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Abstract— Electric Free Floating Car Sharing systems offer a
convenient and environmentally-friendly way to move in cities.
However, their design and deployment is not a trivial task.
In this work, we focus on fleet charging management, aiming
at maximizing the number of trips of users, while minimizing
the cost of relocating cars for charging. In particular, we com-
pare two different car charging infrastructures: a centralised
charging hub in a highly dynamic zone of the city, and a
distributed set of charging poles around the most-used zones,
where users can eventually contribute to plug cars. For this
scope, we build a data-driven mobility demand model and a
simulator that we use to study the performance and costs of
fleet charging management. As a case study, we first consider
the city of Turin. Then, we extend the results to three other
cities (Milan, New York City and Vancouver). Results show that,
given enough charging capacity, a distributed infrastructure is
superior in terms of both satisfied trips and charging relocation
cost. Additionally, with the contribution of users, the relocation
cost might decrease even further.

I. INTRODUCTION

In the era of smart cities, transportation is becoming an
important challenge to improve the urban life quality. As a
consequence, in the last decade new mobility solutions have
emerged. Some of these solutions aim at reducing private
mobility in favour of multi-modal transportation (combining
different transportation means) and shared mobility, such as
car pooling, bike sharing, or car sharing. Car sharing, in
particular, refers to a transportation mean in which a person
autonomously rents a car, usually for a short period of time.
This solution allows for higher car utilization and helps in
reducing the number of cars on the streets, thus reducing
pollution [1]. Two main branches car sharing emerged: the
station based car sharing system, in which the user picks and
parks the car in specific parking spots, and the Free Floating
Car Sharing system (FFCS), in which the user picks and
later parks the car anywhere within an operational area. This
characteristic makes the latter more appealing for users, as it
is more flexible. However, it also poses several challenges
for the operator, especially if Electric Vehicles (EV) are
employed. Indeed, with electric vehicles, the system has to
ensure that the car has enough battery to allow the user to
perform the desired trip without running out of energy. At
the same time, the provider cannot continuously charge cars
due to the Free Floating paradigm.

The research leading to these results is partially supported by the Smart-
Data@PoliTO center for Big Data technologies and by PUNCH Torino.

In order to cope with this complexity, we investigate and
compare two infrastructure placement policies to design an
electric FFCS system. The main two scenarios we deploy are:
(i) Charging hub - in which all the charging operations are
performed into a single centralized charging infrastructure,
controlled by the operator and (ii) Distributed charging poles
- in which a number of charging poles are scattered around
the city, where both the users and the operator can plug cars
[2], [3].

First, we use real trip data from an existing non-electric
FFCS [4] to create a more generic mobility demand model.
This model is obtained by combining Poisson processes
for time distribution of user requests, and Kernel Density
Estimate for spatial demand. Then, we leverage this model
to feed our event-based simulator, to study the impact of
different parameters related to the charging strategy of EVs.
We investigate the impact of charging infrastructure policies
by means of three main performance metrics: the percentage
of trips that could not be satisfied due to the absence of
cars near the user - unsatisfied demand; the percentage of
charging trips to take cars to charge that could not be satisfied
- impossible charging trips; the cost in terms of time for the
system to bring cars to a charging pole - relocation cost. As a
first case study, we present a detailed analysis for the city of
Turin (Italy). Then, we extend the main results to three other
cities: Milan (Italy), Vancouver (Canada), and New York City
(USA). Results show that the usage of a distributed charging
infrastructure offers better performance than a single hub,
for all metrics. The distributed infrastructure reduces the
percentage of unsatisfied trips from 30% to less than 10%
and the charging relocation cost. Moreover, if the users are
allowed to contribute for charging the cars, the relocation
cost can be lowered by a factor up to 8. Finally, the choice
of the capacity threshold to bring the car to charge should
be carefully analyzed, and the chosen value differs for each
city.

The paper is organized as follows: in Section II we
illustrate the demand model, along with a quantitative as-
sessment of its performance. In Section III we describe
the simulation software and its assumptions. In Section IV
we analyze the results for the Turin case study. Then, in
Section V we extend the analysis to the other cities. In
Section VI we review existing scientific literature covering
similar topics and, finally, we conclude and discuss future



research directions in Section VII.

II. DEMAND MODEL

In this Section, we introduce the data-driven mobility
demand model used in our simulation study. The goal of the
demand model is to find and generalize the probability dis-
tributions that represent the observed real data, in both time
and space. We can later use it to generate samples and feed
our event-based simulator. Input data are collected from the
car sharing operator car2go1, with the methodology shown in
our previous work [4]. In a nutshell, these data describe real
trips performed by users during 2017 in 23 cities. We model
the demand in time using modulated Poisson processes, and
in space using Kernel Density Estimation (KDE). To the best
of our knowledge, the combined usage of these tools for
mobility demand modelling is still unexplored.

A. Time estimation

We assume that user booking inter-arrival times are expo-
nential random variables, and that the rate of arrivals varies
with the type and the hour of the day. For simplicity, in this
work we consider two types of day: workday (from Monday
to Friday) and weekend (Saturday and Sunday). Within each
day type, we consider 24 time bins of one hour each, each
with a different arrival rate. The Poisson rate of bookings
in a certain temporal slot is fitted to the average number of
bookings occurring at the corresponding temporal slot in the
data trace. Thus, the overall process takes the form of an
inhomogeneous Poisson [5] one.

We use data of trips that occurred during three months
in 2017 to fit the model and validate our assumptions.
Figure 1(a) shows the quantile-quantile (Q-Q) plot of inter-
arrival times in the original data trace (y-axis) and in the trace
derived from the model (x-axis) for Turin. The inter-arrival
time distribution is computed over the whole inhomogeneous
Poisson process obtained with the 48 temporal slots. We can
see that points are close to the bisector line, meaning that
the Poisson process accurately represents the occurrences of
bookings in time. The steps that are visible in the original
time series depend on the 1 minute sampling interval that is
used to record the trace [4].

We now quantify the residual error introduced by the
assumption that the 48 temporal slots accurately model the
trace. Indeed, there will likely be some variability in the same
hours at different days. We define a relative residual error for
each temporal slot t as the deviation of the number of trips
generated by the model with respect to the number of trips
in the trace:

εt =

∑
i∈It

∣∣∣ N̂i−Ni

Ni

∣∣∣
|It|

(1)

where It is the set of hours in the trace that maps to the
temporal slot t, |It| its cardinality, and Ni and N̂i are the
real and the simulated trips at temporal slot t, respectively.
For the case study of Turin, we report the 48 values of εt

1In 2019, car2go merged with Drive Now into the new service Share
Now https://www.share-now.com/.

in Figure 1(b). As we can see, residuals are often less than
5%, with few peaks, like during the night and early morning
of weekend days (4 am - 7 am). In this slots there are fewer
trips, hence a higher variability and larger deviation.

B. Spatial estimation

Kernel Density Estimation (KDE) is largely used in the
literature as a tool to analyse spatial patterns, as for example
in [6], [7]. In this work, we use KDE to estimate probability
distributions of the positions of origin and destination from
input data. First, we divide the city in 500 m x 500 m blocks
and assign an identifier to each of these zones. We allow
users to pick cars within the same zone or from 1-hop
neighboring zones. This zone width is compatible with the
distance that a user is willing to walk to reach a car i.e.,
less than 500 m on average [8]. Then, in order to couple
time and space estimation, we fit a bi-dimensional KDE on
origin-destination couples for each temporal slot. In this way,
we obtain 48 models summarising spatial mobility habits
of users in time. We use a Gaussian kernel [9] and set
the bandwidth matrix of KDE to the 2 x 2 identity matrix.
We observed (not shown for brevity) that smaller bandwidth
does not bring significant advantages for estimation, while a
bigger bandwidth loses the granularity of city binning, and
lead to a reduced precision in detecting spatial patterns.

In a nutshell, we use KDE as a spatial data smoothing tool,
able to capture mobility patterns from rentals in the trace,
while reducing the impact of noise or secondary finer-scale
phenomena. In this subsection, we show the relative error
produced by the smoothing effect of the KDE. We define
the relative spatial error metric for the origin of trips in a
zone z as:

εoz =

∣∣∣∣∣N̂o
z −No

z

No
i

∣∣∣∣∣ (2)

where No
z and N̂o

z are the total number of trips in the trace
and in the simulated trips, respectively. z is the considered
origin zone.2 Figure 1(c) shows εoz for each zone on a
choropleth map over the city of Turin. Most of the zones
have residuals very close to 0, with few of them that reach
30% of residual error. Those correspond to zones with parks
or limited access.

III. SIMULATION MODEL

Here we describe the principles and the assumptions of
the simulator we design to model an electric FFCS system.

First, we use the demand model to determine the occurring
trips. We assume the model to be stationary over time. When
a new rental request is generated, the simulator looks for
an available car with enough battery in the origin zone, or
in any neighbouring zone. If available, the simulator takes
the car and schedules a return event at a certain time to
the destination zone. When a return event is processed, the
simulator computes the consumed amount of energy and

2The same computation holds for destination zones. Residuals are similar
and not reported due to space limits.

https://www.share-now.com/
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Fig. 1. Model validation in time and space - case study of Turin

then checks if the car should be charged. If so, it triggers a
charging event for the car according to the designated policy
(centralized hub or distributed charging poles). After a given
simulation time (3 months in our case), we extract statistics
about the number of satisfied and unsatisfied trips, the zones
where there is unsatisfied demand, the number of charges,
etc.

The software is written in Python and it uses the library
SimPy3. Below we summarize the simulation assumptions
and its main parameters.

Zoning. A city operating area is divided into square zones of
dimension 500 m x 500 m. Each trip distance is computed as
the Euclidean distance between the centroids of the origin
and destination zones, multiplied by a correction factor of
1.4, to account for the roads and orography (as in [2]).

Cars and charging poles. All poles have the same charac-
teristics, namely 3.7 kW nominal power and 92% charging
efficiency. State of Charge (SoC) increases and decreases
linearly with charging duration and driving distance, respec-
tively, as in [10]. Cars are supposed to have the same char-
acteristics as the MY2018 electric Smart ForTwo, namely
17.6 kWh battery capacity and 15.9 kWh / 100 km energy
efficiency.

Before rental. A user requests a car in a certain zone. If
there are cars in this zone, he/she takes the most charged
one. If not, he/she looks in a 1-hop neighbouring zone. If
there are no cars even in these 8 neighbouring zones with
enough battery to reach the desired destination, the trip does
not occur and it is marked as unsatisfied.

After rental - Charging process. At the end of a rental,
we check if the car needs charging, i.e., if the car SoC is
below a threshold α. If no charging is needed, the car is
parked in the destination zone. If, instead, the SoC is below
the threshold, the car is brought to charge according to the
charging policy. It is charged until it reaches a SoC of 100%
(full capacity). Relocation times are computed using 15 km/h
as average speed (this accounts for parking times and traffic).
Note that sometimes the car does not have enough energy to
be relocated for charging. In this case, we relocate it anyway,

3https://simpy.readthedocs.io/en/latest/

but mark this trip as an impossible charging trip.

Charging infrastructure. The first charging infrastructure
is a centralized hub. Cars in need of charge are relocated
to the hub, which is assumed to be optimistically located
in the zone of the city with the highest demand (usually
in the center). The car sharing operator handles the cost
of relocation, that we measure as the time to bring the car
to the hub. The second charging infrastructure assumes a
distributed solution. Charging poles are spread around the
city, according to the strategy presented in [2], which places
poles in the zones with the highest probability of being
destination zones. Namely, poles are distributed in up to
10% of the zones, proportionally to the zone attraction as
a destination. When a car needs charge, it is relocated to the
closest free charging point. If there is no free charging pole
anywhere in the city, the car queues at the nearest charging
pole.

User willingness. When using the distributed policy, we
assume that users could also help with the charging process.
If users end their trip in a zone where there is a free charging
pole, they plug the car with probability w, which represents
their average willingness to contribute.

Performance metrics. To compare performance in different
scenarios, we consider the following metrics:

Unsatisfied Demand: the unsatisfied demand measures
the fraction of trip requests that are unsatisfied, due to no
car with enough energy being in the origin zone or its
neighbouring zones. It gives an indication of the quality of
the service in terms of car availability for user requests.

Impossible charging trips: impossible charging trips mea-
sure the fraction of charging events for which a car that must
be charged cannot reach any available charging station, due
to insufficient battery level. This represents an additional cost
for the system operator.

Relocation Cost: the charging relocation cost measures the
cost of the charging process the FFCS operator has to face.
We measure it as the average total time spent by the system
operator to drive a car to charge, per month. When a car
needs to be charged, the operator has to physically move it
to an appropriate charging point.

https://simpy.readthedocs.io/en/latest/
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Fig. 2. Fraction of unsatisfied demand versus number of poles per car -
Turin
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Fig. 3. Average monthly charging relocation cost per car versus number
of poles per car - Turin

IV. CHARGING INFRASTRUCTURE AND POLICY
COMPARISONS - TURIN CASE STUDY

As a case study, we focus on the city of Turin (see Table I
for its characteristics). In particular, we compare centralised
and distributed charging scenarios, quantifying unsatisfied
demand and charging relocation cost. We focus our attention
on the impact of the following characteristics of the two
charging infrastructures:
• the total charging infrastructure capacity in terms of

total number of poles over fleet size;
• the charging threshold α;
• the users’ willingness w to contribute (only in case of

distributed infrastructure).
We start by setting α to 26%, which corresponds to the

amount of battery that guarantees to cover the maximum
possible distance within the operational area of Turin (i.e.,
28 km). The number of cars is 400, as in the real data.

Figure 2 shows the percentage of unsatisfied requests
as a function of the fraction of charging poles per car.
First, observe the two macroscopic regimes: if the charging
capacity of the system is too little, cars run out of battery
and wait for a long time in charging queues. As such,
users cannot find available cars (left part of the plot). When
charging capacity is large, increasing it brings no benefits:
the unsatisfied trips stabilizes on a value due to the mismatch
between origin demand and cars availability (right part of
the plot). The figure clearly shows the minimum number
of charging poles that need to be installed; in the case of
Turin it is 0.085 poles per car (32 poles, highlighted in
the Figure with a vertical dashed line). Second, observe
how an optimally placed centralised infrastructure performs
visibly worse than the distributed one. This is again due

to the mismatch between available cars and users’ demand.
The distributed infrastructure better spreads cars in the city
after charging. Third, the user willingness plays a marginal
role on reducing the fraction of unsatisfied requests. Their
willingness contributes to keep the average SoC higher (not
shown for the sake of brevity).

Figure 3 shows the relocation cost per car, i.e, the average
time needed to relocate a car to a charging pole, measured in
hours per month. There is a clear advantage in employing a
distributed infrastructure, as the average distance to reach
a suitable charging station is lower. Furthermore, in the
distributed infrastructure, increasing the charging capacity
is beneficial in terms of charging operations cost, since the
infrastructure gets naturally more distributed. This does not
happen with the centralised infrastructure as all poles are
located at the same place, thus at the same distance. Even
more beneficial is the scenario when the users help. In fact,
even just a willingness equal to 0.33 almost halves the
relocation costs.

We next analyze the fraction of impossible charge trips
while varying the charging poles per car. Results, not re-
ported here for the sake of brevity, show that the number
of charging poles does not affect impossible charging trips
which only depend on residual capacity at trip end, i.e., on
α. With α = 26%, we observe less than 3% of impossible
charge trips in the centralized scenario and less than 0.5% in
the distributed scenario. This means that, among all charges
that the system performs (when car residual capacity is less
than α), only a handful remains with a SoC insufficient to
be taken to charge.

To better understand the impact of the charging threshold,
we perform experiments varying the parameter α. We set the
charging capacity to 0.1 (i.e., 41 poles), as one of the possible
trade-offs between unsatisfied trips, charging relocation cost
and number of poles (Figures 2 and 3). Figure 4 shows
the fraction of unsatisfied demand as a function of α. The
higher the value of α, the higher is unsatisfied mobility
demand. Recall that we must plug the car whenever the car
SoC is below α: therefore, with high α, the system must
charge cars more frequently, thus making them unavailable
and reducing the effective fleet size. The centralized hub
is largely affected by this parameter since after a charge
cars get concentrated in the hub zone. By increasing α,
more cars tend to be concentrated around the hub, making
only trips originated near the hub possible. In a distributed
infrastructure, this is less evident due to the spreading of cars
after charging. A value of α too low implies that many times
the cars are left with a low amount of energy, and thus they
cannot satisfy the user demand. The user willingness has
little impact, as in Figure 2. The unsatisfied demand reaches
its minimum with α = 15%, only improving by 0.01 the
fraction of unsatisfied demand with respect to the previously
chosen value (α = 26%). Figure 5 shows the fraction of
impossible charging trips as a function of α. Again, too
low values of α imply more cars to reach a critical SoC
at the end of a trip, resulting in impossible charging trips.
This effect is stronger in the centralised infrastructure than
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- Turin

in the distributed one, due to the longer distance to reach the
charging hub. Lastly, Figure 6 shows how charging relocation
cost generally increases with α, as the system must charge
cars more frequently.

To summarize, the number of poles per car should be
defined so as to minimize the fraction of unsatisfied demand.
The parameter α should be also studied. It shall be big
enough to have enough energy to guarantee user trips, but
if too large, cars require more frequent charging and are
less employed by users, thus increasing relocation costs and
unsatisfied demand.

V. COMPARISONS IN DIFFERENT CITIES

Here we integrate and present results for multiple cities,
namely Milan, Vancouver and New York City.4 In Table I,
we report the characteristics of the cities. Cities have differ-
ent size, maximum distance within the city and fleet size.
Moreover, also the car utilization differs in each city, from
an average of only 2.5 daily rentals per car in New York
City to 7.0 rentals per car in Milan. Based on the results of
the previous Section, we consider the distributed charging
infrastructure only, with a user willingness equal to 0.66.
The value of α is chosen, for each city, according to the
maximum distance that can be travelled in the city. In order
to compare different cities with different fleet size, we show
performance metrics as functions of the number of poles per
car.

Figure 7 reports the fraction of unsatisfied trips while
increasing the total infrastructure capacity. The minimum
number of poles per car required to stabilise the fraction
of unsatisfied trip varies from city to city. The difference
among the cities is mainly due to the different car utilization

4The service in New York City is limited to the Brooklyn borough.
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TABLE I
STATISTICS SUMMARY FOR EACH CITY.

City Area Max distance Cars Avg daily rentals Charging
[km2] [km] per car thresh. α [%]

Turin 68 28 410 5.8 26
New York City 107 33 490 2.5 30

Milan 112 29 800 7.0 27
Vancouver 137 49 1 000 6.0 44

in terms of frequency of usage and trip distance (see Table I).
Interestingly, in New York City, despite the large operative
area, we reach system stability before any other city due
to the smaller demand. However, this is scattered through
the city, hence the fraction of unsatisfied trips does not go
below 0.1.

In Figure 8 we report the relocation cost per car per month
for each city. Here Vancouver exhibits the highest relocation
cost, with a peak at 6.5 hours per month per car, due to
its high usage and large operational area, which translates
into a high α parameter (see Table I). By performing the α
analysis as in the previous Section, we observe that we can
cut the fraction of unsatisfied trips and the relocation cost by
reducing the α parameter. In particular, changing the value
of α in Vancouver from 44% to 20% allows us to lower the
peak observed in Figure 8 from 6.5 to 4.0 of monthly hours
per car.

VI. RELATED WORK

The related work about electric car sharing simulation
and charging strategies is wide and covers different aspects.
An extensive review of car sharing scientific literature is
provided by [11]. This work analyses 137 published papers,
classifying them under a certain number of taxonomy axes.
Authors of [12] propose centralised, agent-based mechanisms
to optimise charge of private EVs. In [13], authors explore
the estimation of public charging demand of all EVs, for
the city of Berlin. While the study is very detailed, it
provides results for one city, using a commercial simula-
tor with a demand model coming from a survey. Authors
of [14] propose a framework for modelling and simulating
the evolution of an electric car sharing system. Despite
being fairly general and not computationally expensive, this
model is fully parametric, makes strong assumptions about
the probability distributions of the involved processes, and
does not include geographical aspects. A more complete
model is provided by [15], where it is presented a simulator
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with user requests and different relocation strategies. Authors
in [16] simulate the operation of electric vehicles in urban car
sharing networks with a focus on economical aspects. The
work in [17] addresses the problem of insufficient vehicle
utilization in electric car sharing systems by developing a
framework which increases utilization, improves charging
schedules, increases battery life and consequently mitigates
range anxiety of users. In our previous works [2], [18], we
developed a trace-driven simulator to face the problem of
charging stations placement and user experience optimisa-
tion. We build on these work by implementing an event-
driven simulator and focus on different scenarios with more
complete performance metrics.

To the best of our knowledge, the combination of mod-
elling, simulations and analyses of charging policies here
presented has not been previously explored.

VII. CONCLUSION AND FUTURE WORK

In this work, we developed a data-driven demand model
and a simulator for the study of electric FFCS systems.
We used our simulator to explore charging station infras-
tructures and policies in different cities. We showed that
planning and designing a charging infrastructure is a complex
problem that needs to be analyzed from many aspects to
trade off among different metrics. Our results show that a
distributed infrastructure with a little users’ help offers better
performance with respect to a optimally placed centralized
infrastructure. We believe that our simulator can represent
a powerful decision support tool for design and planning
electric FFCS systems.

As a future work, we plan to scale the results with a
larger number of user requests, and run simulations with
more realistic assumptions. For example, as in [19], we will
introduce the constraints given from the presence of human

operators. Another important topic is relocation of cars, not
only for charging, but to satisfy more user demand. Finally,
we plan to approach the financial aspects of the system in
terms of infrastructural and operational costs.
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