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Abstract 

This paper describes both an experimental methodology based on the Ion Beam Induced Charge 

(IBIC) technique and the relevant interpretative model, which were adopted to characterize the electronic 

features of power diodes.  

IBIC spectra were acquired using different proton energies (from 1.2 to 2.0 MeV), angles of incidence, 

and applied bias voltages. 

The modulation of the ion probe range, combined with the modulation of the extensions of the 

depletion layer, allowed the charge collection efficiency scale to be accurately calibrated, the dead layer 

beneath the thick (6 m) Al electrode and the minority carrier lifetime to be measured. 

The analysis was performed by using a simplified model extracted from the basic IBIC theory, which 

proved to be suitable to interpret the behaviour of the IBIC spectra as a function of all the experimental 

conditions and to characterize the devices, both for what concerns the electrostatics and the 

recombination processes. 

1. Introduction 
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Power electronics is the key technology to control the flow of electricity from the source to the load 

and is the backbone of the whole power supply infrastructure in our society from the energy generation, 

transmission, distribution and, for its pervasiveness in a huge variety of applications, it plays a 

fundamental role in energy saving and improved energy efficiency [1].  

Power electronics is mainly based on power semiconductor devices [2]. Their main attractiveness in 

this sector derives from their ability to fast switching from the “on-” to “off-” state, where “on-state” 

corresponds to the condition in which the current can ideally flow without losses and “off-state” the 

condition in which the current is ideally blocked, without leakages.  

Among the many key parameters, which influence device performances, carrier lifetime plays a 

dominant role due to its impact on the determination of the reverse recovery time, i.e. the duration of the 

recovery transient from the highly conductive to the blocked states, which controls the efficiency for 

power conversion [3] [4]. 

It is then unavoidable to develop and to apply experimental methods and models, possibly with non-

invasive or non-destructive approaches, to assess the efficiency of processes adopted to control the carrier 

lifetimes [5][6]. 

In the literature, the several methods that have been proposed to reach this goal are essentially based 

on the measurement of effects related to the decay of excess carriers generated in the neutral region.  

The injection of excess carriers is usually performed by electrical or optical means [7][8]. For the 

former, carriers are injected by the heavily doped region and the open-circuit voltage or the diode current 

transient measurements allow the extraction of carrier lifetimes. However, the reliability of these 

measurements, which is bound to an accurate knowledge of the diode structure, of the surface and of the 

heavily doped region recombination lifetimes, was proven to be inadequate for the Si power diode 

characterization [9],  

Optical methods are extensively used for photonic [10] and wide bandgap [11] devices, offering the 

advantage of a local characterization, by scanning the focused laser beam. However, these techniques are 

limited to the study of the periphery of the active junctions or devices with transparent electrodes, rarely 

encountered in the field of power semiconductor devices.  

The imaging of buried sub-electrode active region can be carried out by the electron beam induced 

current technique (EBIC), which relies on the use of focused electron beams with energies from few to 

tens keV [12] [13]. However, especially in power devices, Al pads of the order of a few m thick are 

usually adopted, to reduce the impact of bonding wires and prevent the damage of the underlying silicon 

[14][15]. Such thicknesses hinder the penetration of the electron beam probes and/or make difficult the 
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estimate of the effective electron/hole generation rate and volume into the active semiconductor regions 

beneath the electrode and prevent the use of photon or electron probes to characterize the bulk properties 

of the diode. 

The Ion Beam Induced Charge (IBIC) technique provides measurements of basic parameters of the 

active region under metallisation layers. The IBIC technique uses MeV light ion microbeams, focused to 

spot sizes of the order of micrometer scanned over the electrode. The ion current is very low, of the order 

of fA (thousands of ions/s), in order to avoid any radiation damage and to allow individual charge pulses 

to be detected by virtue of the high number of electron/hole pairs (EHPs), generated within few tens of 

nanometers from the ion track. The major aspects of the IBIC technique are covered in Ref. [16].  

For example, 2 MeV protons, with a longitudinal and projected range in silicon of 48 m and 1.5 m, 

respectively [17], generate around 5105 EHPs along the ion trajectory. Therefore, single ions induce 

measurable charge pulses above the noise level and the active regions of the device, which can be buried 

so deep under thick electrodes, can be analysed with a micrometer lateral resolution, which is reasonable 

for the study of many semiconductor power devices.  

Finally, a further advantage offered by the IBIC technique stems from the availability of a rigorous 

theoretical formalism [18], which is able to model the charge pulse formation and allow the extraction 

of basic transport and recombination parameters, which are essential for a reliable design of the device. 

IBIC technique has already been applied to many studies of semiconductor materials and devices [16]. 

In particular, in the field of high power electronics, thyristors have been studied by Osipovitz, Smeck et 

al. [19] [20] and power diodes with lifetime killers induced by He irradiation have been studied by 

Fizzotti et al.[21]. 

The former investigation was non-destructive and provided CCE images, which were qualitatively 

related to the electric field distribution in deeply buried junctions, whereas the latter research was able to 

measure the carrier diffusion length by means of the lateral IBIC approach, which is notably destructive. 

In this paper, we report on a methodology based on the IBIC technique, able to non-invasively and 

quantitatively investigate the features of silicon power diodes. Proton microbeams of energy ranging 

from 1.2 to 2.0 MeV, incident onto the diode top electrode at different angles, were used to measure 

induced charge spectra at different bias voltages. 

The use of different ion energies, allows a fine probing of the active region, ranging from the junction 

to the bulk of the intrinsic region and provide experimental data, which need to be consistently analysed 

for all the experimental parameters (tilting angles, ion energies, applied bias voltages). Therefore, this 

approach requires an accurate interpretative model, derived from the basic IBIC theory, which overcomes 
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the inherent limitations of that previously adopted [22], and a proper data analysis, suitable to consistently 

fit all the experimental data.  

2. Materials and methods 

The analysis was carried out on two commercially available p-i-n power diodes fabricated on a 60 m 

thick epitaxial silicon layer grown onto a Czochralski n+ substrate (Fig. 1a).  

Diode type 1 is an ordinary rectifier diode, whereas diode type 2 is a fast recovery diode (FRD) [7]. 

The two devices show the same structure but differ in their switching features: the reverse recovery time 

scale is of the order of few microseconds for the former and tens/hundreds of nanoseconds for the latter 

because of the adoption of lifetime killing technologies. 

Each diode was mounted on a PCB; the (2.5x2.5) mm2 back contact (cathode) was directly fixed to a 

copper pad by conductive glue, and the (1.3x1.3) mm2 Al top electrode (6 m thick) was connected to a 

different Cu pad by 20 m Al wire (Fig. 1b). The floating field ring structure, surrounding the central 

electrode, covers an area of (1.7x1.7) mm2.  

 The PCB was mounted onto a rotating holder connected to a goniometer allowing the orientation of 

the sample with respect to the incident ion beam axis with an uncertainty of 1°.  

Although the device can operate up to reverse bias voltages higher than 1000 V, in this study the 

maximum applied bias was 200 V. As shown in Fig. 1c, for applied bias voltages higher than 100 V, the 

C-V curve is rather flat, indicating that the extension of the depletion layer saturates.  

The same figure shows the 1/C2 vs. V plot, whose almost linear behaviour in the first part of the graph, 

allows the estimation of the effective donor concentration in the n- region to be of the order of 1013 cm-

3. The two diodes present very similar C-V characteristics, but different current-voltage curves, as shown 

in Fig. 1d. This different current behaviour is to be attributed to the impact in the type 2 diode of 

impurities (as Au or Pt) or defects generated by high energy particle (e.g. electron) irradiation, which act 

as lifetime killers to improve the removal of minority carriers by recombination processes and generally 

to increase the turn-off speed in high-frequency applications [2][4].  

At 200 V, the leakage current is below 200 nA, which generates a reasonably low noise in the charge 

sensitive preamplifier. Similarly, at low bias voltage, the capacitance is less than 50 pF, which falls in 

the range of capacitance of typical silicon nuclear detectors. These features allow the use of a standard 

electronic chain used in nuclear radiation spectroscopy to process the induced charge signals. In this 

work, the electronic chain includes a charge sensitive preamplifier (ORTEC 142a), and spectroscopy 

amplifier (ORTEC 570). The effective bias voltage across the device was evaluated by subtracting the 
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voltage drop across the 100 M load resistor of the preamplifier from the externally applied bias voltage. 

In all the measurements the shaping time of the amplifier was set to 2 s. 

The experiments were performed at the accelerator facility of the Laboratory for Ion Beam 

Interactions of the Ruder Boskovic Institute in Zagreb, Croatia. The ion microbeam line was coupled to 

the 1.0 MeV Tandetron accelerator [23], while the data acquisition and ion micro-beam scanning system 

was controlled by the SPECTOR hardware / software package [24] . 

Protons with energies of 1.2, 1.5. 1.7 and 2.0 MeV were focused down to a spot size of less than 5 m 

and the rarefied (few hundreds of ions per second) proton beams were scanned over the silicon diode 

frontal electrode.  

Fig.2 shows the irradiation set-up and the colour coded pulse-height IBIC maps resulting from the 

scan of proton microbeams at different tilting angles () (Figs. 2a/2b), proton energies (E) (Figs. 2a/2c) 

bias voltages (V) (Figs 2c/2d). Since IBIC maps show a rather uniform response, the following analyses 

were carried out on spectra with typically few thousands of pulses emerging from the irradiation of small, 

about 0.1 mm2, regions on the frontal electrode. For each spectrum, the proton fluence was less than 107 

protons/cm2, which ensures negligible radiation damage effects induced by the ion probe [18].  

3. Calibration and dead layer measurement 

IBIC experiments require an accurate calibration of the electronic chain, in order to convert the 

induced signal into the charge collection efficiency (CCE), which is defined by the ratio of the induced 

charge measured at the sensing electrode on the total charge generated by ionization. 

The plot of the peak channels, evaluated through a Gaussian fit of the experimental data (the 

uncertainty in the peak position is around 1 channel), as a function of bias voltages, shows a clear 

saturation of the curves for V>100 V, independently from the proton energies, (Fig. 3). In the same 

figure, the depth of the depletion layer w (see Fig. 1) is shown on the top axis in correspondence of the 

applied bias (bottom axis); vertical lines represent the ranges of protons in the Al/Si diode, simulated by 

the SRIM2013 software [17], at different energies. A full charge collection occurs at the sensing electrode 

induced by all the EHPs generated by ionization within the depletion region, since the drift time is short 

enough to make negligible any carrier recombination process [16][18]. 

However, the energy deposited by ionization within the active region does not correspond to the 

proton energy, since a non-negligible fraction of energy is lost in the thick (6 m) Al electrode and in 

the silicon dead-layer (or entrance window), i.e. the silicon layer beneath the electrode in which charge 

collection is inefficient [25]. 
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To evaluate the effective thickness of the entrance window, and to calibrate the electronic chain, we 

applied angle-resolved IBIC analysis [22], which consists in tilting the sample at angles () ranging from 

-40° to 50° with respect to the ion beam axis at a bias voltage of 200 V.  

Fig. 4a shows the peak channels vs. the tilt angle per different proton energies at a bias voltage of 200 

V; the diode response decreases as the tilting angle  increases due to the increase in ion path length in 

the non-active regions, actually the Al electrode of thickness t and the dead layer in silicon of thickness 

d.  

The energy Eij deposited in the active region from the proton with energy Ei
0 incident at an angle θj 

is then 

(1) Eij = Ei
0 − i,j

Al − i,j
Si = ϵij − i,j

Si 

Where  

(2) i,j
Al = ∫ [

dEi

dx
]
Al

t

cos(θj+θ0i)

0
 

is the energy loss in the Al electrode by the proton,   

(3) ϵij = Ei
0 − i,j

Al  

is the proton energy emerging from the Al electrode and  

(4) i,j
Si = ∫ [

dϵij

dx
]
Si

d

cos(θj+θ0i)

0


[
dϵij

dx
]
Si

cos(θj+θ0i)
d 

is the energy loss in the silicon dead layer by the proton incident at an angle θj and emerging from the 

Al electrode with an energy ϵij . Assuming the dead layer so thin, that the stopping power is 

approximately constant, i,j
Si can be approximated by the last term in eq. 4. 

θ0i is the angular offset, which was evaluated through the analysis of data in Fig. 4a for each energy. 

Actually, both diodes were measured at a fixed energy, but, since the sample holder can host a single 

PCB, the angular offset θoi was evaluated for each energy Ei
0, to take into account the misalignment in 

the mounting of the PCB onto the goniometer. The angular offsets (of the order of 1°) were evaluated by 

fitting, for each proton energy Ei
0 , the experimental data in Fig. 4a through the standard formula [25] 

(5) f(θ) = Ai −
Bi

cos(θ+θ0i)
 

Assuming a linear relationship between pulse heights (channels Ch) and the energy Eij deposited in 

the active region: 
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(6) Eij =  +  ∙ Chij 

Where  and  are the calibration parameters and Chij  is the peak position (channels) relevant to 

charge pulses induced by protons with energy Ei
0 incident at an angle θj. 

From eqs. 0 and 0, we can easily get the following linear expression:  

(7) ϵij =  +  ∙ Chij + d ∙ μij 

where μij = [
dϵij

dx
]
Si

1

cos(θj+θ0i)
 . The uncertainty (Δϵij)  of the dependent variables ϵij is evaluated 

assuming an uncertainty of 100 nm on the electrode thickness;  all these terms have been calculated 

through SRIM software [17]. 

The calibration parameters (α, β) and of the silicon dead layer thickness (d) have been extracted from 

the overdetermined system of linear L=MxN equations (where M=4 is the number of proton energies 

and N =5 is the number of the tilting angles θj values) given by eq. 7) using the method of least squares 

[26], where the parameter vector X⃗⃗ = (
α
β
d
 ) is linearly connected to the dependent variable column vector 

Y⃗⃗  of dimension L through the (Lx3) matrix [A]:  

Y⃗⃗ =

(

 
 
 

ϵ11
ϵ12. .
ϵ21. .
ϵ44
ϵ45)

 
 
 
= [A] ∙ X⃗⃗ =

(

 
 
 
 

1 Ch11 μ11
1 Ch12 μ12
. . . . . .

1 Ch21 μ21
. . . . . .

1 Ch44 μ44
1 Ch45 μ45)

 
 
 
 

∙ (

α
β
d
 ) 

and the covariance matrix [W] of Y⃗⃗  is given by the LxL diagonal matrix 

[W] =  

(

 
 
 
 
 

(Δϵ11)
2 0 . . 0 . . 0 0

0 (Δϵ12)
2 . . : . . : :

: 0 … 0 . . : :
: : . . (Δϵ21)

2 . . : :
: : . . 0 . . 0 :
: : . . : . . (Δϵ44)

2 0

0 : . . 0 . . 0 (Δϵ45)
2)

 
 
 
 
 

∙ 

The result of this fitting procedure applied to both the diodes is summarized in Fig. 4b and provides 

the dead layer thickness d=(0.30.1) m; the sensitivity of the electronic () chain is (2.311  0.007) 

keV/channel corresponding to about 640 electrons/channel as evaluated assuming an average energy to 

create one electron/hole pair (eh) in silicon of 3.6 eV [27].  

Such a calibration has been adopted for all the measurements carried out for any point in the 

experimental parameter space (E,,V). The FWHM of the peaks (e.g.: inset in Fig. 4a), considering all 
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the bias voltages, ranges from a minimum of 37 keV (10000 electrons) to a maximum of 52 keV (14400 

electrons), for (E,,V)=(2.0 MeV,0°,200 V) and (E,,V)=(1.5 MeV,50°,1 V), respectively. 

It is worth mentioning that this procedure allows a consistent calibration of the electronic chain using 

all the ion energies without any reference detector and is particularly suited for devices with thick 

electrodes (by virtue of eq. 2), where the only basic linear relationship (eq. 6) cannot be adopted, due to 

the not negligible energy loss outside the active region. 

4. CCE profiles and carrier lifetime measurements 

To investigate the bulk electronic properties of the diodes, we exploited the combination of the tilting 

angle  and of the ion energy, which provides ionization profiles with Bragg’s peaks ranging from 6 to 

41 m below the silicon surface (see Fig. 5).  

Taking into account that IBIC signals derive from the charge induced by the motion of free carriers 

into the depletion region [18][28], the depth profiling methodology based on varying the ion beam energy 

(E) and incident angle (), successfully applied for differential PIXE studies of art objects [29], is further 

potentiated by the control of the depletion region depth as a function of the applied bias voltage (V).  

The (few hundreds) IBIC spectra acquired by modulating the three independent parameters, namely 

(E, , V), can be studied by assuming constant one parameter and analysing the behaviour of CCE vs. 

the other two. Here, we choose an approach in which the CCE is analysed as a function of the incident 

angle, at a constant applied bias voltage, for different ion energies, as shown in Fig. 6 for the type 2 

diode.  

It is apparent that the CCE vs. θ behaviours show a monotone decreasing trend at high bias voltages 

(>50 V) as already observed in Fig. 4a, referring to 200 V bias voltage. 

When the extension of the depletion layer is beyond the range of the ions, all the carriers generated 

by ionization rapidly drift toward the electrodes, and the induced charge can be reasonably considered 

fully collected. The different decreasing trends of the curves is due to the dependence of the energy loss 

in the electrode as a function of the proton energy: the lowest ion energy (1200 keV) shows the most 

pronounced decrease due to the highest stopping power in Al with respect to that for higher protons 

energies and then a higher sensitivity to the electrode and dead layer thicknesses. 

On the other hand, at bias voltages lower than 50 V, the CCE curves in Fig. 6 show seemingly 

unpredictable shapes.  

However, a simplified formulation of the IBIC theory [18][28] can provide a satisfactory 

interpretation of these behaviours using the following equation: 
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(8) CCEmodel(Ei
0, θj, Vl) =

1

Ei
0 ∫ η(x; Vl) ∙ [

dE

dx
]
Ei
0,θj
dx

D

0
 

where [
dE

dx
]
Ei
0,θj

is the stopping power profile shown in Fig. 5 as a function of the incidence angle and 

the proton energy, D identify the end of the active region (Fig. 1a) and η(x; Vl) is the spatial profile of 

the charge collection efficiency at the applied voltage Vl. Such a profile can be modelled as null for the 

electrode and dead layer thicknesses (i.e. for x<t+d) and one in the depletion region (i.e. for 

t+d<x<w(Vl)), where it is assumed that the high drift velocity of the charge carriers under the influence 

of the electrical field leads to a fast charge collection process compared to the lifetime of the charge 

carriers. 

In the neutral region (D>x> w(Vl)), only the fraction of minority carriers (holes) reaching the edge of 

the depletion region contribute to the total induced charge. In this region, assuming constant transport 

and recombination properties within the neutral region, from the basic IBIC theory [16][18][28], η(x; Vl) 

can be evaluated by solving the equation 

(9)  
d2η(x;Vl)

dx2
=
η(x;Vl)

Lh
2  

where Lh is the hole diffusion length. 

The boundary conditions are set to 

(10)  {
η(x = w(Vl)) = 1

dη

dx
|
x=D

= 0
 

where the first (Dirichlet) condition derives from the continuity of η(x; Vl) at the boundary between 

the depletion and neutral region (x=w(Vl)) and the second (homogeneous Neumann) condition is justified 

by the presence of a back surface field at the interface between the high and low doped n-type region (at 

x=D), which introduces a barrier to minority carrier flow to the rear [7]. In summary 

(11) η(x; Vl) = Θ[x < w(Vl)] ∙ Θ[x > t + d] + Θ[x < D] ∙ Θ[x > w(Vl)] ∙
cosh (

D−x

Lh
)

cosh (
D−w(Vl)

Lh
)
 

where Θ(x) is the Heaviside step function and the last term is the solution of eq. (9), with the boundary 

conditions (10), assuming constant Lh. A detailed derivation of eq. (11) is given in the Appendix. 

For each applied bias voltage Vl, the best fit of the experimental data through eqs. (8) and (11) has 

been calculated by scanning the residual (i.e. square of deviations of the theoretical curve from the 
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experimental points) sum of squares, at constant applied bias voltage Vl , while varying the free 

parameters w(Vl) and Lh (step size=0.5 µm).  

The matrix 2  

(12) χ2(w(Vl), Lh) = ∑ ∑ [
CCEExper(Ei

0,θj,Vl)−CCEModel(Ei
0,θj,Vl;w(Vl),Lh)

∆CCE(Ei
0,θj,Vl)

]
2

N
j=1

M
i=1  

is the sum over  the tilting angles θj (j=1….N=5) and energies Ei
0 (i=1…M4) of the squares of the 

differences between the experimental data (CCEExper ) and the values (CCEModel) predicted by the model 

given by eqs. (8) and (11). ∆CCE(V; θi, Ej) is the uncertainty deriving from the uncertainty of calibration 

(of the order of few %). 

The best fitting parameters are then determined by the minimum of the χ2(w(Vl), Lh) matrix. This 

methodology, already successfully applied to evaluate the capture coefficients of radiation induced 

recombination centres [18], was used because of its easy implementation in spite of the complex non-

linear CCE expression in eq. 12.  

The uncertainty of the measurements of the free parameters w(Vl) and Lh was estimated from the 

calculation of the inverse of the Hessian Matrix of χ2 [30] 

Fig. 7 shows the plots of the χ2(w(Vl), Lh) matrix for different applied bias voltages. For each map, 

it is apparent the presence of one minimum, which moves to the left, as the bias voltage decreases. Since 

the abscissa of the contour plots refer to the deeper boundary of the depletion layer w(V) (see the scheme 

of Fig.1a), this behavior refers to the monotonous increase of the w(V) function, as expected from the 

basic theory of the p-n junction (Fig. 8a).  

A more evident connection of this result with the electrical characterization, can be extracted from the 

analysis of the linear behavior of w(V) vs. 1/C(V), as shown in Fig. 8b. Actually, from the standard 

expression for a parallel plate capacitor [7], with the spacing between the two plates given by W(V) = 

w(V)-(t+d) (see Fig. 1a): 

(13) W(V) =
ε∙A

C(V)
 

and from the geometrical relationship between w and W, as shown in Fig. 1a: 

(14) w =
ε∙A

C(V)
+ xJ + t  

both the electrode effective area A ( is the silicon dielectric constant ( 1 pF/cm)) and the junction 

depth xj
 can be extracted from the slope and the intercept, respectively, of the linear fit of Fig. 8b. 



 

 

11 

The intercept is equal to t+xj=(11.90.4) m, which corresponds to a junction depth of about 5.6 m, 

which is a value aligned with power semiconductor rectifier design best practice [2][7]. 

The effective area is (A=2.700.07) mm2, which is in between the geometrical area of the central top 

electrode (1.69 mm2) and the area surrounding the guard rings (2.89 mm2).  

Finally, the minority carrier (hole) lifetime Lh can be calculated from the vertical position of minima, 

which persist in the interval 20-30 m, with an average value of Lh= (24.00.3) m; assuming a hole 

diffusivity in silicon of 13 cm2/s [7], the hole lifetime is about 0.4 s. 

In Fig. 6 the solid lines are the plot of the CCEmodel function calculated through eq.(8), using the 

parameters w(V) and Lh resulting from the best-fit procedure. It is remarkable the excellent agreement 

of the model output with the experimental data. 

The (x) profiles at different bias voltages resulting from eq. (11), are plotted in Fig. 5 and shed light 

on the interpretation of the complex behavior of CCE data at low bias voltages shown in Fig. 6.  

As already mentioned, for bias voltages larger than 50 V, all the generation profiles are confined 

within the depletion layer and the decreasing CCE behaviors are caused by the increasing energy losses 

in the Al electrode and dead layer.  

At 20 V, for proton energies of 1700 and 1500 keV, as for higher voltages, all the generation profiles 

are confined within the depletion layer and the decreasing CCE behaviors are caused by the increasing 

energy losses in the Al electrode and dead layer. However, for an energy of 2000 keV at angles smaller 

than 30°, the non-negligible fraction of carriers generated outside the depletion region partially contribute 

to the induced signal, since the time scale of carrier diffusion in the neutral region is much longer than 

the drift time, and, consequently, carriers are subjected to recombination phenomena. This interpretation 

can then be extended to lower voltages. 

A similar analysis was carried out on the type 1 diode; Fig. 9 shows the CCE behaviors as a function 

of the incident angle, at a constant applied bias voltage, for different ion energies.  

Unlikely type 2 diode, the CCE curves of diode 1 systematically decrease monotonically as a function 

of the tilting angle, regardless the ion energy or bias voltage. To interpret these data, we applied the same 

data analysis methodology adopted for type 2 diode; the fitting curves provide an excellent agreement 

with the experimental data, as shown by the solid lines in Fig. 9. 

The best fit procedure provides w(V) relationship very similar to that shown in Fig. 8, which evidences 

a negligible contribution of lifetime killers to the electrostatics of the diode.  
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On the other hand, the minority carrier diffusion length is remarkably higher, Lh = (714) m. This is 

clearly shown in Fig. 10, where the CCE profiles (x) show a logarithmic-like slope in the neutral region 

smaller than type 2 diode (see Fig. 5); the contribution of the minority carriers generated in the neutral 

region to the total induced charge is higher than 80% through all the whole generation profiles shown in 

Fig. 10 even for low bias voltages. Main conclusion is that there is a not significant loss in induced charge 

due to the recombination of minority carriers in the neutral region as is evidenced by the flatness of the 

CCE curves relevant to 2 MeV proton energy at low bias voltage. As above mentioned, the decreasing 

of the CCE curves, more evident at high bias voltages, is due to the energy lost along the path crossing 

the electrode and dead layer, whose length increases as the tilting angle increases. 

Finally, the hole diffusion length evaluated for the type 1 diode has to be considered as an indicative 

value. Assuming a hole diffusivity in silicon of 13 cm2/s [7], the corresponding hole lifetime is about 4 

s and the average diffusion time is about few microseconds. Since the shaping time of the amplifier is 

2 s, we cannot exclude that ballistic deficit [25] can effectively affect the pulse heights, overall at low 

bias voltages. Therefore, the resulting Lh value is more correctly to be considered as a minimum threshold 

value for type 1 diode. 

5. Conclusions  

 We have presented a methodology based on the IBIC technique to characterize the electrostatics and 

to measure the minority carrier lifetime of power diodes. The technique relies on the use of scanning 

proton micro-beam to extract charge collection efficiency spectra from a sub-millimeter region of the 

diode. Spectra were analyzed as a function of the proton energy, ranging from 1.2 to 2.0 MeV, incident 

angle, from -40° to +50°, and applied bias voltage.  

The experimental results were interpreted by using a simplified model based on the IBIC theory, 

which assumes a full induced charge collection in the depletion region, due to the very short drift time 

compared to the carrier lifetime, and an incomplete charge induction from carriers generated in the 

neutral region, caused by recombination processes which limit the injection of carriers by diffusion into 

the electric field region. 

Data analysis was carried out by fitting the CCE values relevant to different energies vs. tilting angles 

at fixed bias voltages, through a consolidated methodology relying on scanning the residual (i.e. 

deviations of the theoretical curve from the experimental points) sum of squares while varying both the 

depletion layer width (w) and the minority carrier diffusion length Lh, which was assumed to be constant 

through the whole neutral region. 
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The best fit procedure was proven to be reliable in providing measurements of both the two free 

parameters for two p-i-n power diodes, providing a w(V) dependence in agreement with traditional 

electronic characterization and values of Lh, which account for the different performances of the two 

diodes. 

The developed technique offers advantages over more traditional electrical methods or optical/ 

electron scanning micro-spectroscopy. Indeed, it is non-destructive and able to analyze the electronic 

features of semiconductor regions buried under thick electrodes, hardly accessible with electron or 

optical probes.  

The methodology was inspired by work carried out by A. Lo Giudice et al. [22] regarding the angle 

resolved IBIC analysis of a 4H SiC Schottky diode. However, with respect to that approach, which used 

a monochromatic ion probe, the methodology described in this paper offers several advantages: 

a) the combination of different angles of ion beam incidence and applied bias voltages, allows 

the diode epitaxial region to be probed. However, the use of ion probes with different energies 

not only provides a remarkable increase of statistics of the experimental data, but extends the 

probed depth from the junction to a depth of more than 40 m from the silicon surface, with 

generation profiles, which, altogether, cover almost uniformly the investigated region  

b) This procedure allows a consistent calibration of the electronic chain using all the ion energies, 

without any reference detector and is particularly suited for devices with thick electrodes, 

where the only basic linear relationship between pulse height and ion energy cannot be 

adopted, due to the not negligible energy loss in the electrode and dead layer. 

c) Finally, the overall statistical data analysis, borrowed from [18], allows the measurement of 

the minority carrier lifetime in the intrinsic region, and the dependence of the depletion layer 

extension as a function of the bias voltage, which is related to the output of electrical 

characterizations.  

Moreover, the adopted simplified model relies on hypotheses (e.g. constant carrier lifetime in the 

neutral region), which are reasonably acceptable for power devices and provides material parameters, 

which are fundamental for the calibration of device simulations with Technology Computer Aided 

Design (TCAD). 
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7. Appendix – Derivation of eq. (11) 

From the model formulated in [18], the 1D adjoint form of the continuity equations for carriers in 

semiconductors are 

[A1] {
−ve ∙

∂n+

∂x
+

∂

∂x
[De

∂n+

∂x
] −

n+

τe
+ Ge

+ = 0

+vh ∙
∂p+

∂x
+

∂

∂x
[Dh

∂p+

∂x
] −

p+

τh
+ Gh

+ = 0
 

Where De,h,ve,h, e,h are the diffusion coefficient, drift velocity and carrier lifetime, for electrons (e) 

and holes (h), respectively. n+  and p+ are the adjoint carrier concentrations of electrons and holes, 

respectively. The adjoint source terms are 

[A2] {
Ge
+ = ve ∙

∂ℱ

∂V
−

∂

∂x
[De

∂ℱ

∂x
]

Gh
+ = vh ∙

∂ℱ

∂V
+

∂

∂x
[Dh

∂ℱ

∂x
]
 

where 
∂ℱ

∂V
 is the Gunn’s field, ℱ the electric field and V the applied potential. 

The solutions of eq. [A1] provide the charge Q(x) collected at the electrode and induced by a point 

charge generated at x: 

[A3] Q(x) = q ∙ [n+(x) + p+(x)] = q ∙ η(x) 

Where η(x) is the spatial profile of the charge collection efficiency defined in section 0. 

The total charge induced at the sensing electrode by the motion of EHPs generated with an arbitrary 

profile B(x) is then given by 

[A4] QInduced = ∫ dx[Q(x) ∙ B(x)]
D

0
 

In the case of study, the generation profile is  

[A5] B(x) =
1

εeh

dEion

dx
  

Where Eionis the ion energy. 

Eq. (8) is easily derived by the normalization of [A4] by the total charge (electrons or holes) generated 

by the ion: 

[A6] QTot = q
Eion

εeh
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For the case of study, we assume that n+(x) and p+(x) are null when the charge is generated within 

the electrode and the silicon dead layer, i.e. 

[A7] η(x) = 0 for x<t+d. 

The rest of the integration domain of eq. [A1], i.e. x ∈ [t + d, D] , is divided in two regions, similarly 

to the elementary approach adopted for the abrupt junction basic model [7]: the depletion region, 

extending in the range (t+d<x<w) and the neutral region extending in the range (w<x<D). 

In the former region, a strong electric field occurs and the Gunn’s term is 
∂ℱ

∂V
=

1

W
Θ[x > t + d] ∙

Θ[x < w], where W=w-(t+d) is the width of the depletion region (see Fig. 1a). 

 We assume that, by virtue of the high electric field in this region, the diffusion terms are negligible, 

and eq. [A1] can be simplified as follows 

[A8] {
ve ∙

∂n+

∂x
−
n+

τe
= −

ve

W

vh ∙
∂p+

∂x
+
p+

τh
= +

vh

W

 

Whose solutions are [18]: 

[A9] {
n+(x) =

1

W
∫ dy {exp [−∫

dz

le(z)

y

x
]}

w

x

p+(x) =
1

W
∫ dy {exp [−∫

dz

lh(z)

x

y
]}

x

t+d

 

Finally, assuming that the drift time much shorter than the carrier lifetime through the whole depletion 

region, or the drift length (le,h = ve,h ∙ τe,h) is much shorter than W, the two functions in eq. [A9] can be 

simplified as 

 [A10] {
n+(x) = 1 −

x−(t+d)

W

p+(x) =
x−(t+d)

W

 

It follows from eq. [A3] that  

[A11] (x)=n+(x)+p+(x)=1 in the depletion region (i.e. t+d<x<w). 

For x>w, we assume that the electric field ℱ is null for x ∈ [w, D[  , but not necessarily null at the 

back  boundary, i.e. for xD; however, the electrostatics in this region is assumed not to be influenced 

by the external potential. Therefore, the Gunn’s term (
∂ℱ

∂V
) and then the adjoint source terms (Ge,h) are 

null. The eqs. [A1] can be then written as follows:  

 [A12] {
−

q

kB∙T
∙ ℱ(x) ∙

∂n+

∂x
+
∂2n+

∂x2
−
n+

Le
2 = 0

+
q

kB∙T
∙ ℱ(x) ∙

∂p+

∂x
+
∂2p+

∂x2
−
p+

Lh
2 = 0
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where the Einstein relationship [7] has been used: 
q

kB∙T
∙ ℱ =

ve,h

De,h
 (kB is the Boltzmann constant ant T 

is the temperature), and Le,h = √De,h ∙ τe,h is the carrier diffusion length. 

The continuity of the solutions [A10] at the boundary at x=w, gives the Dirichlet’s boundary 

conditions: 

[A13] {
n+(x = w) = 0

p+(x = w) = 1
 

The conditions at x=D depends on the diode structure. If the back contact is ohmic [31] 

[A14] {
n+(x = D) = 0

p+(x = D) = 0
 

and the electric field is null (ℱ(x = D) = 0). Therefore, the solutions of eqs. [A12] with the boundary 

conditions [A13] and [A14] are 

 [A15] {

n+(x) = 0

p+(x) =
sinh (

D−x

Lh
)

sinh (
D−w)

Lh
)

 

as given in [22]. It is worth noticing that for (D-w)>> Lh, p+(x)exp (−
x−w

Lh
), which is the solution 

usually adopted in the diffusion-drift model [16]. 

In the case of study, the solution p+ given by [A15] proved to be unsuitable to fit the experimental 

data. Actually, the presence of the concentration gradient at x=D, i.e. at the interface between the intrinsic 

region and the highly doped substrate, generates a counter electric field, oriented towards the depletion 

layer, operating as a reflector for the minority carrier (holes) and as a drain for the electrons. 

Therefore, the boundary condition for electron is n+(x=D)=0 because of the presence of an electric 

field, which drains the electrons into the external circuit and the solution of the first differential equation 

[A12], is  

[A16] n+(x) = 0  for w<x<D. 

For the holes, we assume that the back surface field as an impenetrable barrier at x=D, i.e.ℱ(x) tends 

to infinity for x=D. This implies that, to avoid divergences, 

[A17]  
∂p+

∂x
|
x=D

= 0 

which means an ideal total reflection of holes at x=D. 

The hole term p+ is then the solution of the diffusion equation 

[A18] 
∂2p+

∂x2
−
p+

Lh
2 = 0 
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With the homogeneous Neumann boundary condition [A17] at x=D, and Dirichlet boundary condition 

at x=w, i.e. 

[A18]  {
p+(x = w) = 1

 
∂p+

∂x
|
x=D

= 0
 

The solution of eq. [A18] with the boundary conditions [A19]  is then given by 

[A20] p+(x) =
cosh (

D−x

Lh
)

cosh (
D−w

Lh
)
 for w<x<D 

The solutions [A7,A11, A16, A20] demonstrates the validity of eq. (11). 
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a)  

 

 

 

b)  

c)  d)  

Fig. 1:a) scheme of the diode structure with the orientation of the x-axis and the main parameters 

(t,d,w,D); the origin of the axis is located at the electrode surface; xj is the junction depth calculated from 

the silicon surface and W is the depletion layer width. b) image of one diode mounted on the PCB; c) 

Capacitance-Voltage characteristic (left scale) and 1/C2 vs. V (right scale) of both the diodes; d) Current-

Voltage characteristics in the reverse bias condition for the two diodes, 
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a)  b)  

 

c) d)  

 

Fig. 2: Scheme and IBIC maps for different points of the parameter space (E,,V): a) (2 MeV, 0°, 

200 V), b) (2 MeV, 50°, 200 V), c) (1.7 MeV, 0°, 200 V), d) (1.7 MeV, 0°, 5 V) 
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Fig. 3: pulse heights as a function of the applied bias voltage (bottom abscissa) for different proton 

energies. Top abscissa: depth of the depletion layer (w, refer to Fig.1), calculated through eqs. 0 and 

0. Vertical lines indicate the proton range (refer to the top abscissa) in the Al+Si diode structure for 

different energies 

 

 

 

 

20 40 60 80 100 20010

28 33 40 45 49 54 60

400

450

500

550

600

650

700

750

800

850

w (m)

C
h

a
n

n
e
l

Bias Voltage (V)

2.0 MeV

1.7 MeV

1.5 MeV

1.2 MeV



 

 

23 

a)  

b)  

Fig. 4: a) Mean pulse heights as a function of the tilting angle for different proton energies (type 2 

diode). Applied bias = 200 V. Solid lines are fit of the data through eq. 5. Inset: IBIC spectra at 

different tilting angle. Ion probe: 2 MeV H+; b) output of the fitting procedure detailed in the text; 

markers refer to both the diodes 
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Fig. 5: solid lines, left scale: stopping power of protons at different energies and 

different angle of incidence in the diode, evaluated by SRIM simulations [17]. Lines + 

symbol graphs: CCE profile (x) for type 2 diode for different bias voltages. The grey 

rectangles represent the frontal Al electrode. 
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Fig. 6: CCE spectra as a function of the incidence angle parametrized by the ion energies, for 

different bias voltages. Solid lines are not interpolations of the experimental data (markers), but the 

results of the fitting procedure. Error bars result from the propagation of the uncertainty derived from 

the calibration procedure. Type 2 diode. 
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Fig. 7: . Plots of the squared sum of residuals (2) as a function of different values of the depletion 

layer width (w) and of the hole diffusion length (Lh) at different bias voltages. Type 2 diode.  
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Fig. 8: depletion layer width resulting from the fitting procedure as a function of the applied bias 

voltage a) and of the inverse of the diode capacitance b). Type 2 diode. 
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Fig. 9: same as in Fig. 6. Type 1 diode. 
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Fig. 10: same as in Fig. 5, but the CCE profile (x) refers to type 1 diode. 
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