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Determination of Periodic Response Limits Among Multiple Solutions for 

Mechanical Systems with Wedge Dampers 

 

Erhan Ferhatoglu†1, Stefano Zucca† 

† Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca 

degli Abruzzi 24, 10129 Torino, Italy 

ABSTRACT 

Wedge dampers are commonly used to utilize the frictional behavior in many engineering 

fields such as vehicle dynamics and turbo-machinery. However, the presence of non-unique 

contact forces in the damper interfaces creates an uncertainty that provides different dynamic 

response amplitudes even for the same input parameters. The maximum limits of the 

variability range always take the core attention in most of the damper design processes. In this 

paper, determination of an upper and a lower boundary among multiple steady-state solutions 

is presented by using a numerical approach. The method is specifically suitable for the 

mechanical systems with wedge dampers modeled by macro-slip frictional contact elements 

in the joint interfaces. In the approach proposed, a criterion that determines the periodic 

response boundaries according to the limit tangential force values is utilized. The method is 

demonstrated by illustrating several case studies on a lumped parameter system which 

represents a turbo-machinery application with a symmetric wedge damper pressed against two 

vibrating adjacent blades. A point-to-point 1D friction model with varying normal force is 

used in both contact sides. A parametric investigation on the variability range and response 

limits is performed for different damper configurations. Harmonic Balance Method with 

Newton’s iteration scheme is used in the numerical solution of the governing equations. The 

results show that a large variability exists for damper geometries where a strong coupling is 

present between tangential and normal contact forces. The method proposed successfully 

captures the limits of the variability range in all cases. 

Keywords: Multiple Solutions, Dry Friction, Variability Range, Periodic Response Limits, 

Wedge Dampers. 
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1. INTRODUCTION 

Wedge damper is a secondary structure that is implemented for many practical purposes in 

several engineering fields. One of the mostly used application areas is the turbo-machinery 

where high cycle fatigue problems due to undesired vibrations take the highest attention in the 

design phase [1]. A complete detuning of the natural frequencies with respect to the excitation 

is sometimes impossible for complex structures because of high modal density of the rotors. 

Thus, mitigation of high vibration amplitudes during operation by exploiting the wedge 

dampers, which are also known in turbo-machinery as a specific type of the under-platform 

dampers (UPD), becomes highly favorable [2-4]. Wedge dampers have also been widely used 

in vehicle system dynamics where some examples are in the modeling of the suspension 

systems in wagon structures [5, 6], in the assessment of stability problems for complex train 

systems [7, 8] or in the simulation of the other friction devices such as friction draft gears [9]. 

Highly sophisticated Finite Element (FE) model of the bodies (bladed disks, gears, UPDs and 

etc.) allows taking into account the bulk elasticity, while a layer of contact elements should be 

placed between the joint interfaces to couple the touching pairs in order to simulate the local 

compliance of the contact region and the additional damping dissipated. The first models have 

been proposed more than five decades ago as a one dimensional bilinear hysteretic restoring 

force technique [10], which has pioneered to develop new studies. Coulomb friction model is 

then proposed for a 1D motion between the blade and the damper [11, 12]. For a more 

accurate response, 2D [3, 13, 14] and 3D [15] motions are taken into account in different 

models. Readers may refer to [16] and [17] for a more detailed investigation about the wedge 

damper applications and contact models used in the vehicle dynamics and in the turbo-

machinery, respectively.  

Apart from the contact models, a common sense in the numerical solution procedures was to 

separate the static and dynamic parts of the governing equations, which is the so-called 

uncoupled approach. In this technique, a quasi-static analysis by excluding the dynamic 

excitations is firstly performed in order to calculate the static normal loads due to assembly 

pre-loads or the centrifugal force during rotation on the joint interfaces. Then, the dynamic 

part of the vibratory response problem is separately solved in a second step by taking 

previously computed static normal loads as input. The uncoupled approach is generally used 

for a better robustness and convergence in the numerical solution scheme. However, it is 

proven numerically that simultaneous solution of the static and the dynamic parts in the 

harmonic balance equations gives much more accurate results [18, 19]. Pesaresi et al. [20] 
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also showed that experimental results of contact interfaces under large normal load variation 

only match with the analysis solutions if the coupled approach is used in the numerical 

solution scheme. Most of the real life applications with wedge dampers operate under a 

remarkable variation of normal loads with a large force distribution over the contact area 

during vibration cycle. In these cases, the mean component of the oscillatory damper response 

considerably shifts especially around the resonance frequencies. This natural behavior of the 

damper necessitates the inclusion of the zeroth order harmonic together with the higher orders 

in the solution algorithm, i.e. coupled approach, in order to be able to predict the dynamic 

response truly. 

Coupled approach provided an insight to researchers and engineers to explore an uncertainty 

phenomenon which is firstly introduced to structural dynamics community by Yang et al. 

more than two decades ago [21, 22]. The authors have studied the uncertainty phenomenon of 

the contact forces in the wedge dampers, where multiple responses are possible even if all the 

system parameters and inputs are kept same. It is shown that different contact states and initial 

values of the friction forces in the beginning of the simulation may lead to non-unique 

response amplitudes when steady-state is reached. However, the authors have also reported in 

the same study that experimental values did not vary for different tests, which shows a 

discrepancy between the real observation and the theory. This contradiction is then explained 

with the fact that the damper in the experiments is reloaded for each run, which caused to 

obtain free interfaces, i.e. zero initial friction force, at the beginning of the tests. 

Consequently, the same initial conditions have been unintentionally imposed and no multiple 

responses are obtained. Uncertainty phenomenon is later numerically shown in UPDs by 

Zucca et al. [23], where a variability range is possible in the response calculations. This 

phenomenon has been investigated in different studies of the bladed disk applications with 

UPDs [18, 24] and mid-span dampers [25]. A very recent study [26] also numerically showed 

that co-existing system solutions for friction-induced vibrations result multiple steady-state 

responses for different initial conditions. In order to investigate the damper dynamics in 

laboratory conditions, Botto et al. [27] designed a novel test rig for the characterization of the 

UPDs. Keeping all the system properties and inputs fixed, the experiment has been performed 

consecutively with different initial loading sequences of the same static load, which affects 

the first state of the damper before starting to each test. Firstly, a monotonically loading 

sequence of dead weights is applied until to reach a pre-determined static target value that 

represents the centrifugal static force; on the other hand, in the second run, the target value is 
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first exceeded and the dead weights are then removed. It is shown that multiple responses are 

physically possible in this way by performing successive tests with the identical input 

parameters for the same structure. Similarly, Gastaldi et al. [28] observed a very large 

scattering of dynamic response in the experiments of UPDs. The authors have stated that the 

large variability of oscillation amplitudes in successive tests cannot be explained with micro 

changes observed in contact surfaces (micro-wear) since they gradually evolve in time. All of 

these experimental observations prove that uncertainty phenomenon is not a modeling artifact 

and does not depend on the contact models used in the numerical analyses.  

Determination of an upper and a lower boundary of multiple responses may play an important 

role from the engineering point of view in the dynamic design process since the mechanical 

parts are generally designed with respect to their maximum dynamic amplitudes obtained at 

resonance frequencies for different excitation levels. For this purpose, Yang et al. [21, 22] had 

investigated the uncertainty phenomenon for the wedge dampers with two interfaces, where 

each side is modeled with a single point contact element. The authors offer an analytical 

approach for the computation of two extreme friction force trajectories if they exist, in which 

the geometric relations in stick–slip configurations are utilized. The derivation of this 

approach in detail can be found in [29]. Zucca et al. [24] also offered a technique to obtain 

always the same single response curve among an infinite number of options. However, to the 

best of the authors’ knowledge; a generalized approach for the determination of the 

boundaries for the applications including several contacts is not available in the literature. 

In this paper, a numerical approach that enables to obtain the upper and the lower periodic 

response limits among multiple solutions for mechanical structures including frictional 

contacts with wedge dampers is offered. Contact behavior on both damper sides is modeled 

by using the state-of-art 1D macro-slip friction element model with varying normal force. 

Modeling the contact behavior by using a single point in each damper side has been widely 

performed in the past [21, 22, 30, 31], where several contact elements are then included in the 

models to be able to increase precision with developing advances. This study offers the first 

numerical technique for the determination of the upper and the lower limits and constructs a 

structural framework for further studies. The method specifically utilizes the use of limit 

tangential forces imposed by Coulomb’s friction law in the fully stuck damper side, which 

provides to obtain the maximum and the minimum normal load on the other side that makes 

an alternating stick–slip or an alternating stick–slip–lift-off motion. In this way, two extreme 

contact cases in slipping side, which simulate the closest ones to open and fully stuck 
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conditions, are obtained. Hence, the response limits within the variability range are computed. 

The method is demonstrated by using a lumped parameter system simulating a simplified 

model of the two adjacent blades with a wedge damper imposed in between them. Several 

case studies and a parametric investigation for different damper geometries have been 

presented by using the proposed approach. It is shown that even though the variability range 

is considerably affected by the geometry of the damper, the method is able to obtain the limits 

for all cases. In the solution process, Harmonic Balance Method is utilized by transforming 

the governing differential equations into frequency domain and the numerical solution is then 

obtained by using Newton-Raphson approach with successive iterations. Despite the model 

simplicity, the authors believe that this study creates a fundamental infrastructure and may 

help the analysts in the design of the mechanical parts with highly detailed FE models. It is 

also worth mentioning that although the approach offered in this paper is for the wedge 

damper applications, it can also be extended to the other applications that exploit dry friction 

damping, since the uncertainty phenomenon is a general fact and cannot be confined for a 

specific case. 

2. BACKGROUND 

2.1 Governing Equations 

Consider the differential equation of a vibrating structure with joint interfaces under a 

periodic excitation force as 

 ( ) ( ) ( ) ( ) ( )+ + + =Mq Cq Kq F Fexc ct t t t t .  (1) 

M , C  and K  represent the linear system matrices of mass, viscous damping and stiffness, 

respectively. ( )q t  is the vector of generalized coordinates in time domain. ( )Fc t  and ( )Fexc t  

are the vectors of internal nonlinear contact forces and external periodic excitation forces, 

respectively. 

In case of seeking the steady-state solution of the structure; the general response, contact 

forces and excitation forces can be assumed as an expression of a truncated series as 

 
0 0 0

ˆ ˆˆ( ) Re , ( ) Re and ( ) Re ,
H H H

h ih t h ih t h ih t

c c exc exc

h h h

t e t e t e  

= = =

     
= = =     

     
  q q F F F F   (2) 
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respectively. Here, q̂
h
, F̂

h

c  and F̂
h

exc  stand for the complex amplitude vectors corresponding to 

the 
thh  harmonic. In addition, H  ,   and i  represent the number of harmonics considered in 

the expansion, excitation frequency and unit imaginary number, respectively. After inserting 

all the expressions defined in Eq. (2) into Eq. (1) and cancelling the similar terms on both 

sides, a set of nonlinear algebraic equations in frequency domain is obtained as 

 ( )2 ˆ ˆˆ( ) ( 0,1, , ),h h h

c exch ih h H − + + + − = =M C K q F F 0  (3) 

where both the static (h = 0) and the dynamic (h = 1···H) balances are coupled to each other 

through the nonlinear contact forces, F̂
h

c , which directly depend on the response of the 

system, q̂
h .  

2.2 Contact Model and Computation of Internal Forces 

In this paper, a point contact element, the so-called Jenkins element as shown in Fig. 1, is 

utilized to model the contact behavior. In this approach, the contact element has a tangential 

and a normal direction perpendicular to each other, in which the contact forces are generated 

as Tangential Force, T, and Normal Force, N, respectively. A slider in tangential direction is 

used to attach two contact points at joint interfaces. In case of a variable normal load 

application, which is the general situation in most of the real life applications, the local 

contact stiffness of the touching points is simulated using two linear springs, with the stiffness 

values of kt and kn, employing in tangential and normal directions, respectively. 

 
Fig. 1 Point Contact Element 

Coulomb friction law states that Tangential Force, T(t), must be equal or lower than the limit 

value of μN(t), being μ the friction coefficient, when the slider sticks. It starts slipping with 

respect to the ground with an amount of slip motion, w(t), when tangential force exceeds the 

limit value. The periodic relative tangential displacement, u(t), and the periodic relative 

normal displacement, v(t), of contact points determine the tangential and the normal forces for 

kn 

kt 

μ 

w(t) 

T(t) 

u(t) 

v(t) 

N(t) 
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each contact element. The normal and the tangential contact forces at any time t is defined as 

follows 

 ( ) ( )
 

( )

( ) ( ) stick state

, ( )sign ( ) slipstate

0 lift-off state

( ) m ( ),0ax n

t

kN t v t

k u t w t

T t N t w t



=

−


= 



. (4) 

It can be seen from Eq. (4) that N(t) cannot take negative values. Because, contact element 

gets separated due to the unilateral boundary condition at the contact point in case of having 

negative relative normal displacements. The tangential contact force also takes different 

values with respect to the corresponding contact state. It should be noted in Eq. (4) that the 

position of the slider, w(t), for a specific time instant t is an unknown parameter in advance. 

This fact does not enable the actual value of the tangential force to be directly computed. In 

order to overcome this problem, a four step predictor-corrector approach [32] can be followed 

in the calculation procedure as follows; 

1- The contact is assumed in the stick condition at time t.  

2- The value of the tangential force can be estimated by using an arbitrary slip motion value, 

w(t). One of the best options among many values can be the one computed at the previous 

time step, w(t – Δt), as follows 

  ( ) ( ) ( ) ( ) ( )P P

t tT t k u t w t k u t w t t = − = − −  . (5) 

Here, TP(t) and wP(t) represent the predicted values of the tangential contact force and slip 

motion at time t, respectively. Δt is the time step. 

3- The assumption made in step 1 is checked by comparing the value of the predicted 

tangential force with the limit value μN(t) whether it is correct or not. If the predicted 

tangential force value does not exceed the limit value, i.e. neither slip nor separation occurs, 

the assumption is valid and the contact is in stick state. Otherwise, it is not. 

4- If the assumption holds with respect to criteria defined in Step 3, the tangential force value 

predicted in Step 2 becomes correct. However, if it is wrong, which means the true condition 

is slip or separation, the correct value with respect to the corresponding contact state is 

assigned as shown in Eq. (4). As a summary, the corrector step for the tangential force, T(t), 

and the slider displacement, w(t), can be written with a more general expression as  
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 ( )

( )

( )( ) ( )

( )

( )

stick

( )sign slip

lift-o

stick

, ( ) ( )sign ( )

ff0

slip

( ) lift-off

P

P

t

w t t

w t u t N t T t k

T t

T

u

t

t

T t N t 

−


= 






= −







 . (6) 

It should be noted that when compared to analytical calculation of contact forces [33], 

predictor-corrector approach apparently brings much more simplicity accompanying with 

some inaccuracy in the determination of transition points between contact states. Nonetheless, 

the error can be minimized by keeping the time step size low enough [34] and can be reduced 

to a negligible level from the point of engineering view. 

Contact force values calculated by using Eq. (4) are still in time domain. However, as shown 

in Eq. (3), the final set of nonlinear algebraic equations requires the computation of Fourier 

coefficients. In this study, internal nonlinear contact forces, F̂
h

c , are computed by using the 

Alternating Frequency/Time approach [35]. In this technique, time histories of the relative 

displacements, u(t) and v(t), are calculated by taking the Inverse Fast Fourier Transform 

(IFFT) of Fourier coefficients, ûh and v̂h. Periodic internal contact forces are then computed 

with the contact model by using Eq. (4). Finally, Fast Fourier Transform (FFT) is applied to 

contact forces computed in time domain, T(t) and N(t), to obtain their corresponding Fourier 

coefficients in frequency domain, T̂h and N̂h, respectively. AFT approach is also summarized 

in Fig. 2. 

 

Fig. 2 Alternating Frequency/Time Approach 

2.3 Solution Process 

The set of nonlinear algebraic Eq. (3) can be numerically solved by using Newton-Raphson 

Method with Pseudo-Arc-length Continuation [36]. It should be noted that since the equation 

set is coupled through contact forces, the solution procedure requires a successive iteration 

scheme. In the solution approach utilized, frequency,  , is also another additional parameter 

to be determined other than the complex coefficients of unknown response vector, ˆ h
q . The 

residual of Eq. (3) is defined as 

 ( ) ( )2 ˆ ˆˆ ˆ, ( ) ( 0,1, , )h h h h

c exch ih h H  = − + + + − =R q M C K q F F . (7) 

 

T̂h, N̂h  u(t), v(t) 
Contact 

Model 
ûh, v̂h 

IFFT 
T(t), N(t) 

FFT 
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The convergence can be assured by decreasing the residual values under a pre-specified 

tolerance value. Iteration scheme for the current solution point can be written as 

 

1

1

( ) ( )

ˆ ( )

( )( ) ( )

ˆ

j j

h

j

j

j j

j j

jj j

h

j





−

+

  
 

           
   

= −

R p R p

q R p
p p

h ph p h p

q

  (8) 

where  

 ( )a ( )
ˆ

nd T

j j p

j

j

j

h



  
=  
  

= −h p z pp p
q

. (9) 

( )jh p  denotes the new equation to be added to the system of equations. Additionally, j , z  

and pp  represent the iteration number, the unit vector that is tangent to the solution curve and 

predicted unknown vector before starting iterations, respectively. Numerical solution of the 

nonlinear equations with the Newton-Raphson Method requires calculating the Jacobian 

Matrix in each iteration. In this study, this matrix is computed numerically by utilizing 

forward finite difference method. Readers may refer to [37] for more detailed information 

about the Newton-Raphson Method with Pseudo-Arc-length Continuation.  

2.4 Dynamic Behavior of Structures with Friction Contacts 

In this section, a general dynamic behavior of mechanical structures with friction contacts 

under a periodic excitation is briefly recapped. Due to the nonlinear nature of the contact, the 

response of the structure strongly depends on the excitation amplitude and the static forces, 

also called as pre-loads, which keep the bodies in contact during the system vibration. The 

typical steady-state vibration amplitude plot around one of the system resonances without 

having a modal interaction or internal resonances is given in Fig. 3a. Each curve corresponds 

to a different value of the static pre-load. It is observed that as the static pre-load, N0, 

increases: 

1- The maximum response point decreases up to a minimum value corresponding to the 

system response with an optimal pre-load and then increases again. 

2- The resonance frequency increases up to a final value that is equivalent to the dynamics of 

the system with fully stuck contacts. 
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The optimal curve, which is obtained by assembling the maximum response points of each 

response graph with respect to increasing static pre-load, is also depicted in Fig. 3b. In 

general, as the static normal force (pre-load) decreases, the structures tend to a configuration 

that corresponds to the linear structure with open contacts; while as the static normal force 

increases, the structures tend to a configuration that corresponds to the linear structure with 

fully stuck contacts. 

 

Fig. 3 (a) Typical Effect of Static Pre-Load on the Dynamics of Structures with Friction 

Contacts, (b) Optimal Curve of a Structure with Friction Contacts 

To further explain the behavior observed in Fig. 3a and Fig. 3b, consider a single Jenkins 

element under a given periodic motion, q( )t . Internal nonlinear force by dry friction, f ( )c t , 

for the steady state motion can be expressed in a more general way as 

 ( )ˆ ˆ( ) k ( ) c ( ) q( )f eq eqc i q tqt = +   , (10) 

where q̂  represents the response amplitude. keq  and ceq  are the effective stiffness and the 

equivalent damping terms of the contact element, respectively. General expression of internal 

nonlinear forces with a multiplication form as shown in Eq. (10) is first used in [38] and then 

generalized in [39] by defining complex describing functions that physically correspond to the 

effective stiffness and the equivalent damping terms of the nonlinearities for a certain 

harmonic input motion. The real and imaginary parts of the describing functions represent keq 

and ceq, respectively, and their analytical expression for a 1D dry friction element which is 

under a single harmonic input motion with a constant normal load, N0, is given in Appendix. 

These quantities, which are representatively plotted in Fig. 4, determine the contact elements’ 
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overall dissipative characteristics, which directly depend on the state conditions that the 

contact elements undergo during the full cycle. As can be seen in Fig. 4a, keq starts from zero 

and saturates at a specific value, which means that the contact element becomes effective in 

the system with increasing pre-load and shifts the response graph from free linear case to the 

fully stuck linear case by adding stiffness to the structure. The contact state then becomes 

fully stuck after a certain pre-load and keq becomes equal to the contact stiffness value. On the 

other hand, in Fig. 4b, ceq takes its maximum value for an intermediate pre-load that is defined 

as the so-called optimum point. After this point, the damping ability of the contact element 

decreases with increasing static pre-load and becomes zero at the fully stuck state condition. 

 

Fig. 4 (a) Effective Stiffness and (b) Equivalent Damping for a Dry Friction Element 

3. METHODOLOGY 

3.1 Variability of the Tangential Force 

Wedge dampers generally work under the conditions where large normal force variation takes 

place due to variable normal relative displacements between the damper and the blade 

platforms. For instance, in turbine bladed disks applications, the damper may even experience 

a loss of contact around the resonance frequencies of the first flexural in-phase mode due to 

blade dynamics [20]. Therefore, taking into account the varying normal load is essential in the 

contact modeling. Let’s consider a generic Jenkins element with a variable normal load and 

assume a case where the input motion is relatively small so that the contact element has a 

stick state for the entire cycle. The resulting tangential force, T(t), in this case must always be 

bounded by an upper (μN(t)) and a lower (–μN(t)) limit imposed by the Coulomb’s friction 

law. However, it should be noted that the static value of the tangential force computed, T0, can 

vary within a range (T0
min ≤ T0 ≤ T0

max). The limits for this range are determined by the static 
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parts of maximum (Tmax(t)) and minimum (Tmin(t)) tangential forces, which make tangent to 

the positive and negative Coulomb’s limit values, respectively. The variability range is 

representatively shown with corresponding time histories and hysteresis curves in Fig. 5. It 

can be easily inferred that there is an infinite number of contact force curves that can be 

obtained within this range. It is worthy to note that although the static value differs for each 

curve, all of them must have the same dynamic components since the variable part of 

tangential force is directly determined by the harmonic components of the input motion. This 

fact creates a non-uniqueness phenomenon in the calculation of the tangential force for a fully 

stuck state. It should also be noted that although a varying normal is considered for this 

representative particular case, non-uniqueness of the static tangential force, within the range 

between T0
min and T0

max, also exists for contacts that exhibit a constant normal load. 

 

Fig. 5 (a) Time Histories and (b) Hysteresis Curves for a Full Stick Cycle 

In order to clarify the situation further, consider Fig. 6a showing the Jenkins contact element 

that is under a fully stuck condition with the given input motion, u(t). The tangential force for 

a stick state can be computed by using the formula given in Eq. (4) which also includes the 

slider motion, w(t). However, since the coordinate of the slider is an unknown parameter in 

advance, it can be hypothetically positioned within a range in such a way that the contact is 

always going to be in the stick state, as shown in Fig. 6b and Fig. 6c, in which the upper and 

lower limits are the points where positive and negative slips are about to initiate. Since any 

position between two limits is acceptable, an infinite number of periodic function T(t) then 

exist, as indicated in Fig. 5.  
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Fig. 6 Contact Element with Different Slider Positions 

It is also worth noting that non-unique values of the tangential contact force only occur for the 

fully stuck cycle. In case of an alternating stick–slip or an alternating stick–slip–lift-off cycle, 

only one single value for T0 can be computed due to the fact that tangential force has already 

been confined by the limit. For example, consider Fig. 7, which shows the time histories and 

hysteresis curve for an alternating stick–slip cycle. Tangential force starts to cycle in the 

negative slip state and directly takes the lower limit value. After transition to stick state, 

which is the time instant shown with blue dot, there is only one unique curve for the 

tangential force, which removes the uncertainty. Then, the condition again changes from stick 

to positive slip and this alternating motion continues until the end of the cycle. Similar 

behavior can be observed also for an alternating stick–slip–lift-off cycle as depicted in Fig. 8, 

where the transition points between slip and lift-off states are shown with black dots. As a 

result, contact forces of a single Jenkins element are uniquely computed for both these cases. 

Hence, the uncertainty of the non-unique tangential contact force only exists for the contacts 

remaining fully stuck during the vibration cycle, i.e. the uncertainty in the system only exists 

if at least one of the contact points remains stuck during the vibration cycle. 
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Fig. 7 (a) Time Histories and (b) Hysteresis Curve for an Alternating Stick–Slip Cycle 

 

Fig. 8 (a) Time Histories and (b) Hysteresis Curve for an Alternating Stick–Slip–Lift-off 

Cycle 

3.2 Multiple Responses of Mechanical Systems with Wedge Dampers 

The uncertainty phenomenon of the tangential force may enable the mechanical structures 

including contacts to exhibit a variable frictional characteristic. This fact can be much more 

impactful in the applications of wedge dampers as investigated in [21-24, 27, 28, 40]. In this 

paper, the attention is focused on the frictional systems with wedge dampers despite the fact 

that uncertainty phenomenon is a general matter of fact for engineering systems with dry 

friction.  

Consider a mechanical system with an asymmetric wedge damper pressed between two 

vibrating bodies as shown in Fig. 9a. Each damper side can be coupled to the adjacent body 

by means of a Jenkins element.  
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Fig. 9 (a) An Asymmetric Wedge Damper Pressed Between Two Inclined Surfaces, (b) Static 

Forces Acting on the Damper 

Assuming the system is under a periodic excitation, three different contact conditions can be 

achieved during the steady-state motion. These cases can be as follows; 

1- Both sides may be fully stuck. 

2- Both sides may undergo an alternating stick–slip cycle or an alternating stick–slip–lift-off 

cycle. 

3- One side may be under fully stuck case, while the other one shows an alternating stick–slip 

or an alternating stick–slip–lift-off behavior. 

In case 1, there is an uncertainty in the static tangential force on both sides. However, the 

system behaves as a linear system. Hence, this case provides no friction damping to the 

system, which leads to obtain a unique vibration amplitude. 

In case 2, static tangential forces are uniquely defined on both sides as shown in Fig. 7 and 

Fig. 8. Hence, there is no variability in the contact forces, which enables to obtain only one 

unique response, as well. 

In case 3, the static tangential force on the fully stuck side is not uniquely defined while the 

one for the other side is unique. In order to investigate this case further, consider the static 

force balances on the wedge damper in x and y directions, which are representatively shown 

in Fig. 9b. They can be written for this configuration as 

Body 1 Body 2 
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0 0 0 0

0 0 0 0 0

cos( ) sin( ) cos( ) sin( ) 0

sin( ) cos( ) sin( ) cos( )

R R R R L L L L

R R R R L L L L

T N T N

T N T N F

− − + =

+ + + =

   

   
 . (11) 

For the simplicity, assume, without any loss of generality, that the left damper side (with 

subscription L) is in full stick cycle while the right damper side (with subscription R) shows 

an alternating stick–slip or an alternating stick–slip–lift-off behavior. It can be clearly inferred 

that the uncertainty in T0
L directly affects the system behavior with the coupling that is present 

in Eq. (11). Different values of T0
L result non-unique N0

R, which leads to obtain a variable 

steady-state keq and ceq for the right side of the damper due to different normal load values. 

This makes the dynamic behavior of the system to have a variable pattern as if the structure is 

forced by the same dynamic excitation but with different static loads. Because, simultaneous 

solution of Eq. (7) provides a coupling between the static and the dynamic parts. As a result, 

multiple solutions of the system eventually exist for case 3.  

Although an illustration for the presence of multiple responses is explained here for a very 

simple case of wedge dampers modeled without considering the rotational effects and using 

two Jenkins elements, the uncertainty might occur even in case of a more complicated damper 

kinematics with multiple contact elements. It should be noted that the amount of uncertainty is 

system dependent. For example, there may be even 50 Hz resonance frequency difference 

between multiple responses obtained after two consecutive experiments as reported in [28]. 

Moreover, ten times difference among multiple amplitudes at the same frequency is possible 

in industrial turbine bladed disks with mid-span dampers [25]. Therefore, the uncertainty 

phenomenon is not a modeling artifact and it comes from the nature of frictional behavior as 

experimentally shown in [27, 28, 40]. 

3.3 Response Limits 

Numerical computation of multiple responses and the determination of upper and lower limits 

would take an interest in the design phase of the wedge dampers. Particularly, the upper 

bound at the resonance frequency may play the most important role from the engineering 

point of view. In this paper, in order to predict the range of the response level associated to 

the case 3 mentioned in the previous section, an approach, which is able to provide the limit 

response curves that bound the multiple responses, is developed based on the following 

observations: 
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1- As a general fact, the physics of a slipping contact behavior implies that the contact 

approaches to the fully stuck condition if the static normal load exerted in normal direction 

increases. On the other hand, the lower the static normal load is, the closer the contact will be 

to the free condition, i.e. no friction forces. (see Fig. 3) 

2- As mentioned in Section 2.4, the free and the fully stuck contact configurations determine 

the two limit dynamic configurations of the nonlinear system. 

3- As mentioned in Section 3.2, the static normal load acting on the right slipping side of the 

damper, N0
R, has non-unique values because of the cross-coupling between the two damper 

sides. 

For the above mentioned reasons, it can be clearly concluded that the two configurations 

corresponding to the minimum and the maximum values of the static normal load over the 

slipping side (N0
R in this case) determine the boundaries of the response variability range at 

each excitation frequency. From the static force balances given in Eq.(11), N0
R can be derived 

as either 

 

0 0 0
0 sin( ) cos( )

sin( )

L R L R L
R

L R

F T T
N

+ + −
=

+

  

 
  (12) 

or 

 
0 0 0 0cos( ) cos( ) sin( ).R R L L R L L RN F N T= − + − +       (13) 

It is known that the static tangential force on the left damper side, T0
L, is not unique due to the 

uncertainty phenomenon. It should be noted that Eq. (12) or Eq. (13) cannot be solved alone 

since there are three unknowns in each one. However, the relationship between N0
R and T0

L is 

directly related through a divider or a multiplier factor of sin(αL+αR). It is also known for a 

wedge damper that 0 < αL+αR < π, which shows the factor, sin(αL+αR), always takes positive 

values. As a result, the maximum value of the slipping side’s normal load, N0
max,R, 

corresponds to the minimum value of the sticking side’s tangential force, T0
min,L. Similarly, 

the minimum value of the slipping side’s normal load N0
min,R corresponds to the maximum 

value of the sticking side’s tangential force, T0
max,L. Consequently, the boundaries of the 

response variability range, which are directly determined by the minimum and the maximum 

values of the static normal load over the slipping side, can be obtained by imposing the limit 
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values of the static tangential force, T0
max and T0

min, in the calculation of T(t) on the sticking 

side. 

It should be noted that the tangential force limits are unknown in advance before starting the 

computation of contact forces. However, it is known that ( ) ( )T t m N t  , where m  is 

bounded in [-1,1] due to Coulomb’s law for any t if there is no separation. In order to ensure 

to have the maximum tangential force limit, Tmax(t), at steady-state, as also followed in this 

study, a large enough initial guess value for the tangential force, Tini(t), in the computation of 

the contact force procedure can be assigned at the very beginning. Numerically, since the 

limits are always bounded by the normal force components, μN(t), in fully stuck conditions, 

initial prediction of the tangential force, Tini(t) ,can be set equal to at t = tini as 

 ( ) ( ).iniini iniT tt N=   (14) 

Then, state-by-state simulation with the predictor-corrector approach, which is explained in 

Section 2.2 to calculate internal friction forces, will ensure that T(t) is going to end up as 

Tmax(t) at steady-state. From the physical point of view, this is the case where the steady state 

slider position of contact element, w(t), is forced to stay at the farthest point just before the 

positive slip with respect to the relative displacement coordinate, u(t), as shown in Fig. 6b. On 

the contrary, the minimum force limit, Tmin(t), can be obtained with a similar procedure by 

initially assigning a sufficiently small value, numerically as 

 ( ) ( ).iniini iniT tt N= −   (15) 

This corresponds to a case that the steady state slider position is forced to stay at the farthest 

point just before the negative slip with respect to the relative displacement coordinate as 

shown in Fig. 6c. 

Another straightforward way to obtain the limits is to assign the static part of the tangential 

force, T0, as the maximum, T0
max, or minimum, T0

min, value at the end of the predictor-

corrector algorithm within the range as shown in Fig. 5. It should be noted that the contact 

element should be under fully stuck condition after reaching to steady state to be able to use 

this approach. 

Dynamic response boundaries among multiple solutions can be determined by using the 

numerical method offered with this study for mechanical systems with wedge dampers 

modeled by utilizing two point contact elements. Although the analysis of structures with 
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more than two contact elements are out of scope in this study, multiple contact points might 

be modeled on each damper side in more realistic applications. For these cases, the number of 

contact points in fully stuck conditions may become higher than one and the range of the 

uncertainty gets affected by several elements. The response boundaries may then be 

determined by some interior tangential forces of fully stuck elements, not by the limits, T0
max, 

or T0
min. These cases create theoretically an infinite number of possibilities to be able to detect 

the boundaries, which is impossible to find them manually in reality, and the search for the 

response boundaries can be a more challenging numerical process. The authors of this study 

think that the uncertainty phenomenon and the variability of dynamic response studies are 

open research areas and require further investigations. Nonetheless, this study offers the first 

numerical approach to detect the response boundaries. In the following section, the 

application of the proposed approach is presented by means of a simple hypothetical system 

that imitates a turbo-machinery application with wedge dampers. Multiple response 

amplitudes with the upper and lower limits are shown if they exist. The effect of different 

configurations on multiple responses has also been investigated.  

4. APPLICATION 

In this section, a simplified model representing one of the most common types of friction 

dampers in turbo-machinery applications, wedge dampers, is studied. 

4.1 Lumped Parameter System 

The model investigated is constructed using an assembly with three lumped masses 

simulating two adjacent blades and a wedge damper interposed in between them as shown in 

Fig. 10. The model utilized is a 6 degree-of-freedom (DOF) system where each mass has two 

different generalized coordinates allowing the horizontal and the vertical displacements in 

global x and global y directions, respectively. Two bodies with a mass value of m located at 

the left and the right hand-sides represent the bladed disk assembly itself and have exactly the 

same system properties as in the case of tuned bladed disks. Both of them are grounded with a 

spring whose stiffness value is k and have cross coupling between each other’s x and y 

directions with a stiffness value of k12. These springs physically represent the stiffness of 

large disks attached to rotor shaft and provide the coupling between vibrating bodies. It 

should also be noted that the motion of each mass in x and y directions are also coupled with a 

stiffness value of kxy. These springs are also attached here to simulate and to capture the blade 

dynamics in this simple system. Each body has one contact point located on an inclined 
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surface with the damper that is pressed against to the vibrating bodies with a static pre-load, 

F0. This load corresponds to the centrifugal force that presses the damper to the blades in 

turbo-machinery applications. The damper itself is modeled as a free body without applying 

any boundary condition, allowing for rigid body motions. Its x and y displacements are also 

coupled to each other by means of a spring with a value of kD, which is not explicitly sketched 

in Fig. 10 for a clear view. Its image can be visualized exactly the same as the spring with 

stiffness kxy, but on the damper. kD physically corresponds to internal stiffness of the free 

wedge damper that involves into the bladed disk system as a secondary structure. A more 

compact expression of the generalized coordinates, linear system and damper matrices (with 

subscription D) and dynamic excitations are as follows; 

1
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Fig. 10 Full View of the Lumped Parameters System 
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The model is harmonically forced in y and x directions from the first and the second masses, 

respectively. This type of forcing is intentionally applied in order to excite several modes of 

the system. Therefore, it enables to investigate the damper kinematics and the variability of 

the nonlinear responses under different contact conditions. All of the system parameters are 

given in Table 1. It should be noted that despite the model simplicity, it can be considered as a 

general framework for the construction of highly specialized and detailed FE models of 

mechanical structures having joint interfaces and showing frictional behaviors. 

Table 1 Lumped System and Excitation Parameters 

Parameter Value  Parameter Value  Parameter Value 

m 1 kg  k 3*105 Nm-1  Fx,1 0 

mD 0.1 kg  kxy 3*105 Nm-1  Fy,1 20sin(ωt+π) N 

c 20 N(m/s)-1  k12 7*105 Nm-1  Fx,2 5sin(ωt) N 

   kD 3*105 Nm-1  Fy,2 0 

The geometry of the damper model is intentionally selected as isosceles triangle with an 

apical angle β and base angles α as shown in Fig. 11. This configuration gives an opportunity 

to examine the more general cases in which the static pre-load applied to the damper is not 

normal to the contact points. Furthermore, all the generalized coordinates will be coupled 

through this geometry in both x and y directions, which represents more realistic case scenario 

of real life applications with wedge dampers. It should also be noted that, in this way, a 

parametric study of the effect of different design alternatives by varying the angles β and α is 

also studied in this paper. The contact elements utilized in both sides share the same 

tangential (kt) and normal (kn) contact stiffness with a value 3*105 Nm-1. Coefficient of 

friction (μ) is taken 0.5. Fundamental harmonic is utilized in the dynamic balance equations. 

Dynamic contact forces generated on the contact points are shown in Fig. 11. It should be 

noted that a coordinate transformation is needed from global to local in order to be able to 

calculate correct relative displacements and contact forces. The local coordinate systems (with 

superscription r) used in the calculations are also shown in Fig. 11. The transformations for 

both sides are applied as 

 
r r

1 2
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Fig. 11 (a) Contact Forces on Damper, (b) Coordinate Systems 

4.2 Multiple Responses and Limits 

As mentioned in Section 3.2 that there should be a cross coupling between the tangential and 

the normal forces in the contacts in order to obtain multiple response phenomena. For this 

purpose, the generalized coordinates in the system are coupled to each other with the stiffness 

kxy.. In addition, the apical angle, β, and base angles, α, in the following analyses are set equal 

to 120° and 30°, respectively; which provides a damper induced cross coupling into to the 

system as generally explained in Eq. (11). In this way, the coupling strength that directly 

affects the multiple response range is increased. Intensity of the coupling effect due to 

different geometries on response variability will be investigated in Section 4.3, as well. The 

following results are presented for the generalized coordinate of the right mass vertical 

displacement, y2. 

Fig. 12 depicts the displacement amplitudes of the free linear (without damper) and fully 

stuck linear (with damper) cases for the entire frequency range. All the mode shape sketches 

of the free linear case are also shown in Fig. 12. Additionally, eigenvector values for each 

mode are also presented in Table 2 for a better visualization of the system dynamics. The first 

mode is the one where in-phase motion takes place in the all coordinates. Thus, the insertion 

of the damper for this mode is not effective at all since there is no relative displacement 

between the DOFs. Natural frequency for the first mode also slightly decreases due to the 

extra damper mass. However, for the second mode, although the system makes an in-phase 

motion with respect to x1–x2 and y1–y2 directions, out-of-phase motions that take place in x1–

y1 and x2–y2 coordinates provides a relative displacement due to cross-coupling provided by 

stiffness kxy. Hence, the damper affects the linear system and introduces stiffness as in the 

cases of the third and the fourth modes, where the out-of-phase motions between the 

generalized coordinates are much clearer. 
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Fig. 12 Two Linear Cases Without and With the Damper 

Table 2 Eigenvector Values for each Mode 

Generalized Coordinates 1st Mode 2nd Mode 3rd Mode 4th Mode 

x1 1 1 -1 -1 

y1 1 -1 -1 1 

x2 1 1 1 1 

y2 1 -1 1 -1 
 

Fig. 13 shows the displacement amplitudes of the free Linear Response (LR), fully stuck LR 

and Nonlinear Responses (NLR) around the second and the third resonance regions. Initial 

pre-load applied on the damper, F0, is 120 N for each nonlinear case, which can be considered 

as a relatively high value and a moderate value for the second and the third resonances, 

respectively. This is expected since the dynamic external forces mostly excite the system’s 

third mode. The damper efficiently dissipates the energy and damps the response in both 

resonance regions. However, it should be noted that the nonlinear responses shown in Fig. 13 

are obtained for the totally same system without changing any input parameters. Although the 
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displacement amplitudes computed around the second resonance overlap with each other, they 

vary in the third resonance region, which shows multiple solutions exist. It is worth noting 

that the iterations during the nonlinear analysis for each curve within the range are fully 

converged, which makes all the solutions true as explained in Section 3.2. The only parameter 

that is changed for each analysis is the initial guess of the tangential force for AFT scheme 

before starting the computation of the contact forces. Five different initial values for T(t) at t = 

tini within the range of μN(t) and –μN(t) as shown in Fig. 5 end up with five particular 

converged responses, where the boundaries are indicated with red and brown curves, 

respectively. The upper and the lower response limits are calculated by using the numerical 

technique that is offered with this paper and based on the limit tangential force criteria as 

explained in Section 3.3. The limiting cases, which give the boundaries, correspond to 

nonlinear analyses performed with Tmax(t) and Tmin(t), that are ensured to obtain by assigning 

the initial guess values as the limits ( μN(tini) and –μN(tini) ) for T(t), respectively, as explained 

in Eqs. (14) and (15). The other three curves staying within the range are obtained by using 

three intermediate arbitrary initial values for T(t), which results to three different contact 

forces at steady state with the values of Tint1(t), Tint2(t) and Tint3(t). 

 

Fig. 13 Nonlinear Responses around the Second and the Third Resonance Regions 
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It is interesting to note that the multiple solutions exist only around the third resonance region, 

which shows the uncertainty phenomenon of the tangential forces is not observed for the 

second resonance region. This phenomenon occurs due to different contact conditions, which 

changes the effective stiffness and the equivalent damping terms of the contact elements for 

particular resonances. For a better illustration, consider Fig. 14 depicting the response graphs 

including the steady-state contact states of the both dry friction elements throughout the 

frequency range considered in the nonlinear analysis. It is worth noting that the initial guesses 

of the tangential force in these analyses are assigned as an arbitrary value which is 

representatively selected among an infinite number of possible alternatives within the range. 

Fig. 14a depicts one of the multiple displacement curves around the third resonance region, 

where the first contact is under fully stuck condition for the entire frequency interval while the 

other contact makes an alternating stick–slip motion for a specific range. In a more detailed 

explanation, red circles represent the frequency points where both contacts are fully stuck; 

while green stars stand for the frequencies in which one of the contact elements slips during 

its cycle. As explained in Section 3.2, the uncertainty of the first contact element’s tangential 

force leads to obtain non-unique solutions for the frequency range shown by green stars. 

However, the second resonance region shown in Fig. 14b shows that the first and the second 

contact elements make an alternating stick–slip and an alternating stick–slip–lift-off motion, 

respectively, for the frequency points highlighted by blue squares. These contact states 

removes the uncertainty phenomenon as shown in Fig. 7 and Fig. 8 since the friction forces 

become unique. Hence, the effective stiffness and the equivalent damping of the contact 

elements obtained are the same for any initial guess value, which provides to compute a 

unique response at steady state. 
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Fig. 14 (a) Contact States around the Third Resonance Region, (b) Contact States around the 

Second Resonance Region 

In Fig. 15a, a general behavior of the nonlinear response curve corresponding to different 

static pre-loads applied on the damper is shown. The response is damped for the second and 

the third resonance regions as the pre-load decreases. The variability range is also highlighted 

around the third resonance region. It is seen that the range creates a closed region for 

relatively high pre-loads (400 N and 130 N). It shrinks with decreasing pre-loads and totally 

disappears after a certain value (60 N in this case). In order to explain this, it is worth 

mentioning that the effect of static pre-load on the maximum vibration amplitude is not 

regular. In particular, the maximum response amplitude starts decreasing with larger pre-loads 

from free linear case up to an optimum value, as shown in Fig. 3a. This observation is specific 

for low pre-loads. If the pre-load values keep rising beyond the optimum value, the response 

starts increasing again up to the fully-stuck case, where the system behaves as a linear one and 

no friction damping is provided by the damper. On the other side, the effect of static pre-load 

values on the resonance frequency is regular, where its value always increases as the pre-load 

becomes larger. As a result, for relatively high pre-loads (as 130 N and 400 N in Fig. 15a), the 

upper and the lower response boundaries clearly create a closed region (colored in purple and 

green) where intermediate response will end up to. On the other hand, for moderate pre-loads 

(60 N) at which the system would vibrate nearby the optimum configuration, the behavior is 

more complicated. The boundary response that corresponds to Tmax is located on the right-

hand side of the optimum, while the boundary response that corresponds to Tmin stays on the 

left side, as shown in Fig. 15b. In this case, it is not possible to clearly identify a closed region 

where the intermediate responses will end up to. For instance, the resonance amplitudes of 

two intermediate curves computed by setting T = Tint1 and T = Tint2 lie outside the envelope of 

the two boundary responses. It should be stated that such a transition region is perfectly in line 

with the physics of frictionally damped dynamic systems. 
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Fig. 15 (a) Nonlinear Responses for Different Static Pre-loads, (b) Nonlinear Responses for a 

Moderate Static Pre-Load, F0 = 60N, nearby the optimum conditions 

Fig. 16a shows the limits of the optimal curve around the third resonance region. It can be 

seen that the maximum amplitude starts from the free linear case with low pre-loads and 

saturates at the fully stuck linear case with high pre-loads. The response range varies 

considerably, showing the uncertainty may result in huge differences in the maximum 

response amplitudes. As previously explained, optimal curves have a local minimum, the so-

called optimum point, around 45-80 N, which corresponds to the transition region shown in 

Fig. 15b. A closer view for this interval with three additional curves representing the ones 

obtained with intermediate values is given in Fig. 16b. Due to the non-regular relationship 

between the pre-load and the maximum response amplitude, the two response boundary do 

not represent the maximum and the minimum limits at each frequency. Nevertheless, the 

response boundaries allow determining the range of static pre-load values at which the 

optimum response is expected. Fig. 16c shows five different hysteresis curves obtained for the 

same static pre-load, F0 = 80N at the corresponding resonance frequencies. It can be seen that 

the slipping contact element has completely different hysteresis curves corresponding to the 

limits and some other intermediate tangential force values of the sticking element. This 

indicates that different transition points with non-unique tangential forces change the damping 

characteristic of the overall system since keq and ceq eventually become different for each 

case. The resonance frequency limits are also shown in Fig. 16d. The lower and the upper 

limits start from the same initial resonance value since both of the contacts tend to make an 

alternating stick–slip motion for relatively low pre-loads. This condition removes the 

uncertainty phenomenon and allows computing a unique response. Similarly, the limits 

overlap each other for high pre-loads at the fully stuck linear resonance frequency. 
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Fig. 16 (a) Optimal Curve Limits, (b) Optimal Curves for a Smaller Pre-Load Range, (c) 

Hysteresis Curves for a Static Pre-Load, F0 = 80N, (d) Resonance Frequency Limits 

4.3 The Effect of Damper Geometry on Multiple Responses 

In this section, the effect of different damper geometries by changing the apical angle, β, and 

base angles, α, on multiple response behavior and limits is investigated.  

Damper induced cross coupling is directly determined by β and α. As the damper geometry 

changes, the interaction between the tangential and the normal forces varies as shown in Eq. 

(11). For this purpose, β and α are firstly set equal to 180° and 0°, respectively, where the 

damper becomes perfectly flat in horizontal direction. Fig. 17a depicts the fully stuck linear 

and nonlinear displacement amplitudes around the third resonance region. Nonlinear response 

graphs represent the upper and lower limits of the variability range. The lower the static pre-

load is, the more damped response obtained, as expected. However, comparing with the 

previous situation where β = 120°, the response variability in this case is extremely low. 

Almost unique response is obtained at steady-state whichever initial guess value is used in the 
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tangential force calculation. Because, the damper induced cross coupling is completely 

removed with flat damper and only interaction between x and y coordinates are provided by 

stiffness kxy. Hence, the range for the multiple responses reduces substantially. Response 

variability is only obtained around limited regions where one of them is enlarged for a closer 

view in Fig. 17a. Fig. 17b shows the contact states during the nonlinear analysis performed 

with F0 = 250N. It should be noted that the removal of damper induced cross coupling 

provides to obtain an alternating stick–slip motion in both contacts, which almost vanishes the 

uncertainty phenomenon and ends up to an unique response. The only frequency points in 

which the uncertainty is observed are the ones where one of the contacts is fully stuck while 

the other one makes an alternating stick–slip motion, which is highlighted with green stars. 

Multiple responses are possible for these small regions where one example is shown with a 

closer view in Fig. 17a. 

 

Fig. 17 (a) Nonlinear Responses for Flat Damper with Different Static Pre-loads, (b) Contact 

States around the Third Resonance Region with the Static Pre-Load, F0 = 250N 

Fig. 18a presents a more general view about the range of the variability in the frequency 

response with different apical angles, β, for the values higher than 90°. The upper and the 

lower curves with the same color for the same angles represent the limits. It is noted that as 

the apical angle increases from 90° to 180°, i.e. from isosceles right triangle shape to flat 

damper geometry, the response variability range decreases substantially. The largest range is 

obtained in case of 90° apical angle due to the fact that the damper induced cross coupling in 

contact forces is the most effective on the uncertainity phenomenon with this geometry. On 

the other hand, the response is almost obtained unique when β is 180°. Moreover, it should be 

noted that there is no monotonic decrease in the variability range as β increases from 90° to 

180°. The range obtained when β = 160° is larger than the one obtained with β = 150° as can 
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be seen in the closer view shown in Fig. 18a. This indicates that the change of the damper 

geometry with different angles is not the only parameter affecting the pattern of the variability 

range. This observation leads that the static and the dynamic parts in the force balance 

equations cannot be separated in order to make a prior prediction for the behavior of the 

variability range. Full dynamic analysis is required to correctly observe the pattern change in 

the range with different geometries. It is also worth noting that all the nonlinear analyses for 

different angles in Fig. 18a are performed with particular pre-defined static pre-loads applied 

on the damper. The change of the variability range in optimal curves is also given in Fig. 18b, 

where the resonance displacement amplitudes are shown with increasing static pre-load. The 

upper and the lower limits for the flat geometry, i.e. β = 180°, lies on the same line. They start 

getting separated from each other as the angle decreases and the range reaches to the 

maximum width when β = 90°. However, the same non-monotonic behavior as in the case of 

frequency response graph is valid here, as well. The range for β = 150° is larger than the one 

obtained for β = 160°, which breaks the monotonic behavior in the variability pattern. It 

should also be noted the higher pre-loads provide to obtain the wider range while all the 

curves show similar behaviour for relatively low pre-loads that is squeezed in a narrow 

region. The reason for this fact is that both contacts tend to have an alternating stick–slip or an 

alternating stick–slip–lift-off motion under a low static pre-load, which removes the 

uncertanity and results with unique response. 

 

Fig. 18 (a) The Change of Variability Range in Frequency Response and (b) in Optimal 

Curves with Different High Apical Angles, β 

Fig. 19a illustrates a straight diminishing behavior in the variability range as the apical angle, 

β, decreases from 90°. This shows that the effect of damper induced cross coupling on the 

uncertainty weakens with reducing β values. However, it is worth noting that when β is set 
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equal to a value lower than 90°, increasing static pre-load makes the damper tend to have 

more slip motion instead of stick, as opposed to the previous cases. Because, in this case, the 

pre-load applied on the damper contributes to the tangential component of the contact force 

more than the normal force direction due to the orientation of the simple system used. Hence, 

the contacts between the damper and the system are totally lost after a certain value. In order 

to overcome this problem, in addition to the static pre-load exerted on damper, another static 

pre-load is applied on the first and the second masses in x1 and –x2 directions, respectively. In 

this way, it is simulated that the masses are pressed through the damper and the damper is 

squeezed in between the masses, which enables to have stick state and keeps the damper in 

contact with the system during the periodic motion. It is also worth noting that this type of 

force enforcement is applied in many applications of vehicle dynamics for the structures with 

wedge dampers. Resonance amplitude limits with respect to varying static loads applied on 

the masses, not on the damper, are presented in Fig. 19b. These curves are defined in this 

study as pseudo-optimal curves, where the initial pre-load applied on the damper is kept 

constant at 500N. The variability range becomes smaller with decreasing apical angle as 

obtained in Fig. 19a. It should also be noted that the upper and the lower limits for each β 

value are parallel to each other since the pre-load on the damper is not a variable parameter 

anymore, which makes the response variability range constant with increasing pre-load until 

to reach fully stuck linear resonance response value. 

 

Fig. 19 (a) The Change of Variability Range in Frequency Response and (b) in Pseudo-

Optimal Curves with Different Low Apical Angles, β 
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5. CONCLUSION 

The uncertainty phenomenon in dry friction may result to obtain quite different dynamic 

response levels for the mechanical structures having contact interfaces, specifically for the 

wedge damper applications. Although the response variability has been firstly introduced 

more than two decades ago, further studies performed in the literature for this issue have 

become very limited. The existence of multiple solutions requires predicting the upper limit in 

terms of engineering point of view. Complying with this purpose, in this paper, a numerical 

approach for the determination of dynamic response limits among multiple solutions is 

offered. The method focuses on the mechanical systems with a wedge damper that is modeled 

by using a macro-slip friction element in each contact side. 

The limiting cases of the variable response curves are determined with respect to the limit 

tangential forces. The uncertainty resulted by different possible tangential force values is 

confined to only one damper side whose contact element is fully stuck while the other side is 

making an alternating stick–slip or an alternating stick–slip–lift-off motion. In this case, use 

of two limit tangential forces in fully stuck element provides to obtain two extreme contact 

configurations on the other slipping side, which are the closest ones to free and stuck 

conditions. Hence, the upper and the lower limits for the dynamic response can be computed. 

The method is demonstrated on a lumped system representing a simplified version of 

vibrating blades with a wedge damper pressed in between them. Several case studies are 

presented by showing the response boundaries computed with the proposed approach. It is 

demonstrated that a large dynamic response variability, where the resonance amplitude of the 

upper boundary is 3 times of the lower one, exists for some particular cases. On the other 

hand, the change in resonance frequencies looks limited, when compared to amplitude 

variability. The highest variability in the resonance frequency change is observed up to 3% in 

this study. Parametric investigation of different configurations also shows that the variability 

range substantially changes with different damper geometries. The most variable results are 

obtained when apical angle, β, is set equal to 90° (isosceles right triangle geometry). The 

variability range decreases with flattening dampers. This observation clearly implicates that 

although the variability pattern is not perfectly monotonic, it is greatly affected by the damper 

induced cross-coupling due to the geometry of the damper. It can be said that the effect of the 

uncertainty can be minimized by using flat dampers, where the cross-coupling between the 

two damper sides is very low and the response variability decreases.  
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Despite the model simplicity, this paper presents the first numerical technique that can be 

utilized to determine the dynamic response limits among multiple solutions, according to the 

best of the authors’ knowledge. However, the uncertainty phenomenon still requires much 

more attention with further studies. For example, inclusion of multiple contact points with 

more realistic structures and investigation of cases with modal interaction or internal 

resonances are still open research areas. Today’s high order models may include thousands of 

contact points. The uncertainty in these structures becomes much more complex since the 

combination of different possible non-unique tangential forces brings theoretically an infinite 

number of different cases. The search for the response boundaries becomes a more 

challenging mathematical problem and the use of limit tangential force values, under those 

circumstances, may not be suitable to determine the boundaries of the response variability. 

Nonetheless, the authors think that the researchers and analysts would become much more 

aware about the uncertainty phenomenon and the response limits with this study. 

APPENDIX 

Analytical expression of equivalent stiffness and damping terms for a 1D Jenkins element 

which is under a single harmonic input motion ( ˆ( ) cos( )q t q t= ) with a constant normal load, 

N0, can be written as 
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