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TIME-FREQUENCY ANALYSIS OF THE DIRAC EQUATION

S. IVAN TRAPASSO

Abstract. The purpose of this paper is to investigate several issues concerning the
Dirac equation from a time-frequency analysis perspective. More precisely, we pro-
vide estimates in weighted modulation and Wiener amalgam spaces for the solutions
of the Dirac equation with rough potentials. We focus in particular on bounded per-
turbations, arising as the Weyl quantization of suitable time-dependent symbols, as
well as on quadratic and sub-quadratic non-smooth functions, hence generalizing
the results in [40]. We then prove local well-posedness on the same function spaces
for the nonlinear Dirac equation with a general nonlinearity, including power-type
terms and the Thirring model. For this study we adopt the unifying framework
of vector-valued time-frequency analysis [57]; most of the preliminary results are
stated under general assumptions and hence they may be of independent interest.

1. Introduction

In this note we consider the Cauchy problem for the n-dimensional Dirac equation
with a potential V :

(1)

{
i∂tψ(t, x) = (Dm + V )ψ(t, x),

ψ(0, x) = ψ0(x),
(t, x) ∈ R× Rd.

Here ψ(t, x) = (ψ1(t, x), . . . , ψn(t, x)) ∈ Cn is a vector-valued complex wavefunction
and the Dirac operator Dm is defined by

(2) Dm = 2πmα0 − i
d∑
j=1

αj∂j,

where m ≥ 0 (mass) and α0, α1, . . . , αd ∈ Cn×n is a set of Dirac matrices, i.e. n × n
Hermitian matrices satisfying the identities

(3) αiαj + αjαi = 2δijIn, ∀ 0 ≤ i, j ≤ d,
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2 S. IVAN TRAPASSO

(In is the n × n identity matrix). For d = 3 and n = 4 the standard choice for such
matrices is the so-called Dirac’s representation:

(4) αi =

(
0 σi
σi 0

)
, i = 1, 2, 3, α0 =

(
I2 0
0 −I2

)
,

where we introduced the Pauli matrices

(5) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In general, for any d there exist several iterative schemes to obtain a set of Dirac
matrices and in general the dependence of the (even) dimension n = n(d) on d is a
consequence of the chosen construction [37].

The study of the Dirac equation, like other dispersive equations, may certainly take
advantage from the techniques of modern harmonic analysis. In the last decades we
have witnessed an increasing interest in the application to PDEs of strategies and
function spaces arising in time-frequency analysis. Even if it is impossible to offer a
comprehensive list of results, we suggest the papers [5, 6, 9, 10, 11, 12, 13, 38, 39, 58,
61] and the monographs [30, 59] as examples of the manifold aspects one can handle
from this perspective.

The optimal environment for this approach is provided by modulation spaces, which
were introduced by Feichtinger in the ’80s [20, 21]. In the first instance they can be
thought of as Besov spaces with isometric boxes in the frequency domain instead of
dyadic annuli. In fact, a much more insightful definition is given in terms of the global
decay of the phase-space concentration of a function or a distribution. To be precise,
given a temperate distribution f ∈ S ′(Rd) and a non-zero Schwartz window function
g ∈ S(Rd), the short-time Fourier transform Vgf is defined as

Vgf(x, ξ) = F [fg(· − x)](ξ), (x, ξ) ∈ R2d,

where F denotes the Fourier transform. The modulation space Mp,q(Rd), 1 ≤ p, q ≤
∞ is the space of distributions f ∈ S ′(Rd) such that ‖Vgf(x, ξ)‖Lq(Rdξ ;Lp(Rdx)) < ∞.

A better control on the regularity is achieved by introducing weights of polynomial
type: for r, s ∈ R the Mp,q

r,s (Rd)-norm of f is given by ‖Vgf(x, ξ)‖Lqs(Rdξ ;Lpr(Rdx)), where

(6) u ∈ Lqs(Rd)⇔ (1 + | · |2)s/2u ∈ Lq(Rd),

and similarly for Lpr(Rd). In particular, the parameter s ≥ 0 can be interpreted
as the degree of fractional differentiability of f ∈ Mp,q

r,s . A strictly related family
of spaces is obtained by reversing the order of integration in the mixed-Lebesgue
norm. The space W p,q

r,s (Rd), traditionally called Wiener amalgam space, contains

distributions f ∈ S ′(Rd) satisfying ‖Vgf(x, ξ)‖Lqs(Rdx;Lpr(Rdξ)) < ∞. There is in fact a
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deeper connection among these spaces, since it turns out that the elements ofW p,q
r,s (Rd)

are Fourier transforms of functions in Mp,q
r,s (Rd); see Section 3 for more details.

The relevance of these function spaces to the study of dispersive PDEs is closely
related to the evolution of the phase-space concentration under the corresponding
propagators. As an example, while the Schrödinger propagator eit4 is not bounded
on Lp(Rd) except for p = 2, it is a bounded unimodular Fourier multiplier on any mod-
ulation space Mp,q(Rd) [6]. Many results of this type, including improved dispersive
and Strichartz estimates, are also known for the wave equation and the Klein-Gordon
equation (see the list of papers above).

To the best of our knowledge, the only contribution in this spirit concerning the
Dirac equation is the recent paper [40] by Kato and Naumkin. The authors proved
estimates for the solutions of the Dirac equation (1) in the free case (Theorem 1.1)
and also for quadratic and subquadratic time-dependent smooth potentials (Theorem
1.2); the latter setting also includes an electromagnetic potential with linear growth.
Broadly speaking, the main difficulty in dealing with (1) lies in that it is a system
of coupled equations, hence a strategy for disentangling the components is needed.
For instance, this can be done approximately at the level of phase space (see [40, Eq.
3.17]) or by projection onto the spectrum of the Dirac operators (see the proof of the
dispersive estimate [40, Eq. 1.8]). Another standard procedure consists of exploiting
the connection with the wave and Klein-Gordon equations when m = 0 and m > 0
respectively. Nevertheless, when a non-zero potential V is taken into account most
of these procedures loose their usefulness and new ideas are required (cf. for instance
[7, 8, 15, 19]).

The first aim of this paper is to offer a different point of view that does not require
an explicit decoupling technique nor any preliminary knowledge about the Klein-
Gordon equation. A naive look at (1) would suggest to treat it like a Schrödinger-type
equation with matrix-valued Hamiltonian H = Dm + V . For the free case (V = 0)
the corresponding propagator U(t) = e−itDm can be formally viewed as a Fourier
multiplier with matrix symbol

(7) µt(ξ) = exp

[
−2πit

(
mα0 +

d∑
j=1

αjξj

)]
.

This perspective naturally leads to consider estimates on vector-valued modulation
and Wiener amalgam spaces by studying the regularity of µt and extending the ordi-
nary boundedness results for Fourier multipliers and more general pseudodifferential
operators. Roughly speaking, the definition of the modulation space Mp,q(Rd, E), E
being a complex Banach space in general, coincides with the one given above with | · |
replaced by the norm on E; such spaces were first considered by Toft [56] and then
extensively studied by Wahlberg [57]. The study of the Dirac equation would only



4 S. IVAN TRAPASSO

require to consider finite-dimensional vector spaces such as Cn and Cn×n, so that the
subtleties connected with infinite-dimensional target spaces are not relevant here and
most of the proofs reduce to componentwise computation. Nevertheless, we decided
to embrace this wider perspective and thus the first part of the paper is devoted to
extend some results of scalar-valued time-frequency analysis to the vector-valued con-
text. In our opinion, the price of developing these tools in full generality is repaid by a
unifying and powerful framework which provides very natural and compact proofs for
the main results on the Dirac equation. In passing, we remark that the core of results
concerning vector-valued time-frequency analysis is in fact of independent interest and
falls into the larger area of infinite-dimensional harmonic analysis [28, 36, 60], with
possible applications to abstract evolution equations [1, 3] and generalized stochastic
processes [26].

In that spirit, we are then able to prove the following estimates for the free Dirac
propagator.

Theorem 1.1. Let 1 ≤ p, q ≤ ∞ and r, s ∈ R; denote by X any of the spaces
Mp,q

r,s (Rd,Cn) or W p,q
r,s (Rd,Cn). Let ψ(t, x) be the solution of (1) with V ≡ 0. For any

t ∈ R there exists a constant CX(t) > 0 such that

‖ψ(t, ·)‖X ≤ CX(t) ‖ψ0‖X .
In particular, if X = Mp,q

0,s (Rd,Cn) there exists a constant C ′ > 0 such that

(8) CX(t) ≤ C ′(1 + |t|)d|1/2−1/p|.

While the results are not unexpected in themselves in view of the discussion above
on the connection with the Klein-Gordon propagator, we remark that our method
improves the known estimates in two aspects. First, we are able to cover weighted
modulation and Wiener amalgam spaces with no extra effort, resulting in a more
precise description of the action of the propagator (no loss of derivatives in Theorem
1.1 or asymptotic smoothing in Theorem 3.1 below). On the other hand, at least for
modulation spaces we are able to explicitly characterize the time-dependence of the
constant C(t) in (8) in a straightforward way, essentially by inspecting the symbol
(7).

The second purpose of this note is to provide boundedness results on modulation
and Wiener amalgam spaces for suitable potentials V in (1). We relax the regular-
ity assumptions in [40] in two aspects. First, we replace the multiplication operator
by V with a genuine matrix pseudodifferential operator σw in the Weyl form, where
the matrix symbol σ belongs to the so-called Sjöstrand class [49]. In the ordinary
scalar-valued framework this is a prime example of an exotic symbol class still yield-
ing bounded Weyl operators on L2(Rd). A closer inspection reveals that this function
space is nothing but the modulation space M∞,1 and it is well known that symbols in
this space associate with bounded operators on any (unweighted) modulation space
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[29]. This characterization also extends to operator-valued symbols on Hilbert-valued
modulation spaces [57]. In addition, while the dependence on the time of the poten-
tial V is assumed to be smooth in [40], we require here a milder condition, namely
continuity for the narrow convergence; see Definition 2.16 for a precise characteriza-
tion. In the following claim we use the spaces Mp,q

r,s and Wp,q
r,s defined as the closure

of the Schwartz class in the corresponding modulation and Wiener amalgam spaces
respectively.

Theorem 1.2. Let 1 ≤ p, q ≤ ∞, γ ≥ 0 and r, s ∈ R be such that |r| + |s| ≤ γ;
denote by X any of the spaces Mp,q

r,s(Rd,Cn) or Wp,q
r,s (Rd,Cn). Let T > 0 be fixed

and assume the map [0, T ] 3 t 7→ σ(t, ·) ∈ M∞,1
0,2γ (Rd,Cn×n), to be continuous for the

narrow convergence. For any ψ0 ∈ X there exists a unique solution ψ ∈ C([0, T ], X)
to (1) with V = σ(t, ·)w. The corresponding propagator is bounded on x.

We then consider the case of potentials with quadratic and sub-quadratic growth as
in [40]. As a consequence of a useful splitting lemma, namely Proposition 3.2 below,
we are able to prove a generalized rough counterpart of the smooth scenario considered
in [40, Thm. 1.2]. In particular, the potential contains non-smooth functions with a
certain number of derivatives in the Sjöstrand class plus a perturbation in the Weyl
form.

Theorem 1.3. Let 1 ≤ p ≤ ∞ and ψ0 ∈Mp(Cn). Consider the Cauchy problem (1)
with potential

(9) V = QIn + L+ σw,

where

• Q : Rd → C is such that ∂αQ ∈M∞,1(Rd) for α ∈ Nd, |α| = 2,
• L : Rd → Cn×n is such that ∂αL ∈M∞,1(Rd,Cn×n) for α ∈ Nd, |α| = 1, and
• σ ∈M∞,1(Rd,Cn×n).

For any t ∈ R there exists a constant C(t) > 0 such that the solution ψ of (1) satisfies

‖ψ(t, ·)‖Mp ≤ C(t) ‖ψ0‖Mp .

Furthermore, if V is as in (9) and Q = 0, then for any 1 ≤ p, q ≤ ∞ and t ∈ R there
exists a constant C(t) > 0 such that the solution ψ of (1) satisfies

‖ψ(t, ·)‖Mp,q ≤ C(t) ‖ψ0‖Mp,q .

In the last part of the paper we study the local well-posedness for the nonlinear
setting, namely

(10)

{
i∂tψ (t, x) = Dmψ(t, x) + F (ψ(t, x)),

ψ (0, x) = ψ0 (x) ,
(t, x) ∈ R× Rd,
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where the nonlinear term F considered below comes in the form of a vector-valued
real-analytic entire function F : Cn → Cn such that F (0) = 0, i.e.

(11) Fj(z) =
∑

α,β∈Nn
cjα,βz

αz̄β, j = 1, . . . , n.

We remark that this general choice includes nonlinearities of power type, such as

(12) F (ψ) = |ψ|2kψ, k ∈ N;

and the cubic nonlinearity known as the Thirring model, namely

(13) F (ψ) = (α0ψ, ψ)α0ψ;

The choice of even powers in (12) and entire functions as in (11) are standard in the
context of modulation and amalgam spaces, because of the Banach algebra property
enjoyed by certain spaces of these families [51]. On the other hand, the nonlinear
spinor field appearing in the Thirring model has been largely investigated; cf. for
instance [4, 34, 43, 44], also in view of its physical relevance - it is a model for self-
interacting Dirac fermions in quantum field theory [50, 54].

The main result in this respect reads as follows.

Theorem 1.4. Let 1 ≤ p ≤ ∞ and r, s ≥ 0; denote by X any of the spaces
Mp,1

0,s (Rd,Cn) or W 1,p
r,s (Rd,Cn). If ψ0 ∈ X then there exists T = T (‖ψ0‖X) such that

the Cauchy problem (10) with F as in (11) has a unique solution ψ ∈ C0([0, T ], X).

We conclude this introduction by emphasizing a few aspects that may be fur-
ther developed in the context of modulation spaces, such as Strichartz estimates
and perturbations due to a magnetic field, i.e. the Dirac operator in (2) becomes

Dm,A = 2πmα0 − i
∑d

j=1 αj(∂j − iAj), where A(x) = (A1(x), . . . , Ad(x)), x ∈ Rd, is a
static magnetic potential. We also point out that more general nonlinear terms could
be considered, for instance as in the Soler model [50] and other interactions arising
in condensed matter; cf. [47] for the state of the art in 1+1 dimensions.

2. Preliminaries

2.1. Notation. We define t2 = t · t, for t ∈ Rd, and x · y is the scalar product on
Rd. The Schwartz class is denoted by S(Rd), the space of temperate distributions
by S ′(Rd). The brackets 〈f, g〉 denote the extension to S ′(Rd) × S(Rd) of the inner

product 〈f, g〉 =
∫
f(t)g(t)dt on L2(Rd).

The characteristic function on a setA ⊆ E is denoted with χA. For x = (x1, . . . , xd) ∈
Rd we set |x|∞ = max{|x1|, . . . , |xd|}.

The conjugate exponent p′ of p ∈ [1,∞] is defined by 1/p+ 1/p′ = 1. The symbol
. means that the underlying inequality holds up to a positive constant factor C > 0:

f . g ⇒ ∃C > 0 : f ≤ Cg.
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We write f � g to say that both f . g and g . f hold.
We choose the following normalization for the Fourier transform:

Ff (ξ) = f̂(ξ) =

∫
Rd
e−2πix·ξf (x) dx, ξ ∈ Rd.

We define the involution ∗ as f ∗(t) = f(−t). For any x, ξ ∈ Rd, the modulation Mξ

and translation Tx operators are defined as

Mξf (t) = e2πit·ξf (t) , Txf (t) = f (t− x) .

For m > 0 and t ∈ Rd we set 〈ξ〉m :=
√
m2 + ξ2. We omit the subscript for m = 1,

namely 〈ξ〉 stands for 〈ξ〉1. Denote by J the canonical symplectic matrix in R2d:

J =

(
0d Id
−Id 0d

)
.

In what follows we always denote by E a complex Banach space with norm | · |E,
whereas the symbol H is reserved for a complex separable Hilbert space. The topo-
logical dual space of E is denoted by E ′. The brackets (·, ·) are used for the duality
between E ′ and E and in particular for the inner product in H - we assume (·, ·) to
be conjugate-linear in the second argument. Given two normed spaces X and Y , the
space of continuous linear operators X → Y with the topology of bounded conver-
gence is denoted by L(X, Y ), whereas we write Ls(X, Y ) for the same set endowed
with the strong operator topology. The space of trace-class operators on H is denoted
by L1(H).
The space of smooth E-valued functions with bounded derivatives of any order larger
than k ∈ N is

C∞≥k(Rd, E) :=
{
f ∈ C∞(Rd, E) : |∂αf | ≤ Cα ∀α ∈ Nd, |α| ≥ k

}
.

Notice that C∞≥0(Rd) coincides with the well-known Hörmander class S0
0,0(Rd) [31, 33].

We will occasionally make use of the Dirac notation for projection operators: given
φ, ψ ∈ H, we define

|ψ〉〈φ| : H → H, |ψ〉〈φ|(w) = (w, φ)Hψ.

Given a triple E1, E2 and E3 of complex Banach spaces, we say that the map

• : E1 × E2 → E3, (x1, x2) 7→ x3 = x1 • x2
is a multiplication [2] if it is a continuous bilinear operator such that ‖•‖L(E1×E2,E3)

≤
1. The following are common examples of multiplications that will be used below:

(1) multiplication with scalars: C× E → E, (λ, x) 7→ λx;
(2) the duality pairing: E ′ × E → C, (u, x) 7→ u(x);
(3) the evaluation map: L(E1, E2)× E1 → E2, (T, x) 7→ Tx;
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(4) multiplication in a Banach algebra.

Although neither the concrete expressions of the Dirac matrices nor deep aspects
related to the Clifford algebra representation theory are relevant for our purposes, we
point out that the conditions (3) force n to be even and we may assume without loss
of generality that

α0 =

(
In/2 0

0 −In/2

)
.

We refer the interested reader to [37, 46] for further details.

2.2. Vector-valued function spaces and operators. The notation and the basic
results of analysis on infinite-dimensional spaces are rather standard [2, 28, 35] and we
will not linger over the subtleties arising from the infinite-dimensional context. For
the convenience of the reader we briefly collect the main facts of harmonic analysis in
the vector-valued context. In what follows we consider functions f : Rd → E, where
Rd is provided with the Lebesgue measure µL.

The family of Lebesgue-Bochner spaces is the natural analogue of Lebesgue spaces
of scalar-valued functions. When there is no risk of confusion, we will write Lps(E)
for Lps(Rd, E) and Lp(E) when s = 0. Notice that f = (f1, . . . , fn) ∈ Lps(Rd,Cn) if
and only if fj ∈ Lps(Rd) for any j = 1, . . . , n. Most of the usual properties from the
scalar-valued case extend in a natural way (with the remarkable exception of duality
[35]).

Proposition 2.1 ([2, 35]). (i) For any 1 ≤ p ≤ ∞, Lp(Rd, E) is a Banach space with
the norm ‖f‖Lp(Rd,E) = ‖|f(·)|E‖Lp.
(ii) L2(Rd, H) is a Hilbert space with inner product given by

〈f, g〉L2(H) =

∫
Rd

(f(t), g(t))Hdt.

(iii) (Hölder inequality) Given a multiplication • : E1 × E2 → E3, s1, s2 ∈ R and
1 ≤ p1, p2, p ≤ ∞ such that 1/p1+1/p2 = 1/p, if f ∈ Lp1s1(Rd, E1) and g ∈ Lp2s2(Rd, E2)
then f • g ∈ Lps1+s2(Rd, E3) and ‖f • g‖Lps1+s2 (E3)

≤ ‖f‖Lp1s1 (E1)
‖g‖Lp2s2 (E2)

.

Distributions and Fourier transform ([2, 35]). Recall that the Schwartz class of
E-valued rapidly decreasing functions S(Rd, E) is a Fréchet space with the topology
induced by the family of seminorms {pm,E}m∈N, where

pm,E(f) := sup
t∈Rd

|α|+|β|<m

∣∣tα∂βf(t)
∣∣
E
<∞,

and is a dense subset of Lp(Rd, E) for any 1 ≤ p <∞.
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The space of E-valued temperate distributions S ′(Rd, E) consists of bounded (conjugate-
)linear maps from S(Rd) to E, that is S ′(Rd, E) = L(S(Rd), E).

For 1 ≤ p ≤ ∞ any p-integrable E-valued function f can be identified with a
E-valued temperate distribution as usual:

〈f, g〉 =

∫
Rd
f(t)g(t)dt, g ∈ S(Rd).

Notice that this is a further meaning for the brackets 〈·, ·〉.
The Fourier transform can be initially defined as a Bochner integral for f ∈

L1(Rd, E) and its restriction to S(Rd, E) yields a continuous automorphism that en-
joys the usual properties (e.g., the Riemann-Lebesgue lemma, the inversion theorem,
the relations with translation, modulation and differentiation). There is a notable
exception: while F : L1(Rd, E) → L∞(Rd, E), the Hausdorff-Young inequality does
not hold in general [35]. In particular, it is a deep result by Kwapień [42] that
the Parseval-Plancherel theorem yields the extension of F to a unitary operator on
L2(Rd, E) if and only if E is isomorphic to a Hilbert space.

Nevertheless, the Fourier transform extends to an isomorphism on S ′(Rd, E) as
follows:

〈f̂ , ĝ〉 ≡ 〈f, g〉, f ∈ S ′(Rd, E), g ∈ S(Rd).

For future convenience we define the (Bochner-)Fourier-Lebesgue spaces FLqs(Rd, E)
consisting of distributions f ∈ S ′(Rd, E) such that

‖f‖FLqs(E) :=
∥∥F−1f∥∥

Lqs(E)
<∞.

The following Bernstein-type lemma can be proved just as in the scalar-valued case;
cf. [59, Prop. 1.11].

Lemma 2.2. Let N > d/2 be an integer and ∂kj f ∈ L2(Rd, H) for any j = 1, . . . , d
and 0 ≤ k ≤ N . Then

(14) ‖f‖FL1(H) . ‖f‖
1−d/2N
L2(H)

(
d∑
j=1

∥∥∂Nj f∥∥L2(H)

)d/2N

.

Convolution and Fourier multipliers. The convolution of vector-valued func-
tions can be meaningfully defined as soon as the target spaces are provided with a
multiplication structure [2, 35]. The convolution of f ∈ S ′(Rd, E) with a Schwartz
function g ∈ S(Rd) is the distribution f ∗ g ∈ S ′(Rd, E) such that

〈f ∗ g, φ〉 ≡ 〈f, g∗ ∗ φ〉, ∀φ ∈ S(Rd).

In fact, f ∗ g ∈ C∞(Rd, E) is a function of polynomial growth together with all its
derivatives. Moreover, for f ∈ Lp(Rd, E) and g ∈ L1(Rd) we recover the ordinary
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convolution

f ∗ g(x) =

∫
Rd
f(x− y)g(y)dy,

which is a well-defined Bochner integral for a.e. x ∈ Rd. In particular, f ∗ g ∈
Lp(Rd, E) with ‖f ∗ g‖Lp(E) ≤ ‖f‖Lp(E) ‖g‖L1 . The •-convolution f1 ∗• f2 of f1 ∈
S(Rd, E1) and f2 ∈ S ′(Rd, E2) can be similarly defined as a smooth E3-valued function
for any multiplication • : E1 × E2 → E3 [2, Thm. 1.9.1]. We state some results that
will be needed below. The proofs of more general versions of these facts can be found
in [2, Sec. 1.9]. See also [41].

Proposition 2.3. (i) (Young inequality) Let 1 ≤ p, q, r ≤ ∞ satisfy 1/p+ 1/q =
1 + 1/r and s1, s2, s3 ∈ R satisfy

s1 + s3 ≥ 0, s2 + s3 ≥ 0, s1 + s2 ≥ 0.

If f ∈ Lps1(R
d, E1) and g ∈ Lqs2(R

d, E2), then f ∗• g ∈ Lr−s3(R
d, E3), with

‖f ∗• g‖Lr−s3 (E3)
. ‖f‖Lps1 (E1)

‖g‖Lqs2 (E2)
.

(ii) For any f ∈ S ′(Rd, E1) and g ∈ S(Rd, E2):

F(f ∗• g) = f̂ • ĝ.

We then introduce the Fourier multiplier with symbol µ ∈ S ′(Rd, E1) as the linear
map

µ(D)f := F−1(µ • f̂) = F−1µ ∗• f ∈ S ′(Rd, E3),

the domain consisting of all f ∈ S ′(Rd, E2) such that the latter convolution is well
defined [2].

2.3. Vector-valued time-frequency analysis. The short-time Fourier transform
of a vector-valued distribution f ∈ S ′(Rd, E) with respect to a non-zero window
function g ∈ S(Rd) is defined [57] as the distribution

(15) Vgf(x, ξ) := 〈f,MξTxg〉.
Equivalent representations of Vgf are the following ones, whenever meaningful (as-
sume for instance f ∈ L2(Rd, E)):

Vgf(x, ξ) =

∫
Rd
e−2πiyξ f(y) g(y − x) dy(16)

= F(f · Txg)(ξ)(17)

= e−2πix·ξ(f ∗Mξg
∗)(x)(18)

= 〈f̂ , TξM−xĝ〉(19)

= e2πix·ξVĝf̂(ξ,−x).(20)
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It can be proved [57, Lem. 2.1] that Vgf ∈ C∞(R2d, E) and

|Vgf(x, ξ)|E ≤ C(1 + |x|+ |ξ|)N ,
for some C > 0, N ∈ N and any x, ξ ∈ Rd.

Definition 2.4. Let 1 ≤ p, q ≤ ∞ and r, s ∈ R. The E-valued modulation space
Mp,q

r,s (Rd, E) consists of distributions f ∈ S ′(Rd, E) such that

(21) ‖f‖Mp,q
r,s

=

(∫
Rd

(∫
Rd
|Vgf(x, ξ)|pE 〈x〉

rpdx

)q/p
〈ξ〉sqdξ

)1/q

<∞,

for some g ∈ S(Rd), with suitable modification for p =∞ or q =∞.

If r = s = 0 we omit the indices and write Mp,q. Furthermore, we write Mp for
Mp,p and Mp,q(E) for Mp,q(Rd, E) when there is no risk of confusion. We remark
that more general weights may be taken into account [57].

Most of the ordinary theory extends to the vector-valued context by simply sub-
stituting | · | with | · |E in the proofs. For our purposes, it is enough to mention the
following properties.

Proposition 2.5. Let 1 ≤ p, q ≤ ∞ and r, s ∈ R.

(i) Mp,q
r,s (Rd, E) is a Banach space with the norm (21), which is independent of

the window function g (i.e., different windows yield equivalent norms).
(ii) If p, q <∞ the Schwartz class S(Rd, E) is dense in Mp,q

r,s (Rd, E).

(iii) If p1 ≤ p2, q1 ≤ q2 and r2 ≤ r1, s2 ≤ s1, then Mp1,q1
r1,s1

(Rd, E) ↪→Mp2,q2
r2,s2

(Rd, E).

(iv) If E = Ca×b, then f ∈Mp,q
r,s (Rd,Ca×b) if and only if fij ∈Mp,q

r,s (Rd,C) for any
i = 1, . . . , a, j = 1, . . . , b.

Remark 2.6. In contrast to the aforementioned properties, duality is a quite sub-
tle question (cf. [57]). In order to avoid related issues, which usually occur when
p, q ∈ {1,∞}, it is convenient to introduce the space Mp,q

r,s(Rd, E), namely the closure

of S(Rd, E) with respect to the Mp,q
r,s norm. In particular we have Mp,q

r,s(Rd, E) =

Mp,q
r,s (Rd, E) for 1 ≤ p, q <∞.

By reversing the order of integrals in the definition of modulation spaces one obtains
a new family of spaces.

Definition 2.7. Let 1 ≤ p, q ≤ ∞ and r, s ∈ R. The E-valued modulation space
W p,q
r,s (Rd, E) consists of distributions f ∈ S ′(Rd, E) such that

‖f‖W p,q
r,s

=

(∫
Rd

(∫
Rd
|Vgf(x, ξ)|pE 〈ξ〉

rpdξ

)q/p
〈x〉sqdx

)1/q

<∞,

for some g ∈ S(Rd), with suitable modification for p =∞ or q =∞.
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From (20) we immediately get
∥∥∥f̂∥∥∥

Mp,q
r,s

= ‖f‖W p,q
r,s

, that is FMp,q
r,s (Rd, E) = W p,q

r,s (Rd, E).

This should not come as a surprise, since Feichtinger originally designed modulation
spaces as Wiener amalgam spaces on the Fourier side [21, 24]. Furthermore, the
results stated in Proposition 2.5 have an identical counterpart for Wiener amalgam
spaces, it is enough to replace Mp,q

r,s with W p,q
r,s in the claim.

As already noted by Wahlberg [57], the spaces W p,q
r,s (Rd, E) are in fact Wiener

amalgam spaces in the broadest sense, namely

W p,q
r,s (Rd, E) = W (FLpr(Rd, E), Lqs(Rd)),

hence they inherit certain properties from their local and global components [22].
In order to exploit this connection we introduce a useful equivalent discrete norm
for amalgam spaces. Recall that a bounded uniform partition of function (BUPU)
({ψi}i∈I , (xi)i∈I , U) consists of a family of non-negative functions in FL1

|r|(Rd) {ψi}i∈I
such that the following conditions are satisfied:

(1)
∑

i∈I ψi(x) = 1, for any x ∈ Rd;
(2) supi∈I ‖ψi‖FL1

|r|
<∞;

(3) there exist a discrete family (xi)i∈I in Rd and a relatively compact set U ⊂ Rd

such that supp(ψi) ⊂ xi + U for any i ∈ I, and
(4) supi∈I #{j : xi + U ∩ xj + U 6= ∅} <∞.

A general result in the theory of amalgam spaces is the following norm equivalence
in the spirit of decomposition spaces [22, 25, 23]:

(22) ‖f‖W p,q
r,s (Rd,E) �

(∑
i∈I

‖f ψi‖qFLpr(Rd,E)
〈xi〉sq

)1/q

.

A similar characterization holds for modulation spaces [21, 61], providing a norm
comparable to that of Besov spaces:

(23) ‖f‖Mp,q
r,s (Rd,E) �

(∑
i∈I

‖�if‖qLpr(Rd,E)
〈xi〉sq

)1/q

where we introduced the frequency-uniform decomposition operators

�i := F−1ψiF , i ∈ I.

Many properties satisfied by modulation spaces carry over to Wiener amalgam
spaces in view of the isomorphism established by the Fourier transform. In particular,
a Young type result can be obtained after a suitable modification of the proof of [22,
Thm. 3].
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Theorem 2.8. Let • : E1 × E2 → E3 be a multiplication for the triple of Banach
spaces (E1, E2, E3). For any 1 ≤ p1, p2, p3, q1, q2, q3 ≤ ∞ and r1, r2, r3, s1, s2, s3 ∈ R
such that

FLp1r1 (Rd, E1) ∗• FLp2r2 (Rd, E2) ↪→ FLp3r3 (Rd, E3),

Lq1s1(R
d) ∗ Lq2s2(R

d) ↪→ Lq3s3(R
d),

the following inclusion holds:

(24) W p1,q1
r1,s1

(Rd, E1) ∗•W p2,q2
r2,s2

(Rd, E2) ↪→ W p3,q3
r3,s3

(Rd, E3).

Proof. For the benefit of the reader we sketch here a short proof in the spirit of [32,
Thm. 11.8.3]. We consider as BUPU for W p,q

r,s (Rd, E) the family {ψk}k∈Zd ⊂ FL1
|r|(Rd)

defined by

ψk(t) =
φ(t− k)∑
k∈Zd φ(t− k)

, t ∈ Rd,

for a fixed φ ∈ C∞c (Rd) such that φ(t) = 1 for t ∈ [0, 1]d and φ(t) = 0 for t ∈
Rd \ [−1, 2]d. After introducing the control functions

Ψf,p,r,E(k) := ‖f ψk‖FLpr(Rd,E) , k ∈ Zd,

the equivalent norm (22) becomes

‖f‖W p,q
r,s (Rd,E) �

(∑
k∈Zd
‖f ψk‖qFLpr(Rd,E)

〈k〉qs
)1/q

� ‖Ψf,p,r,E‖`qs(Zd) .

For f ∈ W p1,q1
r1,s1

(Rd, E1) and g ∈ W p2,q2
r2,s2

(Rd, E2) set fm = fψm, gn = gψn for m,n ∈ Zd.
In view of the support property [2, Rem. 1.9.6(f)] and the properties of BUPUs, we
have

supp(fm ∗• gn) ⊂ supp(fm) + supp(gn) = m+ n+ 2 suppψ.

It is then clear that the cardinality of the set Jk := {(m,n) ∈ Z2d : supp((fm ∗•
gn)ψk) 6= ∅} is finite for any k ∈ Zd and is uniformly bounded with respect to m,n, k.
In fact, notice that

Jk = {(m,n) ∈ Z2d : m = k − n+ α, |α| ≤ N(d)},
for a fixed constant N(d) ∈ N depending only on the dimension d. Therefore, an easy
computation yields

Ψf∗•g,p3,r3,E3(k) =
∑

|α|≤N(d)

Ψf,p1,r1,E1 ∗Ψg,p2,r2,E2(k + α),

and hence
‖f ∗• g‖W p3,q3

r3,s3
(Rd,E3)

. ‖f‖W p1,q1
r1,s1

(Rd,E1)
‖g‖W p2,q2

r2,s2
(Rd,E2)

,

that is the claim. �
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Remark 2.9. In view of the relation with modulation spaces and Young inequality
for convolution, under the same assumptions of the previous theorem we also have

(25) Mp1,q1
r1,s1

(Rd, E1) •Mp2,q2
r2,s2

(Rd, E2) ↪→Mp3,q3
r3,s3

(Rd, E3).

An interesting relation between modulation and Wiener amalgam spaces is given by
the following generalized Hausdorff-Young inequality, which is a direct consequence
of Minkowski’s integral inequality:

(26) Mp,q
r,s (Rd, E) ↪→ W q,p

s,r (Rd, E), 1 ≤ q ≤ p ≤ ∞, r, s ∈ R.

2.4. Fourier multipliers. We now provide sufficient conditions on the symbol of a
Fourier multiplier in order for it to be bounded on modulation and Wiener amgalgam
spaces.

Proposition 2.10. Let • : E0 × E1 → E2 be a multiplication and µ ∈ W 1,∞
|r|,δ (Rd, E0)

for some r, δ ∈ R. The Fourier multiplier µ(D) is bounded from Mp,q
r,s (Rd, E1) to

Mp,q
r,s+δ(Rd, E2) for any 1 ≤ p, q ≤ ∞ and s ∈ R. In particular,

‖µ(D)f‖Mp,q
r,s+δ(E2)

. ‖µ‖W 1,∞
|r|,δ (E0)

‖f‖Mp,q
r,s (E1)

, f ∈Mp,q
r,s (E1).

Proof. The proof is a straightforward generalization of the argument used in the
scalar-valued case; see for instance [6, Lem. 8]. We remark that Theorem 2.8 and the
associativity of •-convolutions [2, Rem. 1.9.6(c)] are required. �

A similar result holds for Fourier multipliers on Wiener amalgam spaces.

Proposition 2.11. Let • : E0 × E1 → E2 be a multiplication and µ ∈ M∞,1
δ,|s| (R

d, E0)

for some s, δ ∈ R. The Fourier multiplier with symbol µ is bounded from W p,q
r,s (Rd, E1)

to W p,q
r+δ,s(Rd, E2) for any 1 ≤ p, q ≤ ∞ and r ∈ R. In particular,

‖µ(D)f‖W p,q
r+δ,s(E2)

. ‖µ‖M∞,1
δ,|s| (E0)

‖f‖W p,q
r,s (E1)

, f ∈ W p,q
r,s (E1).

Proof. Recall that W p,q
r,s (Rd, E) = W (FLpr(Rd, E), Lqs(Rd)). Theorem 2.8 and the

relation FMp,q
r,s = W p,q

r,s thus yield

‖µ(D)f‖W p,q
r+δ,s(E2)

=
∥∥F−1µ ∗• f∥∥W p,q

r+δ,s(E2)

.
∥∥F−1µ∥∥

W∞,1
δ,|s| (E0)

‖f‖W p,q
r,s (E1)

. ‖µ‖M∞,1
δ,|s| (E0)

‖f‖W p,q
r,s (E1)

.

�
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2.5. The Wigner distribution and the Weyl transform. Given f, g ∈ L2(Rd, H),
the Wigner distribution W (f, g)(x, ξ) ∈ L(H), x, ξ ∈ Rd, is defined as follows:

(27) W (f, g)(x, ξ) = [FTsP (f, g)(x, ·)](ξ),
where we introduced the projector-valued function

P (f, g) : R2d → L1(H), P (f, g)(x, y) := |f(x)〉〈g(y)|,
and Ts is the linear transformation acting on F : R2d → H as

TsF (x, y) = F
(
x+

y

2
, x− y

2

)
.

It is therefore clear that W (f, g) : R2d → L1(H) and in particular [27, 57]

(W (f, g)(x, ξ)u, v)H =

∫
Rd
e−2πiy·ξ (f(x+ y/2), v)H (g(x− y/2), u)Hdy,

for any u, v ∈ H. More concisely, we have

(W (f, g)(x, ξ)u, v)H = W (f̃v, g̃u)(x, ξ),

where on the right-hand side we have the ordinary Wigner distribution of the functions

f̃v(t) = (f(t), v)H , g̃u(t) = (g(t), u)H .

The following properties of the Wigner distributions are well known in the standard
setting [30] and can be easily derived in the vector-valued context.

Proposition 2.12. For any f, g ∈ S(Rd, H) and x, ξ ∈ Rd:

(i) W (f, g) ∈ S(R2d,L1(H)).

(ii) W (f, g)(x, ξ) = W (f̂ , ĝ)(ξ,−x).

(iii)
∫
RdW (f, g)(x, ξ)dx = |f̂(ξ)〉〈ĝ(ξ)|.

(iv)
∫
RdW (f, g)(x, ξ)dξ = |f(x)〉〈g(x)|.

The Wigner transform can be extended to f, g ∈ S ′(Rd, H) as follows [57]. Let
Φ = W (φ1, φ2) for φ1, φ2 ∈ S(Rd); then W (f, g) ∈ S ′(R2d,L1(H)) is such that

(〈W (f, g),Φ〉u, v)H = (〈f, φ1〉, v)H (〈g, φ2〉, u)H , u, v ∈ H.
Assume now σ ∈ S ′(R2d,L(H)). The Weyl transform σw : S(Rd, H) → S ′(Rd, H)

is defined by duality as

(28) 〈σwf, g〉 =

∫
R2d

Tr [σ(x, ξ)W (g, f)(x, ξ)] dxdξ, f, g ∈ S(Rd, H).

For further details see [27, pp. 135–137] and [57].
A classical, remarkable result in the scalar-valued case is the boundedness of Weyl

transforms with symbols in the Sjöstrand class on any modulation and Wiener amal-
gam space [30, Thm. 14.5.2]. This property still holds in the vector valued case.
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Theorem 2.13. Let 1 ≤ p, q ≤ ∞, γ ≥ 0 and r, s ∈ R be such that |r| + |s| ≤ γ;
denote by X any of the spaces Mp,q

r,s(Rd, H) or Wp,q
r,s (Rd, H). If σ ∈M∞,1

0,2γ (R2d,L(H))
then the Weyl operator σw is bounded on X.

Proof. The case X =Mp,q
r,s(H) is covered by [57, Cor. 4.8], and it is stated here with

small modifications in the spirit of [30, Thm. 14.5.6] in order to take the weights
into account. For the case X = Wp,q

r,s (H) we need an extension of the well-known
symplectic covariance property of the Weyl calculus [16, 30], namely

Fσw = σw
J−1F , σ ∈ S ′(R2d,L(H)),

where σJ−1 = σ ◦ J−1; the proof is a straightforward application of Proposition 2.12
above. In view of this property, consider the following diagram:

Mp,q
r,s(Rd, H)

σw
J //Mp,q

r,s(Rd, H)

F
��

Wp,q
r,s (Rd, H)

σw
//

F−1

OO

Wp,q
r,s (Rd, H)

It is easy to prove that if σ ∈ M∞,1
0,2γ (R2d,L(H)) then σJ ∈ M∞,1

0,2γ (R2d,L(H)) too (cf.
for instance the proof of [14, Lem. 5.2]), hence the preceding case implies that σw

J is
bounded onMp,q

r,s(Rd, H) for any 1 ≤ p, q ≤ ∞ and r, s ∈ R such that |r|+|s| ≤ γ. �

The relevance of the Sjöstrand class is also enforced by the following characteriza-
tion - the proof goes exactly as that of [30, Thm. 14.5.3] and [31, Lem. 6.1] with | · |
replaced by | · |E.

Proposition 2.14. The following characterization holds:

S0
0,0(Rd, E) =

⋂
s≥0

M∞
0,s(Rd, E) =

⋂
s≥0

M∞,1
0,s (Rd, E).

Corollary 2.15. Let σ ∈ S0
0,0(R2d,L(H)). The Weyl operator σw is bounded on

Mp,q
r,s(Rd, H) for any 1 ≤ p, q ≤ ∞ and r, s ∈ R.

2.6. Narrow convergence. Convergence in M∞,1 norm is a very strong require-
ment. For instance it is well known that C∞c is not dense M∞,1 with the norm
topology [49]; this fact inhibits the standard approximation arguments and leads to
restrict to subspaces such as M∞,1. Another way to cope with this problem consists
in weakening the notion of convergence as follows [13, 55].

Definition 2.16. Let Ω be a subset of some Euclidean space and s ∈ R. The map
Ω 3 ν 7→ σν ∈M∞,1

0,s (Rd, E) is said to be continuous for the narrow convergence if:

(1) it is a continuous map in S ′(Rd, E) (weakly), and
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(2) there exists a function h ∈ L1
s(Rd) such that for some (hence any) nonzero

window g ∈ S(Rd) one has supz∈Rd |Vgσν(x, ξ)|E ≤ h(ξ) for any ν ∈ Ω and
a.e. ξ ∈ Rd.

The benefits of narrow continuity in the scalar-valued case carry over to the Hilbert-
valued case. The following property will be used below.

Theorem 2.17. For any 1 ≤ p, q ≤ ∞ and γ ≥ 0, r, s ∈ R such that |r| + |s| ≤ γ,
let X denote either Mp,q

r,s(Rd, H) or Wp,q
r,s (Rd, H). If Ω 3 ν 7→ σν ∈ M∞,1

0,2γ (Rd,L(H))
is continuous for the narrow convergence then the corresponding map of operators
ν 7→ σw

ν is strongly continuous on X.

Proof. The proof for X = Mp,q
r,s(Rd, H) is a suitable adaption of the one given in

[13, Prop. 3]. For the strong continuity on X = Wp,q
r,s (Rd, H) we reduce to the

latter case by the same arguments in the proof of Proposition 2.13, which imply that
σw
ν u = F(σν)

w
JF−1u for u ∈ Wp,q

r,s (Rd, H). The claimed result easily follows from the

continuity of the map ν 7→ (σν)
w
JF−1u on Mp,q

r,s(Rd, H). �

3. Estimates for the Dirac propagator

3.1. The free case. Consider the Cauchy problem for the free Dirac equation,
namely (1) with V = 0:

(29)

{
i∂tψ (t, x) = Dmψ (t, x) ,

ψ (0, x) = ψ0 (x) ,
(t, x) ∈ R× Rd.

The solution can be recast in terms of the free Dirac propagator:

(30) ψ(t, x) = ψ0(x), U0(t) = e−itDm .

We can take advantage from the framework developed insofar by noticing that U0(t)
is an operator-valued Fourier multiplier on the Hilbert space H = Cn, L(Cn) ' Cn×n,
with symbol

µt(ξ) = exp

[
−2πit

(
mα0 +

d∑
j=1

ξjαj

)]
.

An explicit expression for this matrix can be derived. After setting Cj = −2πtξj,

j = 1, . . . , d, and C0 = −2πtm we have µt(ξ) =
∑

n≥0
in

n!
(
∑d

j=0Cjαj)
n. The identities

(3) satisfied by the Dirac matrices imply that{
(
∑d

j=0Cjαj)
n = (−1)k(

∑d
j=0C

2
j )kIn (n = 2k),

(
∑d

j=0Cjαj)
n = i(−1)k(

∑d
j=0C

2
j )k(

∑d
j=0Cjαj) (n = 2k + 1).

A straightforward computation finally yields
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(31) µt(ξ) = cos(2πt〈ξ〉m)In − 2πi
sin(2πt〈ξ〉m)

2π〈ξ〉m

(
mα0 +

d∑
j=1

ξjαj

)
,

from which it is clear that µt ∈ S0
0,0(Rd,Cn×n) for any fixed t ∈ R.

Proof of Theorem 1.1. The proof is a direct application of Proposition 2.10 (X =
Mp,q

r,s (Cn)) or Proposition 2.11 (X = W p,q
r,s (Cn)), after noticing that

µt ∈ S0
0,0(Rd,Cn×n) ↪→M∞,1

0,|r| (R
d,Cn×n) ↪→ W 1,∞

|r|,0 (Rd,Cn×n), ∀r ∈ R,

the latter embedding being given by the Hausdorff-Young inequality (26). �

Proof of estimate (8). In order to determine the time dependence of the constant
CX(t), X = Mp,q

0,s (Cn), we provide a different proof by making use of the discrete
norm (23) for modulation spaces. Consider the BUPU in the proof of Theorem 2.8.

In view of (23) we need to provide an estimate for
∥∥∥‖�kU(t)f‖Lp(Cn)

∥∥∥
`qs

. We have

‖�kU(t)f‖Lp(Cn) =
∑
|`|∞≤1

∥∥∥σk+`µtσkf̂∥∥∥
FLp(Cn)

≤
∑
|`|∞≤1

‖σk+`µt‖FL1(Cn×n) ‖�kf‖Lp(Cn) ,

where we used the approximate orthogonality of the frequency-uniform decomposition
operators:

�k =
∑
|`|∞≤1

�k�k+`, k ∈ Zd.

The multiplier estimate (14) implies

‖σk+`µt‖FL1(Cn×n) =
∥∥σ0T−(k+`)µt∥∥FL1(Cn×n) . (1 + |t|)d/2,

and complex interpolation with the conservation law ‖�kU(t)f‖L2(Cn) = ‖�kf‖L2(Cn)
yields

‖�kU(t)f‖Lp(Cn) . (1 + |t|)d|1/2−1/p| ‖�kf‖Lp(Cn) .
�

This behaviour is not surprising, given that any component of a solution of the
free Dirac equation is also a solution of the free Klein-Gordon equation, for which
similar estimates hold [59, Prop. 6.8]. This connection can be exploited in many
ways, as already mentioned in the Introduction; as an example one can easily prove
a smoothing estimate for the free Dirac propagator.

Theorem 3.1. Let ψ(t, x) be the solution of (29). For any t > 1, 1 ≤ p, q ≤ ∞ and
s ∈ R,

(32) ‖ψ(t, ·)‖Mp,q
0,s (Cn)

. ‖ψ0‖Mp,q
0,s (Cn)

+ |t|γ ‖ψ0‖Mp,q
0,s−γ(Cn)

, γ = d|1/2− 1/p|.
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Proof. Following the same strategy of [40, Thm. 1.1], namely projection onto the
so-called positive and negative energy subspaces of the Dirac operator (cf. [53]), it
turns out that the free Dirac equation (29) is unitarily equivalent to a pair of (n/2)-
dimensional square-root Klein-Gordon equations, namely{

i∂tψ±(t, x) = ±〈D〉mψ±(t, x),

ψ±(0, x) = (ψ0)±(x),
(t, x) ∈ R× Rd.

It is then enough to replace the estimate (3.2) in that paper for the Klein-Gordon
semigroup eit〈D〉m with the smoothing one proved in [17, Thm. 1.4]. The proof then
proceeds in the same way. �

3.2. The case where V is a rough bounded potential. For any 1 ≤ p, q ≤ ∞,
γ ≥ 0 and r, s ∈ R such that |r|+ |s| ≤ γ, let X denote eitherMp,q

r,s(Cn) orWp,q
r,s (Cn).

Let T > 0 be fixed and consider now the Cauchy problem for the Dirac equation with
potential

(33)

{
i∂tψ(t, x) = (Dm + V (t))ψ(t, x)

ψ(0, x) = ψ0(x)
(t, x) ∈ R× Rd,

where V (t) = σ(t, ·)w, t ∈ [0, T ], and the map t 7→ σ(t, ·) is continuous inM∞,1
0,2γ (R2d,Cn×n)

for the narrow convergence. Standard arguments from the theory of operators semi-
groups (cf. [18, Cor. 1.5]) and Theorem 2.13 imply that for any fixed t ∈ R the
propagator U(t) is bounded on X.

Proof of Theorem 1.2. The argument is standard, we sketch the strategy for the sake
of clarity. Set ΞT = C ([0, T ];Ls(X)); the assumptions on σ and Theorem 2.17
imply that V ∈ ΞT . A straightforward computation shows that the propagator U(t)
corresponding to (33) satisfies the following Volterra integral equation:

(34) U(t)ψ0 = U0 (t)ψ0 − i
∫ t

0

U0(t− s)V (s)U(s)ψ0ds.

A solution is given by an iterative scheme: let {Un}n∈N the sequence of operators

U0(t) ≡ e−itDm , Un(t)ψ0 :=

∫ t

0

U0(t− s)V (s)Un−1(s)ψ0 ds.

We have that {Un} ⊂ ΞT , since Un = U0 ∗V Un−1 and both convolution and composi-
tion are bounded operators on ΞT ; cf. [18, Ex. 1.17.1 and Lem. B.15]. Furthermore,
the following estimates hold:

‖Un(t)‖L(X) ≤ K(t)(n+1) t
n

n!
, K(t) = sup

s∈[0,t]
‖U0(s)‖ ‖V (s)‖ .
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It then follows that the Dyson-Phillips series
∑

n Un(t) converges with respect to the
operator norm on L(X) and also uniformly on [0, T ]. Therefore U(t) =

∑
n Un(t) ∈ ΞT

and U(t) is a propagator for (33). Uniqueness follows by Gronwall’s lemma after
noticing that a different solution P (t) of (34) would satisfy

‖(U(t)− P (t))ψ0‖X ≤ K(t)

∫ t

0

‖(U(τ)− P (τ))ψ0‖X dτ.

�

3.3. The case where V is a rough quadratic potential. Theorem 1.3 involves a
rough potential V with at most quadratic growth as in (9). A key ingredient for the
proof of Theorem 1.3 is the following lemma, which is a qualitative generalization of
[45, Lem. 3.3].

Proposition 3.2. Let f : Rd → E be such that ∂αf ∈ M∞,1(Rd, E) for any α ∈ Nd,
|α| = k for some k ∈ N. Then there exist f1 ∈ C∞≥k(Rd, E) and f2 ∈ M∞,1(Rd, E)
such that f = f1 + f2.

Proof. Fix a smooth cut-off function χ ∈ C∞c
(
Rd
)

supported in a neighbourhood of
the origin and such that χ = 1 near zero, then consider the Fourier multiplier χ(D)
with symbol χ. Set f1 = χ(D)f and f2 = (I − χ(D))f . Clearly f = f1 + f2 and we
argue that f1 and f2 satisfy the claimed properties.

Indeed, f1 ∈ C∞(Rd, E) and for any α ∈ Nd, |α| = k, we have

∂αf1 = ∂α(χ(D)f) = χ(D)(∂αf) ∈M∞,1(Rd, E),

since ∂αχ(D) is a Fourier multiplier with symbol (2πiξ)αχ (ξ) ∈ C∞c
(
Rd
)
, hence

∂αχ(D) = χ(D)∂α and χ(D) is continuous on M∞,1(E) by Proposition 2.10. Fur-
thermore, similar arguments imply that for any α ∈ Nd, |α| ≥ k,

∂αf1 = ∂α−β∂β(χ(D)f) = (∂α−βχ(D))(∂βf) ∈M∞,1(Rd, E).

where β ∈ Nd satisfies |β| = k.
In order to prove the claim for f2 consider the finite smooth partition of unity
{ϕj}Nj=1 of the unit sphere Sd−1 ⊂ Rd subordinated to the open cover {Uj}dj=1, where

Uj = {x ∈ Sd−1 : xj 6= 0}.

Then we extend each function ϕj on Rd \ {0} by zero-degree homogeneity, namely

d∑
j=1

ϕj (x) = 1, ϕj (αx) = ϕj (x) , ∀x ∈ Sd−1, α > 0.
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This procedure gives a finite partition of unity {ϕj}dk=1 on Rd\ {0}. Then

f2(x) =

∫
Rd
e2πix·ξ(1− χ(ξ))f̂(ξ)dξ

=
d∑
j=1

[∫
Rd
e2πix·ξ

(
1− χ(ξ)

(2πiξj)k
ϕj(ξ)

)
∂̂kj f(ξ)dξ

]

=
d∑
j=1

χ̃j(D)(∂kj f)(x)

and thus f2 ∈ M∞,1(Rd, E) since each χ̃j(D) is a Fourier multiplier with symbol
(1− χ (ξ))ϕj (ξ) /(2πiξj)

k ∈ S0
0,0

(
Rd
)
, hence bounded on M∞,1(Rd, E). �

Proof of Theorem 1.3. We apply Proposition 3.2 twice, namely to L and Q. We get

• L = L1 + L2, where L1 ∈ C∞≥1(Rd,Cn×n) and L2 ∈M∞,1(Rd,Cn×n), and

• Q = Q1 +Q2, where Q1 ∈ C∞≥2(Rd) and Q2 ∈M∞,1(Rd).

The RHS of (1) then becomes

H = (Dm + L1 +Q1) + (L2 +Q2 + σw) =: H0 + V ′.

We see that e−itH0 is a semigroup of bounded operators on Mp(Rd,Cn) as a conse-
quence of [40, Thm. 1.2]. It is understood that we identify the multiplication by
a function f ∈ M∞,1(Rd,C) on Mp,q(Cn) with the operator fIn ∈ Cn×n, hence by
Remark 2.9 we have

‖fu‖Mp,q(Cn) ≤ ‖fIn‖M∞,1(Cn×n) ‖u‖Mp,q(Cn) � ‖f‖M∞,1 ‖u‖Mp,q(Cn) .

The boundedness of e−itH on Mp(Rd,Cn) then follows from the fact that V ′ is a
bounded perturbation of H0 [18, Cor. 1.5] by Proposition 2.10 and Theorem 2.13.
The case where Q = 0 follows by the same arguments. �

4. The nonlinear equation

A standard tool in the study of local well-posedness is the following abstract result.

Theorem 4.1 ([52, Prop. 1.38]). Let X and Y be two Banach spaces and D : X → Y
be a bounded linear operator such that

(35) ‖Du‖Y ≤ C0 ‖u‖X ,
for all u ∈ X and some C0 > 0. Consider then a nonlinear operator F : Y → X,
F (0) = 0, such that

(36) ‖F (u)− F (v)‖X ≤
1

2C0

‖u− v‖Y ,
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for all u, v in the ball Bε(0) = {u ∈ Y : ‖u‖Y ≤ ε} for some ε > 0. Then for any
u0 ∈ Bε/2 there exists a unique solution u ∈ Bε to the equation

u = u0 +DF (u),

and the map u0 7→ u is Lipschitz with constant at most 2, that is ‖u‖Y ≤ 2 ‖u0‖Y .

With that in mind, for the sake of clarity we anticipate some estimates for the
nonlinearity (11).

Lemma 4.2. Let r, s ≥ 0, 1 ≤ p ≤ ∞ and ε > 0, and consider a nonlinear function
F as in (11). Denote by X any of the spaces Mp,1

0,s (Cn) or W 1,p
r,s (Cn). If ψ0 ∈ X then

F (ψ) ∈ X and, for any ψ, φ ∈ Bε(0) ⊂ X there exists a constant Cε > 0 such that

‖F (ψ)− F (φ)‖X ≤ Cε ‖ψ − φ‖X .

Proof. In view of Proposition (2.5) (iv) and its counterpart for amalgam spaces the
first claim is an easy consequence of the algebra property of X under pointwise multi-
plication [11, Lem. 2.1-2.2] and the series expansion of each component. The estimate
in the second part follows from a straightforward computation (cf. the proof of [11,
Thm. 4.1]), that is

Fj(ψ)− Fj(φ) =

∫ 1

0

d

dt
Fj(tψ + (1− t)φ)dt

=
n∑
k=1

[
(ψk − φk)

∑
α,β,γ,δ∈Nn

cj,kα,β,γ,δψ
αψ̄βφδφ̄γ

+(ψ̄k − φ̄k)
∑

α,β,γ,δ∈Nn
c̃j,kα,β,γ,δ∈Nnψ

αψ̄βφδφ̄γ

]
.

Again by Proposition 2.5 (iv) we have

‖F (ψ)− F (φ)‖X . ‖ψ − φ‖X
n∑

j,k=1

∑
α,β,γ,δ∈Nn

Cj,k
α,β,γ,δ ‖ψ‖

|α+β|
X ‖φ‖|γ+δ|X ,

with Cj,k
α,β,γ,δ = |cj,kα,β,γ,δ|+ |c̃

j,k
α,β,γ,δ|, and the latter expression is ≤ Cε ‖ψ − φ‖X when-

ever ψ, φ ∈ Bε(0). �

Proof of Theorem 1.4. The proof is an application of the iteration scheme given in
Theorem 4.1. In particular we choose either X = Mp,1

0,s (Cn) or X = W 1,p
r,s (Cn), then

Y = C0([0, T ], X), and convert (10) in integral form:

ψ(t) = U0(t)ψ0 − i
∫ t

0

U0(t− s)F (ψ(s))ds,
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where U0 = e−itDm is the free propagator. It is then enough to prove (35) and (36)

in this setting, where D is the Duhamel operator D =
∫ t
0
U0(t− s) · ds. First, notice

that from Theorem 1.1 we have that

‖U0(t)ψ0‖X ≤ CT ‖ψ0‖X , ∀t ∈ [0, T ].

Therefore,∥∥∥∥∫ t

0

U0(t− s)u(s)ds

∥∥∥∥
X

≤
∫ t

0

‖U0(t− s)u(s)‖X ds ≤ TCT sup
t∈[0,T ]

‖u(t)‖X .

Lemma 4.2 then provides (35) with a constant C0 = O(T ) and also (36). The claim
follows after choosing T = T (‖ψ0‖X) sufficiently small. �

Remark 4.3. A more general version of Theorem 1.4, namely a nonlinear variant
of Theorem 1.2, can be stated. For any 1 ≤ p ≤ ∞ and γ ≥ 0 let X denote either
Mp,1

0,s(Cn) with 0 ≤ s ≤ γ or W1,p
r,s (Cn) with r, s ≥ 0 such that r + s ≤ γ. The

differential operator L = i∂t − Dm in (10), namely Lψ = F (ψ), is now extended to
L = i∂t − Dm − σw

t , where the symbol map [0, T ] 3 t 7→ σ(t, ·) ∈ M∞,1
0,2γ (Cn×n) is

continuous for the narrow convergence and the nonlinear term is (11). We recast the
problem in integral form as

ψ(t) = U(t, 0)ψ0 − i
∫ t

0

U(t, τ)F (ψ(τ))dτ,

where U(t, τ), 0 ≤ τ ≤ t ≤ T is the linear propagator constructed in the proof of
Theorem 1.2 corresponding to initial data at time τ . In order for the iteration scheme
in Theorem 4.1 to work it is enough to prove that U(t, τ) is strongly continuous on X
jointly in (t, τ), 0 ≤ τ ≤ t ≤ T ; the latter condition would imply a uniform bound for
the operator norm with respect to t, τ as a consequence of the uniform boundedness
principle. Theorem 1.2 yields strong continuity of U(t, τ) in t for fixed τ . The time-
reversibility enjoyed by the equation implies that the same holds after switching τ and
t. Furthermore, for τ ′ ≤ τ ≤ t we have

‖U(t, τ)ψ0 − U(t, τ ′)ψ0‖X ≤C ‖ψ0 − U(τ, τ ′)ψ0‖X ,

hence the map τ 7→ U(t, τ)ψ0 is continuous in X, uniformly with respect to t and this
gives the desired result.
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