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Collective dynamics in animal groups is a challenging theme for the model-
ling community, being treated with a wide range of approaches. This topic is
here tackled by a discrete model. Entering in more details, each agent, rep-
resented by a material point, is assumed to move following a first-order
Newtonian law, which distinguishes speed and orientation. In particular,
the latter results from the balance of a given set of behavioural stimuli,
each of them defined by a direction and a weight, that quantifies its relative
importance. A constraint on the sum of the weights then avoids implausible
simultaneous maximization/minimization of all movement traits. Our
framework is based on a minimal set of rules and parameters and is able
to capture and classify a number of collective group dynamics emerging
from different individual preferred behaviour, which possibly includes attrac-
tive, repulsive and alignment stimuli. In the case of a system of animals
subjected only to the first two behavioural inputs, we also show how analyti-
cal arguments allow us to a priori relate the equilibrium interparticle spacing
to critical model coefficients. Our approach is then extended to account for
the presence of predators with different hunting strategies, which impact
on the behaviour of a prey population. Hints for model refinement and
applications are finally given in the conclusive part of the article.

This article is part of the theme issue ‘Multi-scale analysis and modelling
of collective migration in biological systems’.
1. Introduction
Collective organization and movement occur in many biological and ecological
systems, from colonies of bacteria to human crowds [1–3]. In particular, many
animal species form groups and are able to undergo synchronized and coordi-
nated dynamics, which represent an evolutionary adaptation conferring certain
collective benefits, including more efficient new nest exploration
and colonization [4], food gathering [5], predator avoidance [6,7] and heat
preservation [8], as schematically shown in figure 1.

The description of animal group movement and patterning has increased in
the last decades the multidisciplinary interest of various research communities,
including applied mathematicians and physicists. In this respect, a wide range
of approaches are present in the theoretical and computational literature, as
reviewed for instance in [1,9,10]. In particular, continuous models are character-
istic of a macroscopic point of view and rely on the definition of a proper
density of agents, whose dynamics are set to obey conservation equations
and phenomenological assumptions for their closure [11–15]. Hydrodynamic
arguments and Boltzmann-like evolution laws for statistical distributions of
individual position and velocity are instead at the basis of mesoscopic kinetic
approaches [16–18]. Finally, discrete models and cellular automata employ a
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Figure 1. Different collective dynamics of animal populations. (a) A small swarm of seagulls undergoes chaotic group flight. (b) A large zebra herd coordinately
migrates, as all component individuals have a common direction of movement. (c) A school of fish is dispersed by a shark, with the consequent formation of empty
space around the predator. (d ) A herd of wildebeests individually runs away from an attacking cheetah. All the images are courtesy of the Department of Life
Sciences and Systems Biology, Università degli Studi di Torino (Italy), and have been modified by the authors of this paper. (Online version in colour.)
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microscopic perspective and describe the system of interest as
a set of single/isolated elements, which are individually con-
sidered and behave according to individual rules (based, for
instance, on energy minimization or on Newtonian laws)
[19–25]. For the sake of completeness, we recall that spatial
organization and collective motion of systems of animals
can be also approached with lattice-based models. This is
the case, for instance, in the series of works by the group of
Kamimura (refer to [24,26–29]) and of the so-called swarm
lattice-gas cellular automata introduced by Deutsch in [30].

The evolution of an animal group is here tackled with a
particle-based approach: it belongs to the family of discrete
methods being characterized by the fact that each agent is
individually represented by a material point, whose velocity
varies according to an ordinary differential equation. Our
general model (that is not referred to a particular species) rea-
listically distinguishes between individual speed and
direction of motion. The former is in fact typically established
by the purpose of movement and/or by physiological limit-
ations, the latter results instead from the competition
between different behavioural stimuli, mainly coming from
the environment and from interagent interactions. In this
respect, we here account for repulsion, attraction and align-
ment inputs that are active in non-overlapping individual
neighbourhoods. Escape strategies are also included in the
case of heterogeneous systems, i.e. formed by a predator
chasing a group of prey. Remarkably, each of the considered
behavioural stimuli is here simply defined by an orientation
(unit) vector and a weight, which is correlated to an individual
preference. A constraint on the sum of the weights is finally
given to avoid simultaneous minimization/maximization of
all individual movement traits.

Our model is not completely new: rather, it combines and
modifies at various extents concepts and ingredients already
present in the literature. More specifically, focusing on the
similarities and differences of our mathematical framework
with respect to analogous published approaches, we first
start from the second-order model proposed by Cucker &
Smale in [31,32] to study flocking phenomena (with the ter-
minology ‘second-order approach’, we hereafter mean a
model based on the second Newtonian law, that relates the
acceleration of a particle to the acting forces). Therein, the
authors only account for an alignment mechanism that
forces each individual to adjust its orientation to the group-
mates. In particular, the tendency to move in the same
direction is set to be higher for close enough individuals,
whereas it decreases in the case of pairs of distant agents.
An interesting extension of this approach is discussed in [1]
and deals with role differentiation within the animal popu-
lation. In particular, the emergence of some instantaneous
leaders (defined as individuals whose movement is not
affected by others) can be observed by introducing aniso-
tropy in the synchronization process, i.e. by assuming that
each animal interacts only with the groupmates falling
within a given visual cone. A further proposed model
development is the addition of stochastic perturbations in
individual dynamics. As commented again in [1], a noise
contribution can be also included in the second-order particle
model developed by D’Orsogna and coworkers which, in
its original version, accounts for a self propulsion term, a
friction contribution (following Rayleigh’s Law) and a
classical Morse potential for attractive/repulsive pairwise
interactions [33].

The analysis and classification of the collective motion of
identical interacting particles is also the topic of the well-
known Vicsek’s model [34]. In particular, it assumes that
flocking phenomena are owing to alignment mechanisms,
with uncertainties arising from a random contribution in
individual velocity. This approach is then extended in [35]
with the introduction of a Lennard–Jones-type potential to
represent repulsive and attractive dynamics. Interestingly,
each velocity contribution is therein weighted by a parameter
that, at variance with our work, can independently vary in R.
Another difference with respect to our model relies on
the fact that the extension of the interaction regions are
significantly small so that the particles interact strictly locally.

The influence of a hunter on group collective dynamics is
deeply investigated by particle-based models as well. For
instance, in [20], each prey is assumed to be subjected to an
increasingly linear attraction towards groupmates and to a
hyperbolic repulsion both towards groupmates and towards
the predator. The cohesive term and the velocity component
relative to hunter avoidance are multiplied by coefficients
varying in Rþ, whereas the repulsion between prey individ-
uals has a constant unitary weight. Predator dynamics are
then completely determined by an attraction term which
has a hyperbolic or a more than hyperbolic law. In particular,
the hunter is simultaneously attracted by all prey, i.e. it is
confused according to the terminology that will be introduced
later on.

In [36], predator–prey interactions are instead tackled by a
second-order particle approach, eventually applicable to the
case of birds attacking crabs and whales attacking small
fishes. In particular, Lee and coworkers assume that prey
individuals are subjected to alignment, attraction, repulsion,
friction and hunter escape forces. A random component is
accounted for as well. In particular, the friction term, pro-
portional to the present individual speed, is employed to
prevent prey from moving too quickly (this is not necessary
in our approach as the speed is possibly limited by a
threshold value). The hunter is finally set to point towards
the centre of mass of the group of prey (i.e. it has a confused
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strategy). Differently from our approach, each behavioural
trait included in their model has a distinct form.

The approaches reviewed so far share with our model the
main principles underlying animal movement, i.e. repulsion,
attraction, alignment and eventually predator avoidance.
However, some relevant differences emerge: in fact, in all
these works, the speed closely depends on the modulus of
the vector establishing the direction of motion and/or each
contribution taken into account has a substantially distinct
mathematical law. These two aspects make our work concep-
tually closer to the following group of microscopic models
dealing with group dynamics.

In 1987, Reynolds published a well-known agent-based
approach to simulate flocking phenomena of bird-like indi-
viduals (named with the acronym BOIDs) [37]. Therein,
each particle is moved by attraction, repulsion and alignment
stimuli. In particular, each behavioural trait is mathematically
given by an orientation unit vector multiplied by a weight (as
in our case). However, in the BOID model, the weights are
allowed to independently vary, i.e. no constraint on their
relationship (e.g. on their sum) is established. An agent
may therefore simultaneously maximize or minimize all its
behavioural stimuli which, according to us, is somehow
unrealistic. Furthermore, in the approach by Reynolds, the
modulus of the resultant velocity vector gives the agent
speed, if a threshold values is not exceeded. In this perspec-
tive, speed and orientation are not decoupled. The BOID
model is then extended in [38] by including an additional
escape rule with the same mathematical structure as the
other three classical contributions. Further, Delgado-Mata
and coworkers multiply each velocity component by a
factor that accounts for the emotional state of the animals
(e.g. fear). Also in this case, the velocity vector of each
agent establishes its speed.

In the work by Couzin and colleagues [21,39], the velocity
of each individual is insteaddefinedbyaconstant speedandan
orientation unit vector, exactly as in our approach. However,
the direction of movement is determined in a slightly different
way. In fact, a generic agent, characterized by an anisotropic
visual cone, is set to be subjected only to repulsion if it detects
another mate within its avoidance region. Otherwise, it is set
to be subjected to both attraction and alignment towards the
groupmates falling within the corresponding interaction
areas: in this case the resultant orientation vector is given by
themean of the two contributions. Perturbations are employed
bymodifying the direction of movement at a randomly chosen
extent: however, an agent is not allowed to undergo a complete
change in its orientation, owing to a constraint on the turn-
around angle. At variance with our approach, Couzin and
colleagues therefore do notweight individual behavioural pre-
ferences; rather, repulsion is the primary stimulus, whereas
alignment and attraction equally affect animal dynamics.

Couzin and another group of coworkers perform and
describe in [40] an interesting experiment, where a predator
bluegill sunfish is allowed to hunt mobile virtual targets in
a controlled environment. In particular, the prey agents are
assumed to move following almost the set of rules defined
in [21,39]. Each agent is in fact subjected either to repulsion
or to the balance between three traits: it can align, ignore
and be attracted by the groupmates. In this respect, the resul-
tant direction of motion of a virtual prey, in the absence of
repulsion, is given by a weighted sum of the three contri-
butions, where the weights, as in our case, sum up to one.
However, differently from our work, such three behavioural
inputs are simultaneously present within the same interaction
region (for instance, in our case the alignment and the
attraction areas do not overlap).

The approaches by Couzin and colleagues are extended in
[41] to describe escape and foraging manoeuvres in a selfish
herd. In particular, all agents are also set to move away from
the position of the predator and/or towards the location of a
food source. Further, each velocity contribution is therein
multiplied by a weight, that is allowed to freely and indepen-
dently vary: this is in analogy to the Reynolds’ BOID model
but differently from our approach. Therefore, also in this case,
implausible situations may in principle occur: e.g. a prey may
simultaneously maximize the competing stimuli of predator
avoidance and food search. Finally, in the work by Wood &
Ackland, the predator points to the closest prey, i.e. it is
non-confused.

Summing up, with respect to similar published
approaches, the proposed model has the following distinct
features: (i) individual speed and direction of movement are
clearly independent; (ii) the description of animal dynamics
does not require the introduction of complex laws of
motion and/or of algorithmic rules; rather all behavioural
stimuli are defined by the same simple mathematical form
(i.e. by an orientation vector and a weight); (iii) only a mini-
mal set of parameters, which have a direct empirical meaning
as well, is necessarily introduced; (iv) each agent behaves
according to a hierarchy of behavioural preferences (i.e. it is
not allowed to maximize/minimize the response to all move-
ment inputs); and (v) the simplicity of our method allows us
to provide not only numerical but also analytical insights.

Structure of the work. The rest of the paper is then orga-
nized as it follows. In §2, we will present the mathematical
framework. Section 3 will show the model ability to repro-
duce and classify collective movement and patterning of an
animal population emerging from different individual behav-
ioural preferences. Section 4 will then focus on a coupled
analytical/numerical study of the equilibrium configurations
of our animal system when subjected only to attractive and
repulsive interactions. A possible model extension accounting
for the presence of a predator which impacts on group
dynamics will be proposed and investigated in §5. Finally,
some hints for further applications and future developments
of our approach will be given in the conclusive §6.

2. Mathematical model
A generic group of animals is described by a particle system
within the d-dimensional space Rd. In this perspective, the ith
agent (with i = 1,…, n, n being the total number of individ-
uals) is represented by a material point with position xi(t).
Individual dynamics are then described by the following
first-order model:

dxi(t)
dt

¼ vi(t)
vi(t)
jvi(t)j , (2:1)

which can be derived from a generic second-order Newtonian
approach under the assumption of overdamped force-velocity
response (a consistent hypothesis for living entities, see
[2,42,43] for comments). Equation (2.1) can be derived from a
more general first-ordermodel (see appendixA) and effectively
decouples themagnitude of the velocity of the ith animal, given
by the scalarvi(t) [ Rþ (possibly,vi(t) [ [0, vmax] to account for
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physiological limitations), from its direction, given by the unit

vector
vi(t)
jvi(t)j [ Bd

1 , Rd (where Bd
1 denotes the d-dimensional

ball, centred at the origin, with unitary radius). As a relevant
feature of the proposed model, these two quantities are
assumed tobe independent, because theyhavedistinct physical
meanings. For instance, the individual speed vi(t) can be deter-
minedby the intrinsic statusof the agent (e.g. calmor inahurry)
as well as by the purpose of its movement and by physiologi-
cal/physical limitations. On the other hand, the velocity
orientation of the particle, ωi(t)/|ωi(t)|, can be formally corre-
lated to the competition between different behavioural stimuli
(triggered, for example, by environmental signals, own prefer-
ence or interactions with the surrounding agents). In this
respect, the vector ωi(t) can be determined by a weighted sum
of proper contributions, i.e.

vi(t) ¼
X
j[J i

a
j
i(t)w

j
i (t), (2:2)

where J i is the set of behavioural inputs that influence the
dynamics of i while the unit vectors w j

i [ Bd
1 , Rd define the

corresponding orientations. Finally, the coefficients a
j
i(t) are

weights that describe the relative importance of each stimulus
with respect to the others; they may also evolve in time owing
to variations of internal or external conditions, e.g. visibility.
In particular, to have comparable effects on agent dynamics
and to avoid simultaneous maximization/minimazion of all
behavioural traits, we assume that

a
j
i(t) [ [0, 1]; j [ J i;P
j[J i

a
j
i(t) ¼ 1; 8t � 0,

(
(2:3)

for all i = 1,…, n. In this respect, relation (2.2) is a linear combi-
nation of the directional cues that affect themovement of the ith
agent.

Given the generical mathematical structure, we now recall
that the majority of animal groups undergoes collective
motion mainly guided by interindividual social interactions.
In particular, three fundamental behavioural rules are classi-
cally identified, as explained in [37,44–46] and reviewed in [1]
in the case of swarming populations. First, a short-range repul-
sion describes the tendency of each animal to maintain a
minimum comfort space within the group: it is here
implemented by a directional unit vector that allows the ith
agent to move away from close enough neighbours:

wrep
i (t) ¼

X
j[N rep

i (t)

(xi(t)� xj(t))

X
j[N rep

i (t)

(xi(t)� xj(t))

������
������
, (2:4)

where

N rep
i (t) ¼ {j ¼ 1, . . . , n, j = i : 0 , jxj(t)� xi(t)j � drep}, (2:5)

drep being the extension of the avoidance region.
A middle-range alignment mechanism then reproduces the

aim of each agent to synchronize its movement, in terms of
orientation, with the groupmates falling within a given
surrounding area of radius dalign, i.e.,

walign
i (t) ¼

M(vj(t)=jvi(t)j) j[N align
i (t)

jM(vj(t)=jvi(t)j) j[N align
i (t)j

: (2:6)
In equation (2.6), M(vj(t)=jvi(t)j) j[N align
i (t) denotes in fact the

mean of the actual velocity directions evaluated over the set
of particles

N align
i (t) ¼ f j ¼ 1, . . . , n, j = i : drep , jxj(t)� xi(t)j � daligng:

(2:7)

A long-range attraction finally enters the picture if the ith
animal falls too far apart from the rest of the group and
tries to reach again its mates: in mathematical terms, we
have indeed

wattr
i (t) ¼

P
j[N attr

i (t) (xj(t)� xi(t))P
j[N attr

i (t) (xj(t)� xi(t))
��� ��� , (2:8)

with

N attr
i (t) ¼ f j ¼ 1, . . . , n, j = i : dalign , jxj(t)� xi(t)j � dattrg:

(2:9)

The extension of the attraction region, dattr, can be also inter-
preted as the visual distance of the animal of interest as done
for instance in [47]. A schematic representation of the differ-
ent interparticle interaction areas is proposed in figure 2a.

Putting the introduced velocity components in equation
(2.2), ωi results specified as

vi(t) ¼ a
rep
i (t)wrep

i (t)þ a
align
i (t)walign

i (t)

þ aattr
i (t)wattr

i (t), (2:10)

being J i ¼ frepulsion, alignment, attractiong and a
rep
i (t)þ

a
align
i (t)þ aattr

i (t) ¼ 1 for any i = 1,…, n. As written, the pro-
posed approach includes a minimal set of parameters:
individual speeds and extensions of interparticle interaction
regions, that can be easily quantified for a given animal
species, as well as the intensities of the behavioural inputs,
that need at least a hierarchical estimate but have clear bio-
logical meaning. No other strictly technical coefficients need
to be introduced.

We finally propose a proper dimensionless form of the
model, in order to facilitate its application to any group of
animals, regardless of their characteristic measures. For this
purpose, we scale lengths with the repulsion radius drep, vel-
ocities with the characteristic speed of the agents of interest,
say v, and times with drep=v. Trivial calculations allow then
to rewrite equations (2.1) as

dxi(t)
dt

¼ vi(t)
vi(t)
jvi(t)j

¼ vi(t)
a
rep
i (t)wrep

i (t)þ a
align
i (t)walign

i (t)þ aattr
i (t)wattr

i (t)

jarep
i (t)wrep

i (t)þ a
align
i (t)walign

i (t)þ aattr
i (t)wattr

i (t)j
,

(2:11)

where the dimensionless variables are overlined. In particu-
lar, the extensions of the interaction regions scale as
drep ¼ 1, dalign ¼ dalign=drep and dattr ¼ dattr=drep, so that dalign
and dattr measure the relative extension of the corresponding
areas with respect to the radius of the avoidance
neighbourhood.
3. Simulation details and results
The proposed model is employed in a planar setting, i.e. d = 2.
In all forthcoming simulations, the animal population of
interest is formed by n = 100 individuals. In particular, as
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shown in figure 2c, they are initially arranged in an almost
round configuration with diameter equal to 6 (in non-
dimensional terms) and randomly assigned positions. The
initial velocity direction of each generic ith agent, i.e.
vi(t ¼ 0) is randomly established as well. Given that the pro-
posed scaling results in a unitary dimensionless repulsion
radius drep ¼ 1, we set the linear extension of the alignment
and the attraction regions equal to dalign ¼ 8 and dattr ¼ 30,
respectively. The ratios between the depth of the different inter-
acting areas are consistent with the biologically plausible
ranges explored by Couzin et al. [39] and also employed by
Wood & Ackland [41]. In this respect, as also commented in
the conclusive section, the application of themodel to a specific
animal species would lead to a more proper parameter setting.
We furthermore assume that all individuals have a constant
and common speed equal to the characteristic value v: this
implies a non-dimensional quantity vi(t) ¼ 1, for any i and t.
The weights αs are finally hypothesized to be independent
from both time and animal individuality, i.e. a(�)

i (t) ¼ a(�) for
any i and t, being ( · )∈ {rep, align, attr}. In particular, the result-
ing set of permitted triplets (i.e. those satisfying constraint (2.3))
identifies the simplexS, represented by the triangle in figure 3a.

We now analyse how individual behavioural preferences
affect group dynamics. In more detail, our strategy is to vary
the values of the α-coefficients and to numerically explore the
large-time states of the animal system. In this perspective, we
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introduce the following classification for the simulation
outcomes.

Definition 3.1. (i) The animal group has a time-asymptotic
well-spaced/non collapsed configuration if the following
condition is satisfied:

dmin ¼ lim
t!1

min
(i,j)[{1,...,n}�{1,...n}

i=j

jxi(t)� xj(t)j [ (drep � e; drep þ e): (3:1)

(ii) The animal group has a time-asymptotic synchronized
movement if the following condition is satisfied:

s ¼ lim
t!1

n�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

vi(t)
jvi(t)j

�M
vj(t)
jvj(t)j

 !
j¼1,...,n
j=i

������
������
2

vuuut , sc, (3:2)

where the overlines identify, as usual, dimensionless
measures. Further, the notation M(�) j¼1,...,n

j=i
indicates the mean

of the velocity directions over the entire animal group.

These quantities are particularly suitable to describe the
phenomenology of a set of interacting particles, in terms of
both patterning and motion. In particular, condition (3.1)
assures that there is no large-time individual overlap. In
fact, if the asymptotic minimal interagent distance falls
within the range (drep � e; drep þ e), e = 0.05 being introduced
to account for numerical errors in a multiparticle system, then
all pairs of animals have an equal or a larger spacing, i.e. they
do not collapse. Condition (3.2) instead assures that all indi-
viduals have almost the same direction of movement. In
fact, preliminary simulations have shown that standard devi-
ations σ of the distribution of the agent orientations smaller
than the critical value sc ¼ 2 imply a fully aligned animal
movement. Similar classifications have been used in the lit-
erature to differentiate the evolutions of a wide range of
multiagent populations, see for instance the case of swarming
birds in [1] and references therein.

Our numerical study allows us to indeed subdivide the
permitted parameter space S in four disjointed regions,
according to definition 3.1. In particular, the subregion S1

is characterized by triplets of coefficients resulting in the
asymptotic collapse of the cluster of particles, which also
maintain an uncorrelated movement. The group of animals
is instead observed to have a large-time synchronized
collective motion, however coupled with an asymptotic col-
lapse, when the intensities of the behavioural stimuli fall
within S2. On the other hand, α(·)-triplets belonging to the
subregion S3 allow avoidance of unrealistic animal overlap-
ping but the agent locomotion remains completely
individual (i.e. no common direction emerges). S4 is finally
characterized by the triplets of α(·)s that result in an asymp-
totic non collapsed group configuration and collective
alignment, i.e. all agents finally move in the same direction
keeping a comfort spacing.

To further support the above dissertation, for each sub-
region Si (i = 1,…, 4) of the permitted parameter space we
show in figure 3b a representative asymptotic configuration
of the system and in figure 7a the mean (with the correspond-
ing standard deviation) of the quantities introduced in
Definition 3.1, evaluated over a set of 10 numerical
realizations resulting from randomly chosen α(·)-triplets.

By reviewing the simulation results summarized in
figure 3a, we can also notice that below a given value of
the alignment parameter aalign (i.e. ≈ 0.2), a synchronized
movement of the animal group is not obtained regardless
of the intensity of the other stimuli. On the opposite, a direc-
tionally collective movement is captured for any pair
(arep, aattr) if aalign is larger than ≈ 0.6. Analogously, too low
values of the weight arep (i.e. ≤ 0.1) result in a particle col-
lapse, independently from the magnitude of the other pair
of α-parameters. On the other hand, the condition
arep . 0:95 is sufficient to have well-spaced large-time
system configurations regardless of the values given to the
other pair of coefficients. It is also interesting to notice that
a complete balance between the three weights (i.e.
arep ¼ aalign ¼ aattr) does not result in a well-spaced system
nor in a synchronized movement. Region S4 is rather charac-
terized by a significant hierarchy of the intensity of the
behavioural stimuli, with the alignment coefficient that sub-
stantially overcomes the repulsive one, which is in turn one
order of magnitude larger than the attraction parameter. In
this respect, it is finally useful to remark that (so far) we
have not included the presence of elements that may cause
dispersion of single animals. Therefore, a small attraction
stimulus is sufficient to avoid group scattering.

For the sake of clarity, we remark that the numerical
simulations proposed in this section run until t ¼ 100: pre-
liminary simulations have in fact shown us that the values
of the quantities introduced in Definition 3.1 undergo only
negligible oscillations if evaluated at longer times. Therefore,
the particle configurations observed at t ¼ 100 represent a
consistent numerical approximation of the asymptotic
system behaviour.

Comparable classifications of groups dynamics, done in
the case of similar models, are obtained varying the extension
of the interaction regions [39,41] or the parameters defining
the magnitude and the shape of the individual velocity
components [1,35].
4. Analysis of the equilibrium configurations of
an animal group subjected only to attraction
and repulsion

In the previous section, we have classified the collective
dynamics of the animal group a posteriori, i.e. as resulting
from numerical simulations. However, analytical arguments
concerning the H-stability properties of agent-based systems
allow us to derive parametric constraints that are a priori suffi-
cient to avoid large-time individual collapse. In this respect, let
us first neglect the alignment velocity contribution and focus
only on attractive–repulsive stimuli to assure the existence of
asymptotic equilibrium configurations. Under this assump-
tion, the individual velocity vector ωi(t), defined in equation
(2.2), can be specified and rewritten in the following form:

vi(t) ¼ aattr
i wattr

i (t)þ a
rep
i wrep

i (t)

¼ vi
Xn
j¼1
j=i

kint(jxj(t)� xi(t)j)
xj(t)� xi(t)
jxj(t)� xi(t)j i ¼ 1, . . . , n,

(4:1)

where arep
i þ aattr

i ¼ 1 (cf. equation (2.3)) and

kint(jxj(t)� xi(t)j) ¼ krep(jxj(t)� xi(t)j)þ kattr(jxj(t)� xi(t)j),
(4:2)
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with

krep ¼ �arep 0 , jxj(t)� xi(t)j � drep
0 otherwise,

�
(4:3)

and

kattr ¼ aattr dalign , jxj(t)� xi(t)j � dattr
0 otherwise:

�
(4:4)

It has been shown that the H-stability characteristics of
the potential associated with the the interaction kernel
kint, which will be hereafter denoted by Kint, determine
the large-time spatial organization of the particle system.
In particular, if Kint is H-stable, the minimal interparticle
distance at the equilibrium is bounded below by a
finite fixed positive value (regardless of the total amount
of particles n). In other words, if Kint is H-stable, the
individuals do not asymptotically overlap. In this respect, a
criterion to detect the H-stability of a scalar potential
has been given in [48], and recently applied to the case of
cell aggregates [49] and honeybee swarms [47] (see also
[1,50] for further comments). Accordingly, we can state
the following.

Theorem 4.1. The interaction potential Kint related to the pairwise
interaction kernel kint defined in equations (4.2)–(4.4) is H-stable if
the following parametric relation holds:

d3attr � d3align
d3rep þ d3attr � d3align

, arep , 1, or equivalently,

0 , aattr ,
d3rep

d3rep þ d3attr � d3align
:

(4:5)

Proof. Following the calculation introduced in [49], we have
first to derive the potential Kint :R ! R associated to the
kernel kint, i.e.

Kint(r) ¼
�arep rþ C1, if 0 , r � drep;
C2, if drep , r � dalign;
aattr rþ C3, if dalign , r � dattr;
C4, if r . dattr:

8>><
>>:

where r : = |xj(t)− xi(t)|. The constants of integration C1, C2,
C3, C4 [ R have then to be estimated in order to guarantee
(i) the continuity of the potential Kint(r) and (ii) the fact that
it is essentially negligible for large enough interparticle
distances (i.e. lim

r!1Kint(r) ¼ 0). Both conditions are in fact
necessary hypotheses for Theorem 4.1, as clearly stated in
[48]. By simple algebraic calculations, we have that C4 can
be taken equal to 0 and the other constants result

C1 ¼ aattrdalign � aattrdattr þ arepdrep;

C2 ¼ aattrdalign � aattrdattr;

C3 ¼ �aattrdattr,
C4 ¼ 0,

so that the interaction potential rewrites as

Kint(r) ¼
�areprþ aattrdalign � aattrdattr þ arepdrep, if 0 , r � drep;
aattrdalign � aattrdattr, if drep , r � dalign;
aattrr� aattrdattr, if dalign , r � dattr;
0, if r . dattr:

8>><
>>:
Recalling the definition 1.1 in [48], we can affirm that Kint is
H-stable whenðþ1

0
Kint(r) rdr ¼ 1

2
lim
r!0

Kint(r) . 0:

In this respect, with some simple algebraic calculations, we
obtain

ðþ1

0
Kint(r) rdr ¼

arepd3rep þ aattr(d3align � d3attr)

6
. 0,

which is non negative if

arep

aattr .
d3attr � d3align

d3rep
: (4:6)

Finally, recalling that arep
i þ aattr

i ¼ 1, we can rewrite equation
(4.6) only in terms of the repulsive (respectively, the adhesive)
coefficient arep

i (respectively, aattr
i ):

d3attr � d3align
d3rep þ d3attr � d3align

, arep , 1, or equivalently,

0 , aattr ,
d3rep

d3rep þ d3attr � d3align
,

which is exactly the thesis of the Theorem. □

Condition (4.5) allows us to subdivide the segment s
defining the permitted parameter space (arep

i , aattr
i ) into two

parts, each resulting in a distinct stability characterization
of the interaction kernel kint, see figure 4. In particular, pairs
of α-values falling within the dashed part s2 of the segment
satisfy equation (4.5) and assure an asymptotic non-collapsed
configuration of the system. For the sake of completeness, the
non-dimensional counterparts of constraints (4.5) reads as:

d
3
attr � d

3
align

1þ d
3
attr � d

3
align

, arep , 1, or equivalently,

0 , aattr ,
1

1þ d
3
attr � d

3
align

:

(4:7)

The above analytical considerations can be supported by
numerical results. In this respect, we perform a pair of repre-
sentative computational tests that reproduce the evolution of
a homogeneous population of n = 100 component individ-
uals, whose dynamics are only regulated by adhesive and
repulsive stimuli. The values of the individual speed and of
the extension of the interaction regions, as well as the initial
condition of the system, are exactly the same as those
employed in the previous §3. As shown in figure 4, if the
weights α(·)s do not satisfy the H-stability condition (i.e. fall
within s1), then the particle cluster asymptotically collapses,
as confirmed by the corresponding dmin ¼ 5� 10�4. On the
other hand, if the values of the two coefficients satisfies the
H-stability constraint (i.e. fall within s2), then the animal
group stabilizes in a well-spaced configuration characterized
by the absence of individual overlap. Interestingly, in this
case, the large-time minimal interparticle distance
dmin ¼ 0:9639 falls within the range (drep � e; drep þ e), intro-
duced in Definition 3.1 (recalling that drep ¼ 1). We finally
remark that the numerical realizations here proposed run
until t ¼ 2000, i.e. when a steady equilibrium configuration
is reached.
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The coupling between the analytical and the numerical
results proposed in this section allows therefore to conclude
that, in the absence of the alignment velocity component,
an asymptotic well-spaced configuration of the system is
a priori assured by H-stable repulsive/attractive kernels,
i.e. by pairs of weights (arep, aattr) satisfying condition (4.7).
It is finally useful to remark that, as far as we know, a similar
study has been never done in the case of interaction poten-
tials characterized by constraints and interdependence
between the characteristic parameters.
5. Prey–predator dynamics: model and results
We now incorporate heterogeneity in the animal system by
introducing the presence of a single predator, labelled by
the identification number i = 100 (so that the overall number
of agents remains unaltered). In this respect, the remaining
set of individuals hereafter constitutes a group of prey
chased by the hunter. In nature, we can observe a wide
variety of predator–prey interactions: however, a common
characteristic is the emergence of empty space around the
predator, owing to the obvious tendency of the other individ-
uals to move away, as commented again in [20] and
references therein and shown in figure 1c,d. This behaviour
can be implemented in our model by the inclusion of a
proper avoidance term in the prey dynamical rules: in this
respect, we have that J i ¼ {repulsion, alignment, attraction,
escape} and

vi(t) ¼ a
rep
i (t)wrep

i (t)þ a
align
i (t)walign

i (t)þ aattr
i (t)wattr

i (t)

þ a
escape
i (t)wescape

i (t), (5:1)

for i∈ {1,…, 99}. In particular, the directional velocity contri-
bution wescape

i reads as

wescape
i (t) ¼ xi(t)� x100(t)

jxi(t)� x100(t)j
, (5:2)
which is actually active if jxi(t)� x100(t)j � descape, being descape
set equal to dattr, see again figure 2a. The term in equation
(5.2) is indeed a long-range repulsive contribution because it
enters the picture as soon as the predator falls within the
visual region of the ith prey. We in fact recall that the exten-
sion of the attraction region can be interpreted as an
individual gaze depth. The weights of the behavioural stimuli
included in equation (5.1) have finally to satisfy constraint
(2.3), i.e.

a
rep
i (t)þ a

align
i (t)þ aattr

i (t)þ a
escape
i (t) ¼ 1, (5:3)

for any particle i = 1,…, 99 and time t.
The dynamics of the predator are described by a first-

order model as well, under the assumption that it is only
subjected to the hunting stimulus. In mathematical terms,
J 100 ¼ {predation} while, in the usual non-dimensional
form, equations (2.1) and (2.2) can be rewritten as

dx100(t)
dt

¼ v100(t)a
pred
100 (t)wpred

100 (t), (5:4)

where obviously a
pred
100 (t) ¼ 1 for any t. To specify the velocity

contribution in equation (5.4), we can observe that, in general,
the predator is attracted and consequently oriented by the
group of prey: however, different hunting strategies can be
identified. For instance, the confused predator does not have
the ability to identify and attack a single individual within
a set of agents [51,52]. In this respect, its chasing direction
points towards the centre of mass of the population of prey,
where all of them are equally targeted (if seen). From a
modelling perspective, this amounts in defining:

wpred
100 (t) ¼ wpred,conf

100 (t) ¼

X
j[N pred

100 (t)

(xj(t)� x100(t))

X
j[N pred

100 (t)

(xj(t)� x100(t))

�������
�������
, (5:5)
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with

N pred
100 (t) ¼ fj ¼ 1, . . . , 99 : 0 , jxj(t)� x100(t)j � dpredg, (5:6)

where dpred is the non-dimensional extension of the predation
region, that can be assimilated to the hunter visual depth, see
also figure 2b.

In other cases (e.g. in other species of animals), the pred-
ator is not confused by the presence of multiple prey, it being
able to target a specific individual within the group and to
change strategy accordingly. For instance, it can chase the
agent which, at a given time, is the closest to its position, i.e.

wpred
100 (t) ¼ wpred, non conf

100 (t) ¼ x j�(t)� x100(t)
jx j�(t)� x100(t)j

, (5:7)

with

j� : jx j�(t)� x100(t)j ¼ min
j¼1,...,99

j[Npred
100

(t)

jxj(t)� x100(t)j:
B
375:20190383
(a) Simulation details and numerical results
Multispecies dynamics are located within the planar space.
The values of the non-dimensional parameters characterizing
the behavioural rules of the group of prey remain unaltered
with respect to the previous section, given their indepen-
dency from both time and individual specificity, i.e. vi ¼ 1,
drep ¼ 1, dalign ¼ 8 and descape ¼ dattr ¼ 30 for any i = 1,…, 99
and t. For the sake of simplicity, we also assume that the
predator has the same physiological characteristics as its
prey: we therefore fix dpred ¼ dattr ¼ 30 and v100(t) ¼ 1 for
any t.

The group of prey is initially arranged within the same
round area of diameter equal to 6 used in the previous set
of simulations, with random positions and velocity direc-
tions. The predator is initially placed at a significant
distance from the cluster of individuals, however with at
least a prey within its hunting region, i.e. N 100(t ¼ 0) = ;.
Furthermore, the initial orientation of the hunter points to
the centre of mass of the group of targets (figure 2c). The
predator is finally assumed to catch a target when their
relative non-dimensional distance drops below 10−2.

The dynamics of the heterogenous system are then
numerically studied upon variations of (i) predator hunting
strategy and (ii) hierarchy of prey behavioural preferences
which are quantified, as seen, by the weights α(·), being
(�) [ frep, align, attr, escapeg. In particular, we hereafter
focus on representative cases characterized by the fact that
one (or more) prey behavioural stimuli significantly over-
come the others. With the terminology ‘significantly
overcome’, we arbitrarily mean that the corresponding
α-value(s) is (are) at least twofold higher than the others.
The resulting simulation outcomes are then analysed qualitat-
ively (i.e. in terms of prey escape strategies) and
quantitatively (i.e. in terms of time needed by the predator
to eventually reach a target individual, hereafter defined as
tp). A numerical realization is finally stopped either as soon
as the predator catches a prey or at t ¼ 2000, i.e. at a suffi-
ciently long time to have a clear idea of the system dynamics.

As shown in figure 5, when the prey agents are mainly
subjected to the escape stimulus (i.e. aescape � arep ¼
aalign ¼ aattr), they are able to avoid the attack of both
confused and not confused predators. In particular, they
quickly move away from the approaching hunters without
wasting time to organize in a well-spaced configuration or
to align towards a preferred direction. In this respect, the
group of prey randomly dissociates in disorganized colonies
of different sizes with the predators falling within the empty
space in between them and therefore being unable to reach
any target, as shown also by the insets i1 and i2 in figure 5.

Differentiated phenomenologies instead emerge if the
prey group is in an attraction regime (i.e. aattr � arep ¼
aalign ¼ aescape). The confused predator falls and oscillates at
the centre of a ring of radially escaping individuals, which
still maintain a collective connection (see the left-middle
panel in figure 5). The confused hunter is in fact unable to
choose an optimal direction of attack, lying at the centre of
mass of the set of prey locations. Such an evasion pattern
has been numerically captured and analytically constructed
and justified in a similar model [20]. The prey agents perform
almost the same strategy in the case of a not confused pred-
ator, organizing in a half-moon of escaping agents. However,
as shown in the centre panel in figure 5, the tendency to
remain in an almost compact configuration delays their eva-
sive manoeuvres: the hunter has therefore enough time to
catch at least one target. In this respect, figure 7b(i) shows
that the predation time tp decreases upon increments in the
attraction stimulus of the prey (with respect to the other be-
havioural inputs), until stabilizing around a non-
dimensional threshold value just below 4. Half-moon evasive
patterns in the case of a predator pointing the centre of the
target cluster has also been obtained in the work by Lee
and colleagues [36] which will be reviewed in more details
in the conclusive section.

A too large repulsion stimulus (i.e. arep � aalign ¼
aattr ¼ aescape) has a negative effect in the case of not confused
predator: in order to maintain a comfort space, some prey
may in fact turn back and go in the direction of the hunter,
which is therefore facilitated in its purpose (see the left-
bottom panel in figure 5). Increasing differences between
prey preference for interagent avoidance and the other behav-
ioural stimuli reduce the time needed by the predator to reach
a target, as captured by the central plot in figure 7b. Also in
this case a threshold value for tp emerges, which is close to
3. The confused predator is instead not able to take advan-
tage of this prey phenomenology, as captured by the inset
i3 in figure 5.

The prey group safely moves away from both types
of predator when they are able to synchronize their move-
ment, regardless of their spacing and escape stimulus (i.e.
aalign � arep ¼ aattr ¼ aescape), see top panels in figure 6. In
fact, as soon as some individuals within the population are
able to perceive the presence and the location of the predator,
they start to evade in the opposite direction: such information
is then quickly transmitted to the rest of group and allows all
animals to behave accordingly. Such a collective phenomen-
ology represents an example of coordinated defence
mechanism.

A coupling between sufficiently high escape and attrac-
tion stimuli (i.e. aescape ¼ aattr � arep ¼ aalign) is detrimental
for prey in the case of a not confused predator. The tendency
to remain somewhat compact in fact delays the evasive strat-
egy: in particular, some individuals fall behind the rest of the
group and are unable to avoid the attack of the focused
hunter. In such a parameter regime, increments of the differ-
ence between the pair of more relevant stimuli and the others
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lead to decrements of the predation time tp, which finally
stabilizes around a limit value close to 20, see figure 7b(iii).
This threshold is much larger than the corresponding quan-
tities obtained in the previous parameter setting: this is
probably a consequence of the fact that in this case the prey
individuals are also subjected to a substantially high preser-
vation stimulus. Such a hierarchy of prey preferred
behaviour does not instead represent a sufficient advantage
for the confused predator, which is still unable to point out
and chase any single agent.

The co-presence of significant alignment and escape
stimuli (i.e.aescape ¼ aalign � arep ¼ aattr) is instead sufficient
for the set of prey to avoid both confused and not confused
predators. In particular, the groupmates organize in more
or less compact clusters, each of them having a preferred
direction of evasion. In this respect, the confused hunter
undergoes an almost uneffective Brownian motion, being
unable to choose and follow a single subgroup of prey (see
the inset i4 in figure 6). On the other hand, the not confused
predator, after an initial crawling, opts to follow a single clus-
ter of targets but it can not reach the component individuals,
which are already too far from its position (see the inset i5 in
figure 6).

Dispersion in small aggregates is also the prey’s success-
ful strategy when mainly guided by repulsion and escape
tendencies (i.e. aescape ¼ arep � aalign ¼ aattr). It is however
useful to notice that, in this case, prey agents belonging to
the same (well-spaced) cluster can undergo uncorrelated
movement, as captured by the insets i6 and i7 in figure 6.

Summing up, we can conclude that confusion completely
drops predator ability to hunt its targets, regardless of their
strategy, as also experimentally confirmed in [44,52,53]. From
a prey perspective, alignment represents a significant strategic
advantage. On the other hand, excessive grouping stimuli are
detrimental because they make it easier for the predator to
spot and attack prey, which proceed slowly to remain in
visual-contact with the mates. The tendency tomaintain a com-
fort spacing is instead negative if not accompained by a similar
or a larger (in term of intensity) escape strategy. We finally
remark, for the sake of completeness, that prey and predator
have the same speed. Of course, a different hypothesis in this
respect may result in variations of the simulation results.

6. Conclusive remarks
Populations of intelligent living entities are mainly character-
ized by the fact that the component agents are not passively
prone to external forces but rather undergo active decision-
based processes according to individual behavioural
preferences and mutual interactions.

In this respect, the description of the collective organiz-
ation and motion of animal groups has become of
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increasing interest also for the modelling community and
treated with different techniques (as specified in the
Introduction).

This topic has been here addressed with a microscopic
particle approach able to distinguish speed and orientation.
In particular, the latter has been assumed to be the result of
competing stimuli, each of them simply weighted by a coeffi-
cient (α(·)) that defines a sort of individual preference. The
sum of the α-coefficients has been fixed equal to one in
order to account for a balance between individual movement
traits while avoiding their simultaneous minimization/
maximization.

In the case of a homogeneous population of animals, a
numerical analysis of the model has then allowed us to
point out the hierarchy of behavioural inputs (i.e. attraction,
repulsion and movement synchronization) eventually result-
ing in a large-time non-collapsed configuration of the
system and/or in fully aligned dynamics. An analytical
study on the H-stability properties of the animal system sub-
jected only to the interaction velocity contributions has then
been provided: it has been able to give a condition on the
attraction/repulsion coefficients that a priori assures an
asymptotic well-spaced particle pattern. Such a mathematical
analysis has also been supported by a proper series of simu-
lations: its application to the case of interaction kernels/
potentials characterized by parametric constraints (i.e. here
given by the unitary sum of the α-weights) is a quite novel
aspect of this work.

Our approach has then been enriched to include the
effect on collective dynamics of the presence of predators.
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In this respect, a confused hunter, being unable to single out
and chase a preferred target, has been shown to constantly
fail in its purpose. Such simulation results are in agreement
with experimental studies [51–53] and have been also cap-
tured by similar mathematical approaches dealing with
schools of fishes [25] and swarming prey [20,54–56]. On the
opposite side, the search of an aligned movement has been
shown to represent an escape advantage for the prey group
in the case of the not confused predator. Evasive manoeuvres
are instead delayed and impeded by individual preference
towards cohesion. Such model outcomes are in partial dis-
agreement with the experimental results obtained by the
authors in the previously cited work [40]. Their empirical evi-
dence in fact shows that the predation risk is reduced in the
case of prey exhibiting a balance between attraction and
orientation. A possible explanation of this discrepancy is
owing to the fact that in our model the virtual prey individ-
uals react to the presence of the predator thereby giving rise
to somehow different dynamics. In [40], it is also observed
that the predator preferentially attacks small groups of targets
and individuals located at the edge of the prey aggregate, an
aspect not captured by our approach.
It is however useful to remark that the model outcomes
relative to predator-prey dynamics have here been obtained
under the assumption that the hunter has the same physical
characteristics as its targets. For instance, a common speed
implies that a predator is not able to catch a prey if both
follow a similar path starting from different positions. Inter-
actions within heterogenous systems have been recently
analysed in several other contexts, i.e. not strictly related to
the animal world, including crowd dynamics, in particular
in the perspective of groups with leaders [2], and cell
migration, e.g. in the case of the coexistence of different cell
lineages and phenotypes [57,58].

We here remark that, in principle, the computational
results presented in the previous parts of the paper
depend on the initial condition of the particle system. How-
ever, as it is possible to observe by the error bars in the plots
of figure 7, the simulation outcomes obtained by keeping
constant the initial density of agents (i.e. the number of ani-
mals and diameter of the round region where they are
initially located) while randomly varying individual pos-
ition and orientation do not significantly differ in almost
all cases.
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Keeping fixed its basic structure, our model can be easily
extended to include a possibly large spectrum of individual
behavioural rules: this would simply amount in adding the
proper contribution in equation (2.2). It would be also poss-
ible to deal with a variability in the weights α, which
would introduce adaptation aspects. For instance, a dispersed
population of individuals may first try to group and then
synchronize their movement. This would amount to give a
time-dependent decrement to aattr (after an initially high esti-
mate) and a simultaneous increment to aalign (and to arep to
avoid particle overlap). Variations in the values of the α-par-
ameters may be also related to specific system dynamics. For
instance, the prey’s escape stimulus, quantified by coefficient
aescape, may increase when the predator is sufficiently close,
while it may decrease becoming negligible when the hunter
is substantially far or eventually absent. In this respect, inter-
esting data can be obtained from experimental works. For
example, Herbert and co-workers in [59] demonstrate that,
in the case of shoaling fishes, the presence of a hunter
increases the cohesion within the group, while decreasing
dispersion and interindividual spacing. Further, it seems
that the tendency and the intensity of the alignment processes
are not affected. To employ these results in our model, we
would have to keep fixed aalign, while simultaneously
decrease arep and increase aattr.

Of course, in nature, predators of different species may
have more or less sophisticated hunting strategies, as they
can have the ability to target a single prey according to a
given characteristic (e.g. age or physical limitations) and not
only according to its distance. This aspect can be introduced
in the proposed modelling framework by defining a state
variable that, for each agent, describes the characteristic of
interest, thereby introducing a differentiation within the set
of prey. Finally, the application to specific groups of animals
is straightforward, because it would only require the
inclusion of proper empirical information on individual
speed, extension of the interaction regions and relative
behavioural preferences (i.e. hierarchies of α values).
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Appendix A
The most general version of the first-order model proposed in
equation (2.1) reads

dxi(t)
dt

¼ vi(t)ni(t), (A 1)

where, as seen, vi(t) [ Rþ defines the speed of individual i
while the unit vector ni(t) [ Bd

1 , Rd identifies the orientation
of its movement. ni(t) can be formally correlated to ωi(t)
which is, as seen, the velocity vector resulting from the com-
petition between the set of different behavioural stimuli
affecting the ith animal. For each agent, we can in fact write
the following directional evolution law:

ti
dni(t)
dt

¼ �(vi(t)� ni(t))� ni(t), (A 2)

where τi is a characteristic time of particle dynamics. It can be
easily proved that equation (A 2) preserves the unitary norm
of ni(t) by multiplying both sides by ni(t) itself. Further,
the use of simple algebraic formulas allows to rewrite the
equation as

ti
dni(t)
dt

¼ �(vi(t) � ni(t))ni(t)þvi(t)(ni(t) � ni(t))

¼ �(vi(t) � ni(t))ni(t)þvi(t) (A 3)

which, in the limit τi→ 0, gives

0 ¼ �(vi(t) � ni(t))ni(t)þvi(t) ) ni(t) ¼ vi(t)
vi(t) � ni(t)

: (A 4)

Hence, ni(t) and ωi(t) are colinear (parallel) for any time t
and therefore the quantity (ωi(t) · ni(t)) can be replaced by
|ωi(t)|. Summing up, in the limit of fast dynamics, ni(t) =
ωi(t)/|ωi(t)| so that equation (A 1) can be specified as
equation (2.1).
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