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Abstract—Magneto-Inertial Measurement Units 
(MIMUs) are a valid alternative tool to optical 
stereophotogrammetry in human motion analysis. The 
orientation of a MIMU may be estimated by using sensor 
fusion algorithms. Such algorithms require input 
parameters that are usually set using a trial-and-error 
(or grid-search) approach to find the optimal values. 
However, using trial-and-error requires a known 
reference orientation, a circumstance rarely occurring 
in real-life applications. In this paper, we present a way 
to suboptimally set input parameters, by exploiting the 
assumption that two MIMUs rigidly connected are 
expected to show no orientation difference during 
motion. This approach was validated by applying it to 
the popular complementary filter by Madgwick et al. and 
tested on 18 experimental conditions including three 
commercial products, three angular rates, and two dimensionality motion conditions. Two main findings were 
observed: i) the selection of the optimal parameter value strongly depends on the specific experimental conditions 
considered, ii) in 15 out of 18 conditions the errors obtained using the proposed approach and the trial-and-error were 
coincident, while in the other cases the maximum discrepancy amounted to 2.5 deg and less than 1.5 deg on average. 

Index Terms—MIMU, filter parameter, wearable sensors, gait analysis 

 

 

Glossary 

The main acronyms and definitions used in the paper are 

summarized below for convenience. 

 

• MIMU: Magneto-Inertial Measurement Unit 

• LCS: Local Coordinate System 

• GCS: Global Coordinate System 

• SP: Stereo-photogrammetric System 

 

• Absolute orientation: the orientation of the LCS of a 

system with respect to its GCS 

• Absolute orientation error: the difference between the 

orientation of the LCS of a MIMU computed by a sensor 

fusion filter and its actual orientation computed by the optical 

reference (SP) 

• Relative orientation difference: the orientation difference 

between the LCSs of two MIMUs both computed by a sensor 

fusion filter. 
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I.  Introduction 

NSTRUMENTED movement analysis is used to provide a 

quantitative kinematic description of the locomotor apparatus 

in subjects with and without motor impairments [1]. Optical 

stereo-photogrammetry (SP) is widely accepted as the gold 

standard for human movement analysis applications; however, 

SP systems are expensive, and their use generally limited to 

paradigmatic motor tasks performed in motion analysis 

laboratories. 

In recent years, the use of low-cost Magneto and Inertial 

Measurement Units (MIMUs) in movement analysis has gained 

traction thanks to some of their remarkable features. 

Miniaturized MIMUs integrate a triaxial accelerometer, a 

triaxial gyroscope and a triaxial magnetometer in a small 

device, they can be used to record movement data both indoors 

and outdoors and are inexpensive. Nonetheless, some 

limitations must be considered when MIMUs are used for 

human movement applications [2]. Whereas, specific 
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acceleration and angular velocities can be directly measured, 

the absolute orientation of a MIMU can be only estimated by 

combining the accelerometer, gyroscope and magnetometer 

readings [3]. This sensor fusion process is typically performed 

in two steps. The first step involves the time integration of the 

differential kinematic equation, which links the orientation 

update with the angular velocity, to obtain a first approximation 

estimate of the orientation change. The resulting drift, caused 

by the integration of the slow-varying bias affecting the 

gyroscope readings, is then corrected by using the 

accelerometer and magnetometer data which provide a gyro-

free estimate of the absolute orientation. The accelerometer is 

used for estimating the inclination by sensing the Earth’s 

gravity in its local coordinate frame, whereas the magnetometer 

can be employed to estimate the orientation of the MIMU with 

respect the Earth’s magnetic North, acting as a compass. 

However, the inclination estimate is accurate only when the 

MIMU is stationary, since when the MIMU is in motion, the 

accelerometer signals are the result of the combination of 

gravity and MIMU’s acceleration and the effect cannot be 

separated unless additional information are used. Moreover, the 

heading information estimated from the magnetometer output 

may be corrupted by the magnetic field distortions, which may 

arise from the surrounding metallic objects and electric 

appliances, therefore limiting its indoor use. Finally, electronics 

noise of the MIMU sensors, misalignment, non-orthogonality 

of the sensor axes, sensitivity to changes in temperature, further 

affect the accuracy of the estimates [4]. 

To compensate and minimize the effects of the various 

sources of errors, several sensor fusion algorithms for 

orientation estimate, from both Kalman and complementary 

filter families, have been designed in the last two decades [5]–

[19]. Recently, also machine and deep learning approaches 

have been proposed to estimate the orientation [20], [21]. In 

order to work properly, each sensor fusion algorithm requires 

the tuning of the values of a given number of parameters. It has 

been demonstrated that the specific choice of the parameters 

values could greatly affect the orientation estimate accuracy 

[21], [22]. Ludwig and Burnham in [23] stated that the 

algorithm from Mahony [13] exhibited good results (i.e. 1 deg 

for inclination and 4.2 deg for heading) as long as the optimum 

parameter set (i.e. the values which provide the lowest absolute 

errors) was used, and this set appeared to be unique to each data 

set or type of motion. It is widely recognized that a major 

problem when implementing any sensor fusion algorithms is to 

define the most suitable values for the parameters required [2], 

[21]–[26]. In fact, effective parameter values selection depends 

on different intrinsic and extrinsic factors; among which the 

most important are the type and amplitude of motion (which are 

reflected in the magnitude of the body accelerations) [12], [22], 

[27], [28], sensors noise characteristics [15], sensor fusion 

algorithm convergence speed [29], and ferromagnetic 

disturbances [12]. Recent literature suggests that no well-

established solutions for the definition of the parameter values 

have been found yet [2], [23], [26], [30]. From a practical point 

of view, “appropriate” set of values are commonly chosen 

either following the suggestions provided by the proposers of a 

sensor fusion algorithm in their original implementations based 

on their dataset or by minimizing the overall errors between the 

estimated and error-free orientation provided by a gold standard 

technique [18], [30]. The latter approach, also known as trial-

and-error (or grid search), was also adopted by Madgwick and 

colleagues in [15]. Unfortunately, the trial-and-error 

approaches are time-demanding, require a good level of 

expertise, and do not guarantee for generalization. In a recent 

paper, Ludwig and Jiménez proposed a genetic algorithm to 

find the parameter value to optimally weight the orientation 

computed from the gyroscope and from accelerometer-

magnetometer [25]. Even in that case, the optimization was 

performed by exploiting the orientation reference acquired from 

the proprietary Xsens filter which should rather be considered 

a silver standard. In addition, also the neural network proposed 

by Seel et al. was trained using a marker-based optical ground-

truth [21]. 

In this study, we proposed an original approach for 

suboptimal parameter values identification designed to work 

without relying on any reference data. The approach assumes 

that two MIMUs rigidly connected are expected to show no 

orientation difference during motion. This feature may be 

convenient when developing MIMU-based methods for 

monitoring human movement outside the laboratory. The 

validity of the proposed “rigid-constraint” approach was tested 

and assessed on the popular open source complementary filter 

(MAD) by Madgwick and colleagues [15], which requires to set 

only one parameter and using the orientation provided by a SP 

system as gold standard. The proposed approach was tested 

under different experimental scenarios by varying the 

commercial product employed (Xsens, APDM, Shimmer), the 

angular rate (slow, medium, fast), and the motion 

dimensionality (2D vs 3D). We hypothesized that different 

values of the filter parameter values would be most appropriate 

for different experimental scenarios, as already anticipated by 

Mahony and Ricci in [13] and [2], respectively. 

 

II. MATERIALS AND METHODS 

A. Experimental Set-Up 

To test the robustness of the proposed approach to different 

sensor noise characteristics, we selected three different 

commercial MIMUs: Xsens - MTx, APDM - OPAL, and 

Shimmer Sensing - Shimmer3. Two MIMUs for each product 

were aligned on a wooden board (Fig.1). All lines were drawn 

using a T-square to ensure a high accuracy in the MIMU and 

marker positioning. The alignment error due to orthogonal 

tolerance of the instrument was estimated to be lower than 0.2 

deg. Relative distance between MIMUs was 50 mm. The board 

was also equipped with eight reflective spherical markers (dia 

= 14 mm, minimum inter-distance of 85 mm). Three markers 

positioned centrally on the board were used to define the SP 

Local Coordinate System (LCS) aligned with the MIMUs LCS. 

Marker redundancy was exploited to minimize the effects of the 

stereo-photogrammetric errors on the orientation estimation by 

means of the Singular Value Decomposition technique (SVD) 

[31]. A Vicon T20 (software Nexus 2.7) SP with 12 cameras 

was used to obtain the gold standard orientation. One force 

platform (AMTI, sampling frequency = 1000 Hz) integrated 

with the Vicon system was used to synchronize MIMUs and SP 

system by generating a series of mechanical shocks. 
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Fig. 1.  Board equipped with six MIMUs (relevant LCS in blue) and the 
eight reflective markers. The three central markers were used to define 
the SP system LCS (in green). Board axes (in red) are coincident with 
MIMUs and SP system LCSs. 

B. Experimental Protocol 

To limit the temperature effects on the sensor readings, a ten-

minute instrument warm-up was carried out before 

measurement. Measures were performed in static and dynamic 

conditions. The static measure consisted in a 60-second 

acquisition with the board fixed horizontally on an aluminum 

tripod positioned over the force platform. The dynamic 

recordings consisted in a sequence of rotations of the board. An 

operator moved the board to manually change its orientation, 

first by rotating it about the three axes (x, y, x) one at a time 

from 0 to 180 degrees and back to 0 for five times (2D motion) 

and then by performing a free rotation to span the three 

rotational degrees of freedom simultaneously. The duration of 

the 3D movements was approximatively the same as that of 2D. 

The board was then repositioned on the tripod for 60 s. The 

board was hit at the beginning and at the end of the recording 

for synchronization purposes. The protocol was executed at 

three different angular rate conditions (whose rms values were 

assessed in post processing): slow (rms(𝜔) = 120 deg/s for a 

total of 70 s), medium (rms(𝜔) = 260 deg/s for a total of 45 s), 

and fast (rms(𝜔) = 380 deg/s for a total of 30 s). The 

experiments were conducted at about 20°C in an approximately 

1 m3 volume. Data from Xsens (MT Manager Version 1.7) and 

Shimmer (Consensys v.1.5.0) systems were recorded at 100 Hz, 

whereas data from OPAL (Motion Studio Version 

1.0.0.201712300) were recorded at 128 Hz. Marker trajectories 

were recorded at 100 Hz. The full processed MIMU dataset 

together with the SP orientation (computed as described in 

section II.E) and the videos have been uploaded on IEEE 

DataPort at http://dx.doi.org/10.21227/b23b-rx94. This 

protocol was designed to explore both 2D and 3D motions. The 

assessment of planar movements is of particular interest in gait 

analysis as leg motion mainly occurs in the sagittal plane. 

Multi-axial motions are usually encountered when assessing 

upper limb movements during functional activities [32]. 

 

C. MIMU-based Orientation Algorithm 

The “rigid-constraint” approach for determining the 

parameter values was applied and tested on the MAD sensor-

fusion filter proposed by Madgwick and colleagues [15]. The 

MAD algorithm belongs to the complementary filter (CF) 

family: the orientation obtained from the gyroscope readings is 

fused in the frequency domain with that computed from 

accelerometer/magnetometer readings according to their 

complementary spectral characteristics. A high-pass filter is 

adopted to reduce the effect of the slow-varying bias affecting 

the gyroscope, whereas the high-frequency noise which 

corrupts the accelerometer and magnetometer is low-pass 

filtered. The cut-off frequency value must be the same for both 

filters and represents a trade-off between the two preserved 

bandwidths [18]. The final orientation is the weighted sum of 

the two filtered signals. The CF, in general, does not include 

any statistical description of the noise to be considered into the 

algorithm model. 

MAD addresses the problem of the orientation estimate in the 

quaternion form instead of orientation matrix or Euler angles, 

because it has a lower computational demand and it allows to 

avoid singularities such as the Gimbal Lock [30]. The 

quaternion is a four-terms parametrization, given an angle of 

rotation θ and the rotation axis 𝒏 = [𝑛𝑥,𝑛𝑦,𝑛z]𝑇 around which the 

rotation occurs; accordingly, MAD expressed the orientation of 

the Global Coordinate System (GCS), defined to have one axis 

aligned with the gravity and one to the magnetic North LCS 

with respect to the LCS, as in (1): 

 

𝒒𝐺𝐶𝑆
𝐿𝐶𝑆 = [𝑐𝑜𝑠 (

𝜃

2
) , −𝑛𝑥𝑠𝑖𝑛 (

𝜃

2
) , −𝑛𝑦𝑠𝑖𝑛 (

𝜃

2
) , −𝑛𝑧𝑠𝑖𝑛 (

𝜃

2
)] (1) 

 

The first step of any sensor fusion algorithm involves the 

numerical integration of the angular velocity over time to obtain 

the change of orientation. The kinematic equation relating the 

angular velocity ω = [ω𝑥, ω𝑦, ωz] at time t, expressed in the LCS 

of a moving body, and the temporal derivative of the orientation 

𝑞̇ω,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆  is presented in (2): 

𝒒̇ω,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆 =  

1

2
( 𝒒𝑡−1𝐿𝐶𝑆

𝐺𝐶𝑆 )  ⊗ [0 𝛚𝑡], (2) 

where 𝒒𝑡−1𝐿𝐶𝑆
𝐺𝐶𝑆  is the orientation estimated at the previous time-

step, and ⊗ represents the mathematical operator for 

quaternion multiplication. The quaternion describing the 

change of orientation 𝒒𝜔,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆  can be computed according to (3) 

under the two hypotheses of a constant angular velocity within 

sampling period ∆𝑡, and of a sufficiently small ∆𝑡 (first order 

approximation): 

 

http://dx.doi.org/10.21227/b23b-rx94
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𝒒ω,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆 =  𝒒𝑡−1𝐿𝐶𝑆

𝐺𝐶𝑆 +  𝒒̇ω,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆  ∆𝑡. (3) 

 

Time-integration errors affecting 𝒒ω,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆  due to the 

gyroscope bias can be corrected using a quaternion 𝒒∇,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆  

computed with gradient descent algorithm based on the 

accelerometer and magnetometer readings. In particular, the 

magnetometer readings are projected on the horizontal plane 

and then used to estimate the heading component of the 

orientation (the rotation around the MIMU’s LCS z-axis, also 

known as yaw angle). In this way, the ferromagnetic 

disturbances could affect only the heading without influencing 

the estimate of the attitude (the inclination of the MIMU, also 

jointly known as the combination of roll and pitch angles). 

The fusion process between 𝒒ω,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆  and its correction 

quaternion 𝒒∇,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆  gives 𝒒𝑡𝐿𝐶𝑆

𝐺𝐶𝑆  (the orientation at the current 

time-step) and it is governed by the weighting factor β as 

follows: 

𝒒𝑡𝐿𝐶𝑆
𝐺𝐶𝑆 =  𝒒ω,𝑡𝐿𝐶𝑆

𝐺𝐶𝑆 − 𝛽 𝒒∇,𝑡𝐿𝐶𝑆
𝐺𝐶𝑆 . (4) 

  

A larger value of β gives more weight to the orientation 

computed from the accelerometer and magnetometer, so as to 

limit the orientation drift; however, this makes the resulting 

orientation more sensitive to body acceleration and 

ferromagnetic disturbances. It has to be said that in MAD it is 

not possible to decouple the weight given to the contribution 

from the accelerometer and magnetometer, as opposed to other 

works (e.g. [14] and [18]) where the two contributions are 

weighted by dedicated parameters. The algorithm code can be 

found in the open source MATLAB formulation made available 

by Madgwick et al. (at https://x-io.co.uk/open-source-imu-and-

ahrs-algorithms/ last accessed September, 9th 2019). 

 

D. Rigid-Constraint Approach for The Identification of 
The Suboptimal Parameter Value 

The purpose of this section is to describe a method, and the 

underlying assumptions, for finding a suitable value of β 

starting from the orientation of two aligned MIMUs without 

using the ground-truth data. 

In absence of errors, when motion data is recorded from two 

aligned MIMUs attached to the same rigid body at a relative 

distance 𝒓 (the distance between the relevant LCS origins), no 

orientation difference would be observed between the two 

MIMUs throughout the motion. If the value of β that minimizes 

the relative orientation difference between two MIMUs during 

the recorded motion, also guarantees small absolute orientation 

errors then the same value for β could be used without requiring 

any orientation reference to be available. 

The hypothesis relies on the assumption that the sources of 

orientation errors which affect the sensors embedded in two 

different MIMUs are different. In the following paragraphs this 

hypothesis will be discussed separately for two gyroscopes, two 

accelerometers, and two magnetometers. 

In this regard, it is well known that low-cost MEMS 

gyroscopes are affected by non-stationary bias and can exhibit 

non-negligible run-to-run changes [33],[34] due to the fact that 

variations due to temperature changes are not completely 

compensated for. The bias corrupting the gyroscope readings 

may be defined as the gyroscope output in the absence of 

motion [35] and its integration leads to an orientation drift 

which grows unbounded. To limit the variation of the 

gyroscope bias due to non-linear temperature influence, it is 

recommended to perform a sensor warm-up prior to 

experiments [22], [33], [36]–[38]. Another effective solution is 

to estimate the bias during a static trial just before the 

experiments (especially if these experiments need to be 

repeated at intervals of few hours), and subtract it from the 

gyroscope readings during motion [18], [30]. Unfortunately, 

gyroscope bias is not stationary, and some residual bias cannot 

be eliminated this way. It is however reasonable to assume the 

residuals of two similar gyroscopes to be independent and 

uncorrelated sources of error, being mounted on different chips, 

with different sensing elements, read-out circuits and signal 

conditioning circuits [39].  

As previously mentioned, the complementary information 

provided by the accelerometer and the magnetometer are used 

to compensate for the drift generated during the angular 

velocity integration. However, within the CF framework, the 

accelerometer provides a reliable estimate of the MIMU 

inclination (pitch and roll) only in static conditions. 

Specifically, the accelerometer measures the specific force (𝒂𝒔) 

which is the difference between the coordinate acceleration (𝒂) 

and gravity vectors (𝒈), as reported in (5).  

 

𝒂𝒔 =  𝒂 − 𝑅( 𝒒𝐺𝐶𝑆
𝐿𝐶𝑆 ) 𝒈𝐺𝐶𝑆 . (5) 

 

Hereinafter, all quantities are expressed in the sensor LCS 

(superscripts are omitted for the sake of brevity), except for 𝒈 

which is expressed in the GCS, as stated by the superscript in 

(5). It is worth noting that during movement 𝒂 and the 

projection of 𝒈 cannot be separated using accelerometer 

measurements only. 

Considering two accelerometers attached on the same rigid 

body at a distance 𝒓 (Fig.2) 

 
Fig. 2.  Two accelerometers attached on the same rigid body in 1 and 2 
sense two different specific forces due to their relative distance 𝒓. 
 

the linear acceleration of the LCS origins of the two sensors are 

related by: 

 

𝒂𝟐 = 𝒂𝟏 + 𝝎̇  ×  𝒓 +  𝝎 × (𝝎 ×  𝒓), (6) 

https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
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where 𝝎 and 𝝎̇ are the body angular velocity and 

acceleration. It is worth underlining that (6) assumes that the 

LCSs of the two accelerometers are perfectly aligned. This may 

not be entirely true in reality, due to a residual misalignment 

between the sensor axes and the case axes and the uncertainty 

of the manual alignment of the two cases. However, these two 

contributions may be neglected due to their limited magnitude, 

as reported in section II.A and in Table. IV. 

By combining (5) and (6), in case of null relative orientation 

difference, it yields: 

 

𝒂𝒔𝟐 − 𝒂𝒔𝟏  =  𝝎̇  ×  𝒓 +  𝝎 × (𝝎 ×  𝒓). (7) 
 

The difference between the two accelerometer readings 

increases with the distance between the sensor’s origins and 

with the angular velocity and acceleration of the rigid body. 

According to (7), the two accelerometers would sense the same 

specific force only if the LCSs share the same origin. 

The magnetometer is used to measure the direction of the 

local magnetic field to correct the MIMU heading. Without 

ferromagnetic disturbances, two magnetometers aligned on the 

same rigid body would sense the same Earth magnetic field 

(Fig. 3a). When magnetic disturbance (electrical motors and 

metal objects) is present, the magnetic field sensed by the two 

magnetometers may be different depending on their relative 

position with respect to the source of magnetic disturbance (Fig. 

3b). In addition, during the rigid body movement, a stationary 

source of magnetic disturbance is sensed by the two 

magnetometers as a time-variant and unknown source of 

uncertainty [14]. It is reasonable to expect that, in the presence 

of a distorted magnetic field, the readings from the two 

magnetometers will differ by a quantity which also depends on 

their relative distance 𝒓 [40]. 

The magnetic field measured by each magnetometer could be 

expressed as follows: 

 

𝒉 = 𝒉𝑬𝒂𝒓𝒕𝒉 +  𝒉𝒆𝒙𝒕. (8) 

Given 𝒉1 and 𝒉2, the magnetic fields measured by the two 

MIMUs, and provided that 𝒉𝑬𝒂𝒓𝒕𝒉 has the same components (in 

the same geographic area) when the MIMUs have the same 

orientation, their difference is expressed as:  

 

𝒉2 − 𝒉1 =  𝒉𝟐 𝒆𝒙𝒕 −  𝒉𝟏 𝒆𝒙𝒕  ∝  𝒓. (9) 
 

It is possible to assess that 𝒉1 and 𝒉2 are coincident in two 

cases: 1) when the terms 𝒉𝟏 𝒆𝒙𝒕 and 𝒉𝟐 𝒆𝒙𝒕 are negligible due to 

the absence of external source of magnetic disturbances and 2) 

when 𝑟 approaches to zero so that 𝒉𝟏 𝒆𝒙𝒕 is close to 𝒉𝟐 𝒆𝒙𝒕 even 

when magnetic disturbances are present.  

Finally, the electronic noise of the accelerometer, gyroscope, 

and magnetometer can be also considered an uncorrelated 

source of uncertainty for the two MIMUs [39]. 

In summary, the proposed approach for the parameter tuning 

relies on the assumption that the errors and disturbances 

affecting the two MIMUs attached on the rigid body can be 

different during the recorded motion. Whereas for two different 

gyroscopes the errors can be considered uncorrelated, when the 

rotation component could not be neglected and ferromagnetic 

disturbances are present, for accelerometers and magnetometers 

differences between relevant signals are expected to grow as the 

relative distance vector 𝒓 increases. 

 

E. Data Processing and Error Computation 

Data processing was performed in MATLAB, software 

release 2019a (The MathWorks Inc., Natick, MA, USA). 

Marker trajectories, after being labelled and gap-filled in 

Nexus, were low-pass filtered using a zero-phase Butterworth 

filter of the 6th order (cut-off frequency set to 6 Hz as suggested 

in [30]) to remove high frequency noise. The MIMU signals and 

the marker trajectories were first delimited by finding the two 

acceleration and force peaks recorded by the vertical axes of the 

Fig. 3.  Two different magnetometers sense the same magnetic field in absence of ferromagnetic disturbances (a). When an external magnetic 
field is superimposed to the Earth’s magnetic field (b) the two magnetometers sense two different magnetic fields due to their relative distance 𝒓. 
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accelerometer and force plate, respectively. Then, the signals 

were resampled at 100 Hz using a linear interpolation 

technique. The synchronization was refined by aligning the 

signals of each MIMU with the SP data after determining the 

delay (by means of the cross-correlation technique) between 

each MIMU angular velocity and that obtained from the marker 

trajectories following the approach presented in [41]. 

The gold standard orientation (𝒒𝑺𝑷_𝑮) was obtained by 

computing the LCS orientation with respect to the SP GCS with 

the SVD technique [31]. The errors in SP orientation can be 

assumed to be equal to 0.5 deg and this information can be 

derived from the trigonometry by considering the actual size of 

the central marker cluster used to define the SP LCS, and that 

the expected errors on marker position are in the order of 0.1 

mm [42]. Data were analyzed only between the synchronization 

events. 

The accuracy of the accelerometer calibration was assessed 

by aligning each axis of the case along the vertical direction (the 

alignment was verified with the spirit level embedded in the 

tripod). Accelerometer measurements were averaged and 

compared to g = 9.81 m/s2. Since the maximum difference 

never exceeded 0.02 m/s2, the accelerometers were considered 

as properly calibrated [19]. 

The 60 seconds static acquisition performed at the beginning 

of each trial was used to characterize the noise of all sensors 

and the bias of all gyroscopes. The latter was computed as the 

mean value of the gyroscope readings of each axis [30]. 

The accuracy of the magnetometer calibration was assessed 

by performing a movement to cover as much as possible a 

sphere [43]. Since the maximum difference never exceeded 0.1 

µT, the magnetometers were considered as properly calibrated. 

The procedure used for the data processing is detailed below 

and reported in the pseudocode (Fig. 4).  

Initially, the bias of each gyroscope was removed from the 

dynamic readings. To minimize the convergence time, the 

orientation of each MIMU was initialized by means of an 

algebraic quaternion obtained with the algorithm proposed in 

[18]. The absolute orientations 𝒒𝟏_𝑮 and 𝒒𝟐_𝑮 of the two 

MIMUs were computed separately for every β value (76 values 

from 0 rad/s to 1.5 rad/s); β = 0 rad/s, the orientation is obtained 

from the gyroscope only, β >0 the orientation determined from 

the accelerometer and magnetometer comes into play more as 

β increases. To compare the orientation of the MIMUs with that 

obtained with the SP, it was necessary to refer these orientations 

to a common GCS (the GCS of the SP and MIMU were not 

coincident on the horizontal plane). To this purpose the accurate 

alignment of the LCS of each system was exploited: 𝒒𝟏_𝑮, 𝒒𝟐_𝑮, 

and 𝒒𝑺𝑷_𝑮 were separately referred to their initial frame to 

obtain 𝒒1, 𝒒𝟐, and 𝒒𝑺𝑷, respectively. 

The absolute orientation errors ∆𝒒𝒂𝒃𝒔𝟏 and ∆𝒒𝒂𝒃𝒔𝟐 were 

computed in the quaternion form as follows: 

 

∆𝒒𝒂𝒃𝒔 𝟏 =  𝒒𝟏
∗  ⊗ 𝒒𝑺𝑷, 

∆𝒒𝒂𝒃𝒔 𝟐 =  𝒒𝟐
∗  ⊗ 𝒒𝑺𝑷. 

(10) 

 

The relative orientation difference between MIMUs pair 

(∆𝒒𝒓𝒆𝒍) was computed in the quaternion form as follows: 

 

∆𝒒𝒓𝒆𝒍 =  𝒒𝟏
∗  ⊗ 𝒒𝟐. (11) 

Fig. 4.  Pseudocode for data processing. 
 

To obtain a compact representation of the error, ∆𝒒𝒂𝒃𝒔 𝟏, 

∆𝒒𝒂𝒃𝒔 𝟐 and ∆𝒒𝒓𝒆𝒍 were converted into their corresponding 

rotations (∆𝜽𝒂𝒃𝒔 𝟏, ∆𝜽𝒂𝒃𝒔 𝟐 and ∆𝜽𝒓𝒆𝒍, respectively) by 

inverting (1) to compute the scalar part of their quaternion. 

Then, the two absolute error values ∆𝜽𝒂𝒃𝒔 𝟏 and ∆𝜽𝒂𝒃𝒔 𝟐 were 

averaged to obtain ∆𝜽𝒂𝒃𝒔. Lastly, the rms value of ∆𝜽𝒂𝒃𝒔 and 

∆𝜽𝒓𝒆𝒍 were computed only during the dynamic portions of the 

recording to obtain 𝑒𝛽  and 𝛿𝛽. This procedure was repeated for 

each value of β to obtain the two vectors 𝒆 and 𝜹 which contain 

the absolute error and relative difference for each of the 18 

experimental condition (3 commercial products x 3 angular 

rates x 2 motion directions). 

 

F. Metrics Used for Testing the Validity of the “Rigid-
Constraint” Approach 

The approach validity was tested for each of the 18 

experimental conditions. The accuracy of the MIMU 

orientation obtained using the estimated β value (β∗) was 

assessed against the best available MIMU orientation (β𝑜𝑝𝑡) 

for each pair of MIMUs (Xsens, APDM, and Shimmer) 

 for each angular rate condition (slow, medium, fast) 

  for each dimensionality condition (2D and 3D) 

- remove the static bias for each gyroscope 

- compute the starting orientation for each MIMU 

- initialize the vectors 𝒆 and 𝜹 

for each value of β between [0, 1.5] rad/s 

- compute the absolute orientation of each 

MIMU separately with MAD to obtain 𝒒𝟏_𝑮 

and 𝒒𝟐_𝑮 

- refer 𝒒𝟏_𝑮 and 𝒒𝟐_𝑮 to the starting orientation 

to obtain 𝒒𝟏 and 𝒒𝟐 

- compute the absolute orientation error of 𝒒𝟏 

and 𝒒𝟐 separately using the gold standard 𝒒𝑺𝑷 

to obtain ∆𝒒𝒂𝒃𝒔𝟏 and ∆𝒒𝒂𝒃𝒔𝟐 

- compute the relative orientation difference 

between 𝒒𝟏 and 𝒒𝟐 to obtain ∆𝒒𝒓𝒆𝒍 

- convert ∆𝒒𝒓𝒆𝒍, ∆𝒒𝒂𝒃𝒔𝟏 and ∆𝒒𝒂𝒃𝒔𝟐 into 

angular rotations to obtain ∆𝜽𝒂𝒃𝒔 𝟏, ∆𝜽𝒂𝒃𝒔 𝟐 

and ∆𝜽𝒓𝒆𝒍 

- compute the average value between the two 

absolute errors to obtain ∆𝜽𝒂𝒃𝒔 

- compute the rms of ∆𝜽𝒂𝒃𝒔 and ∆𝜽𝒓𝒆𝒍 

considering only the dynamic parts of the 

recording to obtain 𝑒𝛽  and 𝛿𝛽 

- add 𝑒𝛽  and 𝛿𝛽  to the vectors 𝒆 and 𝜹 

end 

- find the interval of β which correspond to the 

range of 𝒆 which includes its minimum + 0.5 

deg to obtain Δβ𝑜𝑝𝑡 

- find the value of β which correspond to the 

minimum of 𝜹 to obtain β∗ 

end 

end 

end 
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and the reference orientation computed using the SP system. 

 

The following quantities were used in the validity testing 

procedure: 

• Lowest absolute error for each condition: 𝑒𝑚𝑖𝑛 =
min(𝒆)  

 

• Value of β corresponding to 𝑒𝑚𝑖𝑛: β𝑜𝑝𝑡 =  β(𝒆 ==

𝑒𝑚𝑖𝑛) 

 

• Interval of β corresponding to[𝑒𝑚𝑖𝑛 , 𝑒𝑚𝑖𝑛 + 0.5 𝑑𝑒𝑔]: 
Δβ𝑜𝑝𝑡 =  β(𝑒𝑚𝑖𝑛 <  𝒆 ≤  𝑒𝑚𝑖𝑛 + 0.5 𝑑𝑒𝑔)  

 

• Lowest relative difference: 𝛿𝑚𝑖𝑛 = min (𝜹) 

 

• Value of β corresponding to 𝛿𝑚𝑖𝑛: β∗ =  β(𝜹 ==
𝛿𝑚𝑖𝑛)  

 

• Absolute error corresponding to β∗: 𝑒∗ =  𝒆(β ==
 β∗) 

 

• Absolute error corresponding to the β used by 

Madgwick et al.: 𝑒𝑀𝐴𝐷 =  𝒆(β ==  0.1 𝑟𝑎𝑑/𝑠). 

 

The procedure implemented for a quantitative error 

evaluation is explained below referring as an example to the 

results obtained for a specific dataset (APDM at medium 

angular rate, 3D): 

1. For each condition, the relative differences 𝜹 and the 

absolute errors 𝒆 are plotted together for each value 

of β (Fig. 5). 

2. The β value (β𝑜𝑝𝑡) corresponding to the lowest 

absolute error (𝑒𝑚𝑖𝑛) is identified. 

3. The interval of β values (referred to as optimal 

interval, Δβ𝑜𝑝𝑡) for which 𝒆 falls within 𝑒𝑚𝑖𝑛 and 

𝑒𝑚𝑖𝑛 + 0.5 deg was identified (blue-solid horizontal 

segment in Fig. 6). This threshold was defined 

considering differences smaller than 0.5 deg as not 

relevant, being of the same amplitude of the errors 

affecting the SP estimates (as stated in section II.E). 

4. Finally, the β value (β∗) which corresponds to the 

minimum of the relative differences was identified 

(green-dashed vertical line in Fig. 6). 

It is therefore possible to verify if β∗ is included in Δβ𝑜𝑝𝑡  and 

to determine the absolute error 𝑒∗ obtained for β∗. 

This procedure was repeated for each considered condition. 

 

 
Fig. 5.  Relative orientation differences (solid line) vs the absolute 
orientation errors (dashed line) for APDM at medium angular rate, 3D. 
The absolute orientation error of each MIMU is also represented. 

 

 
Fig. 6.  In this picture the optimal interval (Δβopt) and the β suboptimal 

value (β∗) were identified with the blue-solid horizontal segment and the 
green-dashed vertical line, respectively. In this case β∗ is included in 

Δβopt. The absolute orientation error of each MIMU is also represented. 

III. RESULTS 

Noise description for each sensor of each MIMU and 

gyroscope bias were reported in Table. II and Table. III, 

respectively (Appendix) [44]. 

To facilitate the comparison across the different 

experimental conditions, the values of Δβ𝑜𝑝𝑡 and β∗ were 

represented in Fig. 7. 
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Fig. 7.  The absolute error obtained considering Δβopt, emin, was 

reported above each segment for each considered condition. When β∗
 

values were outside the Δβopt interval, the amount of the absolute errors 

obtained considering β∗, referred as e∗, was reported above β∗ identified 
by the black dot. 

 

The values of Δβ𝑜𝑝𝑡  and β∗, along with the relevant errors 

𝑒𝑚𝑖𝑛 and 𝑒∗ are reported in Table. I. The last column of Table I 

shows the absolute errors (𝑒𝑀𝐴𝐷) obtained by using the default 

value of β = 0.1 rad/s adopted by Madgwick et al. in the original 

MATLAB implementation of their code. In particular, 𝑒∗ and 

𝑒𝑀𝐴𝐷 are reported in bold when their values fall within the 

interval 𝑒𝑚𝑖𝑛  + 0.5 deg. 

 
TABLE I 

OPTIMAL AND SUBOPTIMAL PARAMETER VALUES AND ERRORS 

CP ar dim Δβ𝑜𝑝𝑡 β∗ 𝑒𝑚𝑖𝑛 𝑒∗ 𝑒𝑀𝐴𝐷 

   rad/s rad/s deg deg deg 

Xs S 2D [0 0.0015] 0.0009 2.2 2.3 4.3 
Xs S 3D [0 0.0334] 0.0067 2.2 2.3 3.2 

Xs M 2D [0 0.0014] 0 1.9 1.9 5.0 

Xs M 3D [0 0.0450] 0.0050 2.0 2.0 3.1 
Xs F 2D [0 0.0017] 0 2.9 2.9 6.1 

Xs F 3D [0 0.0672] 0.0224 4.9 4.9 5.7 

AP S 2D [0.0082 0.1353] 0.0743 3.7 3.7 3.9 

AP S 3D [0.0123 0.1108] 0.1108 2.7 3.1 3.1 

AP M 2D [0.0050 0.1353] 0.0302 5.1 5.1 5.3 

AP M 3D [0.0450 0.1653] 0.0743 3.2 3.2 3.2 

AP F 2D [0 0.0369] 0.0033 6.1 6.2 7.3 

AP F 3D [0.0408 0.1353] 0.1827 6.3 7.3 6.4 

Sh S 2D [0 0.0123] 0.1496 4.3 5.5 5.2 

Sh S 3D [0.0183 0.1108] 0.0273 3.7 3.9 4.0 

Sh M 2D [0 0.0011] 0.0045 3.9 5.0 6.3 

Sh M 3D [0.0067 0.0743] 0.0111 3.7 3.9 4.3 
Sh F 2D [0.0101 0.0743] 0.2231 7.3 9.8 8.2 

Sh F 3D [0.0550 0.1225] 0.1827 8.6 10 8.6 

CP = commercial product, ar = angular rate, dim = dimensionality, Xs = 
Xsens, AP = APDM, Sh = Shimmer. 

IV. DISCUSSION 

A. Different optimal parameter value for different 
experimental conditions 

In the last decades, great efforts have been dedicated to 

present different analytic formulations for improving the 

accuracy of the orientation estimate based on data fusion. In this 

perspective, several studies have compared the filter 

performances in different conditions [22], [27], [36] in order to 

identify the most effective solutions. However, to carry out a 

fair and general comparative evaluation among methods, it is 

necessary to preliminarily chose effective values of the sensor 

fusion algorithms parameters. In general, parameter values are 

tuned based on trial-and-error by minimizing the overall 

differences between the gold standard orientation data and 

those estimated by the sensor fusion algorithm using the data 

collected during a specific movement by a specific hardware. 

This approach allows to find optimal parameters values, but it 

can be only applied to laboratory recordings. 

The importance of a proper choice of the values of the sensor 

fusion algorithms parameters is widely recognized [22], [26], 

[45] but to the best of the authors’ knowledge the literature is 

still lacking methods for their estimate. The only published 

paper reports a genetic algorithm to automatically find the 

optimal weight for a sensor fusion algorithm given the specific 

dataset and the ground truth values [25]. 

Our results confirmed that the selection of the optimal value 

of the sensor fusion parameters depends on the specific 

experimental conditions considered. In fact, by observing Fig. 

7, there is not a common intersection interval among the Δβ𝑜𝑝𝑡 

in all cases. This means that the value of β𝑜𝑝𝑡 which minimized 

the absolute orientation errors varied as commercial product 

and motion characteristics (range of variation) changed. As a 

consequence, it was impossible to identify an optimal interval 

of β values suitable for all 18 conditions (3 different 

commercial product characteristics, 3 angular rates, and 2 

different conditions of motion dimensionality). This finding is 

in accordance with other studies [21], [22], [28] which state that 

parameter values have a strong influence on the orientation 

accuracy at different frequency and amplitude of the performed 

movements. As shown in Fig. 7, under the same angular rate 

and dimensionality conditions, the Δβ𝑜𝑝𝑡  ranges highly varied 

depending on the specific commercial product considered due 

to the different noise characteristics (see Table. II and Table. III 

in the appendix). This is expected considering that the final 

orientation estimate is determined by weighting the information 

provided by the gyroscope, accelerometer and magnetometer at 

each time step, and each weight should take the specific sensor 

noise characteristics into account. This is quite evident by a 

preliminary comparison of the gyroscope bias changes 

observed before and after the acquisition for the different 

MIMUs (e.g. 0.17 deg/s for APDM vs 0.03 deg/s for Xsens and 

0.12 deg/s for APDM vs 0.02 deg/s for Xsens at medium and 

high angular rates, respectively). 

In addition to sensor noise characteristics, also the motion 

characteristics have an influence on the definition of the β𝑜𝑝𝑡 

(Fig. 7). In fact, when increasing the angular rate, the ratio 

between the body acceleration and gravity component increases 

and the MIMU inclination, as provided by the accelerometer 

readings only, is less reliable. However, as it can be noticed in 

Table. I, the latter statement does not necessarily implies lower 

values of β𝑜𝑝𝑡 in order to reduce the accelerometer contribution. 

In fact, the drift on the gyroscope vertical axis can be only 

corrected by the magnetometer readings (in absence of 

ferromagnetic disturbances, as we can consider the experiments 

performed in this study). In this case a high value of β allows 

for the magnetometer contribution to influence the resulting 
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orientation. In conclusion, since the mathematical formulation 

of MAD adopts the same β value for weighting both 

accelerometer and magnetometer signals, it is very difficult to 

generalize the results interpretation. A similar consideration can 

be drawn when comparing motion with different characteristics 

and involving different rotation axes (e.g. single axis movement 

versus 3D movements) as the ratio between the body 

acceleration and gravity component can differ even under the 

same angular rate, depending on the specific motion.  

The abovementioned considerations further contribute to 

acknowledge the importance of selecting parameter values that 

enhance filter performance under specific experimental 

conditions. 

B. Validity, Limitations, and How To Use the Rigid-
Constraint Approach in Practice 

The proposed “rigid-constraint” approach relies on the 

general assumption that the β value minimizing the relative 

orientation changes, is also a suboptimal choice for minimizing 

orientation errors under the same specific experimental 

conditions. In this respect, it can be noted that the “rigid-

constraint” approach resulted in the identification of suboptimal 

β values in most cases as for 13 different conditions out of 18, 

the estimated β∗ values were included in the Δβ𝑜𝑝𝑡 interval 

(difference between 𝑒∗ and 𝑒𝑚𝑖𝑛 lower than 0.5 deg). In the 

remaining cases, the error increase with respect to β𝑜𝑝𝑡 was 

lower than 2.5 deg. Conversely, when using a predefined 

default value for the parameter (β = 0.1 rad/s as proposed in 

Madgwick et al.), a general and consistent error increase 

between 0.9 deg up to 3.2 deg was observed across conditions. 

Moreover, the “rigid-constraint” approach was effective in 

providing the best available orientation with Xsens, whereas 

considering APDM and Shimmer, the suboptimal β values led 

to slightly higher errors. All errors obtained refer to the specific 

commercial product employed in this study; a further reduction 

of the orientation errors is likely when using hardware with 

better noise characteristics. 

As already mentioned, some limitations must be considered 

when applying the “rigid-constraint” approach. In fact, when 𝒓 

is null, the assumption that the sources of noise affecting 

accelerometers and magnetometers are different is no longer 

valid. In fact, if the relative distance approaches zero the 

differences between the two sensed accelerations and magnetic 

fields, are negligible, regardless of the body accelerations (7) 

and ferromagnetic disturbances (8). In this case, by setting β to 

a high value (to limit the gyroscope contribution) the relative 

orientation difference will be small due to the similarity of the 

measurements, but this does not guarantee for a small absolute 

error, especially when the accelerometer and magnetometer 

readings are corrupted by important body accelerations and 

distorted magnetic fields, respectively. From a practical point 

of view, it is suggested to position the two MIMUs so that 𝒓 is 

sufficiently large (at least a few centimeters) compatibly with 

the size of the rigid body. 

Regarding the applicability of the approach, often in clinical 

gait analysis and in sport applications, sensors can be firmly 

attached to the subject by means of mounted rigid plastic plates 

using elastic straps. In light of the miniaturization progress, it is 

reasonable to expect that for several applications a specifically 

designed plastic plate can host two MIMUs during the 

recording and the proposed method can be applied for filter 

tuning, also online. An example of this situation is described in 

[46], where a support was designed to be attached to the foot. 

Alternatively, when the interest is the analysis of a given motor 

task such as gait clinical test or when the same sensors are used 

during the entire data collection, then it would be reasonable to 

define the suboptimal parameter values on preliminary 

movement data acquisitions which mimic the actual 

experimental conditions (i.e. sensor model, motor task, speed, 

etc.). A similar approach was implemented in the article by 

Cardarelli et al., [47]. In that case, the authors estimated the 

orientation of a lower back-mounted MIMU to remove the 

gravity for estimating the position by means of double-

integration technique. This operation leads to an important 

position drift. To minimize this effect, they used a Weighted 

Fourier Linear Combiner whose parameters where tuned by 

minimizing the estimated position difference from the position 

of the marker mounted on the MIMU. In addition, the authors 

recognized the importance of changing the parameters 

according to the scenario under analysis. The main finding was 

that the weights obtained from a first dataset as training set were 

useful to improve the accuracy of the position estimates in test 

set with similar motion conditions. 

To summarize, when using the MAD filter, and in general 

any sensor fusion filter for orientation estimation, it might be 

not appropriate to select parameters values reported in the 

original articles as those values usually reflect the specific 

experimental conditions and hardware employed for data 

recording. This caution should be exercised especially when 

different sensors and motor tasks are analyzed. When neither 

the preliminary ad-hoc experiment nor two MIMUs are 

available, results reported in Table I can provide a preliminary 

indication on the expected optimal range for β values when 

employing the same commercial products and similar type of 

motion. If even the commercial product employed is different 

from the three described in this paper, it is still possible to refer 

to the results of Table. I by considering the product whose noise 

characteristics (listed in Table. II and Table. III) best reflect the 

one employed.  

V. CONCLUSIONS 

The proposed “rigid-constraint” approach was designed to 

estimate the suboptimal parameter value of the sensor fusion 

algorithms by exploiting the hypothesis that a set of MIMUs 

aligned has a null and constant relative orientation over time. 

The proposed approach does not require the knowledge of any 

orientation reference. In the majority of cases the approach 

selected suboptimal values which were included in the optimal 

intervals, whereas in the remaining the errors were acceptable 

(maximum difference equal to 2.5 deg and less than 1.5 deg, on 

average). 

Another key finding of this study was the absence of a unique 

parameter value interval suitable for all experimental 

conditions. This empirical evidence is in accordance with the 

previous study of [22] in which the authors hypothesized the 

existence of a strong relationship between the parameter values 

and the corresponding orientation accuracy according to the 

experimental conditions. For this reason, the parameters tuning 
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is crucial for every sensor fusion algorithm to obtain reliable 

orientation estimates. 

The filter from Madgwick et al. is popular, easy to use, open 

source, and tuned with a single parameter. For this reason, it 

was chosen in this work as a paradigm to test the effectiveness 

of the method proposed. However, a single value for that 

parameter may be a limitation when long acquisitions are 

performed or when ferromagnetic disturbances are present. 

Future work will be devoted to test the validity of the proposed 

approach to filters requiring more than one parameter. In such 

case the search space would be extended, and the analysis of the 

most relevant parameters should be performed first to limit the 

increase of the computational burden. Very preliminary results 

[48] suggest that errors obtained by rigid-constraint approach 

with other filters are reasonable. This is justified by the fact that 

the rigid-constraint approach relies only on the orientation 

estimated by a filter, regardless of its specific mathematical 

structure. 

APPENDIX 

The full dataset has been made available also at: 

https://github.com/marcocaruso/mimu_optical_dataset_caruso

_sassari. 

In the following Table. II, the noise standard deviation of the 

sensors of each unit is reported. The evaluation was carried out 

on 60 seconds of static acquisition. 

 
TABLE II 

SENSOR STANDARD DEVIATIONS (60 SECONDS OF STATIC ACQUISITION) 

std 
Accelerometer 

(mg) 

Gyroscope 

(deg/s) 

Magnetometer 

(µT) 

 x y z x y z x y z 

Xs1 0.86 0.80 0.85 0.38 0.39 0.37 0.06 0.04 0.04 

Xs2 0.82 0.86 0.80 0.44 0.40 0.40 0.05 0.06 0.06 

AP1 0.38 0.33 0.38 0.16 0.23 0.11 0.26 0.23 0.20 

AP2 0.34 0.32 0.35 0.16 0.27 0.19 0.26 0.25 0.20 

Sh1 1.06 0.97 1.26 0.09 0.08 0.09 0.84 0.84 0.69 

Sh2 1.12 1.09 1.29 0.06 0.06 0.06 0.97 0.97 0.58 

Xs = Xsens, AP = APDM, Sh = Shimmer.  

 

Firstly, it is possible to note that all the sensors embedded in 

different commercial products were characterized by different 

noise value. On the other hand, by comparing the sensor noise 

values of two units of the same commercial product, it may be 

observed that the noise values are not exactly the same. The 

differences, however, are generally lower than those obtained 

from the comparison of different commercial products [49]. 

In Table. III the three-axial bias of each gyroscope was 

computed in the static trials before and after each dynamic 

acquisition to assess the bias changes. The bias at the beginning 

of the acquisition and the difference (∆) with respect to the end 

were listed in the Table. III. 

 
 
 
 
 
 

TABLE III 
GYROSCOPE BIASES DURING 60 SECONDS OF STATIC ACQUISITION 

BEFORE AND DIFFERENCE AT THE END OF EXPERIMENTS 
Gyroscope bias (deg/s) 

 
 slow medium fast 

 x y z x y z x y z 

Xs1 
b -0.24 -1.70 -0.32 -0.26 -1.70 -0.33 -0.25 -1.69 -0.33 

∆ 0.00 -0.05 0.00 -0.01 0.00 -0.02 -0.01 -0.01 -0.02 

Xs2 
b -0.26 0.76 0.42 -0.26 0.76 0.43 -0.28 0.74 0.41 

∆ 0.01 0.01 0.02 0.03 0.00 0.03 -0.01 -0.02 -0.02 

AP1 
b 0.78 -0.57 0.34 0.59 -0.80 0.36 0.74 -0.78 0.37 

∆ 0.08 0.04 -0.02 -0.12 -0.02 0.00 -0.02 0.12 -0.01 

AP2 
b -1.10 -0.06 -0.71 -1.20 -0.05 -0.48 -1.11 0.17 -0.48 

∆ 0.07 0.01 -0.03 -0.17 -0.17 -0.05 -0.09 -0.03 -0.10 

Sh1 
b -0.03 -0.06 -0.01 -0.02 -0.05 0.01 -0.03 -0.07 0.02 

∆ -0.01 -0.03 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 

Sh2 
b -0.06 -0.03 0.09 -0.06 -0.03 0.08 -0.06 -0.05 0.10 

∆ -0.01 -0.03 0.01 -0.01 -0.03 0.01 -0.01 -0.03 0.03 

Xs = Xsens, AP = APDM, Sh = Shimmer, b = before,  
∆ = difference between the end and the before each experiment.  

 

It is possible to assess that, in the majority of cases, the biases 

are not constant between the beginning and the end of the trials. 

In particular, the greatest differences arose for each trial of 

APDM with values of ∆ up to 0.17 deg/s after less than one 

minute. It has to be said that these measures of bias before and 

after the dynamic trials are not meant to be a proper 

characterization of the bias instability (which can be computed 

through the Allan deviation over a long time acquisition 

[50],[51]), but they can give an overview of the severity of the 

bias changes within the same recording. As it can be seen from 

the several attempts published over the years to tackle the online 

bias estimation (e.g. [9], [13]–[15]), a varying bias is the most 

problematic issue affecting the orientation estimates obtained 

using the gyroscope since these changes are difficult to be 

predicted and modelled. 

Finally, the specifications of the calibrated data for each 

commercial product used are listed in the Table. IV. 
 

TABLE IV 
SENSOR SPECIFICATIONS 

 Range A/D resolution Alignment error 

MTx 

Accelerometer ± 50 m/s2 16 bits 0.1 deg 

Gyroscope ± 1200 deg/s 16 bits 0.1 deg 

Magnetometer ± 75 µT 16 bits 0.1 deg 

Opal 

Accelerometer ± 16 m/s2 14 bits  

Gyroscope ± 2000 deg/s 16 bits  

Magnetometer ± 800 µT 12 bits  

Shimmer3 

Accelerometer ± 16 m/s2 16 bits  

Gyroscope ± 2000 deg/s 16 bits  

Magnetometer ± 400 µT 16 bits  
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