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Abstract—This paper presents a local trajectory planning and 

control method based on the Rapidly-exploring Random Tree algorithm 

for autonomous racing vehicles. The paper aims to provide an algorithm 

allowing to compute the planned trajectory in an unknown 

environment, structured with non-crossable obstacles, such as traffic 

cones. The investigated method exploits a perception pipeline to sense 

the surrounding environment by means of a LIDAR-based sensor and a 

high-performance Graphic Processing Unit. The considered vehicle is a 

four-wheel drive electric racing prototype, which is modeled as a 3 

Degree-of-Freedom bicycle model. A Stanley controller for both lateral 

and longitudinal vehicle dynamics is designed to perform the path 

tracking task. The performance of the proposed method is evaluated in 

simulation using real data recorded by on-board perception sensors. 

The algorithm can successfully compute a feasible trajectory in different 

driving scenarios. 

Keywords—Trajectory planning, Autonomous driving, Rapidly-

exploring Random Tree, Vehicle control, Environment perception, Local 

planning. 

I. INTRODUCTION 

Self-driving vehicles are experiencing an increasing interest 
worldwide during the last years, which motivates a constant research 
effort to continuously address design challenges related to safety and 
performances of the next generation of automated cars [1]. Fully 
autonomous projects are currently in various stages of development 
and testing, which include on-road validation, and recent vehicles can 
already feature many on-board Advanced Driver Assistance Systems 
(ADAS), such as Lane Keeping Assist (LKA), Smart Cruise Control 
(SCC), Intelligent Speed Adaptation (ISA), Lane Departure Warning 
(LWA) [2][3], or intelligent devices devoted to virtual sensing [4][5]. 
Nevertheless, fully autonomous vehicles are still far from entering 
the market in the brief period, since significant concerns from the 
potential customers include not only privacy and cybersecurity, but 
also the elevated level of performance expectations which is only 
partially achieved in the experimental validation of the proposed 
techniques at the current stage [6][7]. Considering this framework, 
trajectory planning is one of the fundamental tasks that a fully 
autonomous vehicle must perform to be compliant with its 
requirements in terms of autonomy level [8]. In autonomous driving, 
trajectory planning is defined as the real-time computation of the 
planned vehicle’s motion from an initial state to the next one, 
according to the maneuver’s feasibility with respect to the vehicle 
dynamics limits. Considering the whole collection of trajectory 
planning techniques investigated in the recent literature, the optimal 
trajectory is typically computed at each time step after the evaluation 
of a set of feasible trajectories with respect to a cost function [3][9]. 
To this end, many trajectory planning methods have been 
investigated during the last decades for autonomous driving. The 
Probabilistic Road Map (PRM) algorithm is used for path planning 

in autonomous driving, especially for curved tracks [10]. However, 
it could feature a high computational complexity, which may yield to 
the installation of a very demanding hardware mounted on-board in 
the real application [9][11]. State Lattice-based methods are also 
exploited for motion planning, although their application is mainly 
limited to indoor or static driving scenarios since they could be 
inappropriate in the case of demanding maneuvers [9][12]. 
Furthermore, local search algorithms are investigated for trajectory 
planning in the case of structured road scenarios or within a limited 
road distance [9][13][14]. A global trajectory planning algorithm 
exploiting ArcGIS maps and a GPS sensor is investigated in [15] for 
an autonomous electric bus, although it requires the exact knowledge 
of the destination point. Another trajectory planning method based 
on the application of Jump Point Search (JPS) on GPS data in ArcGIS 
maps is presented in [16] for urban environments. Alternative 
approaches based on simplified polynomial parametrizations of 
trajectories are investigated in [17] and [18], while a method based 
on the cubic spline approximation for computing the planned 
trajectory is presented in [19]. Furthermore, an empirical polynomial 
method based on clothoid tentacles is studied in [20], by exploiting 
occupancy grid-maps generated from LIDAR data. A global 
trajectory optimization method for a racecar is described in [21]. 
Nevertheless, it requires a robust information about the whole race 
track, which is obtained by means of a preliminary global mapping 
procedure. Considering a highway driving scenario, the Adaptive 
Potential Field (APF) approach is used in [22] for trajectory planning 
in the presence of obstacles, as well as an algorithm based on Partial 
Motion Planning (PMP) is proposed by [23]. Rapidly-exploring 
Random Tree (RRT) methods features a robust real-time kinematic 
feasibility and quick search of free space, also in driving scenarios 
characterized by demanding maneuvers, such as race tracks 
[9][11][13]. A modified RRT-based motion planning algorithm for 
automated vehicle participating at the DARPA Urban Challenge 
(DUC) is presented in [24] and [25]. A hybrid method based on both 
the A* search and RRT algorithms is proposed in [26] for a local 
trajectory planner. An application of the RRT method in a highway 
driving scenario is presented in [27]. A complete review of other 
trajectory planning algorithm can be found in [3][9][11][13]. This 
paper proposes a RRT-based local trajectory planning and control 
method for autonomous racing vehicles. Specifically, the algorithm 
computes the planned trajectory in an unknown environment without 
the need of a preliminary computed global map representing the 
driving scenario. The driving scenario is structured with non-
crossable obstacles, such as traffic cones according to the Formula 
Student Germany (FSG) driverless regulations (2019) [28]. 
Moreover, the proposed method allows to control the vehicle 
exploiting a combination of a Stanley and a PID controllers, which is 
proven to be effective for both lateral and longitudinal vehicle 
dynamics, although it is simpler with respect to other methods based 
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on Model Predictive Control (MPC) [29][30]. Stanley controller was 
used in the autonomous vehicle of Stanford University which won 
the DARPA Grand Challenge in 2005 [31]. This control method 
consists of two main compensation tasks: a compensation stage for 
the angular error with respect to the target orientation and another one 
for minimizing the front lateral distance error from the center of the 
front axle to the nearest point on the path [29][31]. The considered 
vehicle is a four-wheel drive (4WD) electric racing prototype, which 
is modeled as a 3 Degree-of-Freedom (3-DOF) bicycle model [32]. 
The method exploits a perception stage to sense the surrounding 
environment by means of a LIDAR-based sensor and a high-
performance Graphic Processing Unit (GPU). The perception 
pipeline includes a preliminary ground-plane filtering of LIDAR data 
using semantic segmentation, which is a fundamental stage to get rid 
of unnecessary points [33][34]. In the driving scenario, obstacles are 
detected with a clustering technique that exploits an algorithm based 
on Support Vector Machine (SVM), that is applied to the filtered 
point-cloud. Also, alternative voxel-based Artificial Neural 
Networks (ANNs) have been investigated in the recent literature 
for object detection exploiting 3D point-cloud for autonomous 
driving [35]. The performance of the proposed trajectory planning 
method is evaluated in simulation by using real data recorded by 
sensors mounted on-board the vehicle while driving a lap on a race 
track structured according to [28].  

II. METHOD 

A. Vehicle modeling 

The considered 4WD electric racing vehicle is represented in Fig. 
1. The LIDAR sensor is mounted on the front wing of the vehicle. 
The sensor is fixed at a height of about 8 cm from the ground. The 
vehicle has an integral carbon fiber chassis built with honeycomb 
panels, double wishbone push-rod suspensions, an on-wheel 
planetary transmission system, and a custom aerodynamic package. 
The vehicle can reach a maximum speed equal to 120 km/h with 
longitudinal acceleration peaks reaching up to 1.6 g.  The main 
vehicle’s parameters are listed in Table 1. 

 

Fig. 1. Considered 4WD electric racing vehicle.  

 To validate the proposed local trajectory planning and control 
method, a simplified vehicle model is considered. Thus, the 
longitudinal and the lateral dynamics of the race car are modeled by 
means of a 3-DOF bicycle model, because it is proven to be effective 
among the different mathematical formulations which are present in 
the literature [30][36]. The relevant states of the vehicle are depicted 
in Fig. 2. The considered formulation features a rigid two axle vehicle 
model and it accounts for the linear motion in the 𝑥𝑦 plane and the 
rotation about the 𝑧 -axis. The three equations of motion are 
developed in a reference frame 𝑥𝑦 fixed to the Centre-of-Mass of the 
vehicle (𝐶𝑜𝑀 in Fig. 2): 

𝑚𝑎𝑥 = 𝑚𝑉𝑦𝜓̇ + 𝐹𝑥𝑓,𝑤𝑐𝑜𝑠𝛿 + 𝐹𝑦𝑓,𝑤𝑠𝑖𝑛𝛿 + 𝐹𝑥𝑟,𝑤     (1) 

𝑚𝑎𝑦 = −𝑚𝑉𝑥𝜓̇ + 𝐹𝑦𝑓,𝑤𝑐𝑜𝑠𝛿 + 𝐹𝑥𝑓,𝑤𝑠𝑖𝑛𝛿 + 𝐹𝑦𝑟,𝑤         (2) 

𝐼𝑧𝜓̈ = 𝑎(𝐹𝑦𝑓,𝑤𝑐𝑜𝑠𝛿 + 𝐹𝑥𝑓,𝑤𝑠𝑖𝑛𝛿) − 𝑏𝐹𝑦𝑟,𝑤         (3) 

where 𝑥  and 𝑦  are the positions along the 𝑥 -axis and 𝑦 -axis 
respectively, 𝜓 is the heading angle, 𝛿  is the front wheel steering 
angle, 𝐹𝑥𝑓,𝑤 and 𝐹𝑥𝑟,𝑤 are the longitudinal tire forces applied to front 

and rear wheels, 𝐹𝑦𝑓,𝑤 and 𝐹𝑦𝑟,𝑤 are the lateral tires forces applied to 

front and rear wheels. 

TABLE I. Main vehicle’s parameters (* driver included). 

Parameter Symbol Value Unit 

Mass* 𝑚 253 [kg] 

Moment of Inertia about 𝑧-axis* 𝐼𝑧 95.81 [kgm2] 

Vehicle wheelbase 𝑙 1.525 [m] 

Overall length 𝐿 2.873 [m] 

Front axle distance to CG 𝑎 0.839 [m] 

Rear axle distance to CG 𝑏 0.686 [m] 

Vehicle track width 𝑡 1.4 [m] 

Overall width 𝑊 1.38 [m] 

Height of CG* ℎ𝐶𝐺  0.242 [m] 

Wheel radius 𝑅𝑊 0.241 [m] 

Maximum power (total vehicle) 𝑃𝑚𝑎𝑥 80 [kW] 

Motors peak torque 

(total vehicle) 

𝑇𝑚𝑎𝑥 84 [Nm] 

Transmission ratio 𝜏 14.82 [-] 

Maximum energy stored 

(battery pack) 

𝐸𝑏𝑝 6.29 [kWh] 

  

Fig. 2. Bicycle vehicle model applied to the 4WD electric racing vehicle. 

 The relation between the inertial reference frame 𝑋𝑌𝑍 and the 
vehicle-fixed reference frame is described by the following equation: 

  𝑋 = 𝑥𝑐𝑜𝑠𝜓 − 𝑦𝑠𝑖𝑛𝜓     (4) 

  𝑌 = 𝑥𝑠𝑖𝑛𝜓 + 𝑦𝑐𝑜𝑠𝜓     (5) 

  Ψ = 𝜓       (6) 

 The lateral tire forces at the front and rear wheels are considered 
perpendicular to the rolling direction of the tire, and proportional to 
the lateral slip angle, 𝛼𝑓  and 𝛼𝑟, between its velocity vector in the 

vehicle fixed reference frame and its forward direction. Considering 
the assumption of small slip angles, the lateral tire forces are 
modelled as:  

  𝐹𝑦𝑓,𝑤 = 2𝐶𝛼𝑓𝛼𝑓      (7) 

  𝐹𝑦𝑟,𝑤 = 2𝐶𝛼𝑟𝛼𝑟      (8) 

where 𝐶𝛼𝑓 and 𝐶𝛼𝑟 are the tire stiffness and 𝛼𝑓 and 𝛼𝑟 are tires slip 

angles of the front and rear tires, respectively. The tires slip angles 
are defined as follows: 

  𝛼𝑓 = atan (
𝑉𝑦+𝜓̇𝑎

𝑉𝑥
) − 𝛿   (9) 

  𝛼𝑟 = atan (
𝑉𝑦−𝜓̇𝑏

𝑉𝑥
)  (10) 

where 𝑎 and 𝑏 are distance from the 𝐶𝑜𝑀 and the front and rear axle, 
respectively. 

B. Perception 

The driving scenario consists of a race track structured with 
traffic cones according to [28]. Each traffic cone has a height equal 
to 0.325 m and a square base, with a side length equal to 0.228 m. 
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The cones of the left lane boundary are blue with a white stripe, while 
the cones delimiting the right lane boundary are yellow with a black 
stripe. Two couples of bigger orange cones indicate the starting and 
the ending points of the track. The perception algorithm layout is 
represented in Fig. 3. The driving environment is sensed with a 
LIDAR-based sensor (block 1 in Fig. 3). The sensor is a Velodyne 
VLP-16 Puck, that provides a full 360-degree view of the 
surrounding environment at 10 Hz to obtain an accurate real-time 3D 
data reconstruction recorded by 16 light channels. It ranges up to 100 
m with 30° vertical field-of-view (FOV) and an angular resolution up 
to 0.1° in the horizontal plane. The LIDAR sensor is connected to a 
NVIDIA Jetson AGX Xavier high-performance computing platform 
with embedded GPUs through an Ethernet connection. The 
computing platform creates a Robot Operating System (ROS) 
network, which allows to process the information streaming from the 
LIDAR-based sensor. This information contains point-cloud data 
computed at 10 Hz. Each point cloud consists of thousands of 3D 
points in a 360° range on the horizontal plane, while the vertical FOV 
is ±15°. Each point-cloud contains the distance of each point in the 
3D space along with the intensity of the reflected light in that point. 
Then, the raw point cloud is filtered by removing all the points out of 
the region-of-interest (ROI) and the points belonging to the ground-
plane (block 2 in Fig. 3). The adopted ground-plane filtering 
algorithm is developed in the ROS environment. It is based on a 
standard point-cloud semantic segmentation technique adapted to the 
specific driving environment and vehicle, setting the sensor position 
and height. The ground plane filtering is necessary to avoid 
considering ground points in the following obstacles detection 
process. A robust theoretical background of the adopted method can 
be found in [37], [38] and [39]. After the application of the ground 
removal algorithm to the point-cloud, a ROI is identified in the 3D 
sensed point-cloud. This stage is convenient to reduce the data 
dimension and remove outliers in the ROI. Therefore, 𝑅𝑂𝐼(𝑥, 𝑦, 𝑧) is 
defined in (11): 

𝑅𝑂𝐼(𝑥, 𝑦, 𝑧) = {
0 < 𝑥 < 25

−10 < 𝑦 < 10
−0.5 < 𝑧 < 1.5

} [𝑚] (11) 

Once the point-cloud has been filtered, a SVM-based algorithm 
for point-cloud clustering is applied to detect clusters of points (block 
3 in Fig. 3). Therefore, each cluster represents a detected object 
delimiting the race track. The designed perception method is based 
on the research described in [40]. Nevertheless, the algorithm is 
properly adapted to the actual vehicle environment structured with 
traffic cones, by tuning all the parameters relative to the search for 
clusters of points in the ROI. Thus, multiple clusters of points are 
extracted from the point cloud at each frame and each of the clusters 
represents a cone. The position of each cone is estimated as the 
centroid of the corresponding cluster (block 4 in Fig. 3).  

 

Fig. 3. Layout of the perception algorithm. 

The centroid of the cluster is computed as the geometric center 
of all the points belonging to that cluster. The z-axis is neglected 
since the aim of the proposed perception algorithm is to find a 2D 
local map at each frame. Therefore, considering a cluster 𝐶 in the 
two-dimensional ROI, its centroid 𝛾(𝑥𝛾 , 𝑦𝛾) is computed as in (12). 

 𝛾(𝑥𝛾 , 𝑦𝛾) = (
𝑥1+𝑥2+⋯+𝑥𝑛𝑐

𝑛𝑐
,

𝑦1+𝑦2+⋯+𝑦𝑛𝑐

𝑛𝑐
) (12) 

where 𝑛𝑐 indicates the number of points in the cluster. Thus, the local 
2D map is built with the clusters centroids representing the detected 
cones with respect to the vehicle’s reference frame. 

C. Trajectory planning 

The purpose of the proposed algorithm is to implement a motion 

planner that provides a path and a speed profile to the controller, thus 

the racing vehicle can travel within the track boundaries while 

avoiding hitting cones. The path planning algorithm is based on the 

RRT method that takes into account kinematic and dynamic 

constraints of the vehicle, in addition to the pure geometric problem 

of obstacles avoidance. This method allows to search non-convex 

high-dimensional spaces by randomly building a space-filling tree 

[41]. Starting from a single initial configuration, the path planner 

algorithm explores the environment around the vehicle by computing 

a tree of random collision-free poses. An incremental process of 

sampling makes the tree expand toward sampled configurations in the 

configuration space. Initially, the search tree only knows the initial 

states of the vehicle, and terminates when the tree has reached a goal 

pose. A pseudo-code implementation of the implemented RRT 

algorithm is shown in Fig. 4, where 𝜏 indicates the local search tree 

that is a directed acyclic graph. The aim of the RRT algorithm is to 

find a path from the vehicle’s initial configuration 𝑥𝑖𝑛𝑖𝑡  to the 

vehicle’s goal configuration 𝑥𝑔𝑜𝑎𝑙. The search algorithm iteratively 

tries to add new configurations to the search tree until it reaches 𝑛 

iterations [42]. In detail, the algorithm performs sampling, node 

selection, expansion, and constraint check until 𝑛 iterations are 

reached, and the tree expansion is updated each time new vehicle 

states are available. The planned path for each link must be feasible 

and collision-free. 
 

  
Fig. 4 Pseudo-code for the RRT algorithm.  

 To this end, a cost map should be generated. As explained in 

Section B, the data generated by the LIDAR sensor and the estimated 

vehicle’s position create a 2D representation of the approximate 

locations of the obstacles, which are the left and right cones in this 

case. The size of the resulting cost map depends both on the quality 

of the collected data and on the vehicle’s position. When the vehicle 

is traveling on the center line, the road is straight and, the cones are 

exactly aligned, the longitudinal size of the map can reach up to 60 

m. As the vehicle approaches a bending road, the size of the cost map 

will decrease. Then, each cell in the occupancy grid has a value 

representing the probability of the occupancy of the considered cell. 

These values range from 0 to 1. When the value in a single cell is 

close to 1, there is a high probability that the cell contains an obstacle. 

On the contrary, if this value is around 0, the cell is probably not 

occupied and can be considered as obstacle-free. In this work, the 

highest value is assigned to each identified cone and an inflation 

coefficient is applied to inflate higher probability across the grid. 

Since the sensor is mounted in the center of the vehicle front wing, 

the radius of the inflation area has been heuristically selected equal 

to 0.5 m. Finally, the initial position and the computed final goal 

position are computed as the current vehicle’s position and as the 

middle point between the farthest couple of left and right cones. Each 

time the frame is updated, the initial and final positions are changed 

accordingly. Afterwards, the RRT is applied to compute the best path 

avoiding the racing vehicle hits the cones or lies on the inflated areas. 
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The reference path generated by the path planner is composed of 

Dubins segments [43]. Therefore, the curvature between two 

consecutive segments could be not sufficiently smooth. This may 

yield to abrupt changes in the computed steering angle command. To 

produce a natural motion leading to improvement on the passenger 

comfort and vehicle’s performance, the path is interpolated by a 

parametric cubic spline. Once the path is smoothed, the speed profile 

is computed based on the maximum allowable acceleration and jerk 

of the vehicle. Thus, when the vehicle is approaching a curve, the 

velocity is constrained by the maximum lateral acceleration threshold 

(𝑎𝑦,𝑚𝑎𝑥 = 2 g). On the other hand, when the vehicle is traveling on 

a straight path, the reference speed profile is constrained by the 

longitudinal speed, acceleration and jerk. In the first case, the 

minimum value of the velocity is imposed directly by the curvature 

𝜅 of the computed path: 

  𝑉𝑚𝑖𝑛 = √
𝑎𝑦,𝑚𝑎𝑥

𝜅
       (13) 

 In the second case, the reference speed profile consists of a 

trapezoidal transition from the minimum value 𝑉𝑚𝑖𝑛 to a maximum 

allowed speed 𝑉𝑚𝑎𝑥, and eventually again to 𝑉𝑚𝑖𝑛  while considering 

the imposed constraints on accelerations and jerk. 

D. Control 

The control layout implemented in this paper is presented in Fig. 
5. In detail, the control problem has been studied decoupling the 
longitudinal and lateral dynamics of the racing vehicle. The 
longitudinal dynamic control is obtained by means of a PID 
controller that minimizes the error between the actual vehicle’s speed 
and reference speed while the lateral dynamics control aims to 
minimize the deviation from the desired path [31]. The commands to 
the vehicle model are the longitudinal acceleration 𝑎𝑥  and the 
steering angle of the front wheels 𝛿. The inputs to the longitudinal 
controller are the actual vehicle’s speed and the reference speed 
profile from the trajectory computation, as shown in Fig. 5. The 
mathematical formulation is described by: 

 

  𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
      (14) 

where 𝑢(𝑡) is the acceleration/deceleration command to the vehicle 

at time 𝑡 , 𝐾𝑝  and 𝐾𝐼  are the proportional and integral gains 

respectively and 𝑒(𝑡) is the velocity error at time 𝑡. At each time 𝑡, 

this error is equal to the difference between the current velocity and 

the reference velocity. Conversely, the lateral controller exploits a 

non-linear control law to follow the trajectory by considering the 

orientation of the front wheels with respect to the desired trajectory. 

 

 

Fig. 5. Block scheme of the control method. 

Some variables are defined as follows, before introducing the 

mathematical formulation of the control law: 

  𝜓𝑠𝑠 =
𝑚𝑉𝑥𝜓̇𝑑𝑒𝑠

𝐶𝛼(1+
𝑎

𝑏
)
   (15) 

  𝜓̇𝑑𝑒𝑠 = 𝑉𝑥𝜅   (16) 

  𝑒̇1 = 𝑉𝑦 + 𝑉𝑥𝑒2    (17) 

where 𝜓̇𝑑𝑒𝑠  is the rate of change of the desired orientation of the 

vehicle, 𝑉𝑥  is the vehicle’s longitudinal velocity, 𝜓𝑠𝑠  is the steady 

state yaw relative to a constant curvature path, 𝑒2 is the heading angle 

of the vehicle with respect to the closest trajectory segment, 𝑒1 is the 

distance of the vehicle’s center of mass with respect to the center line 

and 𝑉𝑦  is the vehicle’s lateral velocity. Considering (15), (16) and 

(17), the lateral dynamic controller computes the front wheel steering 

angle as follows: 

 𝛿(𝑡) = (𝑒2 − 𝜓𝑠𝑠) + atan (
𝑘𝑒1

1+𝑉𝑥
) + 𝑘𝑦𝑎𝑤(𝜓̇ − 𝜓̇𝑑𝑒𝑠)       (18) 

where 𝑘 and 𝑘𝑦𝑎𝑤are two tuneable gains. The presented control law 

is composed of three main terms: the first one guarantees that the 

vehicle turns producing a non-zero yaw setpoint when the vehicle is 

approaching a bend; the second modifies the steering angle such that 

the future trajectory lies on the tangent to the desired path at a certain 

distance from the front axle; the latter introduces a damping 

coefficient at increasing speed. Until the final goal is reached, the 

following procedure is implemented. Initially, the front wheel 

steering angle is computed along with the acceleration/deceleration 

commands required to track the desired trajectory by the lateral and 

longitudinal decoupled dynamic controllers, respectively. Then, they 

are provided to the vehicle model. Eventually, the states of the 

vehicle are recorded to feed them into the controllers at the successive 

iteration, as represented in Fig. 5. 

III. RESULTS 

The proposed method is validated in a simulation software 

environment, which has been developed exploiting both ROS and 

MATLAB/Simulink. The validation dataset has been recorded 

during a real acquisition stage performed on-board the vehicle 

represented in Fig. 1, instrumented with a LIDAR-based sensor and 

a high-performance GPU. The considered dataset consists of over a 

thousand of frames. In each frame, a set of possible trajectories, 

whose number varies between 200 and 300, are randomly generated 

during the planning phase. The whole validation dataset includes a 

wide range of maneuvers, including sudden accelerations while 

turning or coasting, performed by the vehicle in a racing scenario that 

was properly structured with traffic cones according to regulations 

listed in [28]. In the following figures (from Fig. 6 to Fig. 10), the 

planned trajectory is represented by a blue solid line, with waypoints 

indicated as blue points. The goal vehicle position is indicated by the 

red dot. The detected cones are represented with black triangles, and 

inflated areas are illustrated by pink dots. The planned vehicle’s 

motion is indicated by blue shapes. Moreover, the longitudinal 

acceleration 𝑎𝑥  and the steering angle 𝛿  commands are shown in 

subfigures b) and c), respectively. Subfigures d) illustrate the 

reference longitudinal speed 𝑉𝑟𝑒𝑓  (indicated with red dashed line) 

with respect to the actual vehicle’s speed  𝑉𝑥 (black solid line). The 

vehicle’s yaw rate 𝜓̇ is shown in subfigure e) for each maneuver. 

An example of the recorded maneuvers is represented in Fig. 6. The 

vehicle is accelerating on a straight portion of the racing track. Fig 

6.a illustrates the planned vehicle’s motion (successive blue shapes) 

that starts from standstill in the origin. The vehicle performs the 

maneuver according to the planned trajectory computed by the 

investigated RRT-based algorithm (blue line in Fig. 6.a), until it 

reaches the goal position (red dot in Fig. 6.a). The cones detected by 

the LIDAR-based perception algorithm are represented with black 

triangles in Fig. 6.a, while the inflated areas used by the RRT 

algorithm are represented by pink circles. The vehicle receives the 

steering and longitudinal acceleration commands from the designed 

control algorithm, which are illustrated in Fig. 6.b and Fig. 6.c, 

respectively. The wheels steering angle 𝛿 is always negligible during 

the maneuver. The vehicle reaches over 15 m/s in about 2.5 s, as 

illustrated in Fig. 6.d. The reference longitudinal speed 𝑉𝑟𝑒𝑓  is 

accurately followed by the actual vehicle’s longitudinal speed 𝑉𝑥 . 

The vehicle’s yaw rate 𝜓̇  reaches 2.5 deg/s at the end of the 

maneuver, as represented in Fig. 6.e. Fig. 7 illustrates the results of 
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an acceleration maneuver while cornering to the right. The vehicle 

accelerates in a curved portion of the racing track delimited by traffic 

cones (black triangles in Fig. 7.a). Fig 7.a illustrates the planned 

vehicle’s motion (successive blue shapes) that starts from standstill, 

as well as the planned trajectory computed by the proposed algorithm 

(blue line in Fig. 7.a). The vehicle accelerates up to 10 m/s in about 

2 s, as illustrated in Fig. 7.d, while the wheels steering angle is 

represented in Fig. 7.c. The actual vehicle’s speed is accurate with 

respect to 𝑉𝑟𝑒𝑓. The vehicle’s yaw rate 𝜓̇ reaches up to 5 deg/s during 

the maneuver as represented in Fig. 7.e. An acceleration maneuver 

while cornering to the left is represented in Fig. 8. The vehicle starts 

from standstill and reaches up to 10 m/s. Fig 8.a shows the computed 

trajectory and the planned vehicle’s motion. During the cornering 

maneuver, the wheels steering angle 𝛿 reaches up to -10 deg in Fig. 

8.c. The actual vehicle’s speed is accurate with respect to 𝑉𝑟𝑒𝑓, as 

illustrated by Fig 8.d. The vehicle’s yaw rate 𝜓̇ is represented in Fig. 

8.e. Results obtained for two coasting maneuvers while cornering to 

the right and left are represented in Fig. 9 and Fig. 10, respectively. 

The vehicle follows the planned trajectory in both cases, while 

keeping the longitudinal speed constant at 8 m/s (Fig. 9.d and Fig. 

10.d). The wheels steering angle 𝛿 reaches up to 20 deg and -18 deg 

in the two cases, respectively (Fig. 9.c and Fig. 10.c). The vehicle’s 

yaw rates 𝜓̇ for the two maneuvers are represented in Fig. 9.e and 

Fig. 10.e, respectively. 

 
Fig. 6. Acceleration test on straight road. 

 

 
Fig. 7. Acceleration while cornering to the right. 

 
Fig. 8. Acceleration while cornering to the left.  

 

 
Fig. 9. Coasting while cornering to the right. 

 

 
Fig. 10. Coasting while cornering to the left.  
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CONCLUSION 

A local trajectory planning and control method for autonomous 

racing vehicles was presented. To this end, an algorithm based on 

the RRT approach was exploited. The considered 4WD electric 

prototype is modeled with a 3-DOF linear bicycle model. The 

vehicle dynamics was controlled with a Stanley control strategy. 

The method has been validated in a simulation environment built 

with real data, which are recorded by perception sensors mounted 

on-board the vehicle. The investigated algorithm computes feasible 

trajectories during different maneuvers performed in the driving 

scenario. The method requires a further testing stage to real-time 

validate the achieved results on the instrumented vehicle.  
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