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Abstract: The design, synthesis and characterization of new nanomaterials represents one of the most
dynamic and transversal aspects of nanotechnology applications in the biomedical field. New syn-
thetic and engineering improvements allow the design of a wide range of biocompatible nanostruc-
tured materials (NSMs) and nanoparticles (NPs) which, with or without additional chemical and/or
biomolecular surface modifications, are more frequently employed in applications for successful
diagnostic, drug delivery and therapeutic procedures. Metal-based nanoparticles (MNPs) including
metal NPs, metal oxide NPs, quantum dots (QDs) and magnetic NPs, thanks to their physical and
chemical properties have gained much traction for their functional use in biomedicine. In this review
it is highlighted how the generation of reactive oxygen species (ROS), which in many respects could
be considered a negative aspect of the interaction of MNPs with biological matter, may be a surprising
nanotechnology weapon. From the exchange of knowledge between branches such as materials
science, nanotechnology, engineering, biochemistry and medicine, researchers and clinicians are
setting and standardizing treatments by tuning ROS production to induce cancer or microbial cell
death.

Keywords: metal nanoparticles; iron oxide nanoparticles; silver nanoparticles; gold nanoparticles;
titanium dioxide nanoparticles; zinc nanoparticles; reactive oxygen species; photodynamic therapy;
photothermal therapy; sonodynamic therapy

1. Introduction

Nanoscience refers to the study and application of tiny materials with dimensions
equal to or less than 100 nm of which many other fields, such as material science, engineer-
ing, physics, chemistry, biology and medicine, can take advantage. One of the most active
areas of research in this field is the study and the development of nanostructured materials
(NSMs) and nanoparticles (NPs) [1].

NSMs and NPs have unique tunable physicochemical features such as catalytic ac-
tivity, electrical and thermal conductivity, light absorption and scattering that, starting
from bulk counterparts, allow enhanced performance to be exploited by many different
areas such as food industry, agriculture, cosmetics and, of course, medicine [2]. In the
latter area, NSMs and NPs have found suitable applications in fluorescent biological la-
beling [3,4], pathogen detection [5], protein analysis [6], DNA structure probing [7], tissue
engineering [8], separation and purification of cells and biological molecules [9], magnetic
resonance imaging (MRI) contrast enhancement [10], drug and gene delivery [11,12].

Particularly, in more recent decades, NPs have been successfully used in the clinic
as effective tools for alternative therapy such as photodynamic therapy (PDT) [13–15],
high-intensity focused ultrasound therapy (HIFU) [16], photothermal therapy (PPT) [17]
and sonodynamic therapy (SDT) [18–21]. The ever-increasing success of these therapies is
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due to their ability to induce the death of prokaryotic and eukaryotic cells through key cel-
lular mechanisms such as that of induction of NP-mediated reactive oxygen species (ROS)
generation [22]. Some NPs, once released into the body through different internalization
methods such as oral, parenteral, inhalation administration and skin adsorption, can affect
redox homeostasis both by generating ROS or lessening scavenging pathways [22,23].

1.1. ROS Generation and Oxidative Stress

Reactive oxygen species, key signaling molecules during cell signaling and home-
ostasis, are produced in cells by oxidases, originating from the excitation and univalent
reduction of the molecular oxygen, which leads to the generation of hydroxyl radicals,
superoxide anion and hydrogen peroxide [24]. Briefly, molecular oxygen generates super-
oxide anion, the primary ROS, via reduction of one electron catalyzed by nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase. Further reduction of oxygen may
either lead to hydrogen peroxide or hydroxyl radicals via dismutation and metal-catalyzed
Fenton reaction, respectively [25,26]. Some of the endogenous sources of ROS include
mitochondrial respiration, inflammatory response, microsomes and peroxisomes. However,
the occurrence of free radicals from essential byproducts of mitochondrial respiration and
transition metal ion-catalyzed Fenton-type reactions mainly can regulate many signal trans-
duction paths in a dose-dependent way. While low or medium ROS levels raise mitogenic
signaling via reversible oxidations, high ROS levels lead to nucleic acids and lipid oxidation
and peroxidation, resulting in cellular apoptosis and necrosis phenomena [25,27–30].

Along with free-radical and non-free radical oxygen-containing molecules, there are
also reactive nitrogen, iron (Fe), copper (Cu), and sulfur species which could attribute to
increased ROS formation and oxidative stress and thus impairing the redox balance [31,32].
In this regard, the appropriate physiological level of ROS is managed by antioxidant
molecules such as glutathione (GSH), vitamin E, ascorbic acid, flavonoids and by detox-
ifying enzymes, such as catalase (CAT), glutathione peroxidase (GPX) and superoxide
dismutase (SOD) [33]. According to this model, cells and tissues respond to increasing lev-
els of oxidative stress via antioxidant enzyme systems. During conditions of mild oxidative
stress, transcriptional activation of phase II antioxidant enzymes occurs via nuclear factor
(erythroid- derived 2)-like 2 (Nrf2) induction. At an intermediate level, redox-sensitive
mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain enhancer of
activated B cells (NF-κB) cascades trigger a proinflammatory response. However, extremely
toxic levels of oxidative stress result in mitochondrial membrane damage and electron
chain dysfunction leading to cell death [24]. Therefore, perturbation of the normal redox
state contributes to peroxide and free radical production that has adverse effects on cell
components including proteins, lipids and DNA [34], leading to loss of cell growth, fibrosis
and carcinogenesis [35–37] (Figure 1).
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Figure 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic illustration of various triggers responsible for reactive oxygen species (ROS) generation and ROS-
induced pathways leading to cell damage.

1.2. NPs-Induced Oxidative Stress

NPs of varying chemical composition such as metal oxides have been shown to induce
oxidative stress and, in this regard, NPs have been reported to influence intracellular
calcium concentrations, activate transcription factors and modulate cytokine production
via generation of free radicals [22,25,38–41]. The main key factors involved in NP-induced
ROS include: prooxidant functional groups on the reactive surface of NPs, active redox
cycling on the surface of NPs due to transition metal-based NPs (MNPs), and particle-cell
interactions. With regards to these key factors, several studies have shown the significance
of reactive particle surfaces in ROS generation [25,39,42,43].

Free radicals are generated from the surface of NPs when both the oxidants and free
radicals bind to the particle surface. Moreover, reduced particle size results in structural
defects and can alter electronic properties on the NP surface, thereby creating reactive
groups [44,45]. Within these reactive sites, the electron donor or acceptor interact with
molecular oxygen to form superoxide anion which in turn can generate additional ROS
via Fenton-type reactions [46]. For instance, NPs such as silica (Si) and zinc (Zn) with
identical particle size and shape lead to diverse cytotoxicity responses due to their surface
properties. Zinc oxide (ZnO), being more chemically active than silicon dioxide (SiO2),
leads to increased superoxide anion formation, resulting in oxidative stress [47]. Moreover,
the mechanism for NP-mediated ROS generation can be influenced by physicochemical
features of NPs such as size, chemical structure, surface area and charge. Furthermore,
transition metals such as Si, Zn, Cu, Fe, chromium (Cr) and vanadium (V) are associated
with ROS generation through Fenton and Haber-Weiss reaction mechanisms [42]. In Fenton
responses, a transition metal ion, reacting with hydrogen peroxide, yields hydroxyl radicals
and an oxidized metal ion [26]. Metal-based NPs, such as Cu and Fe, affect oxidative stress
by way of Fenton reactions. On the other hand, the Haber-Weiss reaction explains the
generation of hydroxyl radicals via a reaction between hydrogen peroxide and oxidized
metal ions [26,37,45]. Furthermore, cobalt (Co), Cr and V NPs can catalyze both Haber-
Weiss and Fenton responses, considering that the Fenton reactions are also implicated
in iron-oxide NPs (IONPs)-induced ROS generation processes [31]. Finally, some NPs
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promote the activation of intercellular radical-inducing systems such as the MAPK and
NF-κB pathways [48].

In addition to the prooxidant effect of NPs, ROS are also induced endogenously where
the mitochondrion is a major cell target for NP-induced oxidative stress. Specifically,
once NPs gain access into the mitochondria, they stimulate ROS via impaired electron
transport chain, structural damage, activation of NADPH-like enzyme systems and depo-
larization of the mitochondrial membrane [49,50].

1.3. NP-Induced Cell Death

Apoptosis has been implicated as a major mechanism of cell death caused by NP-
induced oxidative stress [51,52]. Among the different apoptotic pathways, the intrin-
sic mitochondrial apoptotic pathway plays a major role in metal oxide NP-induced cell
death, since mitochondria are one of the major target organelles for NP-induced oxidative
stress [50]. High levels of ROS in the mitochondria can result in membrane phospho-
lipid damage and in mitochondrial membrane depolarization [53]. A small proportion of
electrons escapes the mitochondrial chain and interacts with molecular oxygen to form
superoxide anion which later gives rise to hydrogen peroxide or partially reduces to damag-
ing hydroxyl radicals. NPs can catalyze the superoxide anion generation either by blocking
the electron transport chain or accelerating electron transfer to molecular oxygen [54,55].
Various metal oxide NPs including Zn, Cu, titanium (Ti), and Si elicit ROS-mediated cell
death via mitochondrial dysfunction [56–58].

1.4. Introduction to Metal-Based NPs

Metal-based NPs have been used to revolutionize several fields including sensors,
catalysis, optoelectronic materials and biomedical science. Such widespread applications
are attributable to their electrochemical and physical properties, reflecting their small sizes
and reactive surfaces. Their fixed particle mass, high aspect ratio and particle surface
bioreactivity tailor them to meet the needs of specific applications. However, a high
surface-to-volume ratio makes MNPs extremely reactive, particularly with regards to free
radical generation [59,60]. Furthermore, nanoscale dimensions enhance cellular uptake and
interaction with biological tissues. Metal-based NPs can generate free radicals via Fenton-
type reactions that react with cellular macromolecules and induce oxidative stress [61].

In this review, the authors mainly discuss the role of MNPs in ROS generation for
biomedical applications with special emphasis on highly selective approaches such as
photodynamic, photothermal and sonodynamic therapy.

2. Metal-Based Nanoparticle Classes and Their Biomedical Applications

Among NPs we can identify two main groups: (i) organic NPs including liposomes,
polymeric NPs, carbon-based NPs and dendrimers; and (ii) inorganic NPs including QDs,
metal oxides and metal and magnetic NPs [62]. Referring to the metallic ones, it must be
said that they can be designed and produced through different methods of synthesis and
functionalization (Table 1). To improve their biotechnological drug delivery and theranostic
applications, surface functionalization can be achieved with surfactants, polymers, drugs,
oligonucleotides, peptides or antibodies.

A wide range of MNPs such as silver (AgNPs), gold (AuNPs), IONPs, zinc oxide
(ZnONPs) and titanium dioxide (TiO2NPs) NPs have been mainly exploited after a whole
series of optimizations and customizations for improving their applicability as therapeutic
and/or diagnostic agents.
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Table 1. Main advantages and disadvantages of metal-based nanoparticles (NPs).

Advantages Disadvantages

Metal-Based NPs

Biocompatibility
High oxidation efficacy

High photostability
High binding affinity

Low cost
Surface enhanced Raman scattering

Strong plasma absorption
Biological system imaging

Determine chemical information on metallic
nanoscale substrate

Instability
Impurities loaded during their synthesis

Difficulty in synthesis
Thermal decomposition

2.1. Iron-Oxide Magnetic NPs

In biomedical applications, magnetic nanoparticles are characterized by small in-
organic crystals (<20 nm diameter) of magnetic material that can result in a core-shell
configuration by their coating with an organic layer or in a multicore-shell configuration
by their embedding in an organic matrix [63]. The inorganic crystals of interest can consist
of several materials with ferromagnetic or superparamagnetic behaviors (Figure 2). How-
ever, the so-called iron oxides such as magnetite and maghemite are the most prevalent
materials [64]. In this case, the small size of the inorganic crystal enables the formation of
particles with a single magnetic domain characterized by superparamagnetic properties.
Moreover, as previously described, an organic shell is usually added to the magnetic NPs
in order to give them colloidal stability in biological and aqueous fluids [64,65].Figure 2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Iron NPs (Fe3O4 NPs) can be prepared by the chemical coprecipitation method and enriched with an external
coating, including polyethylen glycol, polyacrylic acid, chitosan or dextran.

The ability of magnetic NPs to react with applied magnetic fields by translation
(in magnetic field gradients), physical particle (in alternating and rotating fields) or internal
dipole rotation (in alternating and rotating magnetic fields) shows great interests for
biomedical applications [63]. The magnetic field energy can be locally converted into either
thermal energy or mechanical forces and torques. Magnetic NPs are unique in possessing
abilities that allow the external control of their movement and the use of their mechanical
forces/torques on biological structures.
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Thanks to the magnetic NP properties mentioned before, iron oxide NPs are studied for
a broad range of biomedical applications such as MRI contrast agents [66], magnetically tar-
geted drug delivery [67], magnetically assisted gene transfection [68], magneto-mechanical
actuators of cell surface receptors [69], magnetically triggered drug release [70] and mag-
netic fluid hyperthermia (MFH). In this latter biomedical application, magnetic NPs are
placed in contact with cancer tissues after which an alternating magnetic field (AMF)
is employed leading to heat dissipation until an adequate thermal dose provokes cell death
by different mechanisms [71]. Recently, some authors have demonstrated that one of those
mechanisms refers to the generation of ROS [72,73]. Therefore, one potential cancer cell
death mechanism might be the ROS production from iron-oxide NPs in combination with
AMF. This phenomenon can be related to enhanced kinetic activity of the Fenton-like reac-
tion or to the decreased ability of a cancer cell to scavenge ROS when high temperatures
are present in the system [73]. For this reason, hyperthermia as a biomedical application
has gained a lot of attention with more than 350 ongoing clinical trials using magnetic NPs
and hyperthermia in the USA and Europe [63]. Furthermore, hyperthermia has been also
used as an adjuvant treatment to improve anticancer treatments like chemotherapy and
radiotherapy and indicates that MFH has a promising role as an adjuvant to chemotherapy
by potentiating the effects of anticancer agents.

Interestingly, a recent in vitro study described a sonodynamic-mediated effect by
employing low-intensity ultrasound (US) in combination with iron-oxide NPs and demon-
strated increased production of ROS. Indeed, it is believed that US exposure, such as that in
AMF, facilitates the iron release necessary to trigger the Fenton reaction which ultimately
is responsible for generation of ROS [74]. The authors used US with 1 MHz intensity
and different iron-oxide NPs concentrations as the sonosensitizer to explore their com-
bined activity on the breast cancer cell line MCF-7. They considered four different groups:
cells without any treatment, cells treated with iron-oxide NPs, cells exposed to US and
cells treated with the sonodynamic combination of iron-oxide NPs and US. A significant
decrease in cell proliferation was observed when MCF-7 cells, in in vitro experiments,
underwent the combined treatment with US (at a frequency of 1 MHz with a 5 cm2 probe,
exposing cells for 1 min to a horizontal beam of continuous US wave at fixed output
intensities of 2 W/cm2) and iron-oxide NPs compared to the control group, iron-oxide NPs
group and US group, suggesting that the sonodynamic effect of US and iron-oxide NPs
might be due to ROS generation.

2.2. Silver NPs

Among MNPs, silver NPs (AgNPs), ranging between 1 and 100 nm in size, are very at-
tractive due to their remarkable optical, thermal conductivity and electrical properties [46],
which support their main role in the industrial applications of photonics, microelectronics
and catalysis. In particular, AgNPs have great potential in a broad range of nanomedicine
applications as biomedical device coatings, antimicrobial agents, imaging probes, drug-
delivery carriers and diagnostic and optoelectronic platforms [75].

Focusing our attention on their antimicrobial activity, AgNP-cytotoxicity is charac-
terized by their ability to release silver ions from their surface when placed in contact
with an aqueous environment, as the particle surface dissolves. The release of Ag+ ions
is affected by several factors including the size and shape of NPs, capping agent and
colloidal state. The interaction of silver ions with thiol groups on bacterial cell surface is
caused by the large number of sulfur-containing proteins. Therefore, AgNPs can influence
bacterial cell viability by their interaction with sulfur-containing proteins into the bacteria
cell membrane [76]. Ag+ ions work by substituting other essential metal ions, such as
Zn2+ and Ca2+, in critical bacterial enzymes and proteins, provoking damage of cellular
respiration and cell death. AgNPs can also anchor to the surface of the bacterial cell wall
and penetrate it, causing structural changes to the membrane or increasing its permeability.
All of these phenomena lead to cell death. Alongside this, it has been proposed that silver
ions, particularly Ag+, released from AgNPs can provoke an interaction with DNA phos-
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phorus moieties, causing the inactivation of DNA replication [76]. Furthermore, AgNPs
can react with the sulfhydryl groups of metabolic enzymes that belong to the bacterial
transport chain of electrons, proving their inactivation.

ROS and free-radical generation are another AgNP mechanism causing a cell-death
process, demonstrated in in vitro studies. Indeed, the potent cytotoxic activity of AgNPs
and ability to sustain antibacterial, antifungal and antiviral activity and, for some authors,
also their anticancer activity [77], is mainly due to their ability to induce ROS and free-
radical species production, such as hydrogen peroxide, superoxide anion, hypochlorous
acid, hydroxyl radicals and singlet oxygen [78,79]. Regarding their antibacterial role, once
the AgNPs are in contact with bacteria, the free radical-mediated pore generation into
the cell wall is the leading mechanism of bacterial cell death. Therefore, some authors
have investigated how to improve the AgNPs’ antimicrobial activity via localized surface
plasmon resonance (LSPR) to increase the ROS generation by exposure to visible light [80].

The LSRP is related to the electron collective oscillation at the metallic structure
interface, which can be induced by the electron-magnetic interaction of the metal with
light at an appropriate wavelength. In other words, LSPR is an optical phenomenon
generated by conductive nanoparticles, smaller than the incident wavelength, interacting
with light [81]. In this regard, Vasil’kov and colleagues have published research where
they have investigated how antibacterial properties of AgNPs increased when the plasmon
resonance effect occurs due to a 470 nm laser radiation application for 5 min, with a
power of 5 mW, in a Petri dish containing AgNPs, Gram-positive and Gram-negative
bacteria [82]. The main objective of this study was to increase the antibacterial activity of
AgNPs by exploiting the capability of LSPR to influence the electronic state of the particles
and increase the number of silver ions (Ag+) which ultimately are responsible for the
antimicrobial effect. Recently, research from da Silva and colleagues [80] has shown a link
among AgNPs, LSPR, ROS and the AgNPs’ antimicrobial activity. The authors claim that,
even if some studies support the idea that Ag+ plays a main role in antibacterial activity [83],
together with the capability of AgNPs to introduce nicks in the cytoplasmic membrane [84],
AgNPs and Ag+ can also induce ROS formation, which damages the cell cytoskeleton,
oxidizing nucleic acids and proteins, leading to potential chromosomal aberrations and cell
death [85]. In this study, the peculiar association between the bactericidal effect of AgNPs,
along with an intracellular ROS increase, probably as generated by LSPR via use of a LED
floodlight (50 W) on the AgNPs’ surface, was explained. This finding, in our opinion,
seems very promising since it may broaden the opportunity, as we have mentioned before,
to also study the cytotoxicity of AgNPs against cancer cells [86,87].

2.3. Gold NPs

Another noble metal with great abilities and promising results in medicine is gold
(Au) [88]. In particular, gold nanoparticles (AuNPs) have demonstrated anticancer proper-
ties derived from different mechanisms which can be explained by varied Au properties.
AuNPs can be exploited for anticancer purposes via several approaches, such as drug-
delivery, anti-angiogenic, photothermal and photodynamic effects [89].

The AuNPs’ photothermal application is due to the multiplicative effects of increased
local absorption of laser radiation at near-infrared (NIR) frequencies by LSPR, inducing
hyperthermia in cancer tissue, revolutionizing the traditional and widespread laser hyper-
thermia of tissues [90]. Additionally, visible light irradiation can allow for hyperthermia by
LSPR, as recently demonstrated by Mendes et al., in which 14 nm AuNPs were combined
with green laser light despite the fact that therapeutic efficacy of such an approach is
limited in cancer due to poor penetration of light through tissue [91,92].

In this regard, to overcome the low light penetration into tissue, it has also been
proved that Au-based nanotherapeutics can absorb radiofrequency (RF) and produce heat,
giving the possibility to treat deeply localized tumors by using Au and hyperthermia-
based options [93]. More intriguing is the approach shown by Brazzale and colleagues,
where targeted AuNPs might be activated and kill cancer cells by US [19] (Figure 3).
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In this pioneering in vitro work, the role of targeted AuNps as sonosensitizers in SDT, an
innovative anticancer approach where, it is generally accepted, a non-toxic molecule or
system (chemical actuator), i.e., the sonosensitizer, is activated by US (physical activator),
yielding oxidative damage by ROS generation, and consequent cancer cell death [94,95].
More specifically, the authors suggest that US, used at the frequency of 1.866 MHz for a
total 5 min of exposure, through a physical phenomenon called sonoluminescence [96],
might drive the AuNPs’ plasmonic effect, as derived from LSPR, to be able to convert the
photon energy to heat in order to induce cellular damage via ROS production. Analysis
of intracellular ROS production was investigated in two different cell lines, HCT-116 and
KB, and demonstrated that, while cells incubated with AuNPs in the absence of US and
US alone did not encounter an increase in intracellular ROS productions, cells that were
exposed to both AuNPs and US, i.e., sonodynamic treatment, were subjected to a significant
increase in ROS production and therefore enhanced death rates.

Figure 3 
 

 
Figure 3. Gold nanoparticles (Au-NPs) can be decorated by adding the folic acid carboxyl group. Folic acid was activated by
carboxyl groups by N-hydroxysuccinimide (NHS) and dicyclohexylcarbodiimide in anhydrous dimethyl sulfoxide (DMSO)
and conjugation of NHS-ester activated folate to NH2-PEG3.5kDa-SH (FA-PEG-SH) in anhydrous DMSO in presence of
triethylamine [19].

2.4. Titanium Dioxide NPs

Titanium dioxide (TiO2) is one of the most extensively used nanomaterials for several
applications [97], but the photocatalytic properties of TiO2NPs have raised many issues as
a result of ROS generation while UV irradiation is performed. Indeed, electrons in the TiO2
valence band absorb the photon energy under UVA irradiation, and jump to the conduction
band, allowing extraction of electrons from water or hydroxyl ions generating hydroxyl
radicals by valence band holes. Other methods of ROS formation, such as superoxide anion
and singlet oxygen by additionally mechanisms, have also been demonstrated [98,99].
However, the photocatalytic properties of this NP make TiO2 a valuable competitor for
some biomedical applications, such as in killing microorganisms [100,101] and treating
malignant tumors. The latter application has been investigated since 1992, when Cai et al.
studied the effect of photoexcited TiO2 on cancer cells in in vitro studies [102]. From this
initial investigation, other researchers have studied the cytotoxicity by photoexcited TiO2
on cancer cells [103], but more intriguing has been two recent scientific works where the
TiO2NPs have been found to be effective in PTT against a melanoma cancer model and
also as sonosensitizer in SDT against a breast cancer model [104,105].

In the first study, the authors assessed the application of PEGylated TiO2NPs in in-
ducing hyperthermia and necrosis in in vivo melanoma tumors after PTT consisting of a
continuous wave near-infrared (NIR) laser diode at 808 nm wavelength with an intensity
of 2 W/cm2 for seven minutes. Four mice groups were enrolled in the experiments and the
main result showed that in the PEGylated TiO2NPs + laser therapy group, not only did
the tumor growth cease, but the tumor size also shrank according to the ultrasonography
images and the histopathological examination in the three days following the experiment.
Interestingly, five mice from the PEGylated TiO2NPs + laser therapy group were eutha-
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nized after three months of follow-up to demonstrate biocompatibility of these PEGylated
TiO2NPs. However, no data about the survival rate of those animals were reported.

The latter work investigated TiO2NPs, more precisely the spherical carbon-doped
titanium dioxide nanoparticles (C-doped TiO2NPs), as a sonosensitizer in SDT in order to
overcome the major limitation associated with cancer therapies that involve electromagnetic
waves, i.e., the shallow penetration depth of light sources into tumor tissue [105]. Taking
this into consideration, Yang and colleagues investigated whether C-doped TiO2NPs were
able to suppress the proliferation of 4T1 breast cancer cell line in both in vitro and in vivo
models in combination with US treatment (US frequency of 1.0 MHz and a duty cycle of
50% with a negative pressure of 0.33 MPa and intensity of 1.8 W/cm2 for 90 s) in order to
inhibit tumor growth. Firstly, in the in vitro study, the authors quantified ROS production
between treatment groups and found that C-doped TiO2NPs, in combination with US,
significantly increased the level of ROS compared to control group. This result corroborated
that, under US irradiation, ROS generation could be improved in the presence of C-doped
TiO2NPs. Thereafter SDT cytotoxicity was evaluated confirming that SDT, i.e., 4T1 cells
cultured with C-doped TiO2NPs and subjected to US exposure, induced higher cytotoxicity
in 4T1 cells than the other treatment groups. Interesting was the speculation about the
possible pathway of cell damage induced by SDT, where the authors suggested a role
of sonoluminescence in the C-doped TiO2NPs activation to generate more ROS and kill
4T1 breast cancer cells [96]. Finally, in this work, to further investigate the cell death of
4T1 cells induced by SDT, an in vivo study was performed. Groups of 5 nude mice were
enrolled, all bearing subcutaneous 4TI breast cancer cells, and the data showed that the
C-doped TiO2NPs group (150 mg/mL C-doped TiO2NPs at day 0 and day 7) and US
group (PBS at day 0 and day 7) could not suppress the tumor growth, while the SDT
group (150 mg/mL C-doped TiO2NPs at day 0 and day 7 with US exposure) was able to
significantly delay tumor growth in that the relative tumor volume at endpoint was almost
half that of other control groups. Moreover, by using histologic staining of the tumor site,
authors observed that SDT enhanced the ability to cause 4T1 cell death compared to the
other groups, confirming that C-doped TiO2NPs could be considered as sonosensitizers
for sonodynamic treatments, and in general as an efficient strategy for alternative cancer
treatments.

2.5. Zinc Oxide NPs

Relying on these promising results from TiO2NPs as photo- or sonosensitizer in PPT
and SDT respectively, ZnONPs have also been investigated as photo- or sonosensitizers
for cancer therapy. Indeed, the ZnO electronic structure is part of the semiconducting
metal oxide family like TiO2 and defines ZnONPs’ catalytic properties [106]. Therefore,
ZnONPs can be photoexcited in the UV-A range (315 ≤ λ < 400 nm) [107]. Another
possibility to excite ZnONPs in aqueous solutions is the application of US, as propagation
in a liquid milieu causes the well-known physical phenomenon called acoustic cavitation.
A number of secondary effects are determined by this phenomenon, and in particular
sonoluminescence, which represents a sonoluminescent emission, mainly a UV light,
due to the cavitation bubble implosion [96]. For this reason, many researchers suggest that
ZnONPs bring about cytotoxic effects when exposed to US via generation of ROS as their
principal mechanism of bacterial and cancerous cell death [108].

Through investigating the antibacterial activity of ZnONPs in vitro studies, it is well
known that ZnONPs have antimicrobial activity against Gram-positive (B. cereus, B. subtilis,
E. faecium, L. monocytogenes, S. aureus and S. epidermis) and Gram-negative (E. coli, K. pneumo-
niae, P. aeruginosa and Salmonella sp.) bacteria [109]. Furthermore, Seil and colleagues have
shown that intrinsic antibacterial activity against S. aureus of ZnONPs might be enhanced,
up to 76%, by US exposure as this provides an additional mechanism to decrease bacterial
activity via enhanced generation of hydrogen peroxide by S. aureus compared to control
samples [110].
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Recently Racca et al. [111] reported a novel study demonstrating the highly efficient
killing capability of amino-propyl functionalized ZnO nanocrystals (ZnONCs) in associa-
tion with high-energy shock waves (HESW) for cancer cell treatment. This in vitro work
investigated KB cells’ viability after incubation with a non-toxic concentration of ZnONCs
(10 µg/mL) in combination with HESW exposure. To demonstrate the effective synergy be-
tween the HESW and ZnONCs, cells were pre-incubated for 24 h with 10 µg/mL ZnONCs
and then exposed to HESW (by considering several energy flux density ranges, for instance
0.15–0.22–0.3-0.4-0.52 mJ/mm2, corresponding to positive peak pressures of 29.1, 39.4,
50.3, 61.7 and 74.1 MPa, respectively). Authors observed that a single treatment was not
able to induce a significant difference in cell viability between HESW exposure alone and
ZnONCs + HESW exposure. In contrast, multiple HESW treatments (3 times/day) showed
cytotoxicity only for those cells pre-incubated with ZnONCs. Studies of the mechanism
showed that the ROS role was controversial. Therefore, the authors suggested that the
anticancer activity was due to a combination of several effects, including the non-inertial
cavitation, the so- called “nanoscalpel effect,” as well as an imbalance of electric change,
involving the ZnO piezoelectric behavior [111].

3. Conclusions

Metal-based NPs are highly demanded because they have broad range of applications
in healthcare, cosmetics and industry. Particularly, in this review, authors have focused
their attention on novel biomedical applications of IONPs, AgNPs, AuNPs, TiO2NPs and
ZnONPs in photodynamic, photothermal and sonodynamic therapies. Specifically, these
MNPs are able to be triggered by different physical actuators to generate ROS for the
selective killing of bacteria and cancer cells. Their pivotal role as remotely activated NPs for
therapeutic ROS generation has been highlighted for IONPs under magnetic field, and for
AgNPs, AuNPs, TiO2NPs and ZnONPs under light or US exposure.

Despite these promising results, MNPs’ potential druggability requires further ex-
tensive evaluation before they can reach clinical applications. Therefore, future research
involving MNPs should consist of robust pre-clinical studies with a predominant focus on
acceleration of their clinical translation for biomedical uses.
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