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Abstract 7 

Non-exhaust emissions (NEE) of particulate matter (PM) from brake, tyre, road pavement and 8 

railway wear, as well as resuspension of already deposited road dust, account for up to 90% by mass 9 

of total traffic-related PM emitted. This review aims at analysing the current knowledge on road traffic 10 

NEE regarding sources, particle generation processes, chemical and physical characterisation, and 11 

mitigation strategies. The literature on this matter often presents highly variable and hardly 12 

comparable results due to the heterogeneity of NEE sources and the absence of standardized sampling 13 

and measurement protocols. As evidence, emission factors (EFs) were found to range from 1 mg km-1 14 

veh-1 to 18.5 mg km-1 veh-1 for brake wear, and from 0.3 mg km-1 veh-1 to 7.4 mg km-1 veh-1 for tyre 15 

wear. Resuspended dust, which varies in even wider ranges (from 5.4 mg km-1 veh-1 to 330 mg km-1 16 

veh-1 for cars), is considered the prevailing NEE source. The lack of standardized monitoring 17 

approaches resulted in the impossibility of setting international regulations to limit NEE. Therefore, 18 

up until now the abatement of NEE has only been achieved by mitigation and prevention strategies.  19 

However, the effectiveness of these measures still needs to be improved and further investigated. As 20 

an example, mitigation strategies, such as street washing or sweeping, proved effective in reducing 21 

PM levels, but only in the short term. The replacement of internal combustion engines vehicles with 22 

electric ones was instead proposed as a prevention strategy, but there are still concerns regarding the 23 

increase of NEE deriving from the extra weight of the batteries. The data reported in this review 24 

highlighted the need for future studies to broaden their research area, and to focus not only on the 25 

standardization of methods and the introduction of regulations, but also on improving already existing 26 

technologies and mitigating strategies. 27 

 28 

Highlights 29 

1. NEE are a relevant PM source in urban areas, exceeding EE contribution. 30 

2. Emission standards and clean air policies must focus on NEE. 31 

3. Standardized NEE sampling and measurement methods are needed to set regulations. 32 

4. Among NEE sources, resuspended dust exceeds brake, tyre, and road wear. 33 

5. EVs have no tailpipe emissions, but still produce significant amounts of NEE. 34 

 35 

Keywords: particulate matter, NEE, electric vehicles, air pollution, urban environment 36 

List of abbreviations 37 

Acronym Meaning 
AP-42 Compilation of Air Pollutant Emissions Factors (by USEPA) 
APS Aerodynamic Particle Sizer 
BR Polybutadiene Rubber 
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Acronym Meaning 
CASQUA CAlifornia stormwater QUality Association 
CEN European Committee for Standardization (original acronym in French) 
DLPA Double Layer Porous Asphalt 
DNA Deoxyribonucleic Acid 
EE Exhaust Emissions 
EEA European Environment Agency 
EEC European Economic Community  
EF Emission Factor 
ELPI Electrical Low-Pressure Impactor 
EMEP European Monitoring and Evaluation Programme 
EU European Union 
EV Electrical Vehicle 
HDV Heavy Duty Vehicle 
ICE Internal Combustion Engine 
ICEV Internal Combustion Engine Vehicle 
LDV Light Duty Vehicle 
LRT Light Rail Trains 
LM Low Metallic 
MOUDI Micro Orifice Uniform Deposit Impactor 
NAEI National Atmospheric Emissions Inventory 
NAO Non-Asbestos Organic 
NEE Non-Exhaust Emissions 
NR Neoprene isoprene Rubber 
NURP Nationwide Urban Runoff Program 
PAH Polycyclic Aromatic Hydrocarbons 
PM  Particulate Matter 
PMF Positive Matrix Factorization 
RBS Regenerative Braking System 
REACH Registration, Evaluation, Authorisation and restriction of CHemicals 
RP On-Road generated Particles 
SBR Styrene-Butadiene Rubber 
SM Semi Metallic 
SOA Secondary Organic Aerosol 
SUV Sport Utility Vehicle 
TNO Netherlands Organisation for Applied Scientific Research (original acronym in 

Dutch) 
TP Tread Particles 
TSP Total Suspended Particles 
UITP International Association of Public Transport (original acronym in French) 
UK United Kingdom 
USEPA United States Environmental Protection Agency 
VTI Swedish National Road and Transport Research Institute (original acronym in 

Swedish) 
WHO World Health Organization 
WP Tyre Wear Particles 
XRD X-Ray Diffraction 

  38 
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1 Introduction 39 

Particulate matter (PM) is recognized as one of the main risk factors for adverse health effects and 40 

premature deaths worldwide (Brauer et al., 2012; WHO, 2020). Human exposure to PM (especially the 41 

fine fraction) is correlated to the outbreak of allergy aggravation, respiratory, cardiovascular and even 42 

cerebrovascular diseases (Anderson et al., 2012; Costa et al., 2019; Decesari et al., 2017). Particulate 43 

matter can be directly emitted in the environment as primary aerosols or formed in the atmosphere 44 

by gas-to-particle conversion processes, i.e. secondary aerosol (Joutsensaari et al., 2018; Sandrini et 45 

al., 2016). Sources of particulate matter can be natural or anthropogenic: windblown dust, pollens, 46 

plant fragments, sea salt, combustion generated particles, road dust and material produced in the 47 

atmosphere by photochemical processes (Fuzzi et al., 2015). The size of airborne particles is very 48 

heterogeneous (diameters range from few nanometres to around 100 μm) and depends on the way 49 

they originate and on physical and chemical processes occurring in the air (condensation, coagulation, 50 

chemical reaction etc.). The need for standardized monitoring systems and regulations led to the 51 

definition of particle size classes based on the maximum particle diameter: coarse particles (PM10, i.e. 52 

with diameter below 10 μm), fine particles (PM2.5 and PM1, i.e. with diameter up to 2.5 μm and 1 μm, 53 

respectively), and ultrafine particles (PM0.1, i.e. with diameter up to 0.1 μm) (Seinfeld and Pandis, 54 

2006; Thorpe and Harrison, 2008).  55 

The different PM fractions also have different health effects: PM10 is the inhalable fraction and 56 

includes particles that enter the body through the nose and mouth when breathing; PM2.5 is the 57 

thoracic fraction and is composed of particles that penetrate into the lungs under the larynx (Anenberg 58 

et al., 2014; Kelly and Fussell, 2012); the respirable fraction (PM1) encompasses the particles that can 59 

reach the lung alveoli (CEN, 1993); and lastly, ultrafine particles (PM0.1) can cross the air-blood barrier 60 

in the alveoli and reach internal organs, the brain included (Kelly and Fussell, 2012; Schraufnagel, 61 

2020). The fine fraction does not largely contribute to PM mass, but it adds to most of the overall 62 

particle number, which is associated to health impact indicators such as the occurrence of hospital 63 

admissions due to respiratory and cardiovascular diseases (Atkinson et al., 2010; Stölzel et al., 2007; 64 

Wichmann et al., 2000). 65 

Vehicle traffic is one of the main contributors to air pollution in the urban environment, and hence 66 

to PM (Pant and Harrison, 2013). Traffic-related PM is classified into exhaust emissions (EE), which are 67 

the results of fuel oxidation and lubricant volatilization during the combustion process, and non-68 

exhaust emissions (NEE), which are related to brake, tyre, clutch and road surface wear and 69 

resuspension of road dust. Another relevant source of non-exhaust PM emissions in urban 70 

environments is represented by rail transport (trains, trams and subways) (Abbasi et al., 2013). Besides 71 

the diverse generation process, these emissions also differ in size distribution and chemical 72 

composition of the released particles (Pernigotti et al., 2016). 73 

Exhaust emissions mainly contribute to the fine (PM2.5 and PM1) and ultrafine (PM0.1) fractions of 74 

particulate matter. More specifically, particles formed in the engine and emitted through the tailpipe 75 

(primary particles) range from 0.03 µm to 0.5 µm, whereas the secondary particles originating from 76 

condensation phenomena in the exhaust plume are below 0.03 µm (Conte and Contini, 2019; Kam et 77 

al., 2012; Timmers and Achten, 2016). On the other hand, non-exhaust emissions mainly contribute 78 

to PM10 and, to a lesser extent, to PM2.5 (Pant and Harrison, 2013; Timmers and Achten, 2016).  79 

From a chemical composition point of view, primary EE contain a variety of hydrocarbons and 80 

combustion by-products, whereas NEE are mainly composed of heavy metals, such as zinc (Zn), copper 81 

(Cu), iron (Fe) and lead (Pb) (Almeida et al., 2020; Thorpe and Harrison, 2008; Timmers and Achten, 82 

2016). As it can be expected, a similar chemical composition is also found in the secondary aerosol 83 

they generate. The volatile organic compounds in EE react with sunlight and form organic secondary 84 

aerosols. On the other hand, NEE mainly produce inorganic secondary aerosols. However, in the case 85 
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of NEE, it is particularly difficult to discriminate between primary and secondary PM, and therefore to 86 

apportion them accordingly  (Timmers and Achten, 2016). 87 

The potential adverse effects of PM on human health mostly depend on the chemical composition 88 

and on the size distribution of particles. From a chemical point of view, transition metals (iron, copper, 89 

chromium, cobalt, vanadium, cadmium, arsenic, nickel, etc…) participate in reactions involving the 90 

formation of oxygen free radicals, which at high concentration can damage cell structures (Godri et 91 

al., 2011; Valko et al., 2006). As a consequence, metal-rich particles potentially cause various 92 

modifications in DNA bases and enhance the risk of vascular and neurological diseases and cancer 93 

(Berg et al., 2001; Crans et al., 2004; Galán et al., 2001; Halliwell and Gutteridge, 1990; Siah et al., 94 

2005; Valko et al., 2005). As regards the size distribution of PM, small particles are more toxic than 95 

large ones since they have a significantly higher surface area available for the adsorption of toxic 96 

chemicals (Bogunia-Kubik and Sugisaka, 2002).  97 

To quantify the release of PM into the environment, emission factors (EFs) are used as a tool to 98 

estimate the contribution of individual vehicles or vehicle fleet mixtures (Bukowiecki et al., 2009; 99 

Bukowiecki et al., 2010). They are typically derived for each category of vehicles (passenger cars, heavy 100 

duty vehicle, etc…) and depend on various parameters (brake type, materials, driving style, vehicle 101 

weight, etc…). EFs from non-exhaust emissions can be estimated with three different methods, 102 

namely 1) direct measurements, 2) receptor modelling, and 3) emission inventories (Timmers and 103 

Achten, 2016). Direct measurements involve the characterization of particles sampled during 104 

laboratory experiments or field monitoring campaigns. Receptor modelling exploits elemental 105 

composition and mass balance analysis to correlate particle emissions to their most probable sources. 106 

However, this approach requires a detailed characterization of the source composition and assumes 107 

that concentrations measured at the receptor are not altered by other sources (Hopke, 1991).  108 

Emission inventories are the most reliable and comprehensive data sources since they derive from 109 

the compilation and analysis of a wide range of studies. Authoritative environmental agencies have 110 

developed guidelines to standardize the compilation of such inventories, e.g. the “EMEP/EEA Air 111 

Pollutant Emissions Inventory Guidebook” (EEA, 2019c) from the European Environment Agency and 112 

the “Procedures for Emission Inventory Preparation” from the United States Environmental Protection 113 

Agency (USEPA, 1992). Therefore, they are the fundamental tool for air quality management and for 114 

the correlation of human activities with the corresponding emissions of pollutants. 115 

To regulate emissions from different sources and prescribe limits to be respected for vehicles 116 

produced after a certain year, international authorities set thresholds of emission factor (European 117 

Community, 2008; WHO, 2006). The European Union started defining the EURO standards for exhaust 118 

vehicle emissions in 1992 with EURO 1 (140 mg km-1 veh-1 for diesel cars) (Williams and Minjares, 119 

2016). Since then, the threshold was progressively and rapidly decreased, e.g. EURO 3 (year 2000) 120 

brought the emission limit to 50 mg km-1 veh-1 for diesel cars. The current European emission threshold 121 

for exhaust PM emissions is 5 mg km-1 veh-1 for both diesel and gasoline cars, imposed with EURO 5 122 

(since September 2009) and confirmed by EURO 6 (since September 2014). Similarly, the USA have 123 

been setting the TIER standards since 1991 (USEPA, 2020). These stringent regulations fostered the 124 

technological upgrade of combustion control and tailpipe emission treatment systems, thus leading 125 

to a dramatic decrease in the contribution of vehicle exhaust emissions to PM levels (Fuzzi et al., 2015; 126 

Harrison and Beddows, 2017; Millo et al., 2015; Pant and Harrison, 2013; Thorpe and Harrison, 2008). 127 

A further improvement is expected with the increasing diffusion of EVs, which have no exhaust 128 

emission at all. 129 

However, non-exhaust emissions from traffic still represent a relevant PM10 and PM2.5 source in 130 

urban environments. As shown in Fig. 1, the share of NEE on the total emissions from traffic is 131 

comparable or even exceeds the contribution of EE (Amato et al., 2014b; Bukowiecki et al., 2010; 132 

Düring et al., 2002). The relative contribution of NEE is expected to steadily grow due to the reduction 133 
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of exhaust emission factors, the phase-out of most polluting cars, the progressive increase of electric 134 

vehicles (EVs) and the lack of limiting standards for NEE (Hooftman et al., 2018).  135 

 136 

Fig. 1. Relative contribution of exhaust and non-exhaust emissions to total PM10 emissions from road traffic, based on 137 
the research works conducted by (Al Thani et al., 2020; Amato et al., 2016; Beddows et al., 2015; Bukowiecki et al., 2010; 138 

Düring et al., 2002; EEA, 2019b; Jeong et al., 2019; Juda-Rezler et al., 2020; Singh et al., 2020; Timmers and Achten, 2016).  139 

Over the last years, several reviews focused on specific topics regarding non-exhaust emissions, 140 

such as brake wear particle emissions (Grigoratos and Martini, 2015), ecotoxicology of micro-sized 141 

rubber (Halle et al., 2020; Wik and Dave, 2009), tyre wear particles in the environment (Baensch-142 

Baltruschat et al., 2020; Kole et al., 2017; Wagner et al., 2018), nanoparticle emissions from non-143 

exhaust sources (Kumar et al., 2013) and PM control methods (Amato et al., 2010; Gulia et al., 2019). 144 

However, comprehensive studies on NEE sources and on measures to reduce these emissions are still 145 

missing.  146 

This review aims at filling this gap by providing and comparing information on the generation 147 

mechanisms, on key physical and chemical characteristics (chemical composition, morphology, size 148 

distribution), and on typical emission factors of traffic-related NEE, i.e. brake wear, tyre wear, road 149 

surface wear, rail transport and resuspended dust. Finally, an insight is given on technological and 150 

non-technological measures applicable to abate non-exhaust emissions.  151 

The literature was reviewed by studying and comparing papers and reports found on search 152 

engines and scientific databases. The bibliographic research was performed with a combination of 153 

several keywords, among them: exhaust and non-exhaust emissions, PM10, PM2.5, road dust, brake, 154 

tyre, wear, chemical composition, size distribution and emission factor. The list of references of each 155 

source was thoroughly analysed to filter data and to find other relevant sources. Overall, 243 156 

publications were compiled, comprising 199 articles, 12 books or book chapters, 21 technical reports 157 

or regulations, 3 emission inventories and 8 patents.  The bibliography covers a 46-year time frame 158 

(from 1974 to 2020), 84% of the references was published in the last 15 years.  159 

 160 

2 Non-exhaust emissions: generation, composition, and morphology 161 

2.1 Brake Wear 162 

Brake wear is the result of the frictional process between a brake pad and a rotating disc or drum. 163 

It contributes from 16% to 55% by mass of the total non-exhaust traffic-related PM10 emissions in 164 

urban roads, where braking events are more frequent (Grigoratos and Martini, 2015; Wahid, 2018). 165 

To better understand the particle formation process and their release in the environment, it is 166 

essential to identify and analyse the brake system components, their materials and properties.  167 
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Passenger vehicles are usually equipped either with a disk brake or a drum brake system that mainly 168 

differ in the rotating part (a metal disk or a cylinder). In terms of composition, the rotor or rotating 169 

disc is generally made of grey cast iron, but it can also be made of steel, carbon-carbon, ceramic, or 170 

aluminium matrix composites. State-of-the-art callipers are instead composed of aluminium 171 

(Grigoratos and Martini, 2014; Kukutschová and Filip, 2018). Moreover, to guarantee optimal thermal 172 

and mechanical properties and high resistance to wear, brake linings usually have a more engineered 173 

composition than the rotating parts, which comprise the five components reported in Table 1. 174 

Table 1. Brake lining components and materials. Information summarized from Grigoratos and Martini (2015). 175 

Brake lining component Mass share (%) Materials 

Binders 20-40 Phenolic resins or modified phenol-formaldehyde 
resins 

Reinforcing fibres 6-35 Copper, steel, brass, potassium titanate, glass, organic 
material, Kevlar 

Fillers 15-70 Inorganic compounds (barium and antimony sulphate, 
magnesium and chromium oxides), silicates, ground 
slag, stone, metal powders 

Lubricants 5-29 Graphite, ground rubber, metallic particles, carbon 
black, cashew nut dust, antimony trisulphide 

Abrasives Up to 10 Aluminium oxide, iron oxide, quartz, zircon 

 176 

In the past, asbestos was used as friction material in brake linings due to its fire resistance and 177 

wear properties, but it was phased out as a result of the asbestos-free European Economic Directive 178 

83/477/EEC (European Community, 1983) because of its carcinogenic effect. Currently used brake 179 

materials are classified in three categories: non-asbestos organic (NAO), semi metallic (SM) and low 180 

metallic (LM). The NAO pads are the softest and produce low brake noise, but they have a lower 181 

friction performance than other types of pad and are sensitive to elevated temperatures. This type of 182 

pads is suitable for day-to-day road driving for light and compact vehicles. The SM pads instead have 183 

the highest metallic content (30-60 % of low carbon steel fibre and/or iron powder), a superior 184 

durability and good heat transfer, but they induce an extensive wear of rotor. Thanks to these 185 

characteristics, they are best suited for high performance race cars. Finally, LM pads are made of a 186 

mixture of organic compounds with a small share of metallic components. They present high friction 187 

performance, durability and good braking capacity at higher temperatures (Grigoratos and Martini, 188 

2015; Kukutschová and Filip, 2018). These features make them suitable for medium sized cars, lorries 189 

and trucks. 190 

2.1.1 Generation 191 

During a braking event, the mechanical friction between the disc and the pad combined with the 192 

frictional heat induce the wear of linings and rotors and lead to the release of micronized particles. 193 

Mechanical wear is predominant below 300°C and involves a combination of adhesive, abrasive, 194 

fatigue and oxidative wear; at higher temperatures (over 300 °C), the less thermally stable 195 

components interact with the free gases and oxygen from ambient air (Kukutschová et al., 2009) or 196 

undergo a pyrolysis (Plachá et al., 2015). The generation process becomes even more complex when 197 

organic brake pads are coupled with cast iron discs. In this case, the braking system tends to deposit 198 

a layer of wear particles on the disk boundary. The presence of this layer – that has significantly 199 

different physical and chemical properties compared to both pads and disc –  creates secondary disk-200 

pad contact plateaus, which are in turn subject to continuous growth and destruction phenomena 201 

(Bode and Ostermeyer, 2014; Laguna-Camacho et al., 2015; Merlo et al., 2012; Oesterle and Dmitriev, 202 

2014; Österle and Urban, 2006; Polajnar et al., 2017; Zhang et al., 2019). The synergic effect of all 203 
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these mechanisms therefore complicates the prediction of the chemical composition, structure and 204 

size of the wear debris produced during a braking event (Kukutschová and Filip, 2018).  205 

2.1.2 Characterization 206 

The generation mechanism, which can be mechanical or thermal, determines the chemical 207 

composition and the size of the wear particles. The dimension of the particles ranges from a few 208 

nanometres up to 100 μm (Kumar and Ghosh, 2019). In particular, coarse particles are predominantly 209 

generated by mechanical processes and mainly contain residues from friction materials (carbonaceous 210 

matter, oxidized metals, degradation products of phenolic resins). Conversely, fine and ultrafine 211 

particles are generated by thermal and/or chemical processes (Garg et al., 2000; Grigoratos and 212 

Martini, 2015; Nosko and Olofsson, 2017) and encompass thermally stable components (i.e. graphite, 213 

zircon, barite) (Filip et al., 2002). More specifically, the study by Wahlström et al. (2010) on LM and 214 

NAO brakes found that Fe, Cu, Ti, Al, oxygen and carbonaceous species are the main constituents of 215 

the fine fraction of wear particles, and Fe predominates in the coarse fraction. Fe in its oxidized forms 216 

(i.e. maghemite, magnetite and hematite) was instead found in the fine and ultrafine fraction by 217 

Kukutschová et al. (2011); its presence was attributed to the oxidation of Fe-based ingredients of the 218 

low-metallic brake pads tested. Similarly, Oesterle and Dmitriev 2014 observed that the 219 

nanocrystalline friction layer or third bodies generated at the contact plateaus in organic brake pads 220 

are mainly composed of iron oxides. Finally, Liati et al. (2019) performed energy dispersive X-ray 221 

analyses of samples collected on a brake test bench for LM and NAO pads, finding that Fe is dominant 222 

in every size fractions, especially the coarsest ones. Smaller size particles contain Ca, sometimes in 223 

combination with S and/or P. Other elements found in brake wear particles are Al, Cu, Sn, Mg, Si, Cr, 224 

Ti, K and W, while traces of Ni, Zn, Zr, Ba, S, C, P, F, Mn are less frequently found and traces of Bi and 225 

Sb are rarely found.  226 

The abundant presence of metals in the particulate matter resulting from brake abrasion is 227 

exploited in source apportionment studies to quantify exhaust/non-exhaust emissions. A good 228 

correlation was observed between Fe, Cu, Mn, Ni, Pb and Sb in response to traffic volume, reflecting 229 

that metal emissions are vehicle-related (Almeida et al., 2020; Lawrence et al., 2013). Several 230 

researchers tried to identify, through PM sampling and characterization in urban environment, the 231 

most suitable tracers for brake wear. Copper (Cu) and Antimony (Sb) are the most common ones found 232 

in literature concerning brake wear (Almeida et al., 2005; Almeida et al., 2006; Hagino et al., 2016; 233 

Megido et al., 2016; Sternbeck et al., 2002). However, in the future both elements will not be suitable 234 

as tracers since brake pad manufacturers are introducing Sb- and Cu-free formulations. Iron, which is 235 

mostly present in LM pads (Kukutschová et al., 2011), is also not suitable for the assessment of brake 236 

wear emissions due to the fact that it can be released by many different sources. Finally, Gietl et al. 237 

(2010) found that Barium (Ba) can be used as a good long-term tracer: barium sulphate (BaSO4) 238 

accounts for 1.1% of brake wear PM10, it is not hazardous and there is no plan to replace it in the near 239 

future. However, it must be noted that brake wear composition varies over time and according to the 240 

country considered. It is therefore necessary to continuously update the literature data (Beddows et 241 

al., 2016). 242 

Several studies investigated the mass and the number size distribution of airborne brake wear 243 

particles. Most studies found unimodal PM10 mass distributions with peaks in the range from 1 µm  to 244 

6 µm (Grigoratos and Martini, 2015). For example, Kukutschová et al. (2011) found a unimodal mass 245 

distribution concentrated between 2 and 4 µm for low-metallic pads. Similar results were obtained by 246 

Sanders at al. (2003), who tested several types of pads and found that PM10, with a mean mass 247 

diameter of 5-6 µm, accounts for 63-85% of the total break wear mass. These results are in agreement 248 

with the study of Garg et al. (2000), who tested seven brake pad formulations (including semi-metallic 249 

brakes and brakes functionalized with potassium titanate or with aramid fibres) and showed that PM2.5 250 

and PM10 are the 63% and 86% by mass of the airborne PM respectively.  251 
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Analysing the number size distribution, many researchers also found at least one peak at the 252 

ultrafine fraction (diameter < 0.1 µm). For example, Garg et al. (2000) determined the total number 253 

of particles generated in real time testing with both the Dekati electrical low-pressure impactor (ELPI) 254 

and the TSI electrical aerosol analyser (EAA). The results highlighted that the number of particles 255 

emitted increases with brake temperature and suggested that most of the produced particles are 256 

smaller than 0.03 µm. More recently, Nosko and Olofsson (2017) found a strong correlation between 257 

brake temperature and particle size distribution in the results of their tests performed with a pin-on 258 

disc machine on cast iron discs and LM pads. For disc temperatures below 185°C, a peak at 0.165 µm 259 

and a negligible ultrafine fraction were observed; at temperatures of about 350°C, the size distribution 260 

showed instead a prevalence of ultrafine particles with a peak at 0.011–0.029 µm. Finally, Wahlström 261 

et al. (2010) highlighted that the majority of the airborne particles produced are in the fine fraction. 262 

In particular, they observed a bimodal particle number distribution for the LM and NAO brake pads 263 

tested, with peaks at particle sizes of approximately 0.28 µm and 0.35 µm.  264 

The heterogeneity of the results proved that it is difficult to perform a precise characterization of 265 

the brake wear emissions and to compare the results of different tests due to a lack of standardized 266 

sampling procedures and measurement techniques (Grigoratos and Martini, 2015). Additionally, the 267 

amount and composition of the brake wear particles produced depend on various parameters, both 268 

intrinsic and external: bulk frictional material (Kukutschová et al., 2011); driving behaviour, frequency 269 

and intensity of braking (Kwak et al., 2013); speed, state and care history of the vehicle; and 270 

environmental conditions, such as ambient temperature and chemicals present in the environment 271 

(Grigoratos and Martini, 2015; Kukutschová et al., 2011). 272 

A summary of the results reported in the literature is presented in Table 2. 273 

Table 2. Summary of brake wear studies on size distribution. 274 

Reference Generation method Detection 
method 

Mass size 
distribution 

Number size 
distribution 

Sanders et al. 
(2003) 

Brake dynamometer MOUDI -ELPI Unimodal 
(4-5 µm) 

Unimodal  
(1 µm) 

Iijima et al. (2007) Brake dynamometer APS (>0.5µm) Unimodal  
(3-6 µm) 

Unimodal  
(1 - 2 µm) 

Kukutschová and 
Filip  (2018) 

Brake dynamometer APS – SMPS - BLPI Unimodal  
(2-4 µm) 

Bimodal (100 
and 300 µm) 

Garg et al. (2000) Brake dynamometer MOUDI (>0.1 µm) Unimodal (0.1-
1 µm) 

 

Iijima et al. (2008) Brake dynamometer APS (>0.5µm) Unimodal (2 
µm) 

Unimodal  
(0.8-1 µm) 

Uexküll et al. 
(2005) 

Brake dynamometer Optical particle 
counter (>0.3 µm) 

Unimodal (2-3 
µm) 

Unimodal  
(0.5 -1 µm) 

Wahlström et al. 
(2010) 

Brake dynamometer GRIMM 
(>0.25µm) 

 Bimodal (0.28 
and 0.35 µm) 

 275 

2.1.3 Emission factors 276 

Brake wear EFs can be experimentally estimated through direct measurements in laboratory or 277 

field tests, namely: 1) brake dynamometer tests, 2) pin-on-disc tribometer, 3) identification of brake 278 

wear tracers in ambient air, 4) direct on-road measurement of the source by means of mobile units. 279 

The first two procedures involve the controlled generation, collection and characterization of the 280 

particles emitted during the test, whereas the latter approaches are based on the direct sampling in 281 
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the urban environment. Unfortunately, it is difficult to compare results due to the variety of 282 

experimental methods and measurement techniques performed. Moreover, each study presents 283 

some disadvantages related to the estimation of the EFs. First, for both dynamometer tests and pin-284 

on-disc tribometer, the results are based on a small number of vehicles and the particle generation 285 

conditions are considerably far from reality. At the same time, the on-road sampling is inevitably 286 

altered by the other traffic-related emissions, making it difficult to perform a correct characterization 287 

of the particle matter exclusively emitted by brake wear.  288 

To overcome the disadvantages deriving from experimental methods, the EEA unified the 289 

procedure for estimating EFs. The EMEP/EEA Emission Inventory Guidebook (EEA, 2019c) combines 290 

PM emission factors in milligrams emitted per kilometre (mg/km) with vehicle kilometres travelled 291 

per year. The categories of vehicles considered are passenger cars, light duty vehicles (LDV), heavy 292 

duty vehicles (HDV and buses) and two-wheelers. The following equation was reported in the 293 

inventory to estimate the PM10 EFs (mg km-1 veh-1) for brake wear: 294 

 
𝐸𝐹𝑃𝑀10 = 0.98 ∙ 𝐸𝐹𝑇𝑆𝑃 Eq. 1 

where the coefficient 0.98 was proposed by USEPA (USEPA, 1995) and TNO (Berdowski et al., 1997), 295 

while  𝐸𝐹𝑇𝑆𝑃 (mg km-1 veh-1) is the emission factor of the total suspended particles (TSP) generated 296 

from brake wear. This emission factor can be derived from: 297 

 
𝐸𝐹𝑇𝑆𝑃 = 𝑓 ∙ 𝑊𝑅 Eq. 2 

where WR is the wear rate (mg km-1 veh-1) that must be estimated or calculated from surveys, 298 

whereas f is the share of the brake pad mass loss that becomes airborne PM (TSP). This coefficient 299 

varies between 30% (Garg et al., 2000) and 70% (Sanders et al., 2003). 300 

The variability in the methodology adopted for the estimation of the EFs is reflected in the values 301 

found in the literature, which are summarized in Table 3. Brake dynamometer studies reveal brake 302 

wear PM10 EFs in the ranges from 2.9 mg km-1 veh-1  to 8.1 mg km-1 veh-1 (Garg et al., 2000; Iijima et 303 

al., 2008; Sanders et al., 2003), with an outlier (Hagino et al., 2015) reporting a much lower value. A 304 

wider range of EFs emerged in research works where receptor modelling is applied, with PM10 305 

emission factors ranging from 2.2 mg km-1 veh-1 to 15 mg km-1 veh-1. Finally, EFs presented in the 306 

emission inventories fall in a range from 7 mg km-1 veh-1 to 18.5 mg km-1 veh-1 for PM10 and from 2.3 307 

mg km-1 veh-1 to 3 mg km-1 veh-1 for PM2.5, in agreement with the results of the other types of studies 308 

mentioned before. The median PM10 brake wear emission factor derived from these data is 309 

approximately 7.4 mg km-1 veh-1, which is slightly higher than the current European emission standard 310 

(EURO 6) for gasoline and diesel vehicle (5 mg km-1 veh-1) exhaust emissions.  311 

Table 3. Brake wear PM10 and PM2.5 emission factors found in the literature. For median calculation, the same weight 312 
was attributed to each reference. When ranges were provided, the mean value was considered. 313 

Reference Data source Brake PM10 EF 
(mg km-1 veh-1) 

Brake PM2.5 EF 
(mg km-1 veh-1) 

Garg et al (2000) Brake dynamometer study 2.9-7.5 1.8-2.8 

Sanders et al. (2003) Brake dynamometer study 8.1  

Iijima et al. (2008) Brake dynamometer study 5.8  

Hagino et al. (2015) Brake dynamometer study 0.04-1.4 0.04-1.2 

Luhana et al. (2004) Receptor modelling 8.8  

Bukowiecki et al. (2009) Receptor modelling 8  

Bukowiecki et al. (2010) Receptor modelling 15  

Sjodin et al. (2010) Receptor modelling 2.2  
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Dahl et al. (2006) Receptor modelling  7.4  

EEA (2019b) Emission inventory 7.4 2.9 

USEPA (2014b) Emission inventory 18.5 2.3 

UK NAEI (2018) Emission inventory 7 3 

 Median 7.4 2.3 

 314 

2.2 Tyre Wear 315 

 Tyre manufacturing requires the use of a wide variety of chemicals, fillers and polymers, reported 316 

in Table 4. In detail, the primary components of tyre tread are carbon black, elastomer compounds, 317 

steel cords, fibres and other organic and inorganic compounds (Kreider et al., 2010; Landi et al., 2016).  318 

Table 4. Average composition of tyres (Wagner et al., 2018). 319 

Compounds Content (%) Ingredients 

Rubber/Elastomer 40-60% Polybutadiene (BR), styrene-butadiene (SBR), 
neoprene isoprene (NR), polysulphide 

Fillers 20-35% Carbon black, silica, silanes 

Process oils 12-15% Mineral oils 

Vulcanization agents 1-2% ZnO, S, Se, Te, thiazoles, organic peroxides, nitro 
compounds 

Additives 5-10% Preservatives, antioxidants, desiccants, 
processing aids 

Textile and metal reinforcement 5-10% Steel, polyester, nylon, rayon, aramid fibre 

 320 

The core of tyre tread is composed of thermoset polymers (natural or synthetic rubber), which are 321 

liquid or soft solid polymers irreversibly hardened by curing (Halle et al., 2020; Hirata et al., 2014; Kole 322 

et al., 2017). Fillers are used as reinforcing agents to improve the hardness, wear and UV resistance of 323 

tyres. Oils, pine tar, resins and waxes are instead softeners and extenders used to increase rubber 324 

stickiness and stiffness and to improve wet grip performance. For many years, polycyclic aromatic 325 

hydrocarbons (PAHs) were used in extender oils for tyre production. PAHs, which are formed during 326 

the incomplete burning of coal, oil, gas and other organic matters, are known to be cancerogenic. 327 

Therefore, the REACH directive (Registration, Evaluation, Authorisation and restriction of Chemicals) 328 

prohibited the use of the “PAH-rich” extender oil in tyres produced after January 2010 (European 329 

Community, 2006). Anti-degradants are instead used in tyre manufacturing to protect them against 330 

degradation by ozone, oxygen, heat or other factors. Finally, the vulcanization process requires curing 331 

agents, which are accelerators, activators and retardants (Gent and Walter, 2006; Grigoratos and 332 

Martini, 2014; Wik and Dave, 2009).  333 

Some of the chemical components involved in the manufacturing of tyres can be used as markers 334 

for tyre wear particles, such as benzothiazole (Kim et al., 1990; Rogge et al., 1993) and benzothiazole 335 

compounds, such as 2-(4-morpholinyl) benzothiazole (Kumata et al., 1997; Park et al., 2019), styrene 336 

butadiene rubber (SBR) (Mengistu et al., 2019; Pierson and Brachaczek, 1974), and zinc, which is added 337 

as an activator for the vulcanization processes (Adachi and Tainosho, 2004; Fauser et al., 2000).  338 

2.2.1 Generation 339 

Tyre abrasion due to the contact with the road surface leads to the release of large quantities of 340 

small rubber particles (the size range includes PM10), whose chemical composition and characteristics 341 

can differ from the original tyre tread due to heat, friction and incorporation of material from the road 342 

surface (Adachi and Tainosho, 2004; Kreider et al., 2010; Panko et al., 2013). The amount and size of 343 

wear particles released depend on several factors: climate, composition of the tyre, road surface and 344 
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conditions, speed and driving behaviour. The wear process is dominated by both heat generation and 345 

shear forces between the tread and the road pavement. Similarly to brake wear, mechanical shear is 346 

responsible for the generation of coarse particles (PM10), whereas the high temperature reached in 347 

the tyre surfaces causes the volatilization of small particles in the fine mode (PM1) (Grigoratos and 348 

Martini, 2014; Kole et al., 2017; Kreider et al., 2010; Mathissen et al., 2011). 349 

Experimental tests for the characterization of tyre-related NEE can be either performed on real 350 

particle samples directly collected from the environment or on micronized rubbers specifically 351 

generated in laboratory-controlled conditions. Depending on the particle origin, it is possible to divide 352 

all the micro-rubbers into three main categories: tread particles, tyre wear particles and tyre road 353 

wear particles. Tread particles (TP) include particles manually abraded from never used tyres and 354 

therefore do not contain road wear. Tyre wear particles (WP) are instead generated by tyre wear on 355 

a road or in a laboratory road simulator, thus they also include road wear. On-road generated particles 356 

(RP) are a mixture of rubber tyre particles, road dust and other car emissions; this form of particles is 357 

mostly sampled from the environment. Because of the different generation process, these micro-358 

rubbers potentially present different characteristics in term of size and/or chemical composition. 359 

2.2.2 Characterization 360 

Adachi and Tainosho (2004) compared the chemical composition of tyre dust (RP) to the one 361 

belonging to original tyre tread (TP), and found out that tyre dust is enriched of heavy metal particles 362 

(i.e. Ti, Fe, Cu, Zn etc.), which derive from brake linings and asphalt pavement materials (i.e. CrPbO4). 363 

Kreider et al. 2010 highlighted the chemical composition differences of original tread particles (TP), 364 

laboratory generated particles (WP) and on-road generated particles (RP) measured through 365 

thermogravimetric analysis. As shown in Fig. 2A, both WP and RP present an enrichment in mineral 366 

content and a reduction of polymer amount due to the contribution of other traffic-related emission 367 

sources, whereas more polymers and less mineral content were found for TP. As shown in Fig. 2B, WP 368 

and RP are enriched in Al, Si, Fe, Ca, Mg and K from pavements and other traffic-related sources; on 369 

the other hand, WP and RP are less rich in zinc, a metal used in tyre manufacturing in the form of ZnO, 370 

because of a dilution from the pavement. Consequentially, the authors concluded that tyre can be 371 

considered as the major contributor of zinc in road dust. 372 

 373 

Fig. 2. General composition analysis with values expressed in % weight (A) and analysis of metallic content with values 374 
expressed in parts per million (B) of particles from Kreider et al. (2010) for on-road collected particles (RP), laboratory 375 
generated particles (WP) and original tread particles (TP). 376 

Besides the identification of the chemical composition, many attempts were also made with the 377 

purpose of comparing the morphology and size distribution of different types of particles, such as on-378 
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road samples or laboratory generated particles under simulated driving conditions (Kreider et al., 379 

2010; Wagner et al., 2018). The results obtained were very heterogeneous and the measured sizes 380 

proved to be dependent not only on the particle type, but also on the experimental setup and 381 

procedure and on the analytical techniques used in each study (Kole et al., 2017). The morphologies 382 

of tyre wear micro-rubber found were different according to the experimental conditions applied, 383 

such as tyre rotation velocity, force and type of surface abrasion. Nevertheless, abraded micro-rubber 384 

particles sampled in nature (Fig. 3A-B) and produced in laboratory (Fig. 3C-D) have a similar shape, i.e. 385 

particles are elongated, warped, porous, near spherical, jagged and irregular (Halle et al., 2020).  386 

 387 

Fig. 3. Diversity of rubber from laboratory production to sampling along a road. A: RP (circled in blue) sampled on gel-388 
tape from a road surface. B: Water sample of RP (circled in blue) collected from a road surface drain. C: Laboratory generated 389 
WP by cryogrinding in liquid nitrogen. D: Laboratory generated WP produced by pressing a tyre on a coarse grinding stone 390 
(Halle et al., 2020). 391 

Size distributions of tyre wear particles available in the literature (Table 6) vary according to the 392 

wear processes, i.e. mechanical abrasion forms coarse particles, whereas thermal processes generate 393 

fine particles. Kreider et al. (2010) tested summer and friction tyres in a road simulator and, through 394 

laser diffraction analysis, identified a wide unimodal particle size distribution ranging from 5 µm to 395 

200 µm, with a mode centred at ~ 75 µm for RP, and from 4  µm to 350 µm, with a mode centred at ~ 396 

100 µm for WP. A limitation of this study is represented by the inability of the measurement device to 397 

detect particles below a diameter of 0.3 µm. Similarly, Aatmeeyata et al. (2009) found a bimodal mass 398 

distribution of tyre wear particles (0.3 µm and 4/5 µm), but the peak at 0.3 μm was probably altered 399 

by the operational limit of the detector. 400 

The introduction of more advanced characterization methods – which are able to explore the 401 

nanometre range and analyse the number particle size distribution – allowed to extend the 402 

investigation also to the finest fraction of tyre wear emissions. The road simulation study conducted 403 

by Sjödin et al. (2010) reported a unimodal number size distribution with peaks at 30 nm. A similar 404 

mode was described by Dahl et al. (2006) in their road simulation studies performed with studded and 405 

friction tyres on different types of asphalts. The authors reported a unimodal number size distribution 406 

with a measured peak in the ultrafine mode (from 15 nm to 50 nm), thus proving that the interaction 407 

at the road-tyre interface represents a significant source of sub-micrometer particles. Their results 408 

agree with the road simulation study from Mathissen et al. (2011), who found a unimodal number size 409 

distribution with a peak ranging from 70 nm to 90 nm.  410 

In conclusion, literature results on tyre wear were found highly variable depending on the type of 411 

study performed (road simulator, pin-on-disc or on-road direct measurement) and on the measuring 412 

instrumentation adopted; for these reasons, they are hardly comparable. 413 
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Table 5. Summary of tyre wear studies on size distribution. 414 

Reference 
Generation 
method 

Detection method 
Mass size 
distribution 

Number size 
distribution 

Olofsson et al. 
(2018) 

Pin-on-disc 
Spectrometer FMPS 
(5.6-560 nm) & OPS (0.3 
-10 µm) 

Unimodal  
(5-10 μm) 

0.2, 1 and 2 μm 

Kreider et al. (2010) Road simulator 
Suction system 
collecting particle (>0.3 
µm) + Laser diffraction 

Unimodal   
(75 µm) 

Bimodal   
(5 and 25 µm) 

Aatmeeyata et al. 
(2009)  

Road simulator 
GRIMM analyzer (>0.3 
µm) 

Bimodal (0.3 and 
4/5 µm) 

Bimodal (0.33 
µm and 1.75 µm) 

Sjödin et al. (2010) Road simulator APS (> 0.5 μm) & SMPS 
Unimodal  
(2-4 μm) 

Unimodal  
(30 nm) 

Panko et al. (2009)  Road simulator APS (> 0.5 μm) & SMPS 
Bimodal (1.0 μm 
and 5-8 μm) 

Unimodal  
(30-90 nm) 

Mathissen et al. 
(2011) 

Road simulator 
Spectrometer  
(5.6-560 nm) 

- 
Unimodal  
(70-90 nm) 

Kim and Lee (2018) Road simulator 
Spectrometer  
(5.6-560 nm) & APS (> 
0.5 μm) 

Unimodal  
(3-4 μm) 

- 

Park et al. (2018) Road simulator 

Light-scattering laser 
photometer & 
Spectrometer  
(5.6-560 nm) 

Unimodal  
(2 μm) 

Unimodal  
(< 0.5 μm) 

Dahl et al. (2006) Road simulator SMPS (14-660 nm)   
Unimodal 
(15-50 nm) 

Kwak et al. (2013) Road simulator APS (> 0.5 μm) 
Unimodal  
(2-3 μm) 

  

Kreider et al. (2010) 
On-road direct 
measurement 

Suction system 
collecting particle (>0.3 
µm) + Laser diffraction 

Unimodal   
(50 µm) 

Unimodal  
(25 µm) 

Alves et al. (2020) 
On-road direct 
measurement 

SMPS (14-660 nm) & 
APS (> 0.5 μm) 

Unimodal  
(> 0.5 μm) 

Unimodal  
(< 0.5 μm) 

 415 

2.2.3 Emission factors 416 

Most of the studies on brake particulates mentioned above also report an estimation of emission 417 

rates for airborne tyre wear particles, for both PM10 and PM2.5 fractions. The methods used to estimate 418 

tyre wear emission factors include derivation from emission inventories, receptor modelling and direct 419 

measurement in laboratory experiments using a road simulator. Alternatively, the emission factors 420 

can be derived by experimental measurements in wind tunnels (which reproduce a realistic condition) 421 

or through road sampling and mobile on-board measurement.  422 

Based on experimental results, several authors proposed models to evaluate the PM10 and PM2.5 423 

emission factors, such as the formula of Aatmeeyata et al. (2009):  424 

 𝐸𝐹𝑖 =
(𝑠 × 𝐿 + 𝑐) · 𝑉𝑠𝑒𝑡−𝑢𝑝

𝑀
 

Eq. 3 

 
where i stands for PM10 or PM2.5, 𝐸𝐹𝑖  is the emission factor (µg km-1 tyre-1) of i, s (µg m-3 kg-1) is the slope of 425 

the trend line of the variation of PMi emission with increasing load and c (µg m-3 tyre-1) is its intercept, L is the 426 
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load (kg tyre-1), 𝑉𝑠𝑒𝑡−𝑢𝑝 is the volume of set up (m3), and M (km) is the average km run during the test (5-minute-427 
long). Similarly, Wang et al. (2016) found a linear correlation between vehicle load and tyre wear, whereas 428 
Salminen (2014) proposed an exponential correlation.  429 

Table 6 summarizes the results of studies on tyre wear emission factors. Two different road 430 

simulation studies reported a PM10 emission factor of 3.8 mg km-1 veh-1 and 9 mg km-1 veh-1 for 431 

summer and friction tyres respectively (Kupiainen et al., 2005; Sjödin et al., 2010). An intermediate 432 

value of 7.0 mg km-1 veh-1 was estimated in the on-road study conducted by Panko et al. (2013). More 433 

recently, a substantially lower value of about 2 mg km-1 veh-1 for PM10 was estimated with a road 434 

simulation study (Alves et al., 2020). These values are close to PM10 emission factors reported in both 435 

the USEPA (2014b) emission inventory for light-duty vehicles (6.1 mg km-1 veh-1) and the UK National 436 

Atmospheric Emission Inventory (NAEI, 2018) for passenger vehicles (7.0 mg km-1 veh-1). Also, the 437 

more updated emission inventory by EEA (EEA, 2019a) confirmed a similar value of 6.4 mg km-1 veh-1. 438 

As for PM2.5, Panko et al. (2013) estimated an emission factor of 0.3 mg km-1 veh-1 for light duty 439 

vehicles. Similarly, a PM2.5 EF of 0.9 mg km-1 veh-1 was stated by USEPA (2014a), whereas higher values 440 

of 4.5  mg km-1 veh-1 and 5 mg km-1 veh-1 were reported respectively by EEA (2019a) and NAEI (2018).  441 

The literature analysis reveals some variability in the EF values, which can be attributed to the 442 

employment of different sampling and quantification methods, as well as operating conditions 443 

(meteorological conditions, type of tyre, road surface type and vehicles) and driving behaviour (speed 444 

and braking events) (Mathissen et al., 2011; Pant and Harrison, 2013). Overall, PM10 EFs fall in the 445 

range from 3.8 mg km-1 veh-1  to 9 mg km-1 veh-1, while PM2.5 EFs range from 0.3 mg km-1 veh-1 to 5 mg 446 

km-1 veh-1 (Table 6). 447 

Table 6. Summary of PM10 and PM2.5 emission factors for tyre wear. For median calculation, the same weight was 448 
attributed to each reference. 449 

Reference Data source Tyre PM10 EF (mg 
km-1 veh-1) 

Tyre PM2.5 EF (mg 
km-1 veh-1) 

Dahl et al. (2006) Tests with road simulator (70 
km/h)  

1.9  

Sjödin et al. (2010) Tests with road simulator  3.8  

Kupiainen et al. (2005) Tests with road simulator (30 
km/h)  

9 2 

Alves et al. (2020) Tests with road simulator  2  

Aatmeeyata et al. (2009) Tests with road simulator  3.7 2 

Panko et al. (2013) Roadside study 7 0.3 

Luhana et al. (2004) Receptor Modelling 7.4  

EEA (2019a) Emission inventory  6.4 4.5 

USEPA (2014b) Emission inventory  6.1 0.9 

UK NAEI (2018) Emission Inventory  7 5 

 Median 6.3 2 

 450 

2.3 Road Surface Wear 451 

Road surfaces are typically concrete-based or asphalt-based: the former are made of coarse 452 

aggregate, sand and cement (EEA, 2019c), while the latter are mainly composed of mineral aggregate 453 

(95%). The remaining 5% is composed of bitumen, which is a highly viscoelastic black blend of 454 

hydrocarbons and their derivatives obtained from the fractional distillation of crude oil (Lindgren, 455 

1996). The composition of road mixtures can be further enriched and optimized with additives like 456 
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polymers (e.g. tyre crumbs) and different types of fillers (e.g. waxes, asbestos, clay, silica etc.), which 457 

lead to the modification of the pavement properties (Porto et al., 2019). 458 

2.3.1 Generation 459 

Road surface is a relevant source of both primary and secondary PM in urban areas. The former 460 

originates from the fragmentation of the road pavement surface due to the interaction with vehicle 461 

tyres: the friction between the tyre and the road surface leads to the abrasion of the road surface and 462 

the consequent release of airborne particles in the environment. As for the secondary aerosol, it 463 

derives from the transformation of the organic asphalt-based materials that are released in the air 464 

during the road wear process (Khare et al., 2020).  465 

2.3.2 Characterization 466 

The chemical characterization of the wear particles is difficult to perform due to the complex 467 

composition of the road mixtures. The presence of abundant stone fractions in the pavement results 468 

in a mineral wear that is mainly composed of Si, Ca, K, Fe and Al (Lindgren, 1996). Moreover, dust 469 

particles with similar mineralogical compositions are released from other sources, such as 470 

construction sites and winter sanding/salting. As dust from these sources deposits onto the road 471 

surface and is resuspended by wind or vehicle-induced turbulence, it becomes difficult to identify 472 

particulate from road wear (Gehrig et al., 2010). Several studies tried to distinguish road abrasion 473 

particles from dust resuspension with different approaches. Some authors suggested to employ 474 

bitumen as a tracer for road wear particles (Fauser et al., 2000; Fauser et al., 2002; Thorpe and 475 

Harrison, 2008). Fauser et al. (2000) analysed size-segregated aerosol sampling and found that 5.8-476 

10.1 wt.% of roadside total suspended particulate (TSP) is made of asphalt particles with a mean 477 

aerodynamic diameter of about 1 µm. Amato et al. (2014a) instead used positive matrix factorization 478 

(PMF) modelling, that is a statistical factor analysis tool based on the law of mass conservations and it 479 

is used to apportion sources of airborne particulate matter in the atmosphere  (Hopke, 2000; Hopke, 480 

2016; Paatero and Tapper, 1993; Paatero and Tapper, 1994). On average, the authors estimated a 20% 481 

relative contribution of road wear source to the total road dust mass loadings.  482 

Laboratory-controlled experiments can be helpful to overcome the problems related to the source 483 

apportionment in real-world studies. To this purpose, Gehrig et al. (2010) adopted a mobile load 484 

simulator, i.e. a device where wheels are pulled in a closed loop at specific speed and loading 485 

conditions. This device is generally used to test the properties and durability of road pavements and 486 

it allows the separation of road abrasion particles from resuspended road dust. The resulting mass 487 

size distribution of the pavement wear particles presented a peak at 6-7 µm and no particles below 488 

0.5 µm were observed. Similarly, a study of the Swedish National Road and Transport Research 489 

Institute found a mass particle size distribution with a peak at 5-8 µm and low particle mass below 1 490 

µm (Gustafsson and Johansson, 2012). The experiments were conducted testing different pavement 491 

types (porous asphalt and stone mastic asphalt) in a road simulator. Contrary to what expected, the 492 

authors observed that the PM10 mass size distribution did not vary significantly between different 493 

pavements, thus suggesting that the particulate formation process is more relevant than the material 494 

itself.  495 

Gustafsson and Johansson (2012) completed their study analysing the chemical composition of 496 

PM10 generated from road surfaces wear. Particles in the coarser fractions were characterized by 497 

mineral contents, mostly silicon (Si), calcium (Ca), potassium (K) and iron (Fe). Conversely, the fraction 498 

of particles below 1 µm was dominated by sulphur (S) and chlorine (Cl) related to tyre rubber or 499 

bitumen. Finally, small quantities of zinc, that is commonly associated with tyre wear, was found in 500 

PM10. These evidences corroborated the results from Kreider et al. (2010), who identified aluminium 501 

and silicon as the elements present in the highest quantities in RP and WP.  As a consequence, since 502 

these elements are commonly detected in higher quantities in asphalt  (Legret et al., 2005; Lindgren, 503 
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1996) and just in smaller quantities in TP, it can be inferred that road powder principally originates 504 

from the pavement surface wear and not from tyre. Moreover, other metal components of 505 

pavements, such as iron (Fe), sodium (Na), calcium (Ca), potassium (K) and magnesium (Mg), were 506 

found in higher quantities in RP and WP, rather than in TP.  507 

2.3.3 Emission factors 508 

Since the chemical composition of bitumen makes the estimation methods (e.g., chemical mass 509 

balance and receptor modelling) inapplicable, only few studies provided road wear PM10 emission 510 

factors and even fewer provided PM2.5 EFs. In this framework, the EMEP/EEA Air Pollutant Emissions 511 

Inventory Guidebook uses the estimation methodology originally proposed by Klimont et al. 2002, 512 

who solved the problem of quantifying particle emissions from road surface wear by subtracting tyre 513 

wear, brake wear, and re-suspension from the total non-exhaust emission factors. However, their 514 

study presents some limits due to the high uncertainty of the values and the limited information 515 

obtained.  516 

Another variable that strongly affects road wear emissions is the use of studded tyre and traction 517 

sand, commonly employed in some Nordic European countries. Kupiainen at al. (2005) tested non-518 

studded and studded tyres at 30 km/h, and obtained PM10 emission factors of 9 mg km-1 veh-1 and 40 519 

mg km-1 veh-1, respectively. The use of traction sand further increases PM10 EFs, reaching values of 108 520 

mg km-1 veh-1 and 155 mg km-1 veh-1 for non-studded and studded tyres respectively. Due to the lack 521 

of information on the matter, no EFs are included in the EMEP/EEA Emissions Inventory Guidebook 522 

for road surface wear associated with the use of studded tyre. 523 

Table 7 summarizes the results reported in literature for LDV and HDV. Although only few studies 524 

are available, the positive correlation between vehicle weight and NEE EFs is largely confirmed. As a 525 

consequence, the growing preference of customers for sport utility vehicles (SUVs) over compact cars 526 

is expected to increase road wear contribution to NEE. Indeed, the average SUV weight is estimated 527 

to be 21% higher than average cars (Burnham, 2012). 528 

Table 7. Road wear surfaces PM10 and PM2.5 Emission Factors. LDV; light duty vehicles, HDV, Heavy-duty vehicles. For 529 
median calculation, the same weight was attributed to each reference.  530 

Reference Data source Road PM10 EF 
(mg km-1 veh-1) 

Road PM2.5 EF 
(mg km-1 veh-1) 

Kupiainen (2005) Road Simulator (30 
km/h) 

9 (LDV non-studded tyres) 
40 (LDV studded tyres) 

2 
8 

Gehrig  (2010) Road Simulator (asphalt 
concrete) 

3 (LDV) 
7 (HDV) 

 

Luhana (2004) On road measurement 3.1 (LDV) 
29 (HDV) 

 

EMEP/EEA (2019c) Emission inventory 7.5 (LDV) 
38 (HDV) 

4.1  
- 

UK NAEI (2018)  Emission inventory 8 (LDV) 
38 (HDV) 

4  
21  

 Median for LDV  7.75 4.05 

 Median for HDV 33.5 - 

2.4 Resuspended Road dust 531 

2.4.1 Generation 532 

Most of non-exhaust particles derive from the resuspension of material already deposited on the 533 

road surface (between wheel tracks, on curb side or into the pores of the asphalt) due to tyre shear, 534 

vehicle-generated turbulence and the action of the wind (Grigoratos and Martini, 2015). Therefore, 535 

the terms “road dust”, “road sediments” or “street dust” include any form of solid particle on the road 536 
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surface that can be suspended in the atmosphere through traffic or windblown action (Denby et al., 537 

2018). Only particles with a size below 70 µm can be airborne, however, all the deposited dust can be 538 

resuspended as larger particles may be ground into finer ones by the vehicle weight. 539 

There are several sources that contribute to road dust: deposited brake/tyre/road wear particles, 540 

deposited particles from exhaust emissions, particles from nearby environments, fugitive loading from 541 

constructions, roadsides and/or unpaved roads, dry and wet deposition from atmosphere, application 542 

of salt during freezing periods, traction sand, deposition of pollen and plant materials (Amato et al., 543 

2014b). The dominant contributor to road dust largely varies according to the environment: in colder 544 

regions the predominant source is the road wear from studded tyres (Norman and Johansson, 2006), 545 

in urban environments the relevant sources are tyre and brake wear (Bukowiecki et al., 2010), while 546 

in some cases there may be no dominant source. Because of the heterogeneity of dust sources, it is 547 

difficult to distinguish between “direct” wear emissions (tyre, brake or road wear) and “resuspended” 548 

wear emissions, and therefore to separate their relative contribution to atmospheric PM levels (Denby 549 

et al., 2018).  550 

2.4.2  Characterization  551 

Road dusts have natural or anthropogenic origins, and their composition varies depending on 552 

geographical location, climate factors, resuspended soil and anthropogenic sources (Candeias et al., 553 

2020). Many attempts were made to identify the chemical composition, the size distribution, the 554 

morphology and the source apportionment of urban dust (Adamiec, 2017; Alves et al., 2018; Amato 555 

et al., 2016; Candeias et al., 2020; Cesari et al., 2019).  556 

Road dust is sampled, collected and analysed with various approaches that consequentially lead to 557 

different results. For example, Amato et al. (2011) collected road dust samples with a transportable 558 

resuspension chamber in Zurich (Switzerland), Barcelona and Girona (Spain). The X-ray diffraction 559 

(XRD) mineralogical characterization revealed the presence of quartz, alkali feldspars, carbonate and 560 

clay minerals in all the examined cities. The abundance of those elements is related to the road 561 

pavement, which is made of granite stones. Heavy metals (Cu, Mo, Co, Zr, Ni, Sb, As, Nb, Zn and Cr) 562 

were found in larger concentrations in Zurich compared to Barcelona due to a higher traffic 563 

contamination. Alves et al. (2018) used the same method to characterize road dust in Oporto and 564 

Braga (Portugal), observing an abundance of inorganic materials (Pb, Zn, Fe, Cu, Sn and Sb). XRD was 565 

also used by Candeias et al. (2020) to examine road dust samples collected with a vacuum cleaner in 566 

Viana do Castelo (Portugal). Chemical elements relative to traffic sources (such as Br, Cl, Cr, Cu, P, Pb, 567 

S, Sn, W and Zn) were found mostly in the finest fractions of the road samples (<0.074 µm). The most 568 

abundant mineral found was quartz, particularly present in the coarser fraction, followed by 569 

muscovite, albite, kaolinite, Fe-enstatite and graphite. The grain size distribution of road dusts showed 570 

a marked unimodal distribution with a peak in the range from 10 µm to 106 µm.  571 

The size distribution observed in road dust samples strongly depends on the accuracy of the 572 

sampling method. Dry sampling methods, based on dry brushing and vacuuming of the road surface, 573 

might not be efficient for the collection of finer particles, and therefore lead to an underestimation of 574 

the silt loads. This issue was addressed by Gustafsson et al. (2019), whose experiments were 575 

conducted in 5 central streets of Stockholm using the VTI wet dust sampler. This instrument uses 576 

pressurized water to clean a circular portion of the road surface during a specified interval of time. 577 

Then compressed air is applied to move the sample from the washing unit to a sampling vial. The 578 

authors found a road dust load between 15 g/m2 and 200 g/m2, with a percentage of particles below 579 

10 µm in the range from 2% to 30%. However, as stated by the authors themselves, their results are 580 

hardly comparable with those of studies performed through dry sampling methods (Amato et al., 581 

2009a). To the authors’ knowledge, no studies have so far addressed the inter-comparison between 582 

dry and wet sampling methods, and therefore their relative collection efficiency is still unknown.   583 
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2.4.3 Emission factors 584 

The ambiguity of resuspended road dust measurements also affects the estimations of emission 585 

factors. EFs are estimated through direct measurements (mobile technique or roadside samplings) or 586 

through inverse modelling, with road dust dispersion based on PM monitoring data. The USEPA 587 

compilation of air pollutant emission factors AP-42 (USEPA, 2014a) provides the following formula for 588 

the estimation of resuspended dust from a vehicle (mg km-1 veh-1): 589 

𝐸𝐹 = 𝑘(𝑠𝐿)0.91𝑊1.02 Eq. 4 

where 𝑠𝐿 (g/m2) is the silt load on the road, 𝑊 (t) is the average weight of vehicles travelling the 590 

road expressed in tons, and 𝑘 (mg km-1 veh-1) is a particle size multiplier that depends on the range 591 

chosen. In particular, 𝑘 = 150  mg km-1 veh-1 for PM2.5 and 𝑘 = 620  mg km-1 veh-1 for PM10. The 592 

equation is valid for silt loads 𝑠𝐿 ranging from 0.03 gm-2 to 400 gm-2, the vehicle weight W ranging 593 

from 1.8 t to 38 t, and the vehicle speed up to 88 km/h. Reduction factors are also provided to take 594 

into account the rainfall frequency. The silt loading 𝑠𝐿 is a key input and it is measured through 595 

sampling with a vacuum. 596 

The AP-42 method is the most used for the estimation of resuspended dust EFs and several 597 

examples of its application are reported in Table 8. The results reported are highly variable, also due 598 

to the inclusion of motorbikes and HDV in the datasets. The median value of 33 mg km-1 veh-1 is given 599 

as an order of magnitude of resuspended dust EF which, however, strongly depends on the road type. 600 

 A modified version of the AP-42 formula is reported in Boulter et al. (2006): 601 

𝐸𝐹 = 𝑐(𝑠𝐿)0.65𝑊1.5 Eq. 5 

where the constant 𝑐 (mg/m2) is set to 260 mg/m2 for PM2.5 and 560 mg/m2 for PM10. Hence, the 602 

vehicle-induced turbulence increases with the size and vehicle weight, leading to an increased rate of 603 

resuspensions (Barlow, 2014; Garg et al., 2000; Kupiainen et al., 2005). 604 

The key role of dust loading is confirmed by other correlations, such as the one proposed by Amato 605 

et al. (2011) based on measurements conducted in Zurich (Switzerland), Barcelona and Girona (Spain): 606 

𝐸𝐹 = 12.35 ∙ 𝑅𝐷0.81 Eq. 6 

where 𝑅𝐷 (mg/m2) is the road dust loading. 607 

As pointed out by Amato et al. (2011), the formulae (Eq. 4, Eq. 5, Eq. 6) have the strong limitation 608 

of neglecting important factors such as the vehicle speed. Several studies confirm an increase in 609 

resuspended dust emission factors with higher vehicle speed (Amato et al., 2017; Lee et al., 2013; 610 

Pirjola et al., 2010). For example, Hussein et al. 2008 quantified the dependence of road particle 611 

emission and resuspension on vehicle speed using a mobile measurement system, recording particle 612 

mass concentrations at 100 km/h about 10 times higher than those at 20 km/h. Similar results were 613 

obtained by Gustafsson et al. (2008) with their road simulator, where the effect of speed velocity was 614 

studied on stone mastic asphalt pavement. They found that a higher speed increases particle mass 615 

and number concentration for both studded and non-studded tyres. Conversely, other studies (Amato 616 

et al., 2012; Gillies et al., 2001) pointed out that roads with a high average speed and intense traffic 617 

(e.g. motorways) potentially have lower resuspended dust emission factors compared to slower roads. 618 

The authors explain this behaviour with the fact that both variables (traffic and speed) contribute at 619 

reducing the amount of dust on the road surface available for its resuspension.  620 

Table 8. Road dust PM10 emission factors estimated by means of the USEPA AP-42 method reported in the literature. 621 
Median values were calculated setting each category within each study as one sample. When ranges were provided, the mean 622 
value was considered. 623 

Reference Location PM10 EF (mg km-1 veh-1)  
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Candeias et al. (2020) Viana do Castelo, Portugal  49 (asphalt road) 
330 (cobbled stones road) 

Amato et al. (2017) Milan, Italy 13-32 

Amato et al. (2016) Paris, France 5.4-9.0 (inner roads) 
17 (ring road) 

Alves et al. (2018) Braga, Portugal 33 (road tunnel) 

Amato et al. (2012) Barcelona, Spain 187-733 (heavy duty vehicles) 
33-131 (light duty vehicles) 
9.4-36.9 (cars) 
0.3-3.3 (motorbikes) 

Lamoree and Turner  (1999) St. Louis (USA) 30-40 (highway) 

Median  33 

 624 

A summary of the results mentioned in the previous chapters is provided in Fig. 4. The graph 625 

reports the mean, median, 25/75 percentiles and 5/95 percentiles for PM10 emission factors of NEE 626 

sources reviewed in Table 3 (brake wear), Table 6 (tyre wear), Table 7 (road wear), and Table 8 627 

(resuspended dust). Resuspended dust appears as the prevailing NEE source, followed by road wear, 628 

brake wear and tyre wear. However, resuspended dust composition is extremely broad, both in terms 629 

of particle size and chemical composition. The finest metal-enriched fractions (size < 10 µm), which 630 

are the most toxic ones, constitute only a small fraction of total resuspended dust mass (between 2% 631 

and 30%).  632 

Fig. 4 highlights the variability of results obtained in different studies. The most variable results 633 

were found for resuspended dust, since environmental and road conditions are significantly 634 

influencing the EF estimation. The median value of each NEE sources illustrated in Fig. 4 exceeds the 635 

exhaust PM10 emission factor set by EURO 6 (5 mg km-1 veh-1). This confirms the need for the definition 636 

and regulation of emission standards for NEE. 637 

 638 

Fig. 4.  Mean, median, 25/75 percentiles for box, and 5/95 percentiles for PM10 emission factors of NEE sources, based on 639 
the literature review reported in Table 3 (brake wear), Table 6 (tyre wear), Table 7 (LDV road wear), and Table 8 (resuspended 640 
dust). 641 

2.5 Rail transport non-exhaust emissions 642 

Railways for light trains, subways and trams represent a vital infrastructure for urban areas. At the 643 

end of 2017, there were metros in 182 cities in 56 countries, carrying on average a total of 168 million 644 

passengers per day (UITP, 2019). Tram and light rail systems (LRT) are instead used in 389 cities around 645 

the world. Melbourne is the city with the longest cable train system, with around 250 km of tramway, 646 
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followed by Saint Petersburg (246 km), Moscow (208 km), Berlin (193 km), Milan (180 km), Vienna 647 

(178 km) and Los Angeles (159 km). In Europe only, the total annual ridership for LRT in 2018 was 648 

around 10,422 million, which is comparable to the number of passengers served by metro systems 649 

and 10 times higher than those traveling by plane (UITP, 2018).  650 

Metros and LRT play a relevant role in the sustainable evolution of modern cities since they 651 

positively contribute to the improvement of air quality, due to the reduction of traffic congestion and 652 

the absence of tailpipe emissions. However, rail transport is also an appraisable source of non-exhaust 653 

particle emissions (Uherek et al., 2010) and can have a negative impact on air quality at local scale. 654 

PM produced by railway systems tends to accumulate inside the vehicles themselves or in the 655 

immediate vicinity of railways, especially in stagnant or quasi-stagnant areas (e.g. subways, urban 656 

canyons) and close to deceleration segments (e.g. railways stations, tram stops), thus representing a 657 

potential risk for passengers and drivers. 658 

Most research on railway PM emissions focused on subways (Cartenì and Cascetta, 2018; Loxham 659 

et al., 2013; Loxham and Nieuwenhuijsen, 2019). As an example, several studies (Adams et al., 2001; 660 

Pfeifer et al., 1999; Saunders et al., 2019; Seaton et al., 2005; Smith et al., 2020) reported a significantly 661 

higher concentration of PM2.5 in the London Underground than in other surface means of transport. 662 

More specifically, Smith et al. 2020 observed an average PM2.5 concentration of 88 µg/m3, with peaks 663 

of more than 400 µg/m3. This value was much higher than the average concentration detected in 664 

roadside environments in central London (22 µg/m3). A similar result was also reported in Stockholm, 665 

where the average PM10 and PM2.5 concentrations inside an underground station (470  µg/m3 and 260 666 

µg/m3 respectively) were 5-10 times higher than the corresponding values measured in one of the 667 

busiest streets of the city centre. Ryswyk et al (2017) instead conducted a study on the exposure of 668 

PM2.5, PM10, ultrafine particles and black carbon in the metro system of Toronto, Montreal and 669 

Vancouver, Canada. The authors estimated that a typical commute of 70 minutes contributes to 21% 670 

of the daily PM2.5 exposure in Toronto, 11% in Montreal and 12% in Vancouver. The high concentration 671 

of particulate matter in the subway environment was also confirmed by Kim et al. (2008), whose 672 

research revealed that the levels of PM10 and PM2.5 in platforms of the Seoul Metropolitan Subway 673 

exceeded the daily acceptable threshold limits regulated by the USEPA. Finally, Martins et al. (2016) 674 

assessed the indoor air quality in the Barcelona subway system, where the mean PM2.5 concentrations 675 

on the subway platforms were found between 1.4 and 5.4 times higher than the one outdoors. 676 

Similar studies were also carried out in tram cabins to assess commuter and driver exposure to PM. 677 

Papp et al. 2020 compared PM concentration inside trams with the outside air quality at a nearby site 678 

in Debrecen (Hungary). The researchers found that the mass concentrations of PM inside the vehicles 679 

were 5–20 times higher than in the outdoor air both for the coarse (aerodynamic diameter larger than 680 

2.5 µm) and the fine (aerodynamic diameter smaller than 2.5 µm) fractions. Moreover, since the 681 

particle elemental composition was found to be enriched in Cr, Zn, Cu, the study concluded that 682 

resuspended dust, rail wear and abrasion of the overhead wire were the main particulate sources. 683 

Similar results were obtained also in Vienna (Strasser et al., 2018), Barcelona (Moreno et al., 2015) 684 

and Helsinki (Asmi et al., 2009), where number and mass concentrations of fine and ultrafine particles 685 

with high metal content were found higher inside tram cabins than the background urban levels. 686 

To the authors’ knowledge, there are instead only few investigations about the particle release 687 

from trams and trains in open urban environments. For example, Kumar et al. (2014) monitored PM 688 

concentration at various “hot spots” in Kanpur city (India), while Lorenzo et al. (2006) identified and 689 

quantified particles emitted at an increasing distance from a busy railway line at Juchhof (Switzerland). 690 

Both studies highlighted that railroad contributes to PM emissions in these “hot spots”. However, 691 

further research should be conducted on this topic to quantify the actual impact of these PM sources 692 

and set specific mitigation measures. 693 
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2.5.1 Generation 694 

Rail transport NEE include brake, wheel and rail wear and the usage of power supply materials: 695 

friction and spark erosion of the current collectors (pantographs) and the overhead contact lines 696 

(Abbasi et al., 2013; Moreno et al., 2018). 697 

2.5.2 Characterization 698 

The characteristics of particulate NEE from railways vary according to many factors, such as rail 699 

system infrastructures, vehicle technical specifications and operational factors (weight, speed etc.), 700 

and power transmission type (Abbasi et al., 2013). The characterization outcome is also affected by 701 

the methods adopted for sampling, the meteorological conditions found, and the analytical technique. 702 

The majority of PM particles are generated by friction processes and mechanical wear at the rail-703 

wheel-brake interfaces (Moreno et al., 2018), which generate highly ferruginous particles with traces 704 

of heavy metals (Mn, Cr, Cu, Sb, Ba and Zn) (Cui et al., 2016; Martins et al., 2016; Perrino et al., 2015; 705 

Van Ryswyk et al., 2017). As well as for brake wear emissions, these particles derived from metal-rich 706 

sources and transition metals pose a serious threat to human health due to their ability to catalyse 707 

the generation of reactive oxygen species.  708 

Regarding the particle size distribution of the railway non-exhaust emissions, various studies 709 

identified a number peak at approximately 0.35 µm in diameter (Abbasi et al., 2011; Fridell et al., 2011; 710 

Gustafsson, 2009).  In addition, three other laboratory studies by Sundh et al. (2009) and Abbasi et al. 711 

(2012a; 2012b) found peaks at 0.28 µm and 0.6 µm, respectively.  Finally, Tokarek and Bernis  (2006) 712 

discovered that the dominant fraction is composed of even finer particles, with a number peak at 713 

diameters below 0.05 µm. As a consequence, the generation of sub-micrometer particles is well stated 714 

and the peaks of the number size distribution are comparable to those found in the brake wear studies 715 

by Garg et al. (2000), Nosko and Olofsson (2017) and Wahlström et al. (2010). 716 

2.5.3 Emission factors 717 

To the authors’ knowledge, there are no legislations or regulations that control railway NEE, and their 718 

quantification is even less studied than the NEE from road vehicles. No concentrations and no 719 

recommended emission factors and methodologies are available in international inventories such as 720 

the EMEP/EEA Emissions Inventory Guidebook (EEA, 2019c). However, a few countries included 721 

emission estimates in their national inventories. For instance, estimates of the PM10 emission factors 722 

for abrasion and wear of contact line, braking systems and tyres on rails (reported in Table 9) are 723 

provided by the German railroad company Deutsche Bahn AG (Boettcher et al., 2020). Emissions from 724 

other wear sources (e.g. the current collector) are not estimated. In the absence of specific 725 

information, PM2.5 was assumed to be 50% of PM10, whereas TSP was assumed equal to PM10. The 726 

report also suggests that non-exhaust emissions from abrasion and wear exceed 90% of total PM 727 

emissions, i.e. the contribution of exhaust emissions from diesel trains is very small.  728 

Table 9. Emission factors for railway abrasive emission in Germany (Boettcher et al., 2020).  729 

 PM2.5  

(mg km-1) 
PM10 

(mg km-1) 
Cr 

(mg km-1) 
Cu 

(mg km-1) 
Ni 

(mg km-1) 

Contact line  0.16 0.32 - 0.33 - 

Tyres on rails 9 18 - - - 

Braking system 4 8 0.08 - 0.16 

3 Mitigating strategies for PM 730 

The pervasive presence of air pollution in urban areas and its associated adverse effects on human 731 

health led to an increasing introduction of measures to abate PM concentration levels. Since road 732 

traffic was identified as a main contributor to urban air pollution (Pant and Harrison, 2013), current 733 
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regulations are focusing on reducing not only exhaust emissions, but also non-exhaust emissions from 734 

brake, tyre, road surface wear and resuspension of road dust. The different mitigating strategies 735 

adopted can be grouped into technological and non-technological measures: the former include 736 

technologies applied to improve the emission performance of existing vehicles or to substitute them 737 

(e.g. introduction of electric vehicles), the latter involve management policies or remediation 738 

measures. At the same time, it is possible to differentiate between prevention or mitigation strategies 739 

adopted to reduce PM levels: the former aim at avoiding particle emissions (paving the access to 740 

unpaved lots or imposing road traffic restrictions), the latter at removing the already deposited dust 741 

(sweeping, street washing, etc…) (Amato et al., 2010). Fig. 5 shows the classification of the existing 742 

abatement methods described above.  743 

 744 
 745 

Fig. 5. Classification of strategies to abate PM pollution from non-exhaust emissions. 746 

3.1 Non-technological measures 747 

3.1.1 Prevention strategies 748 

Non-technological prevention strategies entail a wide variety of solutions for the reduction of the 749 

overall traffic volume (fuel and vehicle taxation, road traffic management policies etc.), the renewal 750 

and transformation of urban vehicle fleets, and the improvement of public transport and urban 751 

planning (pedestrians and green areas, cycle lanes, low emission zones). For example, cleaning 752 

procedures can be imposed for vehicles exiting construction sites, waste-management plants, and 753 

similar places which, otherwise, would bring large quantities of dust on the road.  754 

As already discussed in Chapter 2.4.3, the imposition of speed limits and the promotion of a smooth 755 

driving style reduce braking events and dust resuspension, thus improving passenger safety and air 756 

quality (Gustafsson et al., 2008; Querol et al., 2018). For instance, Kwak et al. (2013) observed a 757 

significant increase in PM concentrations of both road wear and tyre wear particles during 758 

deceleration events. Since both the amount and size of the generated particles strongly depend on 759 

the intensity and duration of the braking events, brake wear emissions were found to be influenced 760 

also by the driving style (Chapter 2.1.1). Stronger and longer braking events produce higher disk 761 
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temperatures which, in turn, induce the generation of a large amount of fine and ultrafine particles 762 

(Garg et al., 2000; Nosko and Olofsson, 2017; Wahlström et al., 2012).  763 

3.1.2 Mitigation strategies 764 

Mitigation measures aimed at reducing resuspendable dust are sweeping, street washing, 765 

sediment removal and dust suppressant. Street sweeping reduces the quantity of dust on the streets 766 

and, hence, the fugitive dust that can be re-entrained into the atmosphere by car traffic. The most 767 

common types of sweeping vehicles are mechanical broom sweepers, regenerative-air sweepers and 768 

vacuum sweepers (Amato et al., 2010; Kang et al., 2009). More specifically, mechanical broom 769 

sweepers collect debris into a hopper through a pick-up broom. Regenerative air-sweepers are instead 770 

equipped with a gutter, which directs the materials toward a pick-up head, while air is blown onto the 771 

pavement to dislodge particles entrained within cracks. As regards vacuum sweepers, they are 772 

equipped with gutter brooms and strong vacuum heads for collecting both large and small debris 773 

(Calvillo et al., 2015).  774 

Street sweeping is a traditional method adopted in most cities for centuries, but investigations on 775 

their impact have been carried out only over the last 40 years. Some researcher analysed both 776 

standard mechanical street brooms and air-regenerative sweepers for a wide range of cleaning 777 

frequencies and street textures, with the aim of understanding the impact of the practices on surface 778 

water quality. The evaluation of the street sweeping efficiency was obtained through stormwater 779 

quality assessment pre- and post-sweeping.  The first studies on the matter were conducted as part 780 

of the Nationwide Urban Runoff Program (NURP), which concluded that street sweeping was largely 781 

ineffective at reducing the mean concentration of pollutant in urban runoff during a rain event (Pitt, 782 

1979; USEPA, 1983).  Subsequent studies questioned the NURP conclusions due to the development 783 

of sweepers with the ability to retain finer particles (PM10) with specific filtering mechanisms (Amato 784 

et al., 2010). Indeed, more recent research projects reported quantitative evidence that street 785 

sweeping directly improves runoff water quality (Curtis, 2002; Martinelli et al., 2002). As an example,  786 

Selbig (2016) demonstrated a significant reduction in mean total suspended solids concentrations in 787 

samples collected from a gutter of a street swept by mechanical sweeper (74% of reduction) and 788 

vacuum sweeper (85%).  789 

However, there is still considerable uncertainty with regard to pollutant reduction efficiencies, 790 

which are extremely variable depending on the frequency and timing of sweeping between storms 791 

and the high variability of stormwater quality loads (Hixon and Dymond, 2018; Kang et al., 2009; 792 

Sutherland and Jelen, 1997). Regardless, all the different street sweeping techniques proved to be 793 

more efficient for the removal of non-resuspendable coarser particles. Although this may seem 794 

negligible from the point of view of air quality, it should be remembered that fine particles also 795 

originate from the fragmentation of the coarser ones. For this reason, the utility of this traditional 796 

cleaning technique should not be underestimated (Amato et al., 2010). 797 

Another mitigation measure is water flushing, that consists in the employment of water jet – 798 

generally applied in combination with street sweeping – to remove residues form street surfaces. 799 

Since the water jet alone cannot easily move the dust towards the sewage system unless an intense 800 

water flow is applied, no significant and long-lasting differences were found in PM10 concentrations 801 

after the application of this technique (Norman and Johansson, 2006). Other studies analysed the 802 

combined effect on urban air quality of street sweeping and water flushing. Chang et al. (2005) tested 803 

a combination of modified regenerative-air vacuum sweeper and washer, observing a short-term (3-804 

4 h) direct impact on ambient PM emissions. Amato et al. (2009b) evaluated the performances of a 805 

vacuum-assisted sweeper followed by manual washer that resulted in a reduction of daily PM10 levels 806 

between 7% and 10%. More recently, Kryłów and Generowicz (2019) observed a 17.3% reduction of 807 

PM10 and a 15.4% reduction of PM2.5, which lasted up to three days after sweeping and street washing 808 

in Cracow. However, they observed a short-term negative effect due to an increase of PM 809 
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concentration during the street cleaning, as a result of traffic jams and dust resuspension. 810 

Nevertheless, the overall effect of street sweeping and washing proved positive. 811 

Dust suppressants can be instead classified, according to their chemical composition, as 812 

surfactants, salts, polymers, resins and bitumen (Gromaire et al., 2000). These chemicals are water 813 

soluble and are spread on the road in a water mixture. They form a film on the particles, which induces 814 

the reduction of water evaporation rate and the absorption of moisture from the air, thus resulting in 815 

the dust attachment to the road (Gulia et al., 2019).  For example, Amato et al. (2014c) evaluated the 816 

effectiveness of calcium acetate and MgCl2 in reducing road dust emissions in a Mediterranean city. 817 

The authors observed episodic reductions of PM after the application of calcium acetate, but the 818 

results were not statistically significant or systematic. Similarly, the application of MgCl2 slightly 819 

reduced mineral and brake wear tracers. Better results were obtained in Sweden, with a reduction of 820 

the daily mean PM10 concentration up to 35% (Norman and Johansson, 2006). The studies carried out 821 

so far therefore highlighted that the effectiveness of dust suppressant is strongly influenced by local 822 

conditions, such as the amount of dust and climate. 823 

3.2 Technological measures 824 

3.2.1 Brake wear  825 

The reduction of brake wear particle emissions is pursued by changing the chemical composition 826 

of the brake pads and/or the rotor and through the introduction of brake dust collection systems. 827 

Various approaches that proposed to improve the composition of the friction components of the 828 

brake, resulted in the reduction of brake pad particle emitted. Grey cast iron is currently the most 829 

used material in the manufacturing of brake rotors. Several studies were performed to improve the 830 

wear resistance of cast iron through the addition of titanium (0.1-0.25% weight), which also improves 831 

the hardness (Chen, 2014), or the addition of niobium (0.1-0.3% weight), which improves the thermal 832 

fatigue resistance and the overall performance at high temperatures (Ying et al., 2014).  833 

Copper is one of the most important ingredients in brake pads, since it improves their thermal and 834 

mechanical properties (Merlo et al., 2012; Zhang et al., 2020), but it must be phased out due to its 835 

toxicity (Lyu et al., 2020). As a consequence, a California law enacted in 2010 (California Senate Bill 836 

(SB) 346 (Kehoe)) set a program to eliminate copper use in brake manufacturing, requiring its content 837 

in brake pads to be lower than 0.5% by 2025 (CASQUA, 2019). This deadline forced most 838 

manufacturers to develop “copper-free” brake pads (Antonyraj and Vijay, 2019; Singaravelu et al., 839 

2019; Vijay et al., 2020). 840 

Other experiments were performed on the employment and performances of the coating layers 841 

composed of ceramic and metal powder to reduce wear (Lampke and Özer, 2011; Lembach and 842 

Mayer, 2012). Research on brake pads was further conducted to improve the hardness and mechanical 843 

strength of the linings. Santamaria Razo et al. (2015) developed a new generation of reinforced 844 

mineral fibres with enhanced friction material surface. Sun (2014) instead proposed an inorganic nano 845 

modified phenolic resin brake pad with improved thermal stability, heat resistance, frictional stability, 846 

wear resistance, and a simple preparation. 847 

In the last years, several research activities addressed the collection of the particles generated by 848 

the brake wear. Rocca Serra (2014) invented an autonomous suction device for drawing off brake wear 849 

particles, that consisted in an intake opening (installed close to the pad and the rotor), a collection 850 

chamber and an impeller (placed onto the rotor), which drives particles into the intake opening. 851 

Fieldhouse and Gelb (2016) developed a brake pad waste collection system composed  of a shell that 852 

encapsulate the rotor and the calliper. A vented disc connected to the shell generates a positive air 853 

flow that leads debris into a filtering system. Combined with magnets, the filters collect particles up 854 

to 40 µm and, based on the tests performed, over 92% of brake wear dust was collected and removed. 855 

Hascoët and Adamczak 2020 developed TAMIC, an aspiration system composed of a turbine and a 856 
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high efficiency filter. The device proved a PM10 removal efficiency higher than 85% for both particle 857 

mass and number.  858 

Despite the significant amount of research in the field of brake wear particle collection, the related 859 

market is still poorly developed due to the absence of any specific legislation for the reduction of brake 860 

wear emissions.  861 

3.2.2 Tyre and road wear 862 

Research for the abatement of tyre and road wear is focused on the improvement of materials that 863 

generate the greatest quantity of wear particles, i.e. rubber compounds and asphalts. Over the last 864 

years, the increase in traffic speed and vehicle weight load shortened the life of asphalt pavements. 865 

Thus, various modifiers and additives – such as polymers, chemical modifiers, extenders, oxidants and 866 

antioxidants, hydrocarbons and anti-stripping additives – were used to enhance road performance 867 

properties (Porto et al., 2019; Yue et al., 2019). Vieira et al. (2019) suggested the application of a 868 

Double Layered Porous Asphalt (DLPA) to abate PM10 emissions. DLPAs are composed of a top layer 869 

containing fine aggregates and a second layer beneath, that includes coarser aggregates with a high 870 

air void ratio (Liu et al., 2016). Thanks to its layered composition, this asphalt is expected to reduce 871 

both traffic noise and road wearing. The air quality measurements performed close to a DLPA road 872 

highlighted a 52% reduction of PM10 concentrations, compared to measurements with non-porous 873 

stone mastic asphalt. Other studies proposed the addition of rubber crumbs – derived from tyre 874 

grinding or other secondary rubbers sources – to the asphalt mixture  to reduce traffic noise, road and 875 

tyre wear (Bressi et al., 2019; Frolova et al., 2016). This technological solution not only increased the 876 

road durability (which may reduce particle emission due to asphalt wear), but also allowed to reduce 877 

tyre wear emissions by 30%-50% compared to conventional concrete pavements. 878 

As regards tyre wear, molybdenum disulphide was proposed as an additive to improve the abrasion 879 

resistance (Park, 2006) and, more recently, carbon nanotubes were proposed as reinforcing materials 880 

(Huh, 2005). The research activity on tyre wear also focused on the reduction of tyre surface 881 

temperature. Park et al. 2019 achieved a reduction of 2-3°C of the average surface temperature of 882 

front tyres by introducing cooling air ducts, which resulted in a 4.6% reduction of tyre wear particle 883 

emissions. 884 

3.2.3 Electric vehicles 885 

Electric vehicles were proposed as a potential technological solution to urban air pollution. The 886 

absence of tailpipe emissions results in a reduction of nitrogen oxides (NOx) and other exhaust 887 

pollutant emissions in urban areas. However, the impact of pollutants emitted during the production 888 

of the electricity needed to fuel the battery must also be considered. As for NOx in particular, the 889 

overall emission factor for EVs is expected to be far lower than combustion engine cars, since EVs can 890 

exploit the excess of electricity produced by photovoltaic and wind power plants  (Richardson, 2013). 891 

However, EVs contribute to air pollution through non-exhaust emissions (NEE) of particulate 892 

matter, and hence they cannot be defined ‘zero emission vehicles’, but rather ‘zero exhaust emission 893 

vehicles’ (AQEG, 2019). As well as emissions from conventional fossil fuel powered cars, NEE from 894 

electric vehicles can be mainly ascribed to tyre and road wear, and dust resuspension. Brake wear 895 

emissions for hybrid and full-electric vehicles are instead expected to be lower than combustion 896 

engine cars thanks to the possibility to install regenerative braking systems (RBS) in addition to 897 

conventional frictional brakes. Regenerative braking is an energy recovery system that slows down a 898 

moving vehicle and converts its kinetic energy into another form, most commonly electric energy. This 899 

energy can be either directly used for the vehicle propulsion or stored until needed. Thanks to the 900 

regenerative system, conventional frictional brakes can be used less frequently during the driving 901 

experience (Hall, 2017), thus reducing the particle emitted from brake wear.  902 
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Various rates of abatement of brake wear emissions thanks to the RBS have been estimated so far. 903 

Based on a visual examination of brake pads of passenger cars, Barlow (2014) concluded that EV brake 904 

wear emissions are virtually null and braking is mostly based on RBS. A more conservative estimate 905 

was provided by Nopmongcol et al. (2017), who predicted a 25% reduction of brake wear to assess 906 

the air quality impact of electric vehicles in the USA. Althaus and Gauch (2010) considered a 90% 907 

reduction of brake wear emissions based on behaviour analyses  of EV drivers. Antanaitis (2010) found 908 

that the implementation of a RBS reduces the average operating disc temperatures from 200°C to less 909 

than 100°C, with an evident positive effect on the abatement of PM, especially in the finest fraction.  910 

On the other hand, tyre and road wear and resuspended dust emission are expected to be higher for 911 

EVs because of their increased weight. As reported in the previous paragraphs, there is a positive 912 

relationship between vehicle weight and non-exhaust emissions, especially for PM deriving from dust 913 

resuspension (Garg et al., 2000; Simons, 2016; Timmers and Achten, 2016). As highlighted by several 914 

authors, EVs are heavier than their counterparts with an internal combustion engine (ICE). For 915 

example, Moawad, et al. (2013) estimated that EVs are between 43% and 56% heavier than ICE 916 

vehicles, whereas Bauer et al. (2015) and Timmers and Achten (2016) found the increase of the weight 917 

to be 24%. Moreover, Burnham (2012) estimated that the weight of electric cars and SUVs is 43% and 918 

52% higher than their ICE counterparts, respectively. The higher weight is expected to compensate 919 

the absence of tailpipe emissions, thus leading to comparable primary PM emission factors for EVs 920 

and ICE vehicles. As an example, Timmers and Achten 2016 estimated that the additional weight due 921 

to vehicle electrification leads to an overall increase of NEE equal to 12.1 mg km-1 veh-1 for PM10 922 

(corresponding to an increase of 1.1 mg km-1 veh-1 for tyre wear, 1.4 mg km-1 veh-1 for road wear and 923 

9.6 mg km-1 veh-1 for resuspended dust) and 4.4 mg km-1 veh-1 for PM2.5 (corresponding to an increase 924 

of 0.8 mg km-1 veh-1 for tyre wear, 0.7 mg km-1 veh-1 for road wear and 2.9 mg km-1 veh-1 for 925 

resuspended dust). This increase substantially compensates the particulate emission saving induced 926 

by the diesel/gasoline-to-electric transition, which is estimated to be equal to 12.4 mg km-1 veh-1 for 927 

PM10 (3.1 mg km-1 veh-1 for tailpipe and 9.3 mg km-1 veh-1 for brake wear) and to 5.2 mg km-1 veh-1 for 928 

PM2.5 (3 mg km-1 veh-1 for tailpipe and 2.2 mg km-1 veh-1 for brake wear).  929 

Secondary organic aerosols (SOA) – which originate from precursors emitted from tailpipes – 930 

should also be considered when evaluating the EV impact on air quality (Gentner et al., 2017). EVs do 931 

not contribute to SOA emission, and hence, their increasing introduction in the circulating fleet is 932 

expected to reduce the formation of secondary particulate due to traffic. However, it is still very 933 

difficult to quantify SOA and, therefore, the contribution of EVs in their abatement. 934 

3.2.4 Rail transport 935 

The management solutions to abate PM emission from railways include better track layouts, 936 

optimising train wheel profiles and applying friction modifiers. As regards track layouts, it was proved 937 

that the use of a variable slope of the rail line longitudinal profile allows to reduce both energy 938 

consumption and mechanical braking usage, thus also reducing PM emissions (Cartenì and Cascetta, 939 

2018). Similarly to the case of electric cars, brake use and wear can be reduced thanks to RBS, which 940 

allow to recover the kinetic energy of electric trams and trains and convert it into electrical energy. 941 

Another possible approach to reduce PM emissions is the transition to rubber-tyred metro systems, 942 

which eliminates the steel-on-steel interaction that is the main responsible for particulate generation. 943 

On the other hand, this leads to a higher rolling resistance, and hence to a higher energy consumption 944 

and higher costs for tyre replacements (Cartenì and Cascetta, 2018). Finally, radial grooves in brake 945 

discs were found to reduce brake wear debris (Mosleh and Khemet, 2006). As regards the passenger 946 

and driver exposure to PM inside tram, metro and train cabins, the introduction of more efficient air 947 

conditioning and filtration systems and a minor employment of external ventilation through open 948 

windows can be exploited to reduce PM levels. 949 
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4 Conclusions and future needs  950 

Particulate matter from traffic is recognized as one of the main risk factors for adverse health effects 951 

and premature deaths worldwide. In the last decades, different measures were implemented to 952 

reduce PM levels, such as the adoption of exhaust emission standards, the development of after-953 

treatment systems for tailpipe emissions and the promotion of electric vehicles. However, PM still 954 

represent an air quality issue worldwide, especially in urban areas. This is due to the high incidence of 955 

NEE, which are currently estimated to contribute up to 90% of the overall vehicle PM10 emissions and 956 

up to 85% of PM2.5 emissions from road traffic. However, non-exhaust emissions of PM are scarcely 957 

addressed by regulation and technology development.  958 

Despite numerous studies in the field of non-exhaust PM, the definition of NEE limits is still a 959 

complex issue. The results of NEE characterization studies are strongly influenced by the type of 960 

research performed (field or laboratory), the sampling and detection method, as well as the local road, 961 

traffic and climatic conditions. The resulting size distributions and the EFs for resuspended dust, brake, 962 

tyre, road and railway wear span over wide ranges. It is therefore difficult to derive generalizable 963 

values and set universal emission limits.  964 

From this review emerged the following considerations: 965 

 Resuspended dust is the prevailing NEE source, with PM10 emission factors ranging from 966 

5.4 mg km-1 veh-1 to 330 mg km-1 veh-1 for cars. Its emission factors are mostly influenced 967 

by road type and vehicle weight, whereas vehicle speed was found to contribute to a lesser 968 

extent.  969 

 Brake wear PM10 emission factors range from 1 mg km-1 veh-1 to 18.5 mg km-1 veh-1 and 970 

most of the available studies agree on a unimodal mass size distribution centred between 971 

2 µm and 6 µm.  972 

 Tyre wear PM10 emission factors vary in a narrower range compared to brake wear, i.e. 973 

from 2 mg km-1 veh-1 to 9 mg km-1 veh-1. However, studies on size distributions showed 974 

contradictory results, which vary from unimodal mass distributions with a peak at 75 µm 975 

to bimodal mass distributions with peaks at 0.3 µm and 4 µm.  976 

 Road surface PM10 emission factors range from 3 mg km-1 veh-1 to 40 mg km-1 veh-1, 977 

presenting the highest values for HDVs and vehicles with studded tyres. The mass size 978 

distributions reveal a peak in the range from 5 µm to 8 µm. 979 

 Railway wear PM10 emission factors (from trams, metros and urban trains) are often 980 

neglected in emission inventories. However, the wheel-railway friction, the brake wear 981 

and, to a lesser extent, the friction of the contact lines are known to release very fine 982 

ferruginous particles (unimodal size distribution peaking between 0.28 µm and 0.6 µm), 983 

which pose a serious threat to human health at the local scale (i.e. inside vehicle cabins or 984 

in underground stations). The quantification of railway emissions and the development of 985 

solutions to reduce their impact on urban air quality should therefore be included in NEE 986 

studies. 987 

 The orders of magnitude of the EFs reported in this review largely exceed the most recent 988 

exhaust PM10 emissions standards (i.e., 5 mg km-1 veh-1 set by EURO 6), and consequently 989 

emphasize the need for future research on particulate emissions from traffic to give more 990 

prominence to NEE, rather than EE. 991 

 Among all the PM fractions, the finest ones have the highest impact on human health since 992 

they are more likely to penetrate the human body and are enriched in redox-active 993 

transition metals. However, the contribution of these fractions to the overall PM mass 994 

emission is negligible, whereas their presence is extremely relevant in terms of particle 995 

number concentration. Consequently, the use of mass-based emission factors is not 996 
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sufficient to fully describe the NEE problem. Future policies should therefore also regulate 997 

particle number emissions, and not only mass emissions, to be effective in reducing PM 998 

effects on human health. 999 

Current actions to reduce non-exhaust emissions include non-technological prevention (such as 1000 

fuel taxation, speed limits in urban areas) and mitigation measures (sweeping, street washing, dust 1001 

suppressants), as well as technological measures, such as the modification of the chemical 1002 

composition of brake rotors, brake pads, road pavements, tyres, and the introduction of brake dust 1003 

collection devices. The extensive use of EVs (i.e. cars, trams, metros and other railway means of 1004 

transport) is also considered a technological measure to abate PM emissions in urban environment 1005 

thanks to the elimination of tailpipe emissions and the introduction of regenerative braking systems 1006 

(RBS) to reduce brake wear. However, in the case of electric cars, the extra weight of the batteries 1007 

generates a substantial increase of resuspended dust, tyre and road wear emissions, which together 1008 

compensate the lack of tailpipe and brake wear emissions. It is therefore improper to consider the 1009 

current state EVs as “zero impact vehicles”, and hence, as the definitive solution to urban PM 1010 

pollution. NEE from electric vehicles still contribute to PM pollution and need to be regulated and 1011 

reduced to effectively improve urban air quality. A great margin of improvement in both technological 1012 

and normative measures to abate NEE particulate still needs to be achieved.  1013 

Considering the vast impact of all the different non-exhaust contributors to pollution, future 1014 

studies should expand their research field, focusing not only on the standardization of characterization 1015 

methods and the introduction of regulations, but also on improving already existing technologies (e.g. 1016 

reducing the weight of EV battery pack, or applying RBS to different means of transport), and 1017 

developing less polluting materials and systems. Mitigating strategies instead should be more 1018 

comprehensive and focus on preventing not only the generation and deposition of primary 1019 

particulate, but also the formation of precursors, and therefore the generation of SOA. From this 1020 

review emerged the need for future studies on NEE to be as wide and various, as their generation 1021 

processes are.  1022 
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