two Owl policies are denoted with Owl-0, namely,
zero-percent of total switches are communicating with the
source, and Owl-100, respectively. It is notable how a full
network awareness is beneficial and allows a less prominent
(and inevitable) performance degradation when an increasing
number of switches compose an end-to-end path. However,
we note how even Owl-0 provides better results than recent
end-to-end congestion control solutions based on RL [21].

B. Evaluation over the GENI Testbed
To establish the practicality of our approach and understand

how Owl performs over wide-area Internet paths with real
cross-traffic and real packet schedulers, we deploy our solution
on the GENI testbed. In these experiments, we evaluate how
congestion control schemes behave across two federated GENI
aggregates. We measure the performance of each schema
when competing with another flow to accentuate the possible
congestion occurrences. To evaluate our protocol in these
realistic settings, we average the throughput and delay over
60-second flows, while the senders share a bottleneck link
with 3ms RTT and a bandwidth of 100 Mbps.

We summarize in Figure 3c the performance of our pro-
tocol when compared to other protocols available on Linux.
Our prototype evaluation deployed in real settings match our
emulation results: our implementation can jointly achieve high
throughput and a low loss rate when compared to other
solutions, balancing the two components effectively.

Cubic Vegas Owl Reno BRR
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
vg

(T
hr

/I
de

al
T

hr
)

Ideal
Scheme under test’s throughput
Owl’s throughput

(a)

Cubic Vegas Owl Reno BRR
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
vg

(T
hr

/I
de

al
T

hr
)

Ideal
Scheme under test’s throughput
Cubic’s throughput

(b)

Fig. 6: Fairness Analysis. (a) Different schemes utilization
and how they share the available bandwidth. The ideal fairness
value is 1. Owl is fair, especially when used in conjunction
with other Owl users. (b) We then compared Cubic’s fairness
to assess improvement over existing solutions.

C. Owl Fairness and Friendliness

In this subsection we evaluate the fairness among several
flows all running Owl and competing with each other; we

0 5 10 15 20
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6
M

ea
n

E
pi

so
de

R
ew

ar
d

k = 0
k = 1
k = 2
k = 3
k = 5
k = 10

(a) History length, k

128-
128

256-
128

512-
256

256-
256-
128

512-
512-
256

0.0

0.1

0.2

0.3

0.4

0.5

R
ew

ar
d

(b) Neurons per layer

0.1 0.5 0.7 1 1.5 2
Requests Epoch Length, s

0.0

0.1

0.2

0.3

0.4

0.5

R
ew

ar
d

(c) Requests Interval Period

Fig. 7: Sensitivity analysis used to justify the choice of our default algorithm parameters; (a) k historical values of feature are
used to make the next cwnd prediction; (b) Neurons per layer for Owl’s neural network configuration; (c) Time interval for
requests of network devices metrics.

also assess Owl’s friendliness, i.e., fairness when a Owl flow
compete against different protocols, such as Cubic.

We set up an experiment where the network has a bottleneck
link of 30 ms RTT and a bandwidth of 50 Mbps. First,
we evaluate the friendliness against all congestion control
solutions that are installed on Linux by default (Figure 6a).
We compare the average ratios between throughput values
achieved by each flow with respect to their ideal fair share. We
found that Owl has a higher level of friendliness when multiple
flows run Owl and when Owl competes with other transport
protocols (Figure 6a.) While perfect friendliness does not hold
for any of the tested schemes, we note how Cubic (that has best
throughput-delay performance among its Linux counterparts),
has a worse level of friendliness than Owl (Figure 6b). Second,
from the same graphs, we can also derive the level of fairness
of our solution compared to Cubic’s one. It is easy to conclude
that Owl results in a higher level of fairness.

D. Sensitivity Analysis

In this section, we report our experimental results conducted
to establish the best parameter set in our congestion control
algorithms and discuss their sensitivity. In particular, we focus
on the Neural Network (NN)’s shape, the parameter k of the
algorithm (for how long do we need to remember history for
a more accurate cwnd prediction), and the frequency at which
we should collect in-network measurements. We evaluate how
these values affect performance over 30 trials on the GENI
testbed. First, we examine the impact of the length of the
action history in the augmented state space. Figure 7a shows
the mean reward per episode obtained at training for varying
values of the state history length k, when each episode entails
500 steps. We can observe that models with k = 0 or 1 struggle
to learn, while the best performance is attained with k = 5
with diminishing returns beyond that value of k.

Further, we also run the same experiment with various
Neural Networks to analyze how this choice may affect
performance. Figure 7b exhibits the reward measured during
the RL testing phase for the following Neural Networks

configurations: (a) two layers comprised of 128 neurons each,
(b) two layers with 256 and 128 neurons respectively, (c) 512
and 256 neurons, (d) three layers with 256, 256, and 128
neurons, (e) 512, 512, and 256 neurons. These results suggest
that a two-layer neural network architecture works well, and
that the combination 512-256 ((c)) provides the best reward.
Hence, we empirically set this configuration as the default of
our system, but we realize that this configuration is a policy.

Finally, we investigate the selection of the most valuable
measurement request interval (Figure 7c). We note that, when
the network measurements are gathered every 1-second, the
reward is at its maximum. This value also guarantees the
freshness of data without incurring in too frequent updates.
We leave the analysis of alternatives approaches to further
reduce training time as an interesting open question. We also
plan to investigate more deeply the tolerated latency between
the sender and the network measurement agent that guarantees
an optimal congestion control.

VII. CONCLUSION

In this paper, we presented Owl, a reinforced learning-based
transport protocol designed to learn from end-to-end and in-
network signals. Our evaluation, with a kernel implementation
and real traces, confirms that Owl is effective under various
network conditions, and it can speed up transmissions and
reduce delays and loss rate better than most existing protocols
in the vast majority of the tested scenarios.

We also analyzed the stability condition of Owl and eval-
uated its fairness demonstrating that it is less aggressive than
other performant solutions when it competes with other pro-
tocols and when it competes with itself across other sources.
Finally, we showed how taking into account information
involving the network layer leads to increasingly better results,
especially when at least 50% of the network congestion state
is available at the source.

ACKNOWLEDGEMENT

This work has been partially supported by Comcast and by
NSF Awards CNS-1836906 and CNS-1908574.

REFERENCES

[1] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing tcp’s
retransmission timer,” RFc 2988, November, Tech. Rep., 2000.

[2] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
O. Spatscheck, “An in-depth study of lte: effect of network protocol and
application behavior on performance,” in ACM SIGCOMM Computer
Communication Review, vol. 43. ACM, 2013, pp. 363–374.

[3] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling bufferbloat in
3g/4g networks,” in Proceedings of the 2012 Internet Measurement
Conference. ACM, 2012, pp. 329–342.

[4] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” ACM SIGCOMM Computer Communication Re-
view, vol. 43, no. 4, pp. 123–134, 2013.

[5] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks,” in 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), 2013, pp. 459–471.

[6] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg, “Adaptive
congestion control for unpredictable cellular networks,” in ACM SIG-
COMM Computer Communication Review, vol. 45. ACM, 2015, pp.
509–522.

[7] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, 2010, p. 63–74.

[8] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in ACM SIG-
COMM Computer Communication Review, vol. 41. ACM, 2011, pp.
50–61.

[9] W. Li, F. Zhou, W. Meleis, and K. Chowdhury, “Learning-based
and data-driven tcp design for memory-constrained iot,” in 2016 In-
ternational Conference on Distributed Computing in Sensor Systems
(DCOSS). IEEE, 2016, pp. 199–205.

[10] B. V. Ramana, B. Manoj, and C. S. R. Murthy, “Learning-tcp: A novel
learning automata based reliable transport protocol for ad hoc wireless
networks,” in 2nd International Conference on Broadband Networks,
2005. IEEE, 2005, pp. 484–493.

[11] A. Sacco, F. Esposito, and G. Marchetto, “Rope: An architecture for
adaptive data-driven routing prediction at the edge,” IEEE Transactions
on Network and Service Management, vol. 17, no. 2, pp. 986–999, 2020.

[12] B. V. Ramana and C. S. R. Murthy, “Learning-tcp: a novel learning
automata based congestion window updating mechanism for ad hoc
wireless networks,” in International Conference on High-Performance
Computing. Springer, 2005, pp. 454–464.

[13] V. Badarla and C. S. R. Murthy, “Learning-tcp: A stochastic approach for
efficient update in tcp congestion window in ad hoc wireless networks,”
Journal of Parallel and Distributed Computing, vol. 71, no. 6, pp. 863–
878, 2011.

[14] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “Pcc: Re-
architecting congestion control for consistent high performance,” in 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), Oakland, CA, 2015, pp. 395–408.

[15] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018, pp. 329–342.

[16] Y. Kong, H. Zang, and X. Ma, “Improving tcp congestion control with
machine intelligence,” in Proceedings of the 2018 Workshop on Network
Meets AI & ML, 2018, pp. 60–66.

[17] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis, “Qtcp: Adaptive
congestion control with reinforcement learning,” IEEE Transactions on
Network Science and Engineering, vol. 6, no. 3, pp. 445–458, 2018.

[18] P. Goyal, A. Agarwal, R. Netravali, M. Alizadeh, and H. Balakrishnan,
“ABC: A simple explicit congestion controller for wireless networks,”
in 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), 2020, pp. 353–372.

[19] S. Floyd, “Tcp and explicit congestion notification,” ACM SIGCOMM
Computer Communication Review, vol. 24, no. 5, pp. 8–23, 1994.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[21] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
International Conference on Machine Learning, 2019, pp. 3050–3059.

[22] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” ACM SIGOPS operating systems review, vol. 42, no. 5, pp.
64–74, 2008.

[23] J. C. Hoe, “Improving the start-up behavior of a congestion control
scheme for tcp,” ACM SIGCOMM Computer Communication Review,
vol. 26, no. 4, pp. 270–280, 1996.

[24] L. S. Brakmo and L. L. Peterson, “Tcp vegas: End to end congestion
avoidance on a global internet,” IEEE Journal on selected Areas in
communications, vol. 13, no. 8, pp. 1465–1480, 1995.

[25] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5, pp.
20–53, 2016.

[26] Geni, Exploring Networks of the Future. [Online]. Available:
https://www.geni.net/

[27] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound tcp approach
for high-speed and long distance networks,” in Proceedings IEEE
INFOCOM 2006. 25TH IEEE International Conference on Computer
Communications. IEEE, 2006, pp. 1–12.

[28] C. Jin, D. X. Wei, and S. H. Low, “Fast tcp: motivation, architecture,
algorithms, performance,” in IEEE INFOCOM 2004, vol. 4. IEEE,
2004, pp. 2490–2501.

[29] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “Pcc vivace: Online-learning congestion control,” in 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), 2018, pp. 343–356.

[30] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. Caicedo Rendon, “A comprehensive survey on
machine learning for networking: Evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9, 05
2018.

[31] H. Jiang, Y. Luo, Q. Zhang, M. Yin, and C. Wu, “Tcp-gvegas with
prediction and adaptation in multi-hop ad hoc networks,” Wireless
Networks, vol. 23, no. 5, pp. 1535–1548, 2017.

[32] V. Badarla and C. Siva Ram Murthy, “A novel learning based solution
for efficient data transport in heterogeneous wireless networks,” Wireless
Networks, vol. 16, no. 6, pp. 1777–1798, 2010.

[33] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[34] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[35] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan, “Mahimahi: Accurate record-and-replay for http,”
in 2015 USENIX Annual Technical Conference (USENIX ATC 15), 2015,
pp. 417–429.

[36] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in 2014 IEEE Colombian Conference on Communications
and Computing (COLCOM). IEEE, 2014, pp. 1–6.

[37] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein, “Pantheon: the training ground for internet congestion-
control research,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 731–743.

[38] S. Shalunov, G. Hazel, J. Iyengar, M. Kuehlewind et al., “Low extra
delay background transport (ledbat),” in RFC 6817, 2012.

[39] I. Johansson, “Self-clocked rate adaptation for conversational video in
lte,” in Proceedings of the 2014 ACM SIGCOMM workshop on Capacity
sharing workshop, 2014, pp. 51–56.

[40] A. Bergkvist, D. C. Burnett, C. Jennings, A. Narayanan, and B. Aboba,
“Webrtc 1.0: Real-time communication between browsers,” Working
draft, W3C, vol. 91, 2012.

[41] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, “An experi-
mental study of the learnability of congestion control,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 479–490, 2014.

[42] N. Networks, “Open vswitch: An open virtual switch,” 2020. [Online].
Available: http://www.openvswitch.org/

