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Exploring wall shear stress
spatiotemporal heterogeneity in
coronary arteries combining
correlation-based analysis and complex
networks with computational
hemodynamics

Karol Calò1 , Giuseppe De Nisco1, Diego Gallo1, Claudio Chiastra1,
Ayla Hoogendoorn2, David A Steinman3, Stefania Scarsoglio1,
Jolanda J Wentzel2 and Umberto Morbiducci1

Abstract
Atherosclerosis at the early stage in coronary arteries has been associated with low cycle-average wall shear stress mag-
nitude. However, parallel to the identification of an established active role for low wall shear stress in the onset/progres-
sion of the atherosclerotic disease, a weak association between lesions localization and low/oscillatory wall shear stress
has been observed. In the attempt to fully identify the wall shear stress phenotype triggering early atherosclerosis in cor-
onary arteries, this exploratory study aims at enriching the characterization of wall shear stress emerging features com-
bining correlation-based analysis and complex networks theory with computational hemodynamics. The final goal is the
characterization of the spatiotemporal and topological heterogeneity of wall shear stress waveforms along the cardiac
cycle. In detail, here time-histories of wall shear stress magnitude and wall shear stress projection along the main flow
direction and orthogonal to it (a measure of wall shear stress multidirectionality) are analyzed in a representative dataset
of 10 left anterior descending pig coronary artery computational hemodynamics models. Among the main findings, we
report that the proposed analysis quantitatively demonstrates that the model-specific inlet flow-rate shapes wall shear
stress time-histories. Moreover, it emerges that a combined effect of low wall shear stress magnitude and of the shape
of the wall shear stress–based descriptors time-histories could trigger atherosclerosis at its earliest stage. The findings
of this work suggest for new experiments to provide a clearer determination of the wall shear stress phenotype which is
at the basis of the so-called arterial hemodynamic risk hypothesis in coronary arteries.
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Introduction

Atherosclerosis is an inflammatory disease of the arter-
ial system that represents the main cause of coronary
artery disease. Atherosclerotic plaques growth produces
the narrowing or blockage of the coronary arteries ulti-
mately leading to a reduced perfusion of the heart.
According to the ‘‘hemodynamic risk hypothesis’’,1

local hemodynamics, in particular wall shear stress
(WSS), are involved in the onset and progression of the
atherosclerotic disease. A large body of literature attrib-
uted the preferential development of the disease in
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arteries to low and oscillatory WSS phenotype.2–4

However, more recent findings highlighted that (1) low
WSS is a significant but moderately weak predictor of
atherosclerotic plaque development,5,6 and that (2)
hemodynamic descriptors based only upon WSS mag-
nitude and/or direction do not properly account for the
complex hemodynamic milieu to which the luminal sur-
face is exposed.7,8 The need to bridge this gap of knowl-
edge and identify a stronger WSS phenotype of arterial
disease was recently stimulated by evidences on the rela-
tion between flow directionality and endothelial cells
(ECs) mechanosensing,7,9,10 and on the emergent WSS

multidirectional nature in arteries.11–13 In this context,
an in-depth analysis of the WSS spatiotemporal com-
plexity in coronary arteries is still lacking and might
support the identification of emergent features in WSS

dynamics along the cardiac cycle.
Moving along this research line, this exploratory

study aims at enriching the knowledge of arterial WSS

phenotype, investigating the existence of correlated spa-
tiotemporal dynamics ofWSSmagnitude along the car-
diac cycle in coronary arteries, because of its suggested
role (in terms of cycle-average quantity) in the causa-
tion of the disease process.6,14,15 Moreover, inspired by
recent observations on ECs sensing to flow multidirec-
tionality,7,9,10,16–18 we extended the analysis to the time-
histories, that is, the waveforms along the cardiac cycle,
of WSS vector projections along main directions based
on geometric attributes of the vasculature and inspired
by fluid mechanics.11

Technically, a correlation analysis was performed
and the Complex Networks (CNs) theory was applied
here for the first time to a dataset of 10 realistic compu-
tational hemodynamics models of pig left anterior des-
cending (LAD) coronary artery, extending the
approach recently proposed to investigate the spatio-
temporal evolution of intravascular flow patterns in the
carotid artery to the analysis of WSS dynamics.19 The
use of CNs as a tool of analysis was motivated by their
ability to synthetically and effectively characterize the
structure and function of complex physical systems
such as four-dimensional (4D) cardiovascular flows, as
in the case object of the study. In fact, in the context of
graph theory, CNs were used to model pairwise con-
nections between highly interacting dynamical
objects,20,21 through a set of nodes and links. Recently,
correlation-based CNs have been successfully applied
to complex fluid mechanics phenomena.22–25

In detail, CNs were applied separately to WSS-based
descriptors, measuring their spatiotemporal similarity
by means of pairwise linear correlation between their
time-histories along the cardiac cycle. Using a represen-
tative sample of computational hemodynamics models
of pig coronary artery, CNs were applied to the time-
histories of (1) WSS magnitude, and of three WSS

multidirectionality descriptors,11 namely (2) the ‘‘axial’’
WSS (aligned with the main flow direction), (3) the
‘‘secondary’’ WSS (orthogonal to the axial direction
and related to secondary flows) and (4) the ratio

between their magnitudes. The adopted network form-
alism and correlation strategy allowed the characteriza-
tion of WSS time-histories from a new perspective,
contributing to the knowledge of vascular wall dysfunc-
tion in coronary arteries, by providing a more in-depth
insight into the multidirectional nature of WSS.

Methods

Imaging and geometry reconstruction

An overview of the methods is provided in Figure 1. The
LAD of 10 ostensibly healthy adult Bretoncelles Meishan
mini-pigs (age of 346 3months, castrated male) under
general anesthesia was imaged by coronary computed
tomography angiography (CCTA) and intravascular ultra-
sound (IVUS), as detailed elsewhere.13,17 Doppler-based
blood flow velocity measurements were acquired at several
locations along each artery (i.e. at the inflow section and
immediately upstream and downstream of each side
branch) using the ComboWire (Volcano Corp., Rancho
Cordova, CA, United States). For each vessel, the lumen
contours were segmented from the IVUS images and
stacked upon the three-dimensional (3D) CCTA centerline
using MeVisLab (Bremen, Germany) (see De Nisco
et al.,13 for details). The 10 reconstructed luminal surfaces
of the LADs are presented in the Supplementary Data
(Figure S1). Further details about image acquisition and
model reconstruction are described elsewhere.13,17

The study was conducted according to the National
Institute of Health guide for the Care and Use of
Laboratory animals.26 Ethical approval was obtained
to perform the study (EMC nr. 109-14-10).

Computational hemodynamics

The finite volume method was applied to numerically
solve the governing equations of fluid motion, that is,
the Navier–Stokes equations, in their discrete form. To
do that, the computational fluid dynamics (CFD) code
Fluent (ANSYS Inc., Canonsburg, PA, United States)
was used on discretized fluid domains of 6.5 million tet-
rahedrons on average (with curvature-based refinement
and a five-layer prism at the lumen). Blood was
assumed as an incompressible, homogeneous, non-
Newtonian fluid.27 Arterial walls were assumed to be
rigid. Full details on the sensitivity of CFD results to
grid refinement and on the adopted schemes are exten-
sively reported in De Nisco et al.,13 whereas the impact
of the adopted assumptions on the rheological behavior
of blood and on rigid walls has been extensively
reported in previous studies.28–31

In vivo velocity ComboWire Doppler measurements
were used to prescribe personalized boundary condi-
tions, according to the previously proposed scheme.13,17

Briefly, the most proximal measurement-based flow-
rate value was applied at the inflow section in terms of
time-dependent flat velocity profile. The measured flow
split was estimated at each side branch based on the
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difference between upstream and downstream velocity-
based flow-rate measurements and prescribed as outflow
boundary. The Huo and Kassab32 diameter-based scaling
law was applied to estimate the flow ratio in those vessels
where flow velocity measurements were inaccurate or not
available. The no-slip condition was applied at wall
boundaries. Here, data analysis was conducted on the
main branch of LADs only, removing side branches in the
post-processing step using the open-source Vascular
Modeling Toolkit (VMTK, http://www.vmtk.org/).

Hemodynamic descriptors

The analysis involved the hemodynamic descriptors
listed in Figure 2. In detail, the instantaneous luminal
distribution of WSS magnitude (|WSS|) and of WSS

multidirectionality descriptors was computed. Two pro-
jections of WSS were considered, respectively, along (1)
the ‘‘axial’’ direction, identified by the tangent to the
local vessel centerline (WSSax) and related to the main
flow direction, and (2) the ‘‘secondary’’ one, perpendi-
cular to the local axial direction and related to second-
ary flows (WSSsc).

11 Moreover, to identify luminal
regions where the local secondary component of WSS

predominates over the axial one, the ratio of the sec-
ondary to axial WSS magnitude (WSSratio) was evalu-
ated. The cycle-average values of the investigated WSS-
based hemodynamic descriptors were also computed
and reported in Figure 2.

Regression analysis was conducted to investigate the
relations among |WSS|, WSSax, WSSsc and WSSratio
time-histories along the cardiac cycle and reported as
Pearson correlation coefficients. In detail, considering
the time-histories along the cardiac cycle of the WSS-
based quantities in each node of the wall surface mesh,
for each LAD model, the following correlations were
computed: (1) ‘‘all-to-all’’ correlations between time-
histories at every pair of nodes i and j for each one of
the WSS-based quantities defined above and denoted
as: R

WSSj j
i, j , Rax

i, j , R
sc
i, j and Rratio

i, j ; (2) ‘‘layered’’ correlations
between time-histories of two different WSS-based
quantities at the same node i, denoted as: R

WSSj j�ax
i

(|WSS| vs WSSax time-histories), R
WSSj j�sc
i (|WSS| vs

WSSsc time-histories) and Rax�sc
i (WSSax vs WSSsc

time-histories); (3) ‘‘one-to-all’’ correlations between the
personalized inlet flow-rate Q and the |WSS|, WSSax

andWSSsc time-history at each node i, denoted, respec-
tively, as R

Q�WSSj j
i , RQ�ax

i and RQ�sc
i . Explanatory

examples of pairs of nodal time-histories with different
correlation strength and sign are presented in Figure 2.

CNs: definitions and construction

In graph theory, a network is defined by a set V of N
nodes connected by a set E of links (Figure 2). In an
undirected network, each link is an unordered pair of
nodes i and j, and is denoted as {i, j}. In this study, we
analyzed spatial networks, that is, networks where

Figure 1. Schematic diagram of the study design, showing how imaging data contribute to define vessel geometry, hemodynamic
variables and complex networks metrics.
CCTA: coronary computed tomography angiography; IVUS: intravascular ultrasound; WSS: wall shear stress; CNs: complex networks.
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nodes occupy a fixed position in the Euclidean space,
here represented by the nodes of the surface elements
of the mesh grid lying on the luminal surface.

In each LAD coronary model, CNs were constructed
as follows. First, the Pearson correlation coefficients
Rij between time-histories along the cardiac cycle of
each considered WSS-based quantity in generic nodes i
and j were calculated. Then, CNs were built by apply-
ing a correlation criterion19: if the correlation

coefficient Rij is larger than a given threshold R̂, the
nodes i and j are considered connected and a topologi-
cal link {i, j} between them is built. The median value
of the overall distribution obtained by pooling together
the Rij correlation coefficients of all 10 LAD models
was set as threshold R̂ to build the CN for each WSS-
based quantity. Threshold values were used to convert
each correlation matrix in an adjacency matrix for each
CN, according to the criterion

Figure 2. Methodology of hemodynamic descriptors, complex networks metrics and correlation assessment and analysis. WSS-
based descriptors panel: example of WSS vector acting in a generic point at the luminal surface. Its axial (WSSax) and secondary
(WSSsc) components are also displayed. Instantaneous and cycle-average WSSax, WSSsc and WSSratio mathematical definitions are
reported. C(S): vessel centerline; C#: vector tangent to the centerline; R: vector perpendicular to C# directed from the centerline
to the generic point at the arterial surface; S: vector orthogonal to vectors R and C#; T: period of the cardiac cycle. CNs metrics
panel: explanatory example of a CN with its nodes and links, and the corresponding adjacency matrix. CNs metrics DC and SPL
mathematical definitions are reported. N: number of nodes; dci: non-normalized degree centrality of node i; dij: shortest topological
distance between nodes i and j. Correlation analysis panel: explanatory examples of differently correlated pairs of WSS-based
descriptors time-histories along the cardiac cycle of duration T, as defined by the Rij correlation coefficients.
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Aij =
0; if i; jf g 62 E or i= j
1; if i; jf g 2 E

�
ð1Þ

where E is the set of the CN links. Matrix A contains
all the information about node connectivity: Aij =1 if
a link exists between nodes i and j (i.e. if Rij . R̂) and is
equal to zero otherwise (Figure 2). In this study, matrix
A is symmetric (Aij=Aji) and the undirected CNs were
constructed following the steps in Figure 1.

CNs metrics

Two topological CNs metrics were used to characterize
the structure of the networks (Figure 2). The first one is
the degree centrality (DCi), a measure of the centrality
of a node inside the network. DCi is defined as the per-
centage of nodes of the network directly connected to
node i, that is, the so-called nearest neighborhood of i.
Here, DCi is normalized over the total number (N2 1)
of possible neighbors of i

DCi =
1

N� 1ð Þ
XN
j=1

Aij =
1

N� 1ð Þ dci ð2Þ

where dci is the non-normalized degree centrality of
node i. The normalization in equation (2) allows com-
parisons between networks of different number of nodes
(N). In synthesis, DCi quantifies the relative number of
neighbors (i.e. directly connected nodes) a node has in
the network or, in other words, the fraction of time-
histories of a specific WSS-based quantity, correlated
above threshold with the time-history in node i.

The second CNs metric used in this study allows the
quantification of the topological ‘‘persistence length’’ of
correlation of WSS spatiotemporal patterns. It is a
measure of the topological distance between one node
and the rest of the nodes in the network, and it is called
average shortest path length (SPLi) of node i

SPLi =
1

N� 1ð Þ
X

j2N, i 6¼j
dij ð3Þ

SPLi is defined as the mean of the shortest path lengths
from node i to every other node in the network, where
dij 2 Z is the shortest topological distance between
nodes i and j, that is, the minimum number of links that
have to be crossed from node i to node j20 (Figure 2).
By definition, if nodes i and j are connected, dij equals 1
as there is one direct link between them, otherwise
dij . 1. Roughly speaking, in a ‘‘fully’’ connected net-
work all the nodes present direct links and SPLi is
equal to 1 in each node i=1, ..., N. If there are no
paths between node i and the rest of the network, SPLi

is equal to infinity by definition.
To summarize, in the CNs-based characterization of

WSS spatiotemporal heterogeneity, metrics DC and
SPL allow, respectively, the identification/visualization
of spatial region where the WSS features are the most
representative of the whole network, and the

measurement of their topological ‘‘sphere of influence’’
through the quantification of their network persistence
length of the correlation.

Results

‘‘All-to-all’’ correlations of time-varying WSS-based
descriptors

The luminal distributions of all the cycle-average WSS-
based hemodynamic descriptors considered here (denoted
as cycle-average |WSS|, AvgWSSax, AvgWSSsc and
AvgWSSratio) are reported in Figure 3 and Figure S2
(Supplementary Data).

The probability density function (PDF) of the correla-
tions between the WSS-based quantities nodal time-
histories is presented in Figure 4 for each investigated case.
It emerges that the dynamics of |WSS| signals, as well as
WSSax, are always strongly correlated (as clearly evident by
the markedly left-skewed shape of the PDFs in Figure 4,
top panels). Moreover, the intra-model correlation distribu-
tions of |WSS| andWSSax quantities are almost coincident,
as also proven by their median values (Table 1).

Those results imply that the WSS vector is markedly
aligned with the axial direction (i.e. the main flow
direction) along the cardiac cycle (Figure S3 in the
Supplementary Data), in agreement with cycle-average
|WSS| and AvgWSSax luminal distributions presented
in Figure 3 (top and mid panels). On the other hand, in
each coronary model under study, the correlation dis-
tribution of WSSsc time-histories exhibits a bimodal
shape (Figure 4, bottom-left panel), with the two peaks
located close to the extreme values of the correlation
range (Rsc

ij = � 1 and Rsc
ij =1). Such a kind of Rsc

ij dis-
tributions highlights that in the LAD (1) WSSsc time-
histories are either markedly positively or negatively
correlated, and that (2) this is an emergent feature of
LAD hemodynamics. The emerged existence of both
strong correlations and anti-correlations between
WSSsc time-histories is reflected in the presence of two
distinct, opposite oriented AvgWSSsc vectors at the
luminal surface of the vessels (Figure 3, bottom panel),
since the opposite signs of instantaneous WSSsc values
highlight ‘‘out-of-phase,’’ that is, opposite vectors direc-
tion (Figure 2).

Notably, although WSSax and WSSsc correlation
distributions have the same shape for all the investi-
gated cases (left-skewed and bimodal, respectively), a
larger inter-variability characterizes the correlation dis-
tributions of WSSratio time-histories (Figure 4, bottom-
right panel). In particular, while some of the LAD
models present an almost flat distribution of Rratio

ij val-
ues, the other ones exhibit a PDF with a peak centered
around the zero correlation value, or close to the value
Rratio

ij =1. Coronary models characterized by a higher
probability of uncorrelated WSSratio time-histories (i.e.
models A, D, H and I, with a PDF peak around
Rratio

ij =0, Figure 4, bottom-right panel) exhibit a less
uniform distribution of AvgWSSratio at the luminal

Calò et al. 1213



surface (Figure S2, Supplementary Data), with
extended regions of AvgWSSratio ø 1. This observation
suggests that the presence of uncorrelated waveforms is
localized in those regions at the luminal surface where
WSS secondary component predominates over (or, at
most, equals) the axial one. This interpretation of the

observed results is also corroborated by the fact that
the LAD model with a peak on Rratio

ij =1 (model E) is
the one characterized by the most uniform distribution
of AvgWSSratio (mostly \ 1), with WSS axial compo-
nent on the main branch predominating over the
secondary component.

Figure 3. Luminal surface distributions of cardiac cycle-average WSS vector magnitude (top panel) and its axial and secondary
projections (AvgWSSax, mid panel; AvgWSSsc, bottom panel), for all the LAD models. For AvgWSSax, colors identify the forward
(red) and backward (blue) flow direction. Cycle-average |WSS| and AvgWSSax luminal distributions are very similar, suggesting the
major contribution of WSSax to the overall WSS vector. For AvgWSSsc, colors identify the right (red) and left-handed (blue)
direction. AvgWSSsc visualization range was properly narrowed to highlight WSSsc directionality.
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‘‘Layered’’ correlations of time-varying WSS-based
descriptors

On each LAD model, ‘‘layered’’ correlations were com-
puted to measure the dynamical similarity between dif-
ferent WSS-based descriptors at the same node of the

superficial mesh. The contour map of Rax�sc
i (WSSax vs

WSSsc) values at the luminal surface is displayed in
Figure 5, and the R

WSSj j�ax
i (|WSS| vs WSSax) and

R
WSSj j�sc
i (|WSS| vs WSSsc) contour maps are pre-

sented in the Supplementary Data (Figure S4).
As already emerged qualitatively from the PDFs

(Figure 4, top panels) from previous results, the quanti-
tative ‘‘layered’’ analysis confirms that the dynamics of
|WSS| and WSSax time-histories in each node are
strongly correlated (. 0.90, Figure S4 top panel, in the
Supplementary Data) in each LAD model. This spatio-
temporal similarity in |WSS| and WSSax time-histories
cannot emerge from the analysis of cycle-average
|WSS| and AvgWSSax luminal surface distributions
(Figure 3, top and mid panels), which does not furnish
any information about WSS waveforms dynamics.
Consequently, comparing WSSsc with |WSS| or WSSax

time-histories gives almost identical distributions

of R
WSSj j�sc
i and Rax�sc

i (Figure S4 bottom panel and

Figure 5, respectively). Correlation patterns at the
luminal surface are markedly affected by the WSSsc

directionality (R
WSSj j�sc
i and Rax�sc

i maps recall the pat-

terns of AvgWSSsc (Figure 3 bottom panel)), although

Figure 4. Probability density functions (PDFs) of the correlation coefficients: R
jWSSj
ij (top-left), Rax

ij (top-right), Rsc
ij (bottom-left) and

Rratio
ij (bottom-right), in the ‘‘all-to-all’’ analysis R

jWSSj
ij and Rax

ij PDFs show that the dynamics of |WSS| signals, as well as WSSax, are
strongly correlated (markedly left-skewed shape), and almost coincident. This implies that the WSS vector is predominantly aligned
with the axial forward flow direction. Rsc

ij PDFs exhibit a bimodal shape highlighting that WSSsc time-histories are either markedly
positively or negatively correlated. A larger inter-variability characterizes Rratio

ij correlation distributions: while some of the models
present an almost flat distribution, the other ones exhibit a PDF with a peak centered around the zero correlation value, or close to
the value Rratio

ij = 1. The median value from all 10 models was set as threshold R̂ to build the CN for each WSS-based quantity.

Table 1. Median values of Rij coefficients of the ‘‘all-to-all’’
correlation analysis.

LAD model Rij median values

R
WSSj j
ij Rax

ij Rsc
ij Rratio

ij
A 0.972 0.970 0.008 0.141
B 0.963 0.953 0.107 0.388
C 0.988 0.986 0.089 0.341
D 0.989 0.990 0.287 0.204
E 0.985 0.982 0.043 0.702
F 0.987 0.984 0.019 0.445
G 0.990 0.989 0.025 0.289
H 0.978 0.981 0.043 0.116
I 0.974 0.970 0.009 0.160
J 0.992 0.990 0.064 0.407
All models 0.982 0.982 0.054 0.270

LAD: left anterior descending.

Calò et al. 1215



its contribution to theWSS vector is overall poor, com-
pared to WSSax. This is because, by definition, the cor-
relation is a measure of similarity between the shape of
the time-histories, and not their amplitude. Therefore,
when considering WSS predominantly aligned with the
positive axial direction, positive/negative (i.e. right-/
left-handed) WSSsc time-histories result in positive/neg-

ative ‘‘layered’’ R
WSSj j�sc
i and Rax�sc

i correlations. In the

latter case, this is like saying that the consequence for
the hemodynamics establishing in the LAD is that there
are regions of the luminal surface where the secondary
and the axial WSS are ‘‘in phase’’ or ‘‘out-of-phase’’
(Figure 5).

‘‘One-to-all’’ correlations: inlet flow-rate versus WSS-
based descriptors

The ‘‘one-to-all’’ correlation approach was implemented
to measure the statistical interdependence between the
pig-specific LAD inlet flow-rate Q and the WSS-based
descriptors time-histories in each node i. The ‘‘one-to-
all’’ correlation maps (Figure S5, Supplementary Data)
highlight a uniform distribution of strong positive cor-
relation values both for Q versus |WSS| and Q versus
WSSax time-histories, in all LAD models. In the

absence of regions of marked flow recirculation or
separation, and with the Q time-history in the investi-
gated LAD arteries always indicating forward blood
inflow, we can conclude that the shape of the inlet flow-
rate waveform ‘‘propagates’’ along the vessel strongly
conditioning both |WSS| and WSSax time-histories. On
the contrary, Q versus WSSsc time-histories correlation
distributions reflect, as observed for R

WSSj j�sc
i and

Rax�sc
i maps (Figure S4 bottom panel, Supplementary

Data and Figure 5), the signed (right- and left-handed
orientation) distribution of WSSsc at the luminal sur-
face, leading to a succession of high positive and high
negative RQ�sc

i regions (Figure 6). This is like saying
that the presence of luminal regions subjected to a sec-
ondary WSS ‘‘out-of-phase’’ with the inlet flow-rate
clearly emerges.

CNs

Based on the median values of the overall PDFs distri-
bution obtained by pooling together the Rij of all

the 10 LAD models for each WSS-based quantity
(Figure 4), the following threshold values were

obtained: R̂
WSSj j

=0:982, R̂
ax
=0:982, R̂

sc
=0:054 and

R̂
ratio

= 0:270 and used to build the |WSS|, WSSax,

Figure 5. Luminal surface contour maps of ‘‘layered’’ correlation Rax�sc
i between axial (WSSax) and secondary (WSSsc) projections

of WSS vector at the same node i of the superficial mesh, for all the investigated LAD models. WSSax versus WSSsc correlation
patterns at the luminal surface are markedly affected by WSSsc directionality (Rax�sc

i maps recall the patterns of AvgWSSsc, see
bottom panel of Figure 3). Luminal surface areas with negative (positive) Rax�sc

i values are regions where the secondary and the axial
WSS are ‘‘out of phase’’ (‘‘in phase’’).

Figure 6. Luminal surface contour maps of ‘‘one-to-all’’ correlation RQ�sc
i between pig-specific LAD inlet flow-rate (Q) waveform

and secondary projection of WSS vector (WSSsc) at the generic node i of the superficial mesh, for all the investigated LAD models.
RQ�sc

i is markedly affected by WSSsc directionality, recalling AvgWSSsc patterns at the luminal surface (see bottom panel of Figure
3). Luminal surface areas with negative RQ�sc

i values are regions subjected to WSSsc ‘‘out of phase’’ with the inlet flow-rate.
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WSSsc and WSSratio networks, respectively. The analy-
sis of the luminal distributions of the normalized DC
(Figure 7) shows that |WSS| and WSSax CNs have
almost identical topologies. In particular, in both net-
works, the more topologically isolated (low DC) regions
are preferentially located at the inner wall (e.g. see mod-
els D, E, F and J), where the nearest neighborhoods of
|WSS| and WSSax time-histories are a small fraction
(DC\ 15%) of the network nodes. Interestingly, such
low DC regions co-localize very well with the luminal
surface areas exposed to low cycle-average |WSS|
(Figure 7). The DCmaps of theWSSsc (Figure 8) reflect
the presence of opposite-signed secondary components
characterizing WSS multidirectionality. In fact, WSSsc

time-histories correlated beyond the set threshold form
two main separated regions of different DC. This is
clearly evident in only some of the models in Figure 8,
that is, models B, C, D, H and J, because of the com-
mon scale set for DC maps visualization. Narrowing
the visualization range, the two separated DC regions
can be clearly identified also in the rest of the models,
as in Figure S6 of the Supplementary Data.

The quantitative information provided by the DC
metric proves that in two large portions (in general
around 35% and 65%) of the LAD wall the secondary
WSS exhibits very similar time-dependent behaviors,
despite its modest contribution to the overall WSS

dynamics (Figure 8). The visual inspection of the DC
luminal distributions of the WSSratio (Figure 9) high-
lights that some of the LAD models (A, D, H and I)
present lower DC values than the other ones. This is the
consequence of their Rratio

ij distributions (Figure 4, bot-
tom-right), characterized by the highest probability of
uncorrelated WSSratio time-histories. On the opposite,
LAD model E, characterized by a PDF with a peak
close to Rratio

ij =1, presents a markedly connected net-
work, with an almost uniform DC distribution above
75% (Figure 9). Notably, as observed for |WSS| and
WSSax, also for the WSSratio-based CN low DC areas
co-localize with the luminal surface area subjected to
low cycle-average |WSS| (Figure 9).

The visualization of the SPL luminal distributions
for the 10 LAD models here considered is available in
Figures S7 and S8 of the Supplementary Data. In

Figure 7. Luminal distributions of normalized degree centrality (DC) for the 10 |WSS| (top panel) and WSSax (bottom panel)
CNs. |WSS| and WSSax have almost identical topologies, with the more topologically isolated regions (low DC) preferentially
located at the inner wall of all LAD models. These regions co-localize with luminal surface areas exposed to low cycle-average
|WSS|, here displayed by the black contour lines representing the artery-specific lower cycle-average |WSS| tertile.
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Figure 10, the SPL luminal distributions are presented
for two explanatory LAD models (B and H). The SPL
is a measure of the topological ‘‘persistence length’’ of
correlations, in particular, the shorter the topological
distance between each nodal time-history and the rest
of the network, the longer the correlation persistence
length. As a first observation common to all the LAD
models, we report that |WSS|- and WSSax-based net-
works present similar SPL distributions at the luminal
surface, although some of the WSSax CNs are more
disperse than the corresponding |WSS| ones (this is the
case of, for example, model B in Figure 10, where SPL is
higher for the WSSax networks). In each LAD model,
nodes with a markedly different |WSS| and WSSax
dynamic behavior are topologically separated from the

rest of the nodes on the luminal surface by 2.25 links, at
least. These regions co-localize with areas at the luminal
surface exposed to low cycle-average |WSS| (Figure 10,
and Figure S7 of the Supplementary Data). Regarding the
SPL maps of the WSSsc network, these are characterized
by a less pronounced inter-variability, with shorter topolo-
gical paths (around 1.5 links-long on average, Figure 10,
and Figure S8 of the Supplementary Data) separating
nodal time-histories and, subsequently, a stronger persis-
tence of the spatiotemporal correlations. This overall uni-
form SPL distributions confirm the dynamical similarity
characterizing the WSSsc in the investigated dataset, as
suggested also by the DC analysis. Finally, the SPL lumi-
nal distributions of the WSSratio-based networks present
topologically isolated regions co-localized with luminal

Figure 8. Luminal distributions of normalized degree centrality (DC) for the 10 WSSsc CNs. The DC maps reflect the presence of
opposite-signed secondary components characterizing WSSsc directionality (see bottom panel of Figure 3). Two main separated
regions of different DC emerge, indicating WSSsc time-histories correlated beyond the set threshold (see also Figure S6 of the
Supplementary Data).

Figure 9. Luminal distributions of normalized degree centrality (DC) for the 10 WSSratio CNs. Low DC areas co-localize with the
luminal surface area subjected to low cycle-average |WSS|, here displayed by the black contour lines representing the artery-
specific lower |WSS| tertile.
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surface areas exposed to low cycle-average |WSS|, such as
for models B and H in Figure 10.

Discussion

The reported association of low WSS magnitude with
increased inflammation and lipid content supports the
hypothesis that such hemodynamic feature plays a rele-
vant role in plaque initiation in coronary arteries.33

More recent findings provide additional insight to the
low WSS hypothesis, reporting associations observed
between low WSS and plaque morphology and compo-
sition (see, for example, Gijsen et al.34). In addition, in
a very recent study, it is reported that low WSS incre-
mentally improves the positive predictive values for the
development of plaque.35 However, parallel to the iden-
tification of an established active role for low WSS in
the onset and progression of the atherosclerotic disease,
recent studies reported that there is a weak association
between lesions localization and low/oscillatory WSS.5–
8 This indicates the needs for a broader study of WSS

features to deepen the knowledge on the relationship
between the complex hemodynamic milieu and coronary
vessels biology. Most of the studies on the role of WSS in
the development of atherosclerosis apply a ‘‘reductionist’’
mathematical approach based on cycle-averaged quanti-
ties. Such approach, mostly justified by the clinical need of
synthetizing the information of 4D data, neglects the rele-
vance of WSS spatiotemporal evolution, especially when
clearly recognizable correlated patterns can be observed.
To contribute to fill this gap of knowledge, in this study,
theWSS spatiotemporal heterogeneity in coronary arteries
is investigated through a correlation-based and a CNs
approach. The new perspective offered by network science
allows the identification of correlated WSS patterns, by
drawing upon the similarity between their dynamical beha-
viors encoded in the time-histories that are associated to
the nodes of the networks. The findings of this study are
summarized in Table 2.

The combined results of the correlation analysis pre-
sented here provide, for the first time, a quantitative
proof of the fact that WSS in the investigated LAD
models is, overall, unidirectional and aligned with the
forward flow direction (Figure S3 in the Supplementary
Data). Moreover, from the ‘‘one-to-all’’ analysis it
emerges that, in the absence of regions of marked flow
separation and/or recirculation, the flow-rate waveform
at the inflow of the LAD shapes both the |WSS| and
WSSax time-histories. This result demonstrates, for the
first time, the impact of the inlet flow-rate in shaping
WSS patterns on the LAD artery luminal wall. The
strong influence of Q on WSS waveforms in LAD
explains the from-moderately-to-scarcely multidirec-
tional nature of WSS, already emerged in previous
studies evaluating hemodynamic descriptors of WSS

multidirectionality.13 However, our ‘‘layered’’ analysis
on WSSsc time-histories highlights that, although WSSsc
magnitude scarcely contributes to the overall WSS vector

Figure 10. Luminal distributions of average shortest path length
(SPL) of |WSS| and WSS-based descriptors (WSSax, WSSsc

and WSSratio) CNs, for two explanatory LAD models (B and H).
The white contour lines represent the artery-specific lower
cycle-average |WSS| tertile. |WSS|- and WSSax-based
networks present similar SPL luminal distributions, although for
case B the WSSax CN is more disperse than the |WSS| ones.
In each LAD model, nodes with higher |WSS| and WSSax SPL
co-localize with areas exposed to low cycle-average |WSS|. The
SPL maps of the WSSsc CN show shorter topological paths,
indicating a stronger persistence of the spatiotemporal
correlations. The SPL maps of the WSSratio networks present
topologically isolated regions (identified by higher SPL values)
co-localized with luminal surface areas exposed to low cycle-
average |WSS|.
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(Figure 3), the dynamics of WSSsc can be strongly (high
Rij absolute values) correlated or anti-correlated with the
dynamics of WSSax and |WSS| (Figure 5, and Figure S4
bottom panel in the Supplementary Data).

Moreover, strong correlations are also found
between WSSsc time-histories, as highlighted by the
‘‘all-to-all’’ analysis (Figure 4 bottom-left panel). These
correlations translate in markedly compact topological
connections between time-histories in the WSSsc-based
CNs. In fact, both DC and SPL distributions (Figures 8
and 10) do not highlight luminal surface areas where
the dynamic behavior ofWSSsc time-histories markedly
differs from the rest of the vessel wall (i.e. the overall
distributions of DC and SPL are almost uniform, on
the luminal surface). This emergent highly compact
topological feature looks very similar to that of helicity-
based CNs analyzed in a recent study on human carotid
bifurcation hemodynamics,19 and in agreement with
very recent findings on the role of the rotating direction
of helical flow patterns in dictating the luminal distribu-
tion of WSSsc in coronary arteries.13 The results from
this study suggest that both the WSSsc dynamics along
the cardiac cycle and its distribution at the luminal
surface are markedly dictated by the bi-helical

intravascular blood flow patterns in the LAD.13 For
these reasons, and since an atheroprotective role has
been suggested for bi-helical flow patterns in coronary
arteries,13 the spatiotemporal features of WSSsc wave-
forms and their association with helical flow deserve
further investigation.

The CNs-based analysis of |WSS| and WSSax time-
histories highlights that the spatiotemporal ‘‘complex-
ity’’ of those ‘‘networks’’ is characterized by well-dis-
tinct, topologically isolated regions (Figures 7 and 10),
preferentially located at the LAD inner wall. Here, the
persistence length of correlations is shorter than else-
where at the LAD luminal surface, since the topologi-
cal path separating the nodes is longer (high SPL). The
same topological features characterize also WSSratio-
based networks (Figures 9 and 10).

Notably, the dynamically isolated regions highlighted
by the CNs, where time-histories are markedly different
in shape from the rest of the vessel, in general are always
co-localized with low cycle-average |WSS| (Figures 7, 9
and 10). This finding suggests that not only the magni-
tude of the cycle-average |WSS| plays a main role in the
initiation of the disease,1,5,6,14,15 but also the shape of
the WSS time-histories, as well as the shape of the ratio
between the secondary and the axial WSS projections,
could contribute to trigger atherosclerosis at its earliest
stage. According to this hypothesis, different shapes of
WSS waveforms could trigger different mechanobiologi-
cal responses on the ECs. This conclusion echoes previ-
ous observations suggesting different mechanobiological
implications to the exposure to WSS-based quantities
with distinct waveforms. In other words, the present
findings suggest that atheroprotective versus athero-
prone waveform shapes can be discriminated and that
the latter are more heterogeneous.36

Conclusion

In conclusion, we performed an exploratory study
on personalized pig models of LAD, combining
correlation-based analysis and CNs theory with compu-
tational hemodynamics. The main findings of this work
suggest that where the WSS is low in magnitude, the
time-histories of WSS-based descriptors are markedly
different in shape from elsewhere in the vessel and have
a short topological correlation length. Reminding the
widely recognized atheroprone action of lowWSSmag-
nitude on the endothelium, the present results of the
CNs analysis lay the groundwork for future research
about the role of the shape of WSS temporal variations
in inducing the biological events triggering athero-
sclerotic coronary disease, in the context of the so-
called hemodynamic risk hypothesis. This may support
the identification of atheroprone versus atheroprotec-
tive WSS waveforms and the in vitro study of their
effect on the distinct modulation of ECs phenotype.36

In this perspective, the present study could open new
avenues for a more comprehensive characterization of
the link between WSS and atherosclerosis.

Table 2. Summary of the main findings of the correlation-based
analysis and CNs study.

Emergent features of LAD hemodynamics

‘‘all-to-all’’ correlation analysis
– Predominance of forward blood flow with minimal flow
reversal leads to highly correlated |WSS| and WSSax time-
histories
– WSSsc time-histories are either markedly positively or
negatively correlated
– Uncorrelated WSSratio waveforms at the luminal surface are
localized in regions where |WSSsc| is, on average, comparable
to or higher than |WSSax|

‘‘layered’’ correlation analysis
– Correlation patterns at the luminal surface are markedly
affected by the WSSsc directionality
– Alternance of regions at the luminal surface where WSSsc

and WSSax are ‘‘in phase’’ or ‘‘out-of-phase’’

‘‘one-to-all’’ correlation analysis
– The LAD inlet flow-rate waveform markedly shapes |WSS|
and WSSax time-histories

CNs analysis
– At the inner wall, |WSS| and WSSax time-histories are
different from the rest of the luminal surface
– WSSsc time-histories feature: presence of two distinguishable,
large spatiotemporally correlated structures on the luminal
surface
– In WSSsc networks, connections between time-histories are
overall more compact and stable (low SPL values and low inter-
variability)
– In |WSS|, WSSax and WSSratio networks, topologically
isolated regions (low DC and SPL) co-localize with low cycle-
average |WSS|

LAD: left anterior descending; WSS: wall shear stress.
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