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Abstract—Numerous beamforming methods exist for 
ultrasound B-mode imaging, but it is known that adaptive/non-
linear beamformers may alter the image dynamic range. To obtain 
an 8-bit image for further processing, it is necessary to determine 
a specific dynamic range, which may vary between beamforming 
methods in order to obtain a visually similar image. The aim here 
is to present an automated method to estimate the optimal 
dynamic range. We tested two phantom images and one in vivo 
image using six different beamforming techniques. The 
cumulative sums of the image histograms are compared with a 
standard dynamic range (i.e., 60 dB) and the contrast ratio and 
contrast-to-noise ratio are computed. We show that the 
automatically determined dynamic range is able to standardize the 
image among various beamforming techniques, which is essential 
when further image processing methods are employed.  

Keywords—ultrasound beamforming, dynamic range, image 
processing, automatic  

I. INTRODUCTION 
Over the last couple decades, numerous beamforming 

methods for ultrasound B-mode imaging have been presented 
and studied [1]–[3], showing a higher contrast and better 
resolution when compared to the conventional delay-and-sum 
(DAS) beamforming technique [3], [4]. Recently, it has been 
shown that adaptive and non-linear beamformers may alter the 
image dynamic range [5], [6]. This dynamic range alteration 
typically also reports an improvement of the contrast 
measurements, which could however be due simply to the 
stretching of the dynamic range for some beamformers [5].  

Many semi-automatic or completely automatic segmentation 
algorithms exist in literature for B-mode ultrasound images [7], 
and another common application in ultrasound imaging is 
texture analysis, which takes into consideration pixel intensity 
values and their spatial relationship [8], [9]. These methods are 
in the vast majority done on 8-bit ultrasound images [10]–[12]. 
In order to obtain an 8-bit image for subsequent image 
processing, a dynamic range must be determined for image 
display and the image values outside of the determined range 
must then be cut. The remaining values are then rescaled to 
values between 0 and 255. Therefore, in order to obtain images 
from different beamforming techniques that visually appear 
similar, it is necessary to match histograms, which is typically 

done manually. This is due to the fact that using the same 
standard dynamic range for different beamforming methods 
produces images that are visually quite different (Fig. 1). Here, 
we present an automated method to estimate the optimal 
dynamic range that matches the histograms of images obtained 
with various beamforming methods.  

II. BACKGROUND 
In this section we describe the 6 beamforming techniques 

examined here. More detailed descriptions of the beamforming 
methods and parameters used can be found in [1], [4].  

A. Conventional Delay-and-Sum Beamforming 
To reconstruct an ultrasound image, the raw radiofrequency 

(RF) signals ŝi(t), with i=1…N, received by the N elements in 
the active aperture, must first be properly focused by applying a 
set of focusing delays (τi) and then summed. This procedure is 
called Delay and Sum (DAS) beamforming, written as: 

  (1) 

where yDAS is the DAS-beamformed output signal. 

B. Coherence-Based Beamformers 
In this work, 5 different beamformers, all based on the 

concept of spatial coherence of backscattered echoes, were also 
implemented. The first is the Filtered Delay Multiply and Sum 
(FDMAS) algorithm proposed in [1], which computes the 
beamformed signal yFDMAS as: 

  (2) 
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Fig. 1. Example image obtained using the same standard 60 dB dynamic 

range for (A) DAS and (B) CF beamformers. 

 

 

 



where BPfilter denotes a band-pass filter at twice the transmit 
frequency. 

The other implemented algorithms were the coherence factor 
(CF) [13], generalized CF (GCF) [2], phase and sign CF (PCF 
and SCF) [14]. Differently from FDMAS, all these techniques 
compute a weighting matrix which is then applied to the DAS 
beamformed image as follows: 

 (3) 

,    (4) 

(5) 

,    (6) 

where k represents the spatial frequency index, S(k) is the 
spectrum of si(t), M0 is a spatial frequency threshold, γ and p are 
two user-defined parameters which tune the sensitivity of PCF 
and SCF, respectively, σ(φi(t)) is the standard deviation of the 
signal instantaneous phases φi(t), and bi(t) = sign(si(t)). 

In all the presented cases, the final image in dB scale is 
obtained after enveloped-detection, normalization and log-
compression of the beamformed signals. 

III. MATERIALS AND METHODS 
To evaluate the effectiveness of the automatic dynamic 

range estimation, tests were done both on phantom ultrasound 
images and one in vivo ultrasound image. In particular, two 

phantom (model 040GSE, CIRS Inc, USA) images were 
acquired using a linear array probe (model LA533, Esaote s.p.a., 
Florence, Italy) working at 5 MHz and a phased array probe 
(model PA230, Esaote) at 2 MHz. Furthermore, one in vivo 
image of the carotid artery was acquired using again the LA533 
linear array probe, this time working at 7 MHz. The probes were 
connected to the 64-channel ULA-OP system [15]. A 64-
element aperture was used in transmission and reception (in the 
phased-array case, only its odd elements were employed). The 
transmitted signal was a 2-cycle, Hanning-tapered sinusoid at 
the central frequencies mentioned above for the three considered 
tests. During phantom/carotid acquisitions with the linear probe, 
the transmit focal depth was set to 20 mm and 25 mm, 
respectively, while for phased array scans the focus was set at 
70 mm. In reception, dynamic focusing was always applied, and 
192 scan lines were acquired. 

Once the raw RF signals were acquired and sampled at 50 
MHz, the six different beamforming techniques described in the 
Background section were used to reconstruct the image in 
Matlab (The MathWorks, Natick, MA, USA), setting γ=p=0.8 
and M0=2. In order to automatically determine the dynamic 
range with which to both visualize and generate the 8-bit image, 
the probability density function of the log-compressed values of 
the beamformed signals is computed over 256 bins. 
Subsequently, the weighted mean of the histogram is found 
(pdfwm). The final optimal dynamic range (DR) is then computed 
according to the following formula:  

DR	=	pdfwm+	α	*	pdfwm (7) 

where a = 0.2 in the case of the in vivo carotid artery image, and 
a = 0.5 for the phantom images. The DR is then rounded to the 
nearest five to obtain the final dynamic range. The upper limit 
of the image dB scale is always equal to 0 dB, so the lower limit 
is therefore equal to -DR. The [-DR 0] dB scale is then converted 
to an 8-bit scale [0 255]. 
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Fig. 2. Image histogram cumulative sum results. Top row: cumulative sum of image histograms obtained using standard 60 dB dynamic range. Bottom row: 

cumulative sum of image histograms obtained using automatically determined dynamic range. 



Qualitatively, the 8-bit images obtained with the automatic 
dynamic range were visually evaluated to determine if the 
images resembled each other in terms of average gray level and 
were compared with those obtained using a standard 60 dB 
dynamic range.  

For a quantitative evaluation, two methods were used. First, 
the cumulative sum of the obtained 8-bit image histograms was 
computed using both the automatically determined dynamic 
range and the standard 60 dB dynamic range. The cumulative 
sums are plotted and the trend between beamforming techniques 
is evaluated. Secondly, the contrast ratio (CR) and contrast-to-
noise ratio (CNR) were computed on manually placed Regions-
Of-Interest (ROIs) on the grayscale images (0-255) obtained 
using the automatic and standard dynamic range. The definitions 
used of CR and CNR are as follows: 

CRgray 	=	"μ#ROI	-	μ#B" (8) 

CNRgray		=	
"μ#ROI	-	μ#B"

$σ#ROI
2 	+	σ#B

2
 (9) 

where 𝜇̅ is the mean of the re-scaled log-compressed grayscale 
values within the ROI and background (B) regions, and 𝜎#( is the 
variance of the grayscale values again within the ROI and B 
regions. The subscript gray denotes that the metrics are 
computed on the re-scaled grayscale (0-255) image values. 

IV. RESULTS 
Table 1 shows the automatically computed dynamic ranges 

for each image and beamforming method. The cumulative sums 

of the image histograms are portrayed in Fig. 2, where the 
second and third row portray the cumulative sum of the image 
histograms using the standard and automatic dynamic range, 
respectively. Fig. 3 shows the image of the phantom acquired 
with the linear array beamformed using the CF (top row) and 
GCF (bottom row) techniques, where the left and right columns 
show the images visualized with a standard dynamic range and 
the automatic dynamic range, respectively. Similarly, Fig. 4 
displays the phantom image acquired with the phased array 
probe and beamformed with DAS (top row) and SCF (bottom 
row) methods, and Fig. 5 portrays in the top and bottom rows 
the in vivo carotid artery image beamformed with the FDMAS 
and PCF techniques, respectively.  

The CR and CNR values obtained using the ROIs in red 
shown in Figs. 3, 4, and 5 are reported in Table 2. 

V. DISCUSSION 
As can be seen in the middle row of Fig. 2, the image 

histogram cumulative sum follows different trends when a 
standard dynamic range is used, but it follows similar trends 
when the automatically determined dynamic range is employed. 
This shows how the proposed method is able to match 
histograms between beamforming techniques in an efficient and 
effective way.  

TABLE I.         AUTOMATICALLY DETERMINED DYNAMIC RANGE VALUES 

 DAS 
[dB] 

FDMAS 
[dB] 

CF 
[dB] 

GCF 
[dB] 

SCF 
[dB] 

PCF 
[dB] 

Phantom 
(linear array) 60 70 85 70 85 70 

Phantom 
(phased-array) 50 65 75 60 80 60 

In-vivo carotid 
(linear array) 55 70 80 65 80 65 

 

 

TABLE II.         CONTRAST RATIO (CR) AND CONTRAST-TO-NOISE RATIO 
(CNR)  FOR ROIS DEPICTED IN FIG. 3, 4, 5. 

  DAS FDMAS CF GCF SCF PCF 

Phantom 
(linear 
array) 

CRauto 26.10 31.31 38.76 33.25 32.36 28.71 
CR60 26.10 21.69 15.66 23.33 10.95 19.30 

CNRauto 4.65 3.11 2.99 4.97 2.44 3.72 
CNR60 4.65 2.27 1.47 3.56 1.11 2.64 

Phantom 
(phased- 

array) 

CRauto 17.62 29.17 36.77 25.39 39.13 24.12 
CR60 19.75 26.30 24.34 25.39 22.19 24.12 

CNRauto 3.32 3.40 3.72 3.66 3.41 3.25 
CNR60 2.91 3.35 2.86 3.66 2.35 3.25 

In vivo 
carotid 
(linear 
array) 

CRauto 20.40 26.31 29.27 26.62 27.67 23.43 
CR60 21.21 22.55 19.86 23.67 15.61 21.30 

CNRauto 2.99 2.59 2.56 2.91 2.50 2.87 
CNR60 2.83 2.66 2.29 2.83 1.97 2.92 

 

 
Fig. 3.  Phantom image (linear array) beamformed using CF (A, B) and 

GCF (C, D) with standard (A, C) and automatic dynamic range  
(B, D). The ROIs used for CR and CNR calculations are in red. 

 
Fig. 4.  Phantom image (phased array) beamformed using DAS (A, B) and 

SCF (C, D) with standard (A, C) and automatic dynamic range (B, D). 
The ROIs used for CR and CNR calculations are in red. 

Fig. 3.  



Overall, our results show that, even after matching the 
histograms, the images obtained with coherence-based 
beamformers preserve their higher quality with respect to DAS 
beamforming. This demonstrates that the coherence-based 
beamformers do in fact provide an improvement compared to 
DAS that is not simply due to dynamic range rescaling. Indeed, 
the CR values obtained using the coherence-based beamformers 
are always higher than those obtained with DAS when 
considering the automatically determined dynamic range. On 
the other hand, the same cannot be said for the CNR, which can 
be attributed to the fact that different beamformers alter speckle 
statistics [16]. In particular, it can be appreciated how in many 
of the coherence-based beamformed images, there is a higher 
variance within the ROIs when compared to DAS, therefore 
increasing the CNR denominator and lowering the final obtained 
value. Moreover, both the CR and CNR values increase when 
using the automatic DR compared to the standard DR (Tab. 2). 
In a couple of cases, the CR values decrease while the CNR 
values increase, but this is only observed using the DAS 
beamforming method. Similarly, the CNR values show slightly 
lower values (< 0.1 difference) while the CR values are higher 
in two cases (FDMAS and PCF), which is observed only in the 
in vivo carotid artery image. This minimal difference can be 
explained by the fact that, when considering a smaller dynamic 
range, the overall image takes on lower values (i.e., the image is 
darker), since more log-compressed values are cut and rescaled 
to 0. For the in vivo carotid artery image, a smaller dynamic 
range decreases signals within the artery lumen (Fig. 5), which 
causes the variance within the background ROI to decrease.  

Two further considerations need to be done regarding the 
present study. First of all, the automatic method determines the 
dynamic range taking for granted the fact that an upper limit 
equal to 0 dB is suitable. An upper limit of 0 dB may not be ideal 
for all images, and further studies need to be done to take this 
aspect into consideration and to determine how the upper limit 
may also be automatically determined, if necessary. Secondly, 
the automatically determined dynamic range is based on the 
weighted mean, which once calculated must then be added to the 
weighted mean multiplied by a scale factor (i.e., a), as shown in 
(7). In this study, it was found that a may vary between different 
images and was determined empirically by testing various 
values for each image. Importantly, however, the value of a is 
the same for every beamforming technique. Hence, to use the 
method in future studies with different images, it may be 

necessary to tune a. However, once it is determined for one 
beamforming method (e.g., the standard DAS), it can be 
effectively employed for all other beamforming techniques.  

VI. CONCLUSION 
We have presented here a simple yet effective method for 

automatically determining the dynamic range of ultrasound 
images obtained using different beamforming algorithms. We 
showed how the automatic method standardizes the 8-bit image 
among the six analyzed beamformers, which is essential when 
further image processing methods, such as segmentation and 
texture features, are employed.  
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Fig. 5.  In vivo carotid image beamformed using FDMAS (A, B) and PCF 

(C, D) with standard (A, C) and automatic dynamic range (B, D). The 
ROIs used for CR and CNR calculations are in red. 


