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Viale A. Doria, 6 – 95100 – Catania, Italy

favacchio@dmi.unict.it

and Juan Migliore

Department of Mathematics, University of Notre Dame,

Notre Dame, IN 46556

migliore.1@nd.edu

(Received 24 July 2017)

Abstract

In this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in mul-

tiprojective spaces. Most of what is known is for P1 × P1 and, more recently, in (P1)r. In P1 × P1 the so

called inclusion property characterizes the ACM property. We extend the definition in any multiprojec-

tive space and we prove that the inclusion property implies the ACM property in Pm × Pn. In such an

ambient space it is equivalent to the so-called (?)-property. Moreover, we start an investigation of the

ACM property in P1 × Pn. We give a new construction that highlights how different the behavior of the

ACM property is in this setting.

1. Introduction

Let X ⊆ Pa1 × · · · × Pan be a finite collection of points. It is interesting to describe the homological

invariants of the coordinate ring of X. In particular, it is a subject of research to understand when X is

arithmetically Cohen-Macaulay (ACM), i.e. when the coordinate ring is a Cohen-Macaulay ring. Since

it is no longer the case (as it is in projective space) that a finite set of points is automatically ACM,

the determination of whether or not the ACM property holds for a finite set draws on a combination of

geometric, combinatoric, algebraic and numerical considerations. The Cohen-Macaulay question here is

closely related to the Cohen-Macaulay question for unions of linear varieties in projective space, but it

is a more manageable version of the problem than the case of arbitrary unions since only certain such

unions correspond to finite sets in multiprojective spaces. Indeed, we will frequently use this connection.

A characterization of finite sets of points with the ACM property is only known in P1 × P1 (see [4] for

an exhaustive discussion of the topic) and, more recently, in P1 × P1 × · · · × P1 = (P1)n (see [2]). The

purpose of this paper is to investigate the new subtleties that arise in studying the ACM property in

more general multiprojective spaces.

More precisely, given X a finite collection of points in Pa1 × Pa2 , one can define the so-called (?)-

property (see [4] Definition 3.19 or page 4 of this paper for the definition). It is known that a collection

of points X in P1 × P1 is ACM if and only if it satisfies the (?)-property (cf. for instance [4] Theorem

4.11). In [2] a characterization of the ACM property for finite sets was obtained for (P1)n, in terms of
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what was called the (?n)-property (see [2] Definition 3.6 and Theorem 3.13). What is significant about

both of these results is that the ACM question is determined by the existence or not of certain kinds of

subconfigurations.

Here we prove that in Pa1 × Pa2 , if X is a set of points satisfying the (?)-property then X is ACM

(Theorem 3·7). It was already known that the converse does not hold (see for instance [3]), but we give

simpler examples. Part of the purpose of section 4 is to get a better understanding of the fact that the

converse is not true (see Remark 4·10).

In [2] the authors introduce, for a set of points in (P1)n, the inclusion property. In section 3 we generalize

the inclusion property to an arbitrary multiprojective space Pa1 ×· · ·×Pan (see Definition 3·1). We show

that when n = 2 it is still true that the inclusion property is equivalent to the (?)-property (Lemma 3·4),

and hence it implies the ACM property for X (Corollary 3·8). We are also able to show that if any of

the ai is equal to 1 then again the inclusion property implies ACM (Proposition 3·2). We conjecture that

this implication holds in general.

To investigate ACM sets of points in Pa1 × Pa2 × · · · × Pan one can use extensions, to the multihomo-

geneous setting, of some standard tools in the homogeneous setting. These include hyperplane sections,

basic double G-linkage, liaison addition, and liaison. This approach was already used in [2]. For example,

some of our results are for P1×Pa2 × · · ·×Pan . Omitting details here, we observe that the distinguishing

feature of this case for us is that in P1 a point is also a hyperplane, and this allows us to use hyperplane

sections and related constructions in our study.

This is crucial for instance in the proof of Proposition 3·2, that the inclusion property implies the ACM

property in P1 × Pa2 × · · · × Pan . Thus it was surprising to us when we obtained Corollary 3·8, that the

inclusion property implies the ACM property in Pa1 ×Pa2 , which avoids hyperplane sections but reaches

the same conclusion.

In Section 4 we explore the ACM property for collection of points in P1 × Pn. Examples 4·2 and 4·3
underline a crucial difference with the (P1)n case. A set X of reduced points of (P1)n has the ACM

property if and only if it does not contain certain sub-configurations (see [2] Theorem 3.13). A similar

characterization is not possible in P1 × Pn. Instead, we give a construction of a set of points which, as

one continues to add points following the same prescribed rules, fluctuates between being ACM and not

being ACM in a predictable way. Section 4 is devoted to a careful study of this construction and what it

tells us about the ACM property.

2. Preliminaries

We work over a field of characteristic zero. Set S := k[Pn]. Recall that for a finite set of points Z ⊂ Pn
the Hilbert function of Z is defined as the numerical function HZ : N→ N such that

HZ(i) = dimk(S/IZ)i = dimk Si − dimk(IZ)i.

Since HZ(t) = #Z for t large enough, the first difference of the Hilbert function ∆HZ(i) := HZ(i) −
HZ(i− 1) is eventually zero. The h-vector of Z is

hZ = h = (1, h1, . . . , ht)

where hi = ∆HZ(i) and t is the last index such that ∆HZ(i) > 0.

A finite set of points in Pn is said to have generic Hilbert function if HZ(i) := min
{(
i+n
n

)
,#Z

}
, i.e.

hZ = (1,
(
n
n−1
)
,
(
n+1
n−1
)
, · · · ,

(
n+t−2
n−1

)
, ht) where 0 < ht ≤

(
n+t−1
n−1

)
.

Definition 2·1. For V = Pa1 × · · · × Pan we define

πi : V → Pa1 × · · · × P̂ai × · · · × Pan
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to be the projection omitting the i-th component and

ηi : V → Pai

to be the projection to the i-th component. Note that if V := Pa1 × Pa2 then π1 = η2.

Let e1, . . . , en be the standard basis of Nn. Let xi,j , with 1 ≤ i ≤ n and 0 ≤ j ≤ ai for all i, j, be the

variables for the different Pai . Let

R = k[x1,0, . . . , x1,a1 , . . . , xn,0, . . . , xn,an ],

where the degree of xi,j is ei.

A subscheme X of V is defined by a saturated ideal, IX , generated by a system of multihomogeneous

polynomials in R in the obvious way. We say that X is arithmetically Cohen-Macaulay (ACM) if R/IX
is a Cohen-Macaulay ring.

Let N = a1 + · · ·+ an +n. Given a subscheme X of V together with its homogeneous ideal IX , we can

also consider the subscheme X̄ of PN−1 defined by IX . Notice that if X is a zero-dimensional subscheme

of V , IX almost never defines a zero-dimensional subscheme of PN−1.

The following definition also includes facts that can be found in the literature. It is a special case of

so-called Basic Double Linkage. See for instance [6] Lemma 3.4 and Corollary 3.5, [4] Theorem 4.9 and

[2] Proposition 2.3.

Definition 2·2. Let V1 ⊆ V2 ⊆ · · · ⊆ Vr ⊂ Pn be ACM of the same dimension ≥ 1. Let H1, . . . ,Hr be

hypersurfaces, defined by forms F1, . . . , Fr, such that for each i, Hi contains no component of Vj for any

j ≤ i. Let W0 ⊂ V1 be a codimension 1 ACM subscheme, and for each i ≥ 1 let Wi be the ACM scheme

defined by the corresponding hypersurface sections: IWi = IVi + (Fi). Let Z be the sum of the Wi, viewed

as divisors on Vr. Then

(i)Z is ACM.

(ii)As ideals we have

IZ = IVr + FrIVr−1 + FrFr−1IVr−2 + · · ·+ FrFr−1 . . . F2IV1 + FrFr−1 . . . F1IW0 .

3. The inclusion property and the (?)-property

The next definition introduces a partition for finite subsets of Pa1 × Pa2 × · · · × Pan . Without loss of

generality we focus on the projection to the first component, but the definition could just as well be made

for any of the projections. See also Theorem 3.21 of [4].

Definition 3·1. Let X ⊂ Pa1×Pa2×· · ·×Pan be a finite, reduced subscheme. Let η1(X) = {P1, . . . , Pt} ⊂
Pa1 . For each Pj ∈ η1(X) let Xj = η−11 (Pj)∩X. We call the Xj the level sets of X with respect to η1. We

say that X has the inclusion property with respect to π1 if the collection of subsets {π1(X1), . . . , π1(Xt)}
of Pa2 × · · · × Pan , for 1 ≤ j ≤ t, is totally ordered by inclusion and they are all ACM.

The next proposition gives a relation between the inclusion property and the ACM property for finite

sets of points when a1 = 1.

Proposition 3·2. Let X ⊂ P1 × Pa2 × · · · × Pan be a finite set. Let X1, . . . , Xt be the level sets with

respect to η1, let Yi = π1(Xi) ⊂ Pa2×· · ·×Pan for each i, and let L1, . . . , Lt ∈ k[x0, x1] be the linear forms

defining the points {P1, . . . , Pt} ⊂ P1 as in Definition 3·1. Assume that X has the inclusion property with

respect to π1. In particular, each Yi is ACM and we can assume that Y1 ⊃ Y2 ⊃ · · · ⊃ Yt. Then X is

ACM. Furthermore,

IX = IY1
+ L1IY2

+ L1L2IY3
+ · · ·+ L1L2 . . . Lt−1IYt

+ (L1L2 . . . Lt).
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Proof. It follows from Definition 2·2, viewing this in Pa2+···+an+n – see the proof of Proposition 2.6 in

[2]. Note that here we use IW0
= (IYt

, Lt). What is important about P1 is that in that case the level sets

are hyperplane sections of ACM varieties, because points in P1 are hyperplanes.

If the ambient space only consists of a product of two projective spaces, Pa1 × Pa2 , we now define the

so-called (?)-property (or star property), following [4] Definition 3.19.

Definition 3·3. A finite set X ⊂ Pa1×Pa2 has the (?)-property if and only if for any (P1, Q1), (P2, Q2) ∈
X ⊆ Pa1 × Pa2 then also either (P1, Q2) or (P2, Q1) ∈ X.

The inclusion property and the (?)-property agree in Pa1 ×Pa2 . This fact is known; it was shown using

a different notation for sets of points in P1×P1 (see for instance Theorem 3.21. in [4]). For completeness

we include a proof.

Lemma 3·4. If X ⊂ Pa1 × Pa2 is a finite set, then X satisfies the inclusion property if and only if it

satisfies the (?)-property.

Proof. Assume that X satisfies the inclusion property. Notice that in this case the ACM condition for

the inclusion property is trivial. Then we can label the elements of η1(X) so that there is a sequence of

points P1, P2, . . . , Ps ∈ Pa1 with

X = X1 ∪ · · · ∪Xs

being the level set decomposition, and

X1 = {(P1, Q1,1), . . . , (P1, Q1,n1
)}

...

Xs = {(Ps, Qs,1), . . . , (Ps, Qs,ns
)}

and furthermore

Pa2 ⊃ {Q1,1, . . . , Q1,n1
} ⊇ · · · ⊇ {Qs,1, . . . , Qs,ns

}. (3.1)

Then it is clear that X satisfies the (?)-property.

Conversely, assume that X satisfies the (?)-property and suppose that it does not have the inclusion

property. Then X is decomposed into level sets as above, but the inclusions (3.1) do not all hold. Without

loss of generality, suppose that A1 = {Q1,1, . . . , Q1,n1} and A2 = {Q2,1, . . . , Q2,n2} are incomparable with

respect to inclusion. Specifically, suppose Q1,1 /∈ A2 and Q2,1 /∈ A1. Then (P1, Q1,1) and (P2, Q2,1) violate

the (?)-property.

A set of points with the (?)-property (equivalently the inclusion property) can also be organized as

“rectangles” in the following way. For convenience we now start indexing with 0 rather than 1. If X ⊂
Pa1 × Pa2 has the (?)-property then, after renaming, we can always assume that there exists a set

U(X) := {(i1, j1), (i2, j2), . . . (it, jt)} ⊆ N2

where i1 > · · · > it and j1 < · · · < jt, such that

X = {Pi ×Qj | (0, 0) ≤ (i, j) ≤ (ik, jk) for some (ik, jk) ∈ U(X)}.

Moreover, in this case, we set

Vk := {Pi ∈ π2(X) | i ≤ ik} ⊆ Pa1 and Zk := {Qj ∈ π1(X) | j ≤ jk} ⊆ Pa2

for h = 1, . . . , t, where t is, as above, the number of elements in U(X).

We first consider the case of just one “rectangle.”
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(i5, j5)

(i4, j4)

(i3, j3)

(i2, j2)

(i1, j1)

•

•

•

•

•

Fig. 1. Example of U(X) configuration.

Lemma 3·5. Let X ⊂ Pa1 × Pa2 be a finite set of points. Assume that X has the (?)-property and

U(X) = {(i1, j1)}. Then

(i)IX = IV1 + IZ1 ;

(ii)X is ACM.

Proof. It is trivial to check that

IX =
⋂

(r,s)≤(i1,j1)

(IPr
+ IQs

) =

i1⋂
r=0

(IPr
+ IZ1

) = IV1
+ IZ1

.

Moreover, note that V1 and Z1 are both ACM, and

R/IX ∼= k[x0, . . . , xa1 ]/IV1 ⊗k k[y0, . . . , ya2 ]/IZ1

so X is ACM.

Theorem 3·6. Let X ⊂ Pa1 × Pa2 be a finite set of points. Assume that X has the (?)-property and

U(X) = {(i1, j1), (i2, j2), . . . (it, jt)}. Then

IX = IV1
+ IV2

IZ1
+ · · ·+ IVt

IZt−1
+ IZt

.

Proof. First we claim that

IX ⊇ IV1
+ IV2

IZ1
+ · · ·+ IVt

IZt−1
+ IZt

.

We show that each summand is contained in IX (see the Figure 3). First, clearly we have IV1
, IZt

⊆ IX .

Moreover, let F = G ·G′ ∈ IVr
IZr−1

and Pi ×Qj ∈ X. If i ≤ ir then Pi ∈ Vr and G vanishes at Pi. Else

we have i > ir and (i, j) ≤ (is, js) for some (is, js) ∈ U(X) where is ≥ i > ir. Thus, we get j ≤ js < jr
i.e. j ≤ js ≤ jr−1 and Qj ∈ Zr−1.

To prove the other inclusion we proceed by induction on |U(X)|. The base of the induction follows

from Lemma 3·5. Assume now |U(X)| > 1. We introduce the following partition on X:

X = Y0 ∪ Y1

where

Y0 := {Pi ×Qj | Pi ∈ V1 \ V2, Qj ∈ Z1} and Y1 = X \ Y0.

Note that Y0 and Y1 have the (?)-property and U(Y1) = U(X) \ {(i1, j1)}. Set

J := IV1 + IV2IZ1 + · · ·+ IVtIZt−1 + IZt .
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We want to show that IX ⊆ J . We first claim that

(IV1\V2
+ IZ1

) ∩ IV2
= IV1

+ IV2
IZ1

. (3.2)

Indeed, it is clear that both ideals define the same scheme, and from Lemma 3·5 we see that the left-hand

side is saturated. We just have to prove that IV1
+ IV2

IZ1
is also saturated. Consider the exact sequence

0→ IV1 ∩ IV2IZ1 → IV1 ⊕ IV2IZ1 → IV1 + IV2IZ1 → 0. (3.3)

By Lemma 3·5, IV2IZ1 is a saturated ideal. Hence IV1 ∩ IV2IZ1 = IV1 ∩ IZ1 . From the exact sequence

0→ IV1 ∩ IZ1 → IV1 ⊕ IZ1 → IV1 + IZ1 → 0

and Lemma 3·5, by viewing the ideals in R and the schemes in Pa1+a2+1, sheafifying and taking coho-

mology we see that H1
∗ (IV1

∩ IZ1
) = 0 (even though the scheme is not unmixed if a1 6= a2) since V1 and

Z1 are ACM. Putting it together with (3.3), cohomology gives that IV1 + IV2IZ1 is saturated, as desired,

proving our claim of (3.2).

By induction and by Lemma 3·5 we have

IX = (IV1\V2
+ IZ1) ∩ (IV2 + IV3IZ2 + · · ·+ IVtIZt−1 + IZt).

Let F ∈ IX . In particular we have F ∈ IV2 + IV3IZ2 + · · ·+ IVtIZt−1 + IZt , so F = F ′+H where F ′ ∈ IV2

and H ∈ IV3
IZ2

+ · · ·+ IVt
IZt−1

+ IZt
⊆ J ⊆ IX . Since both F and H are in IX , it follows that F ′ ∈ IX .

Hence using (3.2) we obtain

F ′ ∈ IX ∩ IV2 = (IV1\V2
+ IZ1) ∩ IV2 = IV1 + IV2IZ1 ⊂ J.

Since H ∈ J and F ′ ∈ J , we have F ∈ J and we are finished.

Theorem 3·7. If X ⊂ Pa1 × Pa2 is a finite set of points with the (?)-property, then X is ACM.

Proof. We proceed by induction on |U(X)|. If U(X) = {(i1, j1)} the statement follows by Lemma 3·5.

Now let |U(X)| > 1. We can decompose X as follows:

X =
(
(V1 \ V2)× Z1

)
∪ Y

with U(Y ) = U(X) \ {(i1, j1)}. From this partition for X we obtain the following short exact sequence:

0→ IX → I(V1\V2)×Z1
⊕ IY → I(V1\V2)×Z1

+ IY → 0 (3.4)

where by induction (V1 \ V2) × Z1 and Y are both ACM. As subschemes of Pa1+a2+1 they are reduced

unions of lines, and so in particular the first cohomology of their ideal sheaves vanish (see for instance

[5] Lemma 1.2.3).

Moreover, by Theorem 3·6 and induction we get

I(V1\V2)×Z1
+ IY = IV1\V2

+ IZ1 + IV2 + IV3IZ2 + · · ·+ IVtIZt−1 + IZt .

Since Z1 ⊆ Zj for any j ≥ 1, the right-hand side simplifies and we obtain

I(V1\V2)×Z1
+ IY = IV1\V2

+ IV2
+ IZ1

.

Now k[Pa1 ]/(I(V1\V2)+IV2
) is artinian (in particular Cohen-Macaulay) and k[Pa2 ]/IZ1

is Cohen-Macaulay

of depth 1. Thus

R/(IV1\V2
+ IV2 + IZ1) ∼= k[Pa1 ]/(I(V1\V2) + IV2)⊗k k[Pa2 ]/IZ1

is Cohen-Macaulay, defining a zero-dimensional scheme in Pa1+a2+1. In particular,

I(V1\V2)×Z1
+ IY
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is a saturated ideal. Then sheafifying (3.4) and taking cohomology, we see that H1
∗ (IX) = 0, i.e. X is

ACM (see [5] Lemma 1.2.3).

Corollary 3·8. Let X ⊂ Pa1 × Pa2 be a set of points with the inclusion property. Then X is ACM.

Proof. It follows from Lemma 3·4 and Theorem 3·7.

Remark 3·9. We have defined the inclusion property for a product of any number of projective spaces.

We know from Proposition 3·2 that when one of the projective spaces is P1 then the inclusion property

implies ACM. Furthermore, we have just seen in Corollary 3·8 that if we have a product of only two

projective spaces then again the inclusion property implies ACM, whether or not one of them is P1. This

motivates the following conjecture.

Conjecture 3·10. Let X ⊂ Pa1 × · · · × Pan be a set of points with the inclusion property. Then X is

ACM.

Remark 3·11. The results of this section, especially Theorem 3·6, Theorem 3·7 and Corollary 3·8,

can be viewed as an extension of the notion of basic double G-linkage, a multihomogeneous version of

which was used in [2].

4. ACM sets of points in P1 × Pn.

This section is devoted to a further examination of ACM sets of points in a multiprojective space

P1 × Pn. We denote the coordinate ring of P1 × Pn by

R = k[x0, x1, y0, . . . , yn],

where deg(xi) = (1, 0) and deg(yj) = (0, 1).

Remark 4·1. We have seen in Lemma 3·4 that for Pa1 × Pa2 , the (?)-property is equivalent to the

inclusion property, which is in fact a more generally defined notion. We have seen in Proposition 3·2 and

Corollary 3·8 that in P1 × Pa2 · · · × Pan and Pa1 × Pa2 , respectively, the inclusion property implies the

ACM property. What about the converse?

The (?)-property characterizes the ACM property in P1 × P1; see for instance Theorem 4.11 in [4].

Thus in P1 × P1 the converse holds. However, Example 2.12 of [2] shows that even for P1 × P1 × P1 the

converse no longer holds. Similarly, Example 4.9 in [3] shows that, even in P1×P2, the converse is again

no longer true. The next two examples show how tricky the situation is even in P1 × P2. Both of them

can be checked by the CoCoA software [1], but they also follow from Theorem 4·9.

Example 4·2. Let Pi := [1, i] ∈ P1 and Q1, Q2, Q3 three generic points in P2. Let

X := {P1 ×Q1, P2 ×Q2, P1 ×Q3, P2 ×Q3}.

Then X ⊂ P1 × P2 does not have the (?)-property but it is ACM. (This phenomenon was shown already

in [3] Example 4.9, but that example consisted of 27 points while this example uses only four points.)

In [2] Theorem 3.13 it is shown that, in order to determine the ACM property for a set X of reduced

points of (P1)n, it is enough to show the non-existence of certain sub-configurations of X. The next

example proves that a similar characterization of the ACM property is not possible in P1 × P2.

Example 4·3. Let Pi := [1, i] ∈ P1 and Q1, Q2, Q3, Q4, Q5 generic points in P2. Then,

X ′ := {P1 ×Q1, P2 ×Q2, P1 ×Q3, P2 ×Q3, P1 ×Q4, P2 ×Q4}

is not ACM. However, the set

X ′′ := X ′ ∪ {P1 ×Q5, P2 ×Q5}
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contains as sub-configuration X ′ and it is ACM.

The following technical result describes a suitable set of generators for an ACM set of points in P1×Pn.

Lemma 4·4. Let X be an ACM finite set in P1 × Pn. Then there exists a set of generators for IX ,

G(IX) ⊆ R, such that for any F ∈ G(IX) we have F = F ′ ·F ′′ where deg(F ′) = (a, 0) and deg(F ′′) = (0, b)

for some a, b ∈ N.

Proof. Let X = X1 ∪ · · · ∪ Xt be the decomposition of X as union of level sets. For u = 1, . . . , t,

let Hu ∈ k[x0, x1] be the form of degree (1, 0) defining the hyperplane containing the points of Xu. We

introduce for each of these linear forms a new variable, let us call them z1, · · · , zt. Let S be the polynomial

ring k[z1, . . . zt, y0, . . . , yn]. We construct an ideal J ⊆ S by intersecting the prime ideals (zu, `j1 , . . . , `jn)

in correspondence to the components of X. This intersection defines a height n+ 1 ideal of S.

Consider J as an ideal, say J , in the ring T = S[x0, x1], where S is defined in the previous paragraph.

Being a cone, J continues to be a height n+ 1 ideal. Consider the linear forms zu −Hu, where 1 ≤ i ≤ t.
Let L be the ideal generated by all these linear forms. We have

R/IX ∼= T/(J, L),

the former of which is ACM. Since R/IX and T/J both have height n + 1, we can view the addition of

each linear form in L as a proper hyperplane section, giving that T/J is also Cohen-Macaulay.

Note that, the factorization in the statement is preserved under proper hyperplane sections, so it if

enough to prove the theorem for the ideal J . In order to do that we set, for D ⊆ [t] := {1, 2, . . . , t}

YD :=
⋃

i∈[t]\D

π1(Xi) ⊆ Pn.

We denote by IYD the ideal of S generated by the forms in the variables yi’s vanishing in YD.

We also set

J ′ :=
∑
D⊆[t]

IYD ·

∏
j∈D

zj

 ⊆ S.
We claim that J = J ′ and this will conclude the proof. Note that by construction we have J ⊇ J ′. To

prove the other inclusion, let denote by D1, . . . , Dm all the subsets of [t] (the number of level set) having

cardinality a, and take F ∈ J be a bihomogeneous form of degree (a, b) such that

F =

m∑
j=1

Gj · ∏
u∈Dj

zu

 .

Since X is a set of reduced points, J is generated by such forms. We first show that each summand of F

belongs to J . Let k ∈ {1, . . . ,m}, we set Fk := Gk ·
∏

u∈Dk

zu and take an ideal p = (zh, `j1 , . . . , `jn) in the

decomposition of J . Two cases occur:

•if h ∈ Dk then trivially Fk ∈ p;

•if h /∈ Dk, say P ∈ Pn such that IP = (`j1 , . . . , `jn). Then the form F̄ :=
∑

j :h/∈Dj

Fj vanish at P. i.e.

F̄ (z1, . . . , zt, P ) =
∑

j :h/∈Dj

Gj(P ) ·
∏
u∈Dj

zu

 = 0.

But, since
∏

u∈Dj

zu are l.i. in S(a,0), this is true if and only if Gj(P ) = 0. Then in particular Gk ∈ IP

and Fk ∈ p.



Multiprojective spaces and ACM property 9

Then Fk ∈ J and it vanish in each point of YDk
so Fk ∈ IYDk

·
∏
j∈Dk

zj and we are done.

Remark 4·5. The proof of Lemma 4·4 provides a more accurate description of these sets of generators.

If F = F ′ ·F ′′ is such an element, then F ′ is product of linear forms of degree (1, 0), each of them defining

a hyperplane containing a level set of X. Moreover, if we denote by X ′ the set of points of X outside the

level sets concerning F ′, then F ′′ is an element in a minimal generating set of Iπ1(X′) ⊆ k[y0, . . . , yn].

Since Proposition 3·2 ensures the ACM property for those sets of points with the inclusion property,

from now on we focus on sets of points failing the inclusion property.

Notation 4·6. Let X be a set of points in P1×Pn without the inclusion property. We introduce a new

partition on X. Let X := X1∪X2∪· · ·∪Xt be the decomposition of X into level sets. For any i = 1 . . . , t,

we set

Yi = π1(Xi) ⊂ Pn

and observe that if Pi ∈ η1(X) ⊂ P1 then

Xi =
⋃
Q∈Yi

Pi ×Q.

Then we define AX and BX by

X = AX ∪BX

where P ×Q ∈ BX if and only if Q ∈
t⋂
i=1

Yi. See Figure 2. We denote Ai(X) := Xi ∩AX and Bi(X) :=

Xi ∩BX . Moreover we set

Y := π1(X) ⊆ Pn, and BY := π1(BX) ⊆ Pn.

The idea of the above notation is that if we consider the decomposition of X into its t level sets and

{P1, . . . , Pt} = η1(X) then AX is the set of points P ×Q ∈ X so that Pi ×Q /∈ X for at least one i, and

BX is the set of points P ×Q so that Pi ×Q ∈ X for all 1 ≤ i ≤ t.

• •
◦ ◦
◦

◦ •
• ◦
◦

• ◦
◦ •
• • •

••

• •
••

• •
••

︸ ︷︷ ︸ ︸ ︷︷ ︸
AX BX

Fig. 2. Definition of AX and BX .

Notation 4·7. We will need the following invariants.

N0(X) := #π1(AX) and N1(X) := #π1(BX)

and

D(X) :=
⋃
i∈Z

{(
N0(X) + i

n

)
,

(
N0(X) + i

n

)
+ 1, . . . ,

(
N0(X) + i+ 1

n

)
−N0(X)

}
.
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Example 4·8. Say n = 2 and N0(X) = 4. Then D(X) is the uncrossed set of numbers in Figure 3.
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@
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@
@

@
@
@

@
@

@
@
@@

Fig. 3. Definition of D(X) when N0(X) = 4, n = 2.

By deleting one more diagonal we get the set D(X) for the points in Figure 2.

We now describe a construction of a class of sets which are built up by adding points in a certain way,

and where we can describe exactly which of the resulting sets are ACM and which are not. To begin we

make a stronger assumption on AX , namely that if P1 ×Q1 and P2 ×Q2 are both in AX then Q1 6= Q2.

That is, Yi∩Yj ⊂ BY for any i 6= j. (This is a restriction only if t ≥ 3.) The result says that if you fix the

points of AX and keep adding generic points to π1(BX) then X = AX ∪ BX will switch between being

ACM and not being ACM in a predictable way.

In the next results we will assume the ambient space is P1×Pn where n ≥ 2. The exclusion of n = 1 is

not restrictive for this section. Indeed, we are focusing on sets of points failing the inclusion property and,

from Proposition 3·4 and Theorem 4.11 in [4], the inclusion property characterize ACM sets of points in

P1 × P1.

Theorem 4·9. Let X ⊆ P1 × Pn, n ≥ 2, be a finite set without the inclusion property such that the

points in π1(AX) and in BY = π1(BX) are generic in Pn. Moreover, assume Yi ∩ Yj ⊆ BY for any i 6= j.

Then X is ACM if and only if N1(X) ∈ D(X).

Proof. The coordinate ring for P1 × Pn is R = k[x0, x1, y0, . . . , yn] with its bihomogeneous grading,

which we can also consider with its standard grading as the coordinate ring for Pn+2. From this point of

view, a set of points in P1 × Pn can be viewed as a union of lines in Pn+2.

We make some general observations. Let X = X1 ∪ · · · ∪Xt be the decomposition of X into level sets

with respect to η1 and let X ′ = X1∪ · · ·∪Xt−1. If t = 1 there is only one level set, so the hypothesis that

X does not have the inclusion property is impossible. Similarly, if N0(X) = 0 or 1 then X must have the

inclusion property. Thus we must assume that t ≥ 2 and N0(X) ≥ 2.

Assume first that N1(X) ∈ D(X). We want to show that X is ACM. Since N0(X) ≥ N0(X ′), we

get D(X) ⊂ D(X ′) (we remove more diagonals in Figure 3 for D(X) than for D(X ′)). Thus we have

N1(X ′) = N1(X) ∈ D(X) ⊆ D(X ′).

We proceed by induction on t. If t = 2 then it is clear that X ′ is ACM. Otherwise we can assume that

X ′ is ACM by induction, since N1(X ′) ∈ D(X ′). We also know that Xt is ACM. We want to show that

X = X ′ ∪Xt is ACM.

We will view X,X ′ and Xt as unions of lines in Pn+2. Consider the exact sequence

0→ IX → IX′ ⊕ IXt → IX′ + IXt → 0.
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We sheafify this sequence and take cohomology over all twists. Since X ′ and Xt are ACM unions of lines,

we see that X is ACM if and only if IX′ + IXt
is a saturated ideal.

Let W be the scheme in Pn+2 defined by IBY
⊂ k[y0, . . . , yn]. We note the following facts.

– each component of W is defined by n linear forms, hence is a plane.

– any two components of W meet in a line; in fact, W is the cone over BY whose vertex is this line.

– W is an ACM union of |BX | planes.

– Bi(X) = Xi ∩BX (in P1 × Pn) is defined by IBi(X) = IPi + IBX
, and in Pn+2 is thus a hyperplane

section of W ; its components are lines all passing through a single point.

– Let F ∈ k[x0, x1] be the product of the linear forms defining the points η1(X ′) ⊂ P1. Then BX′ is

defined by the saturated ideal (F ) + IW .

– Let (Pi, Q1), (Pj , Q2) ∈ BX . If i = j and Q1 6= Q2 then the corresponding lines in Pn+2 meet in a

point; however, this does not affect Xt ∩X ′ since in this case the two points are either both in Xt

or both in X ′. If i 6= j and Q1 6= Q2 then the lines do not meet. If i 6= j and Q1 = Q2 then the lines

meet in the point defined by IPi + IPj + IQ1 (which is uniquely determined even if i and j change).

The condition Yi ∩ Yj ⊆ BY for any i 6= j implies that the scheme defined by IX′ + IXt
has support in

the union of points defined by
⋂
Q∈BY

IP1
+ IP2

+ IQ. More precisely, if Lt ∈ k[x0, x1] is the linear form

defining Pt in P1 then the saturation of IX′ + IXt is (Lt, F ) + IW .

Thus we want to show that if N1(X) ∈ D(X) then IX′ + IXt = (Lt, F ) + IW . The inclusion ⊆ is clear,

so we must prove ⊇. In particular,
we have to show that every minimal generator of IW (which are all in k[y0, . . . , yn]) is in IX′ + IXt .

If At(X) = ∅ then IXt = (Lt, IW ) so we are done. Thus in particular we may assume that At(X) 6= ∅.
Now we consider Xt. If |At(X)| = N0(X), then the assumption that Yi ∩ Yj ⊆ BY forces all other

Ai(X) (if any) to be empty, violating the assumption that the inclusion property does not hold. Hence

we can assume that 1 ≤ |At(X)| ≤ N0(X)− 1.

Now consider the h-vector of W . Setting i to be the choice in the definition of D(X) that gives N1(X),

we have degW = N1(X) =
(
N0(X)+i

n

)
+ s and the h-vector is(

1,

(
n

n− 1

)
,

(
n+ 1

n− 1

)
, . . . ,

(
N0(X) + i− 1

n− 1

)
, s

)
where

0 ≤ s ≤
(
N0(X) + i

n− 1

)
−N0(X) (4.1)

and the s occurs in degree N0(X) + i − n + 1. The inequality (4.1) means that the number of minimal

generators of IW in degree N0(X) + i−n+ 1 is at least N0(X). More importantly, note that the number

of minimal generators in degree N0(X) + i− n+ 1 is exactly
(
N0(X)+i
n−1

)
− s.

We want to see that all of these minimal generators are in IXt
+ IX′ . Lemma 4·4 gives a description of

the minimal generators of an ACM set of points, but the important thing for us now is to consider the

minimal generators that only involve the yi. Let a be the number of points of AX lying in Xt and b the

number not lying on Xt. Since the points of π1(AX) are generic, we have
(
N0(X)+i
n−1

)
− s− a such minimal

generators in IXt
and

(
N0(X)+i
n−1

)
− s− b such minimal generators in IX′ . Now we use the assumption that

Yi ∩ Yj ⊆ BY and that the points of π1(AX) are chosen generically. Then the sum has

2 ·
[(
N0(X) + i

n− 1

)
− s
]
− a− b = 2 ·

[(
N0(X) + i

n− 1

)
− s
]
−N0

minimal generators involving only the yi in degree N0(X) + i − n + 1. We have to check that this is

enough. Indeed,

2 ·
[(
N0(X) + i

n− 1

)
− s
]
−N0 ≥

(
N0(X) + i

n− 1

)
− s
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if and only if

s ≤
(
N0(X) + i

n− 1

)
−N0(X),

which is equivalent to N1(X) ∈ D.
Note that IW may also have minimal generators in degree N0(X)+ i−n+2, but this does not interfere

with the question of saturation for IXt
+ IX′ .

Note also that this argument simultaneously takes care of the inductive step (taking t = 2).
The converse is almost the same argument. Indeed, if X is ACM then IX′ + IXn

is saturated, and the

argument above explains why we must have N1(X) ∈ D(X).

Remark 4·10. As mentioned in the introduction, if X is a finite set of points in (P1)n then there is a

combinatorial condition on the subsets of X that completely determines whether X is ACM or not. That

is, the ACM question is determined by the existence or not of certain kinds of subconfigurations. Here we

see that this is no longer true even in P1×Pn (n ≥ 2). Indeed, for sets of points X = AX ∪BX satisfying

the conditions of the theorem, one can keep adding “stacked” generic points to BX (adding one new point

in each level set so that π1(X) only increases by one point), repeating this procedure as often as desired,

and the ACM property will depend only on the cardinality of BX (since only N1(X) is increasing, not

N0(X)).

Our next goal is to partially generalize Theorem 4·9, removing the assumption Yi ∩ Yj ⊆ BY for any

i 6= j.

Theorem 4·11. Let X ⊆ P1 × Pn be a finite set without the inclusion property such that the points in

π1(AX) and in BY = π1(BX) are generic in Pn. If N1(X) ∈ D(X) then X is ACM.

Proof. We build off Theorem 4·9. We know that the result is true when Yi ∩ Yj ⊆ BY for any i 6= j,

so it is enough to show that adding points one at a time in such a way that π1(X) remains unchanged

(equivalently, in this case, such that π1(AX) remains unchanged) does not affect the ACM property.
Let X ′ ⊆ P1 × Pn be a finite set such that the points in π1(AX′) and in π1(BX′) are generic in Pn, as

defined above. Let P ∈ (P1 × Pn)\X ′ and for convenience set P = P0 ×Q0 with P0 ∈ P1 and Q0 ∈ Pn.

Assume that π1(P ) ∈ π1(AX′) and π2(P ) ∈ π2(BX′). (The former says that at least one point of AX′ is

of the form Pi×Q0, i 6= 0, and the latter says that at least one point of BX′ is of the form P0×Qi, i 6= 0.

In terms of Figure 2, we are allowing ourselves to insert points at the open circles.) Let X = X ′ ∪ P .

Notice that adding P to X ′ in this way gives us N0(X) = N0(X ′) and N1(X) = N1(X ′).
Assume that N1(X) = N1(X ′) ∈ D(X) = D(X ′). Assume that X ′ is ACM. We claim that that X is

ACM. Then the result will follow from Theorem 4·9 since we begin with an ACM set of points and keep

adding points in a way that preserves the ACM property.
Viewed in Pn+2, we may view X ′ as a union of lines, so the ACM property is equivalent to the vanishing

of H1(IX′(t)) for all t. From the long exact sequence associated to the sheafification of the exact sequence

0→ IX → IX′ ⊕ IP → IX′ + IP → 0

and the ACM property for X ′ and for P , we see that X is ACM if and only if IX′ + IP is saturated.
Assume without loss of generality that IP = (x0, y0, . . . , yn−1). The ideal IX′ + IP defines the scheme-

theoretic intersection of the line associated to P with the union of lines associated to X ′. This is supported

on two points, as follows.
(a)If Q ∈ X ′ satisfies π2(Q) = π2(P ) (i.e. Q = P0 ×Qi for some i 6= 0), then without loss of generality

we can assume that IQ = (x0, `1, . . . , `n) where the `i are general linear forms in k[y0, . . . , yn]. Thus

the line in Pn+2 corresponding to Q meets the line corresponding to P at the point defined by

(x0, y0, . . . , yn) in Pn+2, and IX′ + IP defines a scheme supported in part at this point (since by

assumption such Q ∈ X ′ exist).
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(b)If Q ∈ X ′ satisfies π1(Q) = π1(P ) (i.e. Q = Pi×Q0 for some i 6= 0), without loss of generality assume

that IQ = (x1, y0, . . . , yn−1). Thus the line in Pn+2 corresponding to Q meets the line corresponding

to P at the point defined by (x0, x1, y0, . . . , yn−1) in Pn+2, and IX′ + IP defines a scheme supported

in part at this point (since by assumption such Q ∈ X ′ exist).

No other point of X ′ corresponds to a line that meets the line corresponding to P . Thus the scheme

defined by IX′ + IP is supported at these two points.

We now determine (IX′ + IP )sat in k[x0, x1, y0, . . . , yn]. Since it defines a subscheme of a line, clearly

it will have the form (x0, y0, . . . , yn−1, f), where f ∈ k[x1, yn], and we just have to determine f . Since we

have determined the two points where f vanishes on our line, we also know that f has the form xα1 y
β
n

and we only have to determine α and β.

Let X(a) be the set of points of type (a), and let X(b) be the set of points of type (b) in X ′. Let r be

the initial degree of Iπ1(X(a)) in k[y0, . . . , yn] and let s = |X(b)|.

Claim: (IX′ + IP )sat = (x0, y0, . . . , yn−1, x
s
1y
r
n).

Note that π1(X(a)) ⊂ Pn has a homogeneous ideal J := Iπ1(X(a)) ⊂ k[y0, . . . , yn] and is ACM. Hence

IX(a)
= (x0, J) in k[x0, x1, y0, . . . , yn]. It follows that

IP + IX(a)
= (x0, y0, . . . , yn−1, J) = (x0, y0, . . . , yn−1, y

r
n)

since the points of π1(AX′) and π1(BX′) are generic. So the scheme of intersection of the line defined by

P with the union of lines corresponding to points of X(a) is defined by the ideal (x0, y0, . . . , yn−1, y
r
n).

Notice that π2(X(b)) ⊂ P1 is defined by a product of distinct linear forms G = m1 . . .ms, not divisible

by x0, in k[x0, x1] and that X(b) is ACM with defining ideal (G, y0, . . . , yn−1). Thus the scheme defined

by IX(b)
+ IP , which is the scheme-theoretic intersection of the line defined by P with the union of lines

corresponding to points of X(b) is defined by the ideal (x0, x
s
1, y0, . . . , yn−1).

Since (IX′ + IP )sat is the saturated ideal corresponding to the union of these two complete intersection

schemes, the claim follows.

Finally, we have to show that IX′ + IP = (x0, y0, . . . , yn−1, x
s
1y
r
n). Let us write X(a) = A(a) ∪ B(a),

separating the points of X(a) ∩ AX from those of X(a) ∩ BX . Let Y := π1(X ′)\π1(P ) ⊂ Pn. The key

observation is that the following three are equal:

– the initial degree of Iπ1(B(a)) in k[y0, . . . , yn] (note B(a) = BX);

– the initial degree of Iπ1(X(a));

– the initial degree of IY .

This observation is thanks to the numerical assumption N1(X ′) ∈ D(X ′), since |A(a)| ≤ N0(X ′)− 1 and

the points are generic. Then if G ∈ k[x0, x1] is the generator of π2(X(b)) (a product of s distinct linear

forms not divisible by x0) and F is a minimal generator of IY of least degree (namely r) then clearly

FG ∈ IX′ restricts to xs1y
r
n modulo IP and so IX′ + IP is saturated, and hence X is ACM.

Conjecture 4·12. The converse to Theorem 4·11 is also true: if X = AX ∪ BX is ACM, satisfying

the stated assumptions, then N1(X) ∈ D(X).
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