
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Induction Machine Stator Fault Tracking using the Growing Curvilinear Component Analysis / Kumar, R. R.; Randazzo,
V.; Cirrincione, G.; Cirrincione, M.; Pasero, E.; Tortella, A.; Andriollo, M.. - In: IEEE ACCESS. - ISSN 2169-3536. -
ELETTRONICO. - 9:(2021), pp. 2201-2212. [10.1109/ACCESS.2020.3047202]

Original

Induction Machine Stator Fault Tracking using the Growing Curvilinear Component Analysis

Publisher:

Published
DOI:10.1109/ACCESS.2020.3047202

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2860315 since: 2021-01-11T14:44:42Z

Institute of Electrical and Electronics Engineers Inc.



Received November 11, 2020, accepted November 26, 2020, date of publication December 24, 2020,
date of current version January 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3047202

Induction Machine Stator Fault Tracking Using
the Growing Curvilinear Component Analysis
RAHUL R KUMAR 1,3, (Student Member, IEEE),
VINCENZO RANDAZZO2, (Student Member, IEEE),
GIANSALVO CIRRINCIONE3,4,5, (Senior Member, IEEE),
MAURIZIO CIRRINCIONE 3, (Senior Member, IEEE),
EROS PASERO 2, (Member, IEEE), ANDREA TORTELLA 1, (Member, IEEE),
AND MAURO ANDRIOLLO 1, (Member, IEEE)
1Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
2Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
3School of Engineering and Physics, The University of the South Pacific, Suva, Fiji
4University of Picardie Jules Verne, 80000 Amiens, France
5Innovatives Technologies Laboratory (LTI), University of Picardie Jules Verne, 80000 Amiens, France

Corresponding author: Rahul R Kumar (rahulranjeev.kumar@studenti.unipd.it)

ABSTRACT Detection of stator-based faults in Induction Machines (IMs) can be carried out in numerous
ways. In particular, the shorted turns in stator windings of IM are among the most common faults in the
industry. As a matter of fact, most IMs come with pre-installed current sensors for the purpose of control and
protection. At this aim, using only the stator current for fault detection has become a recent trend nowadays
as it is much cheaper than installing additional sensors. The three-phase stator current signatures have been
used in this study to observe the effect of stator inter-turn fault with respect to the healthy condition of
the IM. The pre-processing of the healthy and faulty current signatures has been done via the in-built DSP
module of dSPACE after which, these current signatures are passed into theMATLAB R© software for further
analysis using AI techniques. The authors present a Growing Curvilinear Component Analysis (GCCA)
neural network that is capable of detecting and follow the evolution of the stator fault using the stator current
signature, making online fault detection possible. For this purpose, a topological manifold analysis is carried
out to study the fault evolution, which is a fundamental step for calibrating the GCCA neural network. The
effectiveness of the proposed method has been verified experimentally.

INDEX TERMS Data streaming analysis, growing curvilinear component analysis, induction machine,
neural networks, on-line fault diagnosis, principal component analysis.

I. INTRODUCTION
Research in the arena of Fault Diagnosis (FD) and Condition
Monitoring (CM) of electrical machines has become a hot
topic in this information age. This is due to rise in technolog-
ical advancements and its involvement in an endless number
of industrial applications. From the engineering point of view,
concepts of FD and CM have always been the key issue to
date. This is because maintaining assets when it comes to
large motors or generators, are essential as failure of these
types of motors may result in serious consequences and loss
of money.

The associate editor coordinating the review of this manuscript and

approving it for publication was Pinjia Zhang .

A reliable diagnostic system should exhibit an early identi-
fication of the incipient fault, thus resulting in a quick main-
tenance, ensuing a short downtime for the processes under
consideration. For the aforesaid properties, it is important
that the system is able to acquire adequate amount of data
and extract useful information to correctly detect and classify
the anomalies for the ongoing process. Additionally, the sys-
tem should be able to recognize the normal operation under
varying conditions. In the recent decade, there has been flour-
ishing literature that involves development of the diagnostic
schemes for electrical machines and drives to overcome the
shortcomings instigated by the conventional methods.

Based on the statistics from authors of [1]–[3], the number
of working machines across the world was approximated to
be more than 16.1 billion in 2011, with a rapid increase of up
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to 50% in the preceding five years. The most common ones
are said to be the Induction Machines (IMs) that are widely
used in industries due to its reliability and, compatibility with
available power supplies. In addition to that, the IMs can
also be integrated well when it comes to flywheels energy
storage systems (FESS) [4].While they are muchmore robust
compared to other types of motors, they are liable to various
sorts of faults like: mechanical, electrical and outer motor
drive faults. A very prominent property of the IMs is that they
are highly symmetrical systems. Therefore, any occurrence
of fault may cause changes in its symmetrical properties,
which would affect the whole operation of the motor under
consideration.

Studies from the statistics available from IEEE and EPRI
for motor faults [5]–[7] reveals that majority of faults arise
from IMs as they contribute up to 80% of the failed compo-
nents. On the other hand, according to the authors of [5]–[12],
it is apparent that up to 30% of the causes in motor failures
are due to stator based faults.

The stator fault begins as the inter-turn short circuit, after
which, it evolves over time resulting in short circuit between
the coils or the phase windings. This evolution of stator based
fault may result in other faults that are mechanically and
electrically related [13]. Hence, due to its catastrophic effects,
it is essential to carry out diagnostics in real time in order to
track the evolution of the fault [14], [15].

A very common way of analyzing the condition of a
rotating machine is to make use of the motor current sig-
nature analysis (MCSA). The MCSA is straightforward and
powerful under appropriate working conditions. Nonetheless,
even if MCSA is the ideal method for electrical machines
under steady state conditions and rated load, it is still not
suitable to handle either IMs with special magnetic structure
or IM operation in transient conditions, where alternative
methodologies have been proposed in [16]–[20].

For the purpose of fault classification and decision making
once the feature-set has been developed, AI based techniques
are very instrumental [21], [22]. Generally, prior to classifica-
tion stage, the type of features used is of utmost importance.
A good feature set should be able demonstrate high variability
and totality of the main [13], [23], [24]. This enables better
training of classifiers and helps in ruling out the true negatives
and false negatives. In literature, many feature selection and
dimensionality reduction techniques demonstrate its capabil-
ity in extracting noteworthy features to be ready from the
raw/standardized dataset for faster processing when it comes
to training the classifiers [25], [26]. The classification is
normally done in either supervised or non-supervised fashion:
under supervised learning, the classes are labelled whereas
they are unknown under unsupervised learning. At the last
stage of classification, final decision is made by the expert
systems by utilizing the developed online framework of infor-
mation bases.

For the purpose of online data processing and real time
Dimensionality Reduction (DR), it is mandatory to acquire a
continuous stream of input data. Under this scenario, the data

is supposed to be extracted from a distribution which is
stationary. In terms of the DR based techniques, it is apparent
that linear methods perform faster DR and commonly use the
Principal Component Analysis (PCA) as the base method.
Stemming from this approach, the linear neural based tech-
niques: Generalized Hebbian Algorithm (GHA [27] and the
incremental PCA (candid covariance-free CCIPCA [28])
have been utilized. On the other hand, the non-linear DR
techniques, though being accurate, are very time consum-
ing and are not suitable for online applications. Over the
years, numerous efforts have been made to reduce the time
complexity of the non-linear DR techniques. Some of these
approaches include: updating of the structure information
(graph), new data prediction and embedding updating. The
incremental variants (e.g. iterative Locally Linear Embedding
(LLE) algorithm [29]) still appear to be computationally
expensive and time consuming.

Furthermore, neural networks can also be exploited to
project data or reduce their dimensionality. They are first
trained in an offline way and, then, during the recall phase,
work in real time. In general, they can be used only for
stationary data; in this sense, these techniques can derive
from the embedding its implicit model. Some instances
would include self-organizing maps (SOM) [30] and their
variants [31], [32].

In case of a stream of non-stationary data, such as those
generated for fault and pre-fault diagnosis and modelling,
the online Curvilinear Component Analysis (onCCA) and
the growing Curvilinear Component Analysis (GCCA) have
been proposed in [33]–[36]. These twomethods exploit incre-
mental quantization to track the non-stationarity; indeed,
data clustering is performed together with a fast projection
technique based on the Curvilinear Component Analysis
(CCA [37], [38]).

In this paper, a method for online FD has been proposed.
The technique is a growing variant of the CCA neural net-
work that is capable of detecting non-stationarity in the
data flow. In particular, the GCCA neural network is capa-
ble of detecting and follow the evolution of a phase fault
in an IM. The proposed technique only utilizes the stator
current spectrum of the IM and performs FD by observing
changes in the data distribution in a three dimensional map.
Using the idea of ‘‘bridges’’, the GCCA correctly detects
the non-stationarity (the faulty scenarios) by examining the
bridges when the data stream transitions from healthy to
faulty region. It must be noted that this FD procedure has been
applied to FESS, where early detection of faulty conditions
of the driving IM is important for safety and maintenance
reasons.

This paper is organized as follows: In Section II,
the method of GCCA is explained in detail, after which,
the explanation about the experimental setup is given in
Section III, Part A. In Part B of Section III, details on stator
fault experimentation and some preliminary results involving
Space Vector loci are presented together with comments.
Thereafter, the results with detailed explanations involving
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FIGURE 1. GCCA flowchart.

GCCA are presented in Section IV. The concluding remarks
are summarized in Section V of the paper.

II. THE GROWING CURVILINEAR COMPONENT ANALYSIS
The Growing Curvilinear Component Analysis (GCCA) is
an incremental neural network, it is self-organized and it
has been designed to deal with non-stationarity. To handle
such complexity, two mechanisms have been implemented:
‘‘seeds’’ and ‘‘bridges’’. The former are pairs of neurons used
to explore a new region of the input domain; the latter are
special kind of links that track the non-stationarity in the input
(i.e. the fault indicator in this case). Indeed, GCCA exploits
bridges and seeds to learn how the input evolves over time.
Fig. 1 shows the training algorithm flowchart [39].

GCCA is both supervised and incremental. Its number
of neurons is determined automatically by the input space
quantization. Each neuron has two weight vectors: one in
the input space (X-weight) and one in the output space
(Y-weight), which gives the data projection. To better approx-
imate the input data distribution, each neuron is equipped
with a threshold. This threshold represents its Voronoi region
in the input space. The previously mentioned threshold is
local, i.e. neuron specific and is used to ascertain the novelty
of the input data with respect to the existing quantization.
It is automatically computed as the distance in the X-space
between the neuron and its farthest neighbor (according to
the network topology). If the input data is novel with respect
to the X-space closest-neuron (i.e. the first-winner) threshold,
a new neuron is created whose weight vector in the X-space
is the data itself; in the Y-space, the weight, i.e. the data
projection, is determined as in CCA. On the contrary, if the
data fails the novelty test, the first-winner and its neighbors

adapt their weight vectors in the X space by means of the Soft
Competitive Learning (SCL [33, 34]); as in the previous case,
their projections are updated as in CCA.

To differentiate between stationarity and non-stationarity,
GCCA neurons can be connected using two kind of links:
edges, which determine the data manifold topology according
to the Competitive Hebbian Learning (CHL [40]), or bridges,
which track a change in the input distribution (e.g. a jump).

A bridge is a special kind of directional connection created
to link a new neuron to the previous quantization, i.e. the net-
work; it points towards the new neuron, which, as explained
above, represents a change, i.e. a non-stationarity, in the input
data.

A seed is a couple of neurons made of a neuron and its
double, whose weight vector is given by the hard competitive
learning, HCL [33], [34]. Neuron-doubling is done every time
the first-winner is the top of a bridge departing from the
second-close neuron (i.e. the second-winner); in this sense,
this technique populates a novel part of the input manifold.
Conversely, if the first-winner is the bridge tail, the region
previously linked with a bridge does not correspond to
non-stationarity (e.g. a jump) in the input distribution; as a
consequence, that connection is turned into an edge which,
as described above, conveys information about the manifold
topology (i.e. stationarity).

It is worth mentioning that GCCA is incremental and adap-
tive, i.e. it changes the amount of connections and neurons
over time by creating them as explained above or, pruning by
age algorithm.

The projection is based on CCA, which exploits a
distance-preserving technique, to preserve distances smaller
than λ in the output space.
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III. METHODOLOGY
A. EXPERIMENTAL TEST RIG
To develop the database, an experimental setup has been con-
structed. The setup includes a three-phase squirrel cage IM
of 1.1 kW rating that is connected to a SEMIKRON IGBT
Voltage Source Inverter (VSI) which is of 12 kVA. The
parameters of the IM used is described in Table 3. For
acquisition of current signals, the LEM (LA 55-P) current
transducers have been used in conjunction with DS1104 card
(dSPACE). The data was acquired at a sampling frequency
of 10 kHz. Fig. 2 shows the experimental setup used in this
study.

FIGURE 2. Experimental test rig.

B. STATOR FAULT EXPERIMENTATION: DATA ACQUISITION
AND DESCRIPTION
In order to develop a database, the three-phase stator current
signals were acquired from two identical IMs (parameters
listed in Table 1) with similar manufacturing conditions. For
both the IMs, data was acquired for inverter fed condition
via scalar control method [41]. For both the cases (healthy
and faulty), data was acquired for 0%, 25% and 40% loading
conditions (full load torque is 7 Nm).

TABLE 1. Induction motor parameters.

The inter-turn short circuit has been introduced in one
of the coils of Phase C as shown in Fig. 3. To quantify
the percentage of inter-turn short circuit (ITSC) in a phase,

FIGURE 3. Schematic for stator fault.

the following calculation using the resistance quantities in %
has been used (1):

%ITSC =
Rno.windings shorted

Rtotalno.windings inaphase
× 100 (1)

The level of fault (% ITSC) ranges from 0% to 10%,
according to the connected shunt resistor RF . This shunt
resistor RF has been used to restrict the circulating currents in
the shorted portion of the stator winding under each level of
fault severity. This is done to ensure a safe level of circulating
current to avoid permanent damage to the motor windings.

For no load condition, the level of fault severity goes up to
10.92%, while for the other two loading conditions, it goes
from healthy (0%) to 6.85% of the inter-turn short circuit in
the stator winding. It has been noted for the faulty case that
as the level of severity increases due to stator inter-turn fault,
higher vibration and temperature is observed on the motor
under test.

In Figs. 4-6, the time evolution of the faulty current sig-
nature with respect to the healthy condition of IM has been
shown. While visualizing the time domain stator current sig-
natures (Figs. 4-5) is not enough to deduce the condition of
the IM, the corresponding Space Vector Loci (SVL) has been
used. In Fig. 6, the load variation of a healthy IM from 0%

FIGURE 4. Three phase current - healthy motor.
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FIGURE 5. Space vector current - healthy motor.

FIGURE 6. SVL - healthy motor.

to 25% at time instant of 4.4s is apparent. Under these cir-
cumstances, all the phases in IM appear to be balanced and
any rise in amplitude is proportional to the change in the
SVL radius. To highlight these changes, the inner hexagonal
like figure in Fig. 6 corresponds to the healthy IM operating
at 0% load (t = 3.0s to t = 4.4s). On the other hand, from
t = 4.4s onwards, due to load change (from 0% to 25%),
similar hexagonal pattern is maintained except it expands and
becomes larger. It must be noted that the hexagonal pattern is
due to harmonics induced by the VSI.

Similar remarks can be made for the faulty case where
Figs. 7-8 represent the phase and space vector currents,
respectively. The fault is introduced in phase C and its severity
is about 5%.While a sudden jumpmay not be very noticeable,
but considering the reading on the y-axes of Figs. 7-8, there
is a significant rise in the amplitude of the phase and space
vector currents compared to the healthy scenario. The corre-
sponding SVL for the faulty case (Fig. 9) however, is in form

FIGURE 7. Three phase current - faulty motor.

FIGURE 8. Space vector current - faulty motor.

of a hysteresis pattern and inflates upon increasing the load
from 0% (t = 2.0s to t = 2.4s) to 25% at time instant of
2.4sand onwards.

Under faulty scenario, in order to track the severity of
fault, Figs. 10-12 represent the evolution of fault under
0%, 25% and 40% loading conditions. The levels of fault
(percentage of fault) are varied in Phase C of the IM by
switching to the loops corresponding to different number of
windings in a coil (see Fig. 3). In case of no-load condition,
the stator inter-turn fault ranged up to 10.92%, whereas for
25% and 40% loading condition, the fault severity went up
to 6.85%. The transition between transient and steady state
conditions are also observed in the space-vector maps. In par-
ticular, as the fault severity increases, the patterns in SVL in
Figs. 10-12 changes to a hysteresis like figure and, for each
level of fault, the shape becomes larger.

It should be noted that the space vector maps show the
fault patterns with varying load conditions as well as different
fault severities. In the following section, the GCCA will be
utilized to obtain the same fault patterns (as in Figs. 10-12).

VOLUME 9, 2021 2205
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FIGURE 9. SVL - Faulty Motor.

FIGURE 10. Stator inter-turn short circuit SVL – no load.

The reduction of the dimension of the original data space
(created by considering the three phase currents) to 2 dimen-
sions will indicate the inception of the fault using the idea of
bridges.

IV. EXPERIMENTATION USING GROWING CCA
A. STATOR FAULT EXPERIMENT: DIMENSIONALITY
REDUCTION AND FAULT DETECTION USING THREE
PHASE CURRENT
The experiments described above have been further inves-
tigated using GCCA. The prime focus at this aim is to:
(a) demonstrate GCCA’s ability upon reducing the dimension
from 3 (three-phase currents) to 2. A notable fact here is that
unlike space vectors (which is just a fixed transformation of
3-phase currents to 2), GCCA is adaptive and can be
applied to various dimensions. Results in Figs. 13-15 coincide
approximately with the patterns observed in Figs. 10-12.

FIGURE 11. Stator inter-turn short circuit SVL – 25% load.

FIGURE 12. Stator inter-turn short circuit SVL – 40% load.

(b) indicate the evolution of the fault (though rapid) via
bridges (fault detection).

The network has only been trained with the 3-phase current
data with parameters listed in Table 2. It follows the input
evolution over time and, simultaneously, projects it in the
latent current space in real time.

Fig. 13 shows the input quantization by means of the
X-neurons together with their connections (edges are blue,
bridges are red), in case of machine with no load. The quan-
tization is very accurate; although the fault evolution is very
rapid, all the different time intervals are represented properly.
Furthermore, non-stationarity of the current is learned by
the presence of bridges and their density. Some outliers are
present because, currently, no technique to handle these cases
has been adopted; however, if needed, it is simple to provide
the network with an outlier detection method to increase its
robustness.
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TABLE 2. GCCA parameters.

FIGURE 13. Input neurons with connections under no load conditions.

The GCCA quantization together with its projection can be
exploited in many ways: for instance, an increasing number
of bridges indicates the onset of a pre-fault condition in the
machine: actually, Fig. 13 shows both GCCA output as well
as the overall quantization of the input space.

As more damage occurs in the IM, more and more bridges
appears to record the changes, i.e. the non-stationarity, in the
stator current. This is clearly shown by the change of the
hysteresis like pattern, as the fault level increase. Fig. 13 also
demonstrates how different can be non-stationarities; indeed,
the shape of the healthy and faulty are well distinguishable.
Albeit bridges appearance depicts the onset of the fault, they
will also be created in a similar way even if the time change
is sudden; at this purpose, the turn-into-edge technique has
been introduced to mitigate this kind of situations.

Different from other neural architectures, which generally
require constant parameters to deal with non-stationarity,
GCCA does not only detect the pre-fault condition, but also
records the whole evolution of the machine.

The same considerations hold for a machine with, respec-
tively, 25% (Fig. 14) and 40% (Fig. 15) load. The healthy
and faulty trajectories are very well separated, thus allowing
all the faults to be recognized.

B. STATOR FAULT EXPERIMENT: FEATURE CALCULATION
AND MANIFOLD ANALYSIS
As the stator inter-turn fault is an evolving fault in nature,
stationary techniques fail to detect this type of fault and

FIGURE 14. Input neurons with connections under 25% load conditions.

FIGURE 15. Input neurons with connections under 40% load conditions.

are unable to track changes, not allowing its severity to be
predicted.

A data topological manifold, the Principal Component
Analysis (PCA) [34] has been used to discriminate the clus-
ters better due to healthy and faulty conditions. Fifteen statis-
tical time domain features (see Table 3 ) were extracted from
the current signal by using the affected phase (i.e. phase C)
and statistically normalized (z-score) data.

At first, the intrinsic dimensionality was deduced for the
affected phase case for the aforementioned data sets (no
load, 25% load and 40% load) with the help of Pareto charts
(see Figs. 16-18). In all of the three cases, the intrinsic
dimensionality has been found to be five, because over 95%
of the feature set is explained by using its first five principal
components.

Further inspection about the geometry of the feature set has
been carried out by using a non-linear DR technique. Based
on the conjecture about the intrinsic dimensionality of the
feature set via PCA, the CCA (non-linear DR technique) has
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TABLE 3. Feature list.

FIGURE 16. Phase C features: Pareto chart under no load conditions.

FIGURE 17. Phase C features: Pareto chart under 25% load conditions.

been used to confirm the mapping of the input-output spaces.
This mapping can be observed by using the dy-dx diagrams.
In a nutshell, the CCA neural network has the capability of

FIGURE 18. Phase C features: Pareto chart under 40% load conditions.

projecting its input into a space of reduced dimension: in
doing so, it preserves the data manifold topology by respect-
ing local distances (see [37] for more information). Using
this property, the CCA can be used for DR to reduce the
number of features without altering the original manifold.
This can be validated by using the dy-dx diagrams: in these
diagrams, the distances of samples in the y-space (dy) are
plotted against the corresponding distances in the x-space
(dx). On the one hand, a ‘‘good mapping’’ can be obtained
when the data points align along the bisector, showing that the
distances (dy and dx) are well preserved. In this case the input
dimension can be reduced without losing much information
about the data. On the other hand, any deviation of the data
cloud from the bisector would represent the non-linear nature
of the manifold (i.e. most distances are not respected). In this
case, the reduction of the dimension could result in loss of
information about the data.

To observe the input-output mapping upon projection of
the data in the reduced dimension space of 5, the dy-dx
plots for 0%, 25% and 40% loading conditions are illustrated
in Figs. 19-21. Under 0% loading condition, the data cloud
aligns itself onto the bisector (Fig. 19), however, the pres-
ence of thick cloud around it represents the noise in data

FIGURE 19. Phase C features: CCA dy-dx plot under no load conditions.
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FIGURE 20. Phase C features: CCA dy-dx plot under 25% load conditions.

FIGURE 21. Phase C features: CCA dy-dx plot under 40% load conditions.

which is typical for the case of IMs. The point thickness
around the origin depicts some element of non-linearity in
the dataset with respect to short distances. The manifold is a
slightly curved five-dimensional flat (a ‘‘flat’’ is a subset of
n-dimensional space that is congruent to a Euclidean space of
lower dimension).

Fig. 20 obtained with 25% load conditions, resembles
Fig. 19, but a large amount of noise is present. Nevertheless,
it is apparent that short distances are better preserved in
the projection. Middle distances under the bisector can
be interpreted as the unfolding of the original dataset.
It means that the corresponding manifold is a slightly folded
five-dimensional flat.

Finally, the dy-dx diagram for 40% load case (see Fig. 21)
is quite concentrated around the bisector. Some noise is
still present. It seems that the increasing in load condition
tends to linearize the manifold, without changing its intrinsic
dimensionality.

C. STATOR FAULT EXPERIMENT: DATA AND GCCA
QUANTIZATION TOGETHER WITH BRIDGES
Having determined the intrinsic dimensionality in part B
above, GCCA has been applied to the three datasets

(no load, 25% load and 40% load), by projecting to dimen-
sion five. At this aim, input to the GCCA are the temporal
features explained in Table 3 for Phase C current. Under this
experiment, following are observed:

(a) Transition from healthy to faulty state (fault detection)
(b) Transition between the fault severities

Figures 22-24 show the GCCA quantization in the original
15-dimensional space, using the first three principal compo-
nents for visualization. Red segments represent the bridges.
The healthy cluster is well separated under all loading con-
ditions. Notice the presence of long bridges when there is
a transition from one level of fault severity to another. The
bridge lengths can be used as an early detector and also as
an indicator of the level of fault in case of stator inter-turn
faults. This includes abrupt detection of stator faults because
lengths observed in the figures represent higher values during
transition from healthy to faulty state. In all cases, the healthy
cluster (in black color) is well separated from the faulty ones
and the transition is always represented by a long bridge,
making early fault detection possible on an on-line basis.
Under no load condition, separation of the healthy cluster
and individual fault severities is well observed. However,

FIGURE 22. Phase C features: GCCA quantization - no load.

FIGURE 23. Phase C features: GCCA quantization - 25% load.
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FIGURE 24. Phase C features: GCCA quantization - 40% load.

under loaded conditions, while the healthy cluster (together
with its transient cluster) is well separated, the faulty clusters
appear to be close by and in some cases, overlapping with
other fault severity. This is because of the following reasons:
(a) closeness of the severity percentages, (b) additional har-
monics introduced due to inverter and external noise, (c) load
variation.

V. CONCLUSION
From an industrial point of view, real time tracking of
non-stationarities in the data is extremely difficult to achieve,
especially when it is time varying. Such is the case in IMs
when it comes to stator inter-turn faults.

Due to its reliability and resiliency, GCCA has proved to
track abrupt changes successfully in the continuous stream of
data. While the linear techniques are mostly used for these
types of applications due to its speed and simplicity, non-
linear based techniques are computationally expensive and
time consuming. The GCCA neural network, unlike them,
is the only neural technique that is capable of tracking the
non-stationarity in the stream of data generated in the input
space and project it in the latent space (a lower dimension
space). It is worth mentioning that upon projection to lower
dimension space, the GCCA learns the time varying manifold
and extracts significant features from the data in the input
space.

In case of FD and CM of IMs, this paper shows that GCCA
neural network is able to continuously learn the operation
of IM (from healthy to faulty cases) under varying load
conditions. It is able to clearly isolate the healthy cluster from
the faulty ones and tracks the severity of the fault in a very
short time. The inception of the fault and its severity can
be detected by monitoring the occurrence of bridges and its
density estimation, respectively. Thus, damage to the IM can
be avoided by stopping its operation.

Due to its capacity of detecting abrupt faults, the GCCA
neural network is ideal for systems in which faults are evolv-
ing in nature. These systems include: FESS, Fuel Cell and
Supercapacitors.

Future work will focus on the classification part by
introducing other faulty scenarios as well as on the
localization of fault.
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