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Abstract: Artificial lighting systems are used in commercial greenhouses to ensure year-round yields.
Current Light Emitting Diode (LED) technologies improved the system efficiency. Nevertheless,
having artificial lighting systems extended for hectares with power densities over 50 W/m2 causes
energy and power demand of greenhouses to be really significant. The present paper introduces
an innovative supervisory and predictive control strategy to optimize the energy performance of
the artificial lights of greenhouses. The controller has been implemented in a multi-span plastic
greenhouse located in North Italy. The proposed control strategy has been tested on a greenhouse of
1 hectare with a lighting system with a nominal power density of 50 W m−2 requiring an overall
power supply of 1 MW for a period of 80 days. The results have been compared with the data
coming from another greenhouse of 1 hectare in the same conditions implementing a state-of-the-art
strategy for artificial lighting control. Results outlines that potential 19.4% cost savings are achievable.
Moreover, the algorithm can be used to transform the greenhouse in a viable source of energy
flexibility for grid reliability.

Keywords: greenhouse; artificial lighting system; natural lighting; energy flexibility; predictive
control; optimization; demand side management; algorithm

1. Introduction
1.1. Energy Consumption of Greenhouses

Commercial greenhouses are facilities used to produce flowers or vegetables through-
out the year, leading to higher yields at the same area of land. For this reason, commercial
greenhouses are considered an effective method for satisfying the increasing needs of the
growing world’s population [1]. However, the energy consumption of those facilities is
increased by the necessity of maintaining appropriate indoor environmental conditions to
ensure the crop growth (i.e., temperature, humidity, lighting, carbon dioxide concentration
should be maintained constantly in certain ranges). Several studies have been focused on
assessing the environmental impact of this action [2,3] or reducing the energy consumption
related to the commercial greenhouse indoor climate control [4]. Basically, a commercial
greenhouse can benefit by the increase in the light input, the reduction of heat losses during
cold weather, and the increase in heat removal during the warm season [5]. For these
purposes, the scientific literature provides a wide selection of studies focusing on the
improvement of the performance of either the envelope [6,7] or the Heating Ventilating
and Air Conditioning (HVAC) system [8] or the energy supply [9,10].

Serale et al. showed how nowadays improved control strategies are an alternative cost
effective solution that can significantly improve the building energy performance [11–14].
Commercial greenhouses are not far behind other buildings’ end-uses. Indeed, innovative
controllers largely proven to be an effective method to reduce energy consumption or
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increase crop production of commercial greenhouses. This is particularly true, thanks to the
current large amount of data also readily available in those environments [15]. For instance,
Van Straten et al. [16] extended the pioneering work of Reference [17,18], investigating
a receding horizon optimal control strategy to improve the thermal management of a
multi-span greenhouse. Simulation results showed a potential reduction of the energy
demand of approximately 50% and an increase of the biomass production of approximately
40%. In Reference [19], the author proposed the use of different optimization algorithms
combined with prediction of the greenhouse energy consumption to obtain a significant im-
provement of energy performance. References [20,21] proposed fuzzy-logic control systems
to enhance ventilation, heating, humidifying, and dehumidifying purposes and integrated
photoVoltaic (PV) power into commercial greenhouses. Tang et al., in Reference [22], pro-
posed a system that coupled Light Emitting Diode (LED) artificial lights with fiber optic
sunlight collectors for a multi-layer cultivation. The system was capable of accelerating
vegetables growth rate and reducing the energy consumption of the artificial lighting
systems, also thanks to a remote control system. Model-based controllers proved to be
particularly effective. For example, Ma et al. [23] verified experimentally a novel simulation
model that was able to enhance the performance of a conveyor system used to maintain
an optimal micro-climate in the crop boundary layer. References [24,25] adopted Model
Predictive Control (MPC) formulation to reduce water and energy consumption and track
the set-point of the indoor air temperature. Similarly, Xu et al. have conducted extensive
studies investigating the opportunities offered by a model-based receding horizon control
approach to enhance profitability of commercial greenhouses [26–28]. In particular, they
simulated the benefits achievable by means of a two time-scale receding horizon control ex-
ploiting short- and long-term weather predictions. In Ref. [28], they focused on the control
of the greenhouse’ artificial lighting system, showing that an improved LED can boost the
profit margin up to 24.5%. Finally, Bersani et al. reviewed many other solutions based on
MPC that, starting from the acquired data from the the greenhouse, were able to enhance
energy management strategies, allowing a sensible reduction in energy consumption. They
showed how control strategy in combination with sustainable approaches allowed them to
reach nearly zero-energy consumption [29].

1.2. Artificial Lighting System for Commercial Greenhouses

Xu et al. [28] highlighted how the artificial lighting systems represents one of the
most significant contributions to energy and operative costs of commercial greenhouses.
Artificial lighting systems are used to boost the crop production or fulfill the lacking of
a sufficient natural DayLight Integral (DLI) needed for activating plants’ photosynthetic
processes [30]. The photosynthesis is not caused by the electromagnetic radiation in the
whole light spectrum, but only by the wavelengths included in the Photosynthetic Active
Radiation (PAR) range. The PAR range depends from plant species to plant species but is
generally considered from 400 nm to 700 nm.

Artificial lighting systems have been used extensively in commercial greenhouses until
the 1980s [31]. Artificial lighting systems allow extension of the greenhouse production over
a period in the year and increase the yield of the greenhouse, even in favorable climate zones
and periods [32]. This aspect causes twofold advantages. On the one side, the produced
quantities are increased. On the other side, artificial lights allow the yield to be produced
even off-season implying the opportunity of receiving premium prices. Paucek et al. [33]
demonstrated how the use of artificial lightning in greenhouses can increase the yield even
in favorable conditions, like warmer seasons in the Mediterranean zone. In agriculture,
the artificial lights efficiency is measured as the ratio of the the power emitted in the PAR
wavelength range and the electricity absorbed by the system. The arrival of the LED
allowed the light conversion efficiency to be further improved [34], reaching values over
2 µmol J−1. The reduction of LED unitary cost further fostered the extensive utilization of
artificial lighting system in commercial greenhouses [35]. Moreover, the longer lifespan of
these devices allowed to keep the costs of maintenance low with respect to other artificial
lights, like high pressure sodium lamps [36]. In order to guarantee the plant physiological
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processes, the average installed power of artificial lighting systems ranges from 50 W·m−2

to 400 W·m−2 [28]. Since the surface measurement unit used to quantify dimensions of
commercial greenhouses is the hectare, it is worthy to express the power for artificial lights
installed as 0.5 MW/ha to 4 MW/ha. The surface dimensions of a commercial greenhouse
ranges between one and dozens of hectares. Thus, artificial lighting systems represent an
incredibly significant power load. Most of this power load can be considered a flexible
capacity that can be managed to perform Demand Side Management (DSM) or Demand
Response (DR) strategies [37].

1.3. Energy Flexibility of Greenhouses

DR is a well-known strategy which has been recognized as an increasingly valuable
tool to provide flexibility to the energy grid power system, to support the integration of
Renewable Energy Sources (RES) and to manage the grid more efficiently [38]. The exten-
sive adoption of RES connected to the energy grids has increased the variation over time
of the energy value and availability. When connected to grids, the most common way to
represent the energy value is the energy tariff, whereas the wholesale market represents
the conjunction of demand and offer [39]. Today, the energy value strongly fluctuates over
time, even with substantial daily differences, according to the stochastic fluctuations of the
energy demand and availability. It can be often observed a mismatch between the stochastic
patterns of energy production and consumption. The higher the penetration of RES, the
stronger the energy value fluctuation is. It is necessary to devise management strategies
that are capable not only to reduce the total amount of energy consumed but also to foster
users to consume energy during moments when the source availability is greater [40].
Questions, such as “how much energy is consuming a facility?”, should be more and more
coupled with parallel inquiries about “when and how this energy is consumed?”.

Cui and Zuo [41] described DR as a friendly interaction between grid managers,
utility companies, and electricity consumers. Thus, DR strategies play an crucial role
in smoothing the load curve, improving the reliability of the power grid and reducing
the overall electricity costs. The scientific literature provides several examples of DR
applications, involving buildings [42], as well as industries [43]. Commercial greenhouses
can be considered a special application that can be classified among those two end-uses.
Indeed, similarly to buildings, most of their energy consumption is required for controlling
the indoor environmental conditions; similarly to industries, they present significant power
loads due to primary production processes that must respect certain schedules. Compared
to human-centered buildings, the environmental conditions affecting plants’ growth can
range broadly [16] compared to the strict human comfort requirements [44]. Moreover,
the primary production process of a commercial greenhouse is characterized by large time
spans (weeks or months), causing a large operating flexibility [45]. The combination of
those factors leads to consider commercial greenhouses as an interesting application of
DR strategies.

Thus, on the one side, greenhouses can play a critical role in managing electrical grids.
On the other side, greenhouse producers can save significant amount of money with a
smarter management of their resources (e.g., using artificial lights when energy tariffs are
convenient). According to Reference [38] classification, commercial greenhouses have a
broad theoretical, technical, and economical DR potential. One of the scopes of the present
paper is demonstrating that this potential is also achievable, at least for the power loads
related to artificial lighting systems. For this reason, a price-driven approach is devised
and implemented in a real commercial greenhouse located in North Italy.

1.4. Goals and Framework of the Paper

The goal of the paper was twofold. On the one side, the authors aimed at demon-
strating how the artificial lighting system of commercial greenhouses represents a great
source of electrical power flexibility for DR and DSM strategies. Since switching on or
off the artificial lighting system affects the energy demand and the plants’ growth rate,
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the trade-off between these two variables can be optimized, pursuing the electrical grid
needs. This fact represents an additional source of resilience for the electric grid and a
clear opportunity to improve the commercial greenhouse profits exploiting energy price
fluctuation. On the other hand, the present paper overcomes the scientific literature lack of
practical experimental applications of innovative control algorithms for managing com-
mercial greenhouses. The current work is primarily experimental. It describes all the
steps required to devise an innovative supervisory algorithm for managing the artificial
lighting system of the commercial greenhouse shown in Figure 1, a site in North of Italy
(Mantua area, latitude 45◦15′). The cultivated crop is cherry tomatoes. The controller was
implemented in a 1 ha facility and an experimental campaign was undertaken for almost
3 months. The results outlined that the proposed controller is capable to effectively forecast
the daylight over the canopy and exploit this prediction to better plan the artificial lights
switching on and off. Moreover, simulations over an entire meteorological year highlight
how the innovative control strategy may produce 19.4% of cost saving for the energy traded
on the wholesale market.

Figure 1. Overview of the greenhouse where the experimental setup was installed.2. Methodology

Section 2.1 defines which are the primary control goals and constraints that must be
considered in the development of the control strategy for the artificial lighting system
of a commercial greenhouse. The existing state-of the-art controller based on open-loop
indirect feedback strategies is described in Section 2.4. The innovative solution is presented
in Section 2.5. It is a supervisory control algorithm capable to evaluate the day-ahead
control strategy and to optimize the switching strategy of the artificial lighting system.
This fact represents a significant opportunity for saving operative costs and reducing
grid unbalances. The controller uses Artificial Intelligence (AI) to identify the primary
system dynamics and evaluate how different possible scenarios influence a cost function.
The energy tariff—that indicates the energy value and availability—is used directly in a cost
function to be optimized. Section 3 details the experimental set-up and the Information and
Communication Technologies (ICT) used to implement the controller in the experimental
facility. Section 4.1 reports the results carried out during the experimental campaign.
To assess the performance of the controller, it was necessary to clearly outline a benchmark
strategy. This operation is often tricky for case-studies investigating real implementations
of controllers [12]. For this reason, Section 4.2 reports simulated studies to compare the
results achievable by means of the proposed solution with the existing state-of the-art
controller. Ultimately, Section 5 pinpoints the conclusion of the current work, carefully
explaining potential implications and possible future works.
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2.1. Plants Interaction with Natural and Artificial Light

Plants’ growth rate is affected by the environmental conditions [16], i.e., air tempera-
ture, air relative humidity, carbon dioxide concentration, and light received. In particular,
the light in the PAR spectrum is the one involved in the photosynthetic process and influ-
ences plant growth. This light can be provided to the plant by the sun or artificial lighting.
The goal of the artificial lighting systems is to integrate the natural DLI to enhance crop
photosynthetic processes. This relation can be expressed as follows:

PARc = DLIc + ALIc, (1)

where PARc is used to indicate the overall PAR reaching the crop over a period of time.
This variable is an energy density [W h m−2] measure referring to the fraction of radiation
contained in the PAR spectrum only. PARc is equal to the summation of the DLI and the
Artificial Lighting Integral (ALI) contributions at the crop level. Considering a period of
time lasting from τstart to τend, the DLI contribution can be calculated as:

DLIc =
∫ τend

τstart
PPFDc,nat(τ) · dτ, (2)

where PPFDc,nat is the instantaneous natural Photosynthetic Photon Flux Density (PPFD)
(W·m−2) passing through the greenhouse cover and reaching the canopy. This value
is integrated over the time (τ) obtaining an indication of the energy density (Wh·m−2)
contained into natural lighting reaching the crop. PPFDc,nat is a function of the cover
lighting transmission properties, the intensity of the external global solar radiation, the
direction of the beam solar radiation, the ratio of solar radiation within the PAR spectrum,
and the ratio of the diffuse and beam component of the solar radiation. The literature
shows how PPFDc,nat can be derived by the outdoor lighting using the relation proposed
by Reference [46]:

PPFDc,nat = a1 · (1− expa2·β) · PPFDo,nat · (1− fdi f ,PAR) + a3 · PPFDo,nat · fdi f ,PAR. (3)

This term represents the fraction of daylight filtering through the greenhouse cover
and reaching the crop. In the equation, β is the Sun elevation angle (always known fixed
the commercial greenhouse position and the time-step, expressed in deg). PPFDo,nat is the
daylight radiation in the PAR spectrum, and fdi f ,PAR is the ratio of diffuse daylight radiation
in the PAR spectrum; both are calculated according to Reference [47]. The variables a1,
a2, and a3 are coefficients that depends on the properties of the greenhouse (e.g., cover
transmission rate or scattering, floor reflection, canopy distance, etc.). They can be estimated
using a non-linear multiple regression that retrieves the best-fit values for each case study.

The ALI contribution over the crop can be calculated as:

ALIc =
∫ τend

τstart
ulight(τ) · ηlight · Cu · Ẇlight · dτ = ηlight · Cu · Ẇlight ·

∫ τend

τstart
ulight(τ) · dτ, (4)

where Ẇlight is the electrical power adsorbed by the artificial lights in Watts per square
meter, ηlight is the artificial lighting conversion efficiency expressed in µmol J−1, and Cu
is the coefficient of utilization of the artificial lighting that allows to evaluate the share of
artificial light effectively reaching the crop over the entire amount of light emitted by the
system. Generally, these three variables can be assumed constant and extracted from the
integral. ulight is the control variable. It can be either a proportional (0− 1) variable, in case
of a dimmerable system, or a Boolean (0, 1), otherwise.

2.2. The Control Goal

The value of the control variable ulight is defined by the control logic. Pursuing a
control goal implies the definition of a set-point trajectory to be tracked. In this case, the
control goal is reaching a desired amount of light affecting photosynthesis over a defined
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interval of time. This goal can be converted into a set-point of the cumulated lighting over
the crop, PARc,SP. This value can be substituted in Equation (1):

PARc,SP = DLIc + ALIc, (5)

where ALIc is the artificial light required to integrate the natural DLIc to reach the prede-
fined set-point. Furthermore, it is necessary to define the horizon of the control (e.g., daily,
weekly), setting the integration limits τstart and τend. Substituting Equations (2) and (4) into
Equation (5) and inverting the formulations, it is possible to express the control variable as
a function of the other parameters affecting plant physiology:

∫ end

start
ulight(τ) · dτ =

PARc,SP −
∫ end

start PPFDc,nat(τ) · dτ

ηlight · Cu · Ẇlight
. (6)

The solution of this equation is possible once the control goal and the constraints are
clearly defined. In addition, in this case, the set-point PARc,SP depends on the control
horizon that can be decided arbitrarily by the user (e.g., daily, weekly).

In the experimental activity, this was made possible allowing the end user (i.e., the
commercial greenhouse owner or the crop engineers) to interact with the control algorithm
through a Graphical User Interface (GUI). The GUI allowed the control goal to be set as the
desired daily PARc,SP (expressed in mol·m−2 or J·m−2).

2.3. The Controller Constraints

A controller must deal with constraints, like physical limitations of the controlled
system or non-viable states defined by the end-users. An always valid constraint was
represented by the requirement of having consecutive lighting hours (artificial or natural) to
not affect plant physiology. Furthermore, the user was able to set supplemental constraints
that can be summarized according to four typologies:

• The maximum number of times that the controller can switch-on and off the artificial
lighting system.

• The minimum duration of artificial lighting periods (e.g., I cannot switch on/off the
artificial lights every 15 min, but they must remain in a constant state for at least 1 h).

• The minimum number of dark hours (i.e., plants need at least some dark hours to
assimilate photosynthesis products [48]).

• The hours when artificial lights must be a-priori switched off for reasons external to
the primary production process.

2.4. The Existing Control Strategy

As far as authors knows, the the state-of-the-art control strategy of the artificial lighting
control system in commercial greenhouses is a Rule Based Controller (RBC) with an indirect
open-loop feedback [49]. Figure 2a describes the control loop used for the existing set-up in
the case-study that can be considered representative of the industry state-of-the-art. This so-
lution does not guarantee an optimal performance to reach the control goal described in
Section 2.1. Indeed, the control rule does not consider taking advantage by future fluctua-
tions of environmental nor power availability conditions.

For each day of the year, the end user sets the number of hours required, dτon, and the
starting time of artificial lighting, τstart. The time of switching-off the artificial lighting
system is defined as follows:

τstop = τstart + dτon − c(DLIo). (7)

c(DLIo) is the coefficient of the controller indirect open-loop feedback. It reduces the
required daily period of artificial lighting as a function of the natural DLIo outside the
greenhouse cover. Several thresholds of DLIo are arbitrary fixed, and, once reached, the
artificial lighting period is reduced by a fixed time-span [50]. For example, the coefficient
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c(DLIo) can be set to satisfy the rule “If the outdoor natural light reaches 12 moles per day,
reduce the daily hour of artificial lighting system of 1 h”. These thresholds can be defined
by the farmer through the greenhouse computer.

This control logic is affected by two primary drawbacks. First, Equation (6) outlines
how the controller goal is based on the integral of a measure. A feed-back controller is
intrinsically affected by limitations when it deals with integral measures in the control
loop. Contrariwise, this case represents the ideal application for a predictive controller
capable to set optimal regulation strategies. Indeed, evaluating the control trajectory over a
prediction horizon enables the regulation to exploit potential favorable situations occurring
in the future. For example, if the lowest energy tariff would occur at the end of the day,
a predictive controller can postpone the artificial lighting period to wait for that moment.
The predictive controller is capable of evaluating and forecasting in advance all the distur-
bances affecting the optimal trajectory to reach the control goal pinpointed by Equation (6)
(i.e., PPFDc and the energy price/availability).

Then, Equation (6) underlines that the feedback of the controller should be based on the
DLI over the canopy. However, the variable DLIo used in Equation (7) is measured outside
the commercial greenhouse cover. This is due to the fact that the shadows of greenhouse
construction elements (e.g., vents frames, pillars, and trays) may affect instantaneous
measurements, which are used mostly for regulating the fertigation of the crop. The relation
between DLIo and DLIc is defined arbitrarily, with the support of spot measurements,
generally repeated during every season (3 months). In this existing control strategy, DLIc
is measured with a portable PAR-meter and correlated with the DLIo measured outside
by the Building Automation and Control System (BACS) of the commercial greenhouse.
This trivial system may be improved. A method capable of forecasting PPFDc over the
prediction horizon should be developed to implement an effective predictive controller.

Figure 2. (a) The existing control open-loop including an outdoor sensor only. (b) The proposed
control system.

2.5. The Proposed Supervisory Predictive Control Strategy

A supervisory predictive control system was proposed and devised to overcome the
above-mentioned limitations of the existing state-of–the-art baseline controller. The pro-
posed controller requires monitoring devices that slightly differ from the existing controller
needs, as it can be inferred by Figure 2b. Indeed, an additional sensor of light intensity
must be integrated inside the greenhouse to improve the controller. The couple of indoor
and outdoor sensors may be both pyranometers or quantum sensors, i.e., depending on the
light spectrum that should be measured. For the sake of completeness, the present paper
used an experimental set-up that had both the possibilities.

The benefits achievable by this novel controller are twofold. On the one side, the
controller increases the control strategy awareness of the effects of the cover on natural
DLI transmission. In this way, it would be possible to forecast the PPFDc variable and
set-up predictive control strategy. On the other side, this predictive strategy enhances the
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opportunity to consume energy when it is more available or affordable, enabling DR and
DSM strategies.

In discrete time, a predictive controller is formulated according to the following
primary elements [11]:

• the measurement time-step that is the time interval between two measures monitored
by sensors;

• the control time-step representing the time interval in which the controller is iterated
to re-define a new set-point trajectory; and

• the prediction horizon and the control horizon representing the number of future
time-steps evaluated in an optimization function; in the present formulation, the two
horizons coincide.

At each control time step, the proposed controller updates the current measures in
order to calculate the integral of past values and improve the estimation of the regression
coefficients to forecast the daylight radiation filtering into the greenhouse. On the basis of
this data, the algorithm re-defines the required control goal, ulight, defined in Equation (6),
and subsequently defines the control sequence that optimizes the energy costs. Similarly to
the MPC approach, the controller actuates only the first control move and the procedure
is repeated according to a receding horizon scheme. The novel algorithm computational
steps are pinpointed in Figure 3. Moreover, Figure 4 provides a framework of the variables
(measured or regulated) used by the algorithm.

Figure 3. Computational steps of the proposed controller.

Figure 4. Framework of the variables used by the proposed control algorithm. The arrow connecting
the measures box with the forecast one indicates that current monitored variables are used to tailor the
prediction of their future values.
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The integral of Equation (6) can be split in two time-spans according to past and
future values.∫ end

start
PPFDc(τ) · dτ =

∫ now

start
PPFDc(τ) · dτ +

∫ end

now+1
PPFDc(τ) · dτ. (8)

The first of the two integrals in the right side of the previous equation is referred
to the past values, of PARc already measured during that day until the current time-step
(τ = now), and it is named PARc,past. Once the regulation algorithm retrieves the current
measurements from the sensors in the greenhouse, it can calculate the PARc,past using
the previously measured PPFDc data. PARc,past becomes a known variable. Every day at
midnight, PARc,past is initialized and set equal to 0.

The second integral, on the right side of Equation (8), is referred to future values, which
are the predicted values of PARc from the subsequent control time-step (τ = now + 1) until
the end of the prediction horizon, and it is named PARc, f uture. This variable represents the
future daylight over the canopy PPFDc, f uture, and it remains the only unknown variable of
Equation (6). It is possible to foresee PPFDc, f ut values combining outdoor weather forecast
with Equation (3). Indeed, Equation (3) highlights the correlation among the external solar
PAR and the daylight over the canopy. The external PAR can be readily predicted using a
weather forecast service (i.e., prediction of the radiation in the PAR spectrum can be also
easily derived by the forecast overall solar radiation).

PARc, f uture =
∫ end

now+1
(a1 · (1− expa2·β) · PPFDo,nat(τ) · (1− fdi f ,PAR) + a3 · PPFDo,nat · fdi f ,PAR(τ)) · τ. (9)

The non-linear multiple regression coefficients a1, a2, and a3 of Equation (9) are esti-
mated using the minimization of Root Mean Square Error (RMSE) between estimated and
monitored data through the Python Numpy library. The estimator evaluates the coefficients
that minimize a fitting function represented by least square difference between the mea-
sured and the estimated values. PPFDo data are used as measured inputs, fdi f ,PAR and β
as calculated inputs, and PPFDc as measured outputs. Data of the previous 14 days are
considered in a rolling horizon approach (i.e., the estimation is continuously updated to
consider the change over time of the boundary conditions). At least 4 days of measurement
are necessary to successfully perform the parameters’ identification procedure. The co-
efficients a1, a2, and a3 are constrained (0− 1). In Reference [16], a1 = 0.85; a2 = 0.083;
a3 = 0.550 were suggested as the reference values for a traditional plastic multi-span
greenhouse. Those parameters are used as first attempt values.

Since past values are measured and future values are estimated, all the variables in
Equation (6) are known, and the equation becomes:∫ end

now+1
ulight(τ) · dτ =

PARc,SP − PARc,past − PARc, f uture

ηlight · Cu · Ẇlight
. (10)

The term on the left side of Equation (10) does not provide the control sequence
directly. However, it is the integral value of ulight, which represents the number of control
time-steps when the artificial lighting system has to be switched on from the subsequent
time-step (τ = now + 1) until the end of the control horizon to fulfill the set-point defined
by the user. The set-point can be reached following various programs of artificial lights
switching on or off. For optimizing this program and reducing the energy cost, the control
algorithm has to evaluate all the possible switching on/off scenarios over the prediction
horizon and selecting the one that reduces the overall energy costs without violating the
controller constraints. The number of possible scenarios is finite. Thus, it is possible to
enumerate the maximum number of possible scenarios using combinatorial mathematics:

Nscenarios =

(
n
k

)
=

n!
k!(n− k)!

, (11)
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where, referring to the prediction horizon, n is the total number of control time-steps to the
end of the horizon, and k is the number of control time-steps when the artificial lighting
system must be switched on. Since k =

∫ τ=23:59
τ=now+1 ulight(τ) · dτ, it is possible to retrieve the

value of k from Equation (10).
Once the set of possible situations is enumerated, all the unfeasible scenarios are deleted.

These situations are those which do not respect the controller constraints. For instance, the
user should avoid to switch on the artificial lights for one hour only during the middle
of the night, and this case would be considered an unfeasible scenario by the controller.
The resulting N̄scenario represents the number of feasible scenarios actually evaluated.

Eventually, the controller defines the scenario that minimizes a cost function repre-
sented by the summation of the overall daily energy expenditure. It is possible to formulate
the minimize problem as:

min .{N̄scenario}
Ẇlight

4 · 1000
·

n

∑
i=0

ulight(i) · cost(i), (12)

where i represents the control time-span interval, and cost is used to indicate the fluctu-
ating energy tariff in [e/MWh]. If two solutions with the same result exist, the one that
anticipated the control goal achievement is selected. Once the optimal control sequence is
defined, the next control move is determined unequivocally and applied to the actuators.
The remaining part of the control sequence is discarded and recalculated at the next time
step in a receding horizon approach.

The control performance was evaluated considering the two more challenging aspects
characterizing the algorithm described in Section 2.5. Firstly, the application of Equation (3)
required a system identification to be performed by the controller. Secondly, the satis-
faction of the conflicting needs intrinsically contained in the control goal presented in
Section 2.1. Therefore, on the one hand, the system must minimize the number of hours
when the artificial lighting system is consuming energy; on the other hand, a significant
decrease of the hours of artificial lighting (ALI) would cause a reduction in the yield
production. These two aspects had to be evaluated together.

3. Material and Methods

The methodology presented above was implemented in a real commercial greenhouse.
The experimental tests were conducted for 80 days in winter time. The experimental facility
was a multi-span plastic greenhouse for the cultivation of tomatoes throughout the year,
located in the North Italy (Mantua region, latitude 45.3217). The entire facility was 12 ha,
of which 2 ha were equipped by artificial lights. The greenhouse equipped with an artificial
lighting system was divided in two parts of similar size of 1 ha each, as shown in Figure 1.
The one implementing the existing controller was used as a benchmark, and the other one
was used to test the proposed controller.

3.1. Hardware Configuration

The lighting system was based on LED Igrox Quantum with a nominal lighting effi-
ciency of 2.17 µmol · J−1 and an installed power density of 50 W ·m−2. The overall power
supply to the artificial lighting system was 0.5 MW distributed over 24 electrical lines
at 380 V. Artificial lighting were not dimmerable so that the control variable ulight of
Equation (8) outlines the schematics of the monitoring and supervisory control units used
for this experiment.

The sensing units were represented by two PAR-meters to measure PPFD. The first
one was installed outside the commercial greenhouse and labeled as PPFDo. The second
one was installed just over the canopy and labeled as PPFDc. They were both Apogee
SQ-515 Quantum sensors with a sensitivity of 1.2 mV/(µmolm2/s) , measurement range
from 0 to 4000 µmolm2/s, spectral range from 389 to 692 nm, 12 V/DC power supply,
and 5 V analog signal transmission. The measuring sampling time was set equal to 30 s.
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In parallel, Siap+Micros t055 pyranometers were placed close to the quantum sensors to
retrieve data of global solar radiation.

The data acquisition unit was an Industruino IND I/O 1286 enclosed in an electric box
installed just over the canopy. The Industruino IND I/O 1286 was selected for its reliability
in industrial environments and its GPRS connectivity module. It used two ADC channels to
acquire the 5 V analog PAR-meter data. Figure 5 shows the monitoring unit installed in the
greenhouse during the experimental campaign. Furthermore, Figure 6 is a schematic of the
hardware used to integrate the PAR-meters and pyranometers with the greenhouse computer.

Figure 5. Sensors installed inside the greenhouse with the electrical cabinet containing the data
monitoring unit hanged to the greenhouse cover.

Figure 6. Schematic of the monitoring unit. (A) Industruino IND I/O 1286; (B) Industruino Ethernet
module; (C) Raspberry PI Model 3; (D) GPRS unit; (E) power supply. The two 4–20 mA connections
acquire the data from the indoor and outdoor pyranometers; the two 0–10 V connections acquire the
data from the indoor and outdoor Photosynthetic Active Radiation (PAR)-meters.

3.2. Software Configuration

Once acquired, the signals from the sensors were converted into PPFD measurements
and transmitted over GPRS using Message Queue Telemetry Transport (MQTT) protocol.
MQTT is one of the most adopted communication protocols for the building Internet of
Things (IoT) industry [51]. Those signal were received by an external MQTT broker (For the
sake of reliability, the commercial broker provider adafruit.io was used.) and made available
through a REST API connection.

Two external forecasting resources were integrated in the predictive controller. The first
one was the day-ahead energy price forecast at the wholesale Italian market [52]. Indeed,
the Italian grid regulator (named GME) provides the electric wholesale tariffs of the day-
ahead with a sampling time of 1 h. Figure 7 shows how the unbalances due to the large
penetration of RES caused a great electrical tariff fluctuation over time. The charts show
two different weeks. One is characteristic of the winter period, when the experimental
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tests were undertaken. The other represents a typical summer week, the period of the year
when the energy price fluctuation are more significant.

Figure 7. (left) Wholesale energy market price trends for the weeks from 7 to 21 January 2019. (right) Wholesale energy
market price trends for the weeks from 7 to 21 July 2018.

The second forecasting resource integrated was a professional weather prediction ser-
vice [53]. Foreseen values were available for the next 5 days with a sampling time of 15 min
and updated every 6 h by the weather prediction service. The predicted meteorological
data were: ambient temperature, ambient relative humidity, atmospheric pressure, wind
speed, wind direction, global horizontal solar radiation, diffuse solar radiation, horizontal
beam solar radiation, and cloud cover. Only the variables related to solar radiation and
cloud cover were actually used by the controller to predict the daylight availability [47].
Correlations among global solar radiation and the solar radiation in the PAR spectrum
were used to retrieve indirectly the measurements required.

The control logic and database recording were devised firstly using a Raspberry PI—
Model B computer installed nearby the cultivation environment and eventually using a
virtual machine over Google Cloud server. On the virtual machine, a dedicated service,
based on the Phyton Django framework, was used to schedule all the operations. This
operation can be summarized into four primary elements:

• Connection with external elements (MQTT broker for sensors, weather-forecast, and
price forecast.)

• PostgreSQL database to record the data.
• Python functions to process the data and define the control logic.
• HTML-based GUI to visualize the data and insert user data, goals, and constraints.

The actuation signal for switching On/Off the controlled LED was sent by the Rasp-
berry Pi to the BACS already installed in the greenhouse. This BACS was represented by the
commercial solution PRIVA Connext. The connection used a REST API through an software
bot installed on the greenhouse computer. This was able to override the input control signal
over the Relational DataBase Management System (RDBMS) of the greenhouse computer.
The greenhouse computer was directly connected with the BACS that actuated the control
signals. The software layer and its respective integration are described in Figure 8.
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Figure 8. Schematic of the software layers and their respective integration in the controller.

3.3. Assumptions, Goals, and Constraint Definitions

The only assumption of the present work is considering that the end-user is able to
completely benefit from the energy price fluctuation over the wholesale market. Indeed,
the wholesale energy price is not the unique component of the energy tariff payed by
the end user. The end user tariff includes also additional voices, such as dispatch, taxes,
and utilities revenues. However, the wholesale energy price is the component mostly
affected by the sharp daily fluctuation of energy availability due to RES penetration.
The wholesale market price is a good indicator of the grid unbalances between offer and
demand [54]. For this reason, authors limited their benchmark studies to this unique
price voice. Measurements were retrieved every 30 s. The control time-step was set equal
to 15 min. This means that, every 15-min interval, the algorithm repeats the sequence
described in Figure 3. The prediction and control horizon were set equal to 1 day, and at
midnight the integral values were reset to 0. The combination of control time-step and
prediction horizon length causes the maximum value of n in Equation (11) to be equal to
96, limiting the computational effort of the algorithm. The control goal was set using a
daily objective of cumulative PARc,SP = 20 mol/m2. Considering that the experimental
campaign was undertaken during the winter season, this value represented a challenging
threshold. For the sake of comparison, readers can refer to the outdoor horizontal solar DLI
of the location considered. During the experimental campaign period, the daily outdoor
DLI ranged between DLIo,min = 3.1 mol/m2 and DLIo,max = 25.3 mol/m2. When the
natural DLI was not sufficient, the artificial lighting system had to integrate the radiation
reaching the canopy for boosting crop growth and maintaining the selected set-point.

The primary algorithm constraint was represented by limiting the lighting hours
(natural or artificial) to only consecutive periods. This fact strongly reduces the system
degrees of freedom. Thus, artificial lights can be switched On during night-time only if
the artificial lighting period will be connected with natural DLI dawn or dust. Additional
limitations regarding the control effort (i.e., maximum number of times swinging from On
to Off and minimum duration of a control move) were not considered. Similarly, there
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were no periods in which artificial lighting system must be a-priori Off. Eventually, the
minimum number of dark hours was set equal to 8 h.

4. Results
4.1. Outcomes of the Monitoring Campaign

First of all, it is necessary to assess the capability of the forecasting model to esti-
mate the variables (also named external disturbances). Indeed, a predictive controller needs
reliable estimations of the future evolution of the system to be robust and enhance its capa-
bilities. Figure 9 allows assessing qualitatively the ability of the algorithm of identifying the
parameters affecting the dynamics of the controlled system. For the sake of readability, the
chart reports the experimental data over 10 days of experimental tests only. The algorithm
uses external sources of forecast of solar radiation and current measures to predict the
PPFDo,nat and PPFDc,nat using Equation (3). The Mean Absolute Percentage Error (MAPE)
was used as Key Performance Indicator (KPI) to quantitatively assess the overall system
identification capability of the system:

MAPE =
1
n

t=1

∑
n

∣∣∣∣At − Ft

At
,
∣∣∣∣ (13)

where n is the number of samples considered, At is the actual measured value, and Ft
is the foreseen value 24-h ahead. The MAPE calculated at the end of the experimental
campaign was equal to 11.7% for PPFDo,nat and equal to 14.4% for PPFDc,nat, underlining
the worth estimation capability of the algorithm.

Figure 9. System identification. Red lines indicate the natural horizontal solar radiation. Dashed lines are the values
estimated 24-h ahead by the proposed algorithm. The figure on the left indicates the outdoor solar radiation (PPFDo)
measured and computed. The figure on the right indicates the solar radiation over the canopy (PPFDc).

Once the accuracy of the forecast is determined, it is necessary to compare the per-
formance of the proposed predictive controller with the existing one. Figure 10 shows
the daily number of hours of artificial lighting system switched On over the entire experi-
mental campaign. This variable was a direct consequence of control action defined by the
controller. Red lines represents the results referred to the proposed controller, while the
black line represents the behavior of the remaining part of the greenhouse equipped with
the traditional controller. The chart highlights two possible situations. The cases when
the red line (proposed controller) is below the black line (existing controller) represent
those situations when the existing controller provided too much artificial lighting, and
the PARc,SP was overtaken. This fact causes additional energy consumption, on the one
hand, and a boost of the plant growth, on the other. The opposite situation occurred when
the red line is above the red one. Beyond the pros and cons of each situation, the existing
control strategy demonstrated its inability to track a user-defined set-point, representing
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an implicit shortcoming of the regulation strategy. Theoretical simulations were carried
out to quantitatively evaluate the difference of performance between the two regulation
systems and the DR opportunities offered by commercial greenhouses.

Figure 10. The daily number of hours of artificial lighting system switched on. The black line
indicates the existing state-of-the-art controller, while the red line is the control sequence defined and
implemented by the proposed controller.

4.2. Year-Long Simulations

Simulations were deemed necessary for extending the experimental outcomes to
results referred to a year-long period. This approach allowed the proposed controller to
be compared in detail with the existing state-of-the-art regulation strategy. The energy
wholesale prices for 2018 were used for this purpose. A Typical Meteorological Year (TMY)
from the International Weather for Energy Calculation (IWEC) was used as a reference
to perform these simulations. Among the available locations, the Brescia-Ghedi was the
closest to the experimental facility. A simple simulation environment was set up in Phyton
to simulate the behavior of the existing state-of-the-art controller. This operation was
simple since the existing controller was based on an open-loop feedback RBC requiring
external variables only to compute the control moves. Figure 11 highlights the outcomes
obtained by those simulations.

The two conflicting goals of the control algorithm are reported on the chart. On the
one side, the continuous lines indicate the accumulated cost for supply energy to the
artificial lighting system. On the other side, dashed lines are used to indicated the accu-
mulated PAR reaching the crop due to the integration of natural and artificial lighting.
The trends outline how the proposed approach allows the overall cost of artificial lighting
to be reduced keeping throughout the year a comparable level of PAR reaching the crop.
The proposed optimized controller reduced by 19.4% the energy cost, while it guaranteed
that the cumulative DLI reaching the crop is affected for 1.4% only. The proposed solution
was particularly effective in months from March to April and from September to November.
This is due to the easy prediction of lighting in those periods. The system proposed, thanks
to the short-term control of indoor light, was able to reduce visibly the employment of
artificial lights when not needed, consequently reducing the costs.
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Figure 11. Year-long simulation and evaluation of the satisfaction of control goals. Black lines refer
to the existing state-of-the-art controller, while red lines refer to the proposed controller. Dashed
lines indicate the cumulative PARc reaching the crop; Continuous lines indicate cumulative electrical
energy cost.

5. Conclusions

The current work is focused on commercial greenhouses equipped with artificial
lighting systems. Regulating these artificial lights with predictive optimized control algo-
rithms could enhance important energy and cost saving. Furthermore, this typology of
greenhouses was individuated as a significant source of energy flexibility to participate to
DR and DSM programs. The recent advent of efficient and economic LED technology has
fostered a widespread adoption of artificial light to integrate the natural PAR reaching the
crop. A power density over 50 W/m2 is necessary to provide enough light to ensure plant
growth even with the more advanced artificial lighting system installed. Thus, energy and
power demand of such typology of greenhouses became really significant.

The present paper used a multi-span plastic greenhouse located in North Italy as
an experimental case-study. In particular, the study was focused on two zones of the
greenhouse measuring 1 hectare each. Both these zones were equipped with the same
LED artificial lighting system requiring an overall electrical power supply around 1 MW.
In one of the two zones, the state-of-the-art existing controller was maintained to be used
as a benchmark. A novel predictive and optimized control system for artificial lighting
was formulated and devised into the remaining zone. This controller uses a recursive
regression algorithm to estimate the amount of natural lighting reaching the crop. After-
wards, combinatorial calculation was used to individuate the scenario of artificial lighting
regulation that allowed a threshold of minimum daily PAR to be reached at the minimum
the energy cost. Year-long simulation showed that the proposed algorithm over-performed
the existing regulation strategy, enabling energy cost saving up to 19.4%.

The control algorithm was also implemented into the case-study using a low-cost
monitoring hardware, which was coupled with the control system of the greenhouse
computer. This aspect represents a practical demonstration of how current technologies can
be readily integrated using embedded controller and open communication protocols. At
the same time, the presented study provides an experimental demonstration of the validity
of the controller through the comparison of the performance of the predictive controller
against the baseline regulation strategy. The use of a simplified simulation model allowed
the result to be year-long extended and highlighted how the proposed controller might
outperform the state-of-the-art existing regulation logic of the greenhouse artificial lights.
The proposed predictive controller enhancing the energy flexibility of the greenhouse
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transforming it in a facility that may provide DSM and DR services to the electrical grid.
This services are significant due to the high power required by artificial lights and the
possibility of a very fast response that does not affect considerably the primary controlled
process (i.e., plants’ growth). For this reason, the present paper aimed to individuate
greenhouses equipped with artificial lights as a very important element for the balancing
of future electrical grids.

Future works will focus on two goals. On the one side, the data monitoring hardware
will be optimized and simplified to further reduce the costs and allow a more capillary mon-
itoring within the wide greenhouse environment. Furthermore, this electronic development
will also consider the adoption of Low Power Wide Area Network (LPWAN) (e.g., SigFox,
LoRa) to further reduce the power consumption of the deployed sensors. On the other side,
the algorithm will be extended to consider other variables affecting plants’ growth, such as
the indoor air temperature, relative humidity, and carbon dioxide concentration.
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Abbreviations
The following abbreviations are used in the text:

RES Renewable Energy Sources
DSM Demand Side Management
DR Demand Response
PV PhotoVoltaic
AI Artificial Intelligence
PPFD Photosynthetic Photon Flux Density
TMY Typical Meteorological Year
PAR Photosynthetic Active Radiation
ADC Analog signal to Digital signal Converter
MQTT Message Queue Telemetry Transport
BACS Building Automation and Control System
DLI DayLight Integral
RBC Rule Based Controller
RDBMS Relational DataBase Management System
GUI Graphical User Interface
HVAC Heating Ventilating and Air Conditioning
MPC Model Predictive Control
LED Light Emitting Diode
ALI Artificial Lighting Integral
IoT Internet of Things
ICT Information and Communication Technologies
EPW Energy Plus Weather file
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KPI Key Performance Indicator
MAPE Mean Absolute Percentage Error
LPWAN Low Power Wide Area Network
RMSE Root Mean Square Error
IWEC International Weather for Energy Calculations
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