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Abstract
It is well known that for higher order elliptic equations, the positivity preserving prop-
erty (PPP) may fail. In striking contrast to what happens under Dirichlet boundary condi-
tions, we prove that the PPP holds for the biharmonic operator on rectangular domains 
under partially hinged boundary conditions, i.e., nonnegative loads yield positive solutions. 
The result follows by fine estimates of the Fourier expansion of the corresponding Green 
function.

Keywords  Biharmonic · Positivity preserving · Partially hinged plate · Green function

Mathematics Subject Classification  35G15 · 35J08 · 35B09

1  Introduction

One of the main obstructions in the development of the theory of higher order elliptic equa-
tions is represented by the loss of general maximum principles, see, e.g., [9, Chapter 1]. 
Nevertheless, due to the central role that these technical tolls play in the general theory of 
second-order elliptic equations, in the last century a large part of literature has focused in 
studying whether the related boundary-value problems possibly enjoy the so-called positiv-
ity preserving property (PPP in the following). As a matter of example, let us consider the 
clamped plate problem:

where Ω ⊂ ℝn is a bounded domain and f ∈ L2(Ω) ; we say that the above problem satisfies 
the PPP if the following implication holds

(1)
{

Δ2u = f in Ω

u = |∇u| = 0 on �Ω

f ⩾ 0 in Ω ⇒ u ⩾ 0 in Ω ,
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where u is a (weak) solution to (1). The validity of the PPP generally depends either on the 
choice of the boundary conditions or on the geometry of the domain. For instance, from 
the seminal works by Boggio [5, 6], it is known that problem (1) satisfies the PPP when Ω 
is a ball in ℝn , while, in [7], Coffman and Duffin proved that the PPP does not hold when Ω 
is a two-dimensional domain containing a right angle, such as a square or a rectangle.

Things become somehow simpler if in (1), instead of the Dirichlet boundary conditions, 
we take the Navier boundary conditions, i.e., we consider the hinged plate problem:

Here, the PPP follows by applying twice the comparison principle for the Laplacian under 
Dirichlet boundary conditions. It is worth noticing that smoothness of the domain cannot 
be overlooked since it has been shown by Nazarov and Sweers [15] that, also in this case, 
the PPP may fail for planar domains with an interior corner. We refer to the book [9] for 
more details and PPP results under different kinds of boundary conditions, e.g., Steklov 
boundary conditions, and to [10–12, 16–19, 21] for up-to-date results on the topic.

In the present paper, we focus on the less studied partially hinged plate problem which 
arises in several mathematical models having engineering interest, e.g., models of bridges 
or footbridges. In particular, a 2-d model for suspension bridges has been proposed in 
[8]; here, the bridge is seen as a thin long rectangular plate Ω ⊂ ℝ2 hinged at the short 
edges, see also [4] for further details. More precisely, if, by scaling, we assume that 
Ω = (0,�) × (−d, d) with d > 0 , the partially hinged problem writes:

where f ∈ L2(Ω) , � ∈ [0, 1) is the so-called Poisson ratio and depends on the material by 
which the plate is made of. It is known that the validity of the PPP for a problem is related 
to the sign of the associated Green function. Indeed, if Gp(q) ∶= G(p, q) denotes the Green 
function of (2), the (weak) solution to (2) writes

and the PPP becomes equivalent to

The proof of the above inequality represents the main result of the present paper. More pre-
cisely, we first write the Fourier expansion of Gp , i.e.,

where the (involved) analytic expression of the functions �m is given explicitly in for-
mula (15) of Sect. 3. We remark that, differently from what it happens in the second-order 
case, the use of a single Fourier series solution is not common for fourth-order problems; 
indeed, it often does not work; for plates with two opposite edges simply supported, the 

{
Δ2u = f in Ω

u = Δu = 0 on �Ω.

(2)

⎧⎪⎨⎪⎩

Δ2u = f in Ω

u(0, y) = uxx(0, y) = u(�, y) = uxx(�, y) = 0 for y ∈ (−d, d)

uyy(x,±d) + �uxx(x,±d) = uyyy(x,±d) + (2 − �)uxxy(x,±d) = 0 for x ∈ (0,�),

u(q) = ∫Ω

Gp(q)f (p) dp ∀q ∈ Ω

Gp(q) ⩾ 0 ∀(p, q) ∈ Ω .

Gp(q) =

+∞∑
m=1

1

2�

�m(y, �)

m3
sin(m�) sin(mx) ∀p = (�, �) and q = (x, y) ∈ Ω ,
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effectiveness of its use was highlighted by Lévy in 1899 and we refer to [14, Section 2.2] 
for a discussion of the original Lévy method and its generalizations. Nevertheless, bound-
ary conditions (2) were not considered in [14] and they require some additional effort, see, 
e.g., [8] and Sect. 3.

As a subsequent step, in the article we develop an accurate analysis of the qualita-
tive properties of the �m and we show, in particular, that they are strictly decreasing with 
respect to m ∈ ℕ+ . This monotonicity issue is achieved by studying the sign of the deriva-
tives of the �m ; since they have highly involved analytic expressions, in order to detect their 
sign, we set up a clever scheme where, step by step, we cancel out the dependence of some 
variables through optimization arguments, see Remark 4.1 of Sect. 4. From the monotonic-
ity of the �m , through an asymptotic analysis, we also deduce their positivity. These pieces 
of information are essential for the subsequent part of the proof where we study the sign of 
Gp . More precisely, by means of suitable lower bounds, we first show the positivity of Gp in 
a rectangle contained in Ω , far from the hinged edges; then, we obtain the positivity in the 
remaining parts through suitable iterative procedures which, step by step, stick rectangles 
where Gp is positive up to the boundary, see Sect. 5 for all details.

As already remarked, the validity of the PPP for problem (2) is by no means an obvious 
fact; recall that it does not hold for problem (1) on rectangular planar domains; by numeri-
cal observations, we do not even expect its validity for the partially clamped plate problem, 
i.e., (2) with Dirichlet conditions instead of Navier, see Figure 1 on the right. Furthermore, 
we believe that the validity of the PPP will help in making a significant step forward in 
the spectral analysis of the operator in (2) and in the related stability analysis for partially 
hinged plates, especially in the nonhomogeneous case, see, e.g., [2] and [3].

The paper is organized as follows. In Sect. 2, we introduce some notations and we state 
our main results: the Fourier expansion of Gp , together with the qualitative properties of 
its components, which is given in Theorem 2.1 and the precise statement of the PPP result 
which is given in Theorem 2.2. The rest of the paper is devoted to the proofs. More pre-
cisely, in Sect. 3 we compute explicitly the Fourier series of the Green function as the limit 
of the solution to (2) for a specific L2 forcing term converging to the Dirac delta function. 
In Sect. 4 we prove the monotonicity and the positivity of the �m , while in Sect. 5 we show 
the positivity of the Green function. Finally, we collect in “Appendix” the proofs of some 
technical results needed either in Sect. 4 or in Sect. 5.

Fig. 1   Finite element approximated solution u of the partially hinged (left) and partially clamped (right) 
plate problems under, respectively, a concentrated load in ( �

3
, d) ; the regions where u ⩾ 0 are gray, while the 

regions where u < 0 are colored from blue (less negative) to red ( d = �∕6 , � = 0.2)
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2 � Notations and main results

The natural functional space where to set problem (2) is

Note that the condition u = 0 has to be meant in a classical sense because Ω is a planar 
domain and H2

∗
(Ω) ⊂ C0(Ω) . Furthermore, for � ∈ [0, 1) fixed, by repeating the proof of [8, 

Lemma 4.1] with minor changes, H2
∗
(Ω) is a Hilbert space when endowed with the scalar 

product

with associated norm ‖u‖2
H2

∗
(Ω)

= (u, u)H2
∗
(Ω) , which is equivalent to the usual norm in 

H2(Ω) . Then, we reformulate problem (2)in the following weak sense

If f ∈ H−2
∗
(Ω) ∶= (H2

∗
(Ω))� , we write ⟨f , v⟩ instead of (f , v)L2(Ω) , i.e.,

Clearly, problem (4) (and consequently (3)) admits a unique solution u ∈ H2
∗
(Ω) ; in the 

following, we shall specify the cases when f ∈ H−2
∗
(Ω) , otherwise we will always assume 

f ∈ L2(Ω) . For all p ∈ Ω , the Green function Gp of (2) is, by definition, the unique solution 
to

By separating variables, in Sect. 3 we derive the Fourier expansion of Gp and in Sect. 4 
we prove some crucial qualitative properties of its Fourier components. We collect these 
results in the following:

Theorem  2.1  Let � ∈ [0, 1) and p = (�, �) ∈ Ω , and furthermore let Gp ∈ H2
∗
(Ω) be the 

Green function of (2). Then,

where the functions �m(y, �) are given explicitly in formula (15) of Sect. 3. In particular, 
the �m(y, �) are strictly positive and strictly decreasing with respect to m, i.e.,

In Figure 2 on the left, we provide the plot of �1(y, �) with d = �∕150 and � = 0.2 ; on the 
right, we provide the plot of �1(y, �) and �2(y, �) for d = 3�∕4 . Qualitatively, we have similar 
plots for any m ∈ ℕ+ and they all highlight that the points where the positivity of �m(y, �) is 
more difficult to show are (±d,∓d) . This confirms the physical intuition that a concentrated 
load in w = d produces the largest vertical (positive) displacement in y = d and the smallest 

H2
∗
(Ω) =

{
u ∈ H2(Ω) ∶ u = 0 on {0,�} × (−d, d)

}
.

(u, v)H2
∗
(Ω) ∶= ∫Ω

[
ΔuΔv + (1 − �)(2uxyvxy − uxxvyy − uyyvxx)

]
dx dy

(3)(u, v)H2
∗
(Ω) = (f , v)L2(Ω) ∀v ∈ H2

∗
(Ω).

(4)(u, v)H2
∗
(Ω) = ⟨f , v⟩ ∀v ∈ H2

∗
(Ω).

(5)(Gp, v)H2
∗
(Ω) = ⟨�p, v⟩ = v(p) ∀v ∈ H2

∗
(Ω) .

Gp(x, y) =
1

2�

+∞∑
m=1

�m(y, �)

m3
sin(m�) sin(mx) ∀(x, y) ∈ Ω ,

(6)0 < 𝜙m+1(y, 𝜂) < 𝜙m(y, 𝜂) ∀m ∈ ℕ
+,∀y, 𝜂 ∈ [−�,�] .
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in y = −d . We refer to [1] for a detailed analysis about the torsional performances of partially 
hinged plates under the action of different external forces. Instead, Figure 2 on the right high-
lights how the monotonicity issue (with respect m) becomes more difficult to be proved at 
(±d,±d) , where the difference between the �m reduces. Numerically, we see that this becomes 
more evident for large d. However, Theorem 2.1 assures that the �m never intersect and pre-
serve their positivity for all d > 0.

By exploiting Theorem 2.1, we derive the main result of the paper, namely the positivity of 
Gp . More precisely, we set

and we prove

Theorem 2.2  Let � ∈ [0, 1) and p ∈ Ω̃ , and furthermore let Gp be the Green function of 
(2). There holds

Therefore, if f ∈ L2(Ω) and u is the solution of (2), the following implication holds

Remark 2.3  The Poisson ratio � of a material is defined as the ratio between the transversal 
strain and the longitudinal strain in the direction of the stretching force; for most of materi-
als, we have � ∈ (0, 1∕2) . Nevertheless, there are materials having negative Poisson ratio; 
hence, the range � ∈ (−1, 1∕2) includes all possible values. Numerical experiments lead 
us to conjecture that Theorem 2.2 still holds for � ∈ (−1, 0) . In Remark 4.2 of Sect. 4, we 
highlight the points where our proof fails when assuming � negative.

Ω̃ ∶= (0,�) × [−d, d]

Gp(x, y) > 0 ∀(x, y) ∈ �Ω.

f ⩾ 0, f ≢ 0 in Ω ⇒ u > 0 in �Ω.

Fig. 2   On the left plot of �1(y, �) with d = �∕150 and � = 0.2 ; on the right plot of �1(y, �) (orange) and 
�2(y, �) (blue) with d = 3�∕4 and � = 0.2
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3 � Green function computation

The aim of this section is to provide the Fourier expansion of the Green function Gp , namely 
of the solution to (5). This is done by developing a suitable limit approach where, in principle, 
�p is replaced by a suitable L2 function converging to it. To begin with, we fix p = (�, �) ∈ Ω 
and we introduce 𝛼, 𝛽 > 0 sufficiently small so that [𝜉 − 𝛼, 𝜉 + 𝛼] × [𝜂 − 𝛽, 𝜂 + 𝛽] ⊂ Ω ; then, 
we denote by up

�,�
∈ H2

∗
(Ω) the unique solution to the auxiliary problem:

where

and �A denotes the characteristic function of the set A ⊂ ℝ . Recalling that 
H2

∗
(Ω) ⊂ C0,𝛾 (Ω) for any 0 < 𝛾 < 1 , by the mean value theorem there exists 

(��,� , ��,�) ∈ [� − �, � + �] × [� − �, � + �] such that

for all v ∈ H2
∗
(Ω) and for some C > 0 . Since (��,� , ��,�) → (�, �) as (�, �) → (0, 0), we infer 

that f p
�,�

→ �p in H−2
∗
(Ω) and, in turn, that

Next, we provide the explicit Fourier expansion of up
�,�

 . To this aim, we set:

where the functions F,F,A,A,B,B ∶ (0,+∞) → ℝ and Vm,�,� ,Wm,�,� ,Φm,�,� ∶ [−d, d] → ℝ 
are defined as follows

(7)(u
p

�,�
, v)H2

∗
(Ω) = (f

p

�,�
, v)L2(Ω) ∀v ∈ H2

∗
(Ω),

f
p

�,�
(x, y) ∶=

�[�−�,�+�](x)�[�−�,�+�](y)

4��

�⟨f p
�,�

− �p, v⟩� = �v(��,� , ��,�) − v(�, �)� ⩽ C�(��,� , ��,�) − (�, �)��‖v‖H2
∗
(Ω),

(8)u
p

�,�
→ Gp in H2

∗
(Ω) as (�, �) → (0, 0) .

(9)

c1 ∶= c1(m, �, �) =

mA(md)[Vm,�,�(d) + Vm,�,�(−d)] + B(md)[Wm,�,�(d) −Wm,�,�(−d)]

2m3(1 − �)F(md)

c2 ∶= c2(m, �, �) =

mA(md)[Vm,�,�(d) − Vm,�,�(−d)] + B(md)[Wm,�,�(d) +Wm,�,�(−d)]

2m3(1 − �)F(md)

c3 ∶= c3(m, �, �) =

m cosh(md)[Vm,�,�(d) − Vm,�,�(−d)] − sinh(md)[Wm,�,�(d) +Wm,�,�(−d)]

2m2F(md)

c4 ∶= c4(m, �, �) =

m sinh(md)[Vm,�,�(d) + Vm,�,�(−d)] − cosh(md)[Wm,�,�(d) −Wm,�,�(−d)]

2m2F(md)

(10)F(z) ∶=
(3 + �)

2
sinh(2z) − z(1 − �) , F(z) ∶=

(3 + �)

2
sinh(2z) + z(1 − �),
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with

Φm,�,� is given by the convolution of the H3(ℝ) function (1+m|y|)e
−m|y|

4m3
 and the L2(ℝ) function 

�[�−�,�+�](y)

2�
 , hence Φm,�,� ∈ C3(ℝ) , and all the above constants are well defined.

We prove

Lemma 3.1  Let up
�,�

 be the unique solution to (7) , then

with

where the constants ci and Φm,�,� are defined in (9) and (11). Furthermore, the above series 
converges in H2

∗
(Ω) and in C0(Ω).

Proof  First, we denote the Fourier coefficients of f p
�,�

 by

Then, for M ⩾ 1 we define

where, for each 1 ⩽ m ⩽ M , �m = �
p

m,�,�
(y) is the unique solution to the problem:

with

A(z) ∶= (1 + �) sinh(z) − (1 − �)z cosh(z) ,

A(z) ∶= (1 + �) cosh(z) − (1 − �)z sinh(z) ,

B(z) ∶= 2 cosh(z) + (1 − �)z sinh(z) ,

B(z) ∶= 2 sinh(z) + (1 − �)z cosh(z)

Vm,�,�(y) ∶= �m2Φm,�,�(y) − (Φm,�,�)
��(y) ,

Wm,�,�(y) ∶= (� − 2)m2(Φm,�,�)
�(y) + (Φm,�,�)

���(y) ,

(11)Φm,�,�(y) ∶=
1

2� ∫
�+�

�−�

(1 + m|y − t|)e−m|y−t|
4m3

dt .

u
p

�,�
(x, y) =

+∞∑
m=1

�
p

m,�,�
(y) sin(mx)

(12)
�
p

m,�,�
(y) ∶=

2

�

sin(m�)

m�
sin(m�)

[
c1 cosh(my) + c2 sinh(my) + c3y cosh(my)

+c4y sinh(my) + Φm,�,�(y)
]

f
p

m,�,�
(y) ∶=

2

� ∫
�

0

f
p

�,�
(x, y) sin(mx) dx =

�[�−�,�+�](y)

��

sin(m�)

m�
sin(m�) .

u
p,M

�,�
(x, y) =

M∑
m=1

�
p

m,�,�
(y) sin(mx)

(13)am(�m,�) = (f
p

m,�,�
,�)L2(−d,d) ∀� ∈ H2(−d, d) ,
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continuous and coercive bilinear form in H2(−d, d) with associated norm 
‖�‖2

H2
m
(−d,d)

∶= am(�,�) . In strong form, problem (13) reads

and some computations yield that the �p

m,�,�
 are as in (12). Let v ∈ H2

∗
(Ω) , it is readily 

checked that, for M ⩾ 1 fixed, up,M
�,�

 satisfies

where vM and f p,M
�,�

 denote, respectively, the partial sums of the Fourier expansion of v and 
f
p

�,�
 . By the standard theory of Fourier series, we get f p,M

�,�
→ f

p

�,�
 in L2(Ω) and vM → v in 

H2
∗
(Ω) as M → +∞ . Furthermore, since

we have that up,M
�,�

→ u
p

�,�
 in H2

∗
(Ω) as M → +∞ . Finally, the proof of Lemma 3.1 follows 

by passing to the limit in (14). 	�  ◻

In order to write explicitly the Fourier expansion of Gp , for all m ∈ ℕ+ , we set

with the functions F,F as in (10) and � , �,� ,� ∶ ℝ × (0,+∞) → ℝ defined as follows

am(�,�) ∶= ∫
d

−d

[������ + 2m2(1 − �)���� − �m2(���� + ����) + m4��] dy

⎧
⎪⎨⎪⎩

�����
m

(y) − 2m2���
m
(y) + m4�m(y) = f

p

m,�,�
(y) y ∈ (−d, d)

���
m
(±d) − �m2�m(±d) = 0

����
m
(±d) − (2 − �)m2��

m
(±d) = 0

(14)(u
p,M

�,�
, vM)H2

∗
(Ω) = (f

p,M

�,�
, vM)L2(Ω) ,

‖up,M
�,�

‖2
H2

∗
(Ω)

=
�

2

M�
m=1

‖�p

m,�,�
‖2
H2

m
(−d,d)

=
�

2

M�
m=1

‖f p
m,�,�

‖2
L2(−d,d)

⩽ ‖f p
�,�

‖2
L2(Ω)

(15)

�m(y, �) ∶= e−md
[
cosh(m�)

(
� (my,md)

F(md)
+ md

�(my,md)

F(md)
− m�

�(my,md)

F(md)

)

+ sinh(m�)

(
�(my,md)

F(md)
+ md

�(my,md)

F(md)
− m�

�(my,md)

F(md)

)]

+ (1 + m|y − �|)e−m|y−�|

(16)

� (r, z) ∶=

(
4

1 − �
− z(1 + �)

)
cosh(r) cosh(z) +

(
(1 + �)2

1 − �
+ 2z

)
cosh(r) sinh(z)

− 2r sinh(r) cosh(z) + r(1 + �) sinh(r) sinh(z)

�(r, z) ∶= r(1 + �) cosh(r) cosh(z) − 2r cosh(r) sinh(z)

+

(
(1 + �)2

1 − �
+ 2z

)
sinh(r) cosh(z) +

(
4

1 − �
− z(1 + �)

)
sinh(r) sinh(z)

�(r, z) ∶=
(
2 + (1 − �)z

)
cosh(r) cosh(z) +

(
− (1 + �) + z(1 − �)

)
cosh(r) sinh(z)

− r(1 − �) sinh(r) cosh(z) − r(1 − �) sinh(r) sinh(z)

�(r, z) ∶= −r(1 − �) cosh(r) cosh(z) − r(1 − �) cosh(r) sinh(z)

+
(
− (1 + �) + z(1 − �)

)
sinh(r) cosh(z) +

(
2 + (1 − �)z

)
sinh(r) sinh(z) .
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From Lemma 3.1, we get:

Proposition 3.2  Let � ∈ [0, 1) and p = (�, �) ∈ Ω , and furthermore let Gp ∈ H2
∗
(Ω) be as 

in (5). Then,

where the functions �m(y, �) are given in (15).

Proof  By expanding in Fourier series, we have: Gp(x, y) =
∑+∞

m=1
g
p
m(y) sin(mx) . Let 

u
p

�,�
∈ H2

∗
(Ω) be the unique solution to (7), by Lemma 3.1 its Fourier coefficients �p

m,�,�
(y) 

write as in (12) and, by (8), �p

m,�,�
(y) → g

p
m(y) in C0([−d, d]) as (�, �) → (0, 0).

Since, as � → 0,

from (12) we get

where the �m are as given in (15). This proves (17) for all p ∈ Ω . Let now p ∈ Ω and let 
Gp be the corresponding solution to (5). It is readily seen that �pn → �p in H−2

∗
(Ω) for all 

{pn} ⊂ Ω ∶ pn → p ; then, arguing as in (8), it follows that Gpn
→ Gp in H2

∗
(Ω) and, conse-

quently, in C0(Ω) . By this, we infer that (17) extends continuously to all p ∈ Ω . The con-
vergence of the series (17) in H2

∗
(Ω) and in C0(Ω) can be easily checked by exploiting the 

monotonicity property (6) (see Sect. 4.1 for the proof). Indeed, we have

by which the convergence in C0(Ω) follows. The convergence in H2
∗
(Ω) comes from similar 

estimates. 	�  ◻

Remark 3.3  An alternative and more neat way of writing the Green function expansion (17) 
is by means of the oscillating modes of the partially hinged plate Ω ; indeed, they have been 
explicitly computed in [8, Theorem  7.6] and have the form {sin(mx)Ψk,m(y)}

∞
k,m=1

 . How-
ever, the corresponding frequencies, which necessarily enter into this expansion, are only 
known implicitly by means of very involved equations. Therefore, in order to perform the 
explicit computations of the subsequent sections, it seems more convenient to follow the 
direct approach outlined in this section and write the Green function as in (17); clearly, the 
two-form solutions can be properly related.

(17)Gp(x, y) =
1

2�

+∞∑
m=1

�m(y, �)

m3
sin(m�) sin(mx) ∀(x, y) ∈ Ω ,

Φm,�,�(y) →
(1 + m|y − �|)e−m|y−�|

4m3
∶= Φm(y, �) in C0([−d, d])

Vm,�,�(±d) →
e−m|±d−�|

4m
(1 + � − m| ± d − �|(1 − �)) ,

Wm,�,�(±d) → ±
e−m|±d−�|

4
(2 + m| ± d − �|(1 − �)) ,

�
p

m,�,�
(y) →

�m(y, �)

2�m3
sin(m�) as (�, �) → (0, 0),

�gp
m
(y) sin(mx)� ⩽ 1

2�

�m(y, �)

m3
� sin(m�)� ⩽ 1

2�

‖�1‖∞
m3

⩽
C

m3
,
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4 � Proof of Theorem 2.1

The first part of the statement, namely the Fourier expansion of the Green function, has 
already been derived in the previous section, see Proposition 3.2. Here, we focus on the 
sign and monotonicity properties of the functions �m(y, �).

4.1 � Proof of the monotonicity issue in (6)

We rewrite the �m(y, �) in a more convenient way; to this aim, we introduce the func-
tions � , �,� ,� ∶ [−1, 1] × (0,+∞) → ℝ

where � , �,� ,� are given in (16). We observe that

and the same symmetry properties hold for the derivatives with respect to z of the previous 
functions.

Putting into (15) z = md > 0 , y = kd with k ∈ [−1, 1] and � = sd with s ∈ [−1, 1] , 
each �m(y, �) rewrites as the three-variable function:

where

and h(s, k, z) ∶= (1 + z|k − s|)e−z|k−s| . The monotonicity issue (6) follows by showing that 
the function �(s, k, z) is decreasing with respect to z > 0 for all k, s ∈ [−1, 1] , i.e.,

Since hz(s, k, z) = −(k − s)2ze−z|k−s| ⩽ 0 , for all z > 0 and k, s ∈ [−1, 1] , a sufficient condi-
tion for the validity of the above inequality is:

The proof of this inequality will be the goal of this section. To this aim, we compute

in which we set

(18)� (k, z) ∶= � (kz, z) , �(k, z) ∶= �(kz, z) , �(k, z) ∶= �(kz, z) , �(k, z) ∶= �(kz, z),

(19)
𝜁 (−k, z) = 𝜁 (k, z) 𝜓(−k, z) = 𝜓(k, z) ∀k ∈ [−1, 1] ∀z > 0

𝜗(−k, z) = −𝜗(k, z) 𝜔(−k, z) = −𝜔(k, z) ∀k ∈ [−1, 1] ∀z > 0

(20)�(s, k, z) = e−zg(s, k, z) + h(s, k, z),

g(s, k, z) ∶= cosh(sz)

(
� (k, z)

F(z)
+ z

�(k, z)

F(z)
− sz

�(k, z)

F(z)

)

+ sinh(sz)

(
�(k, z)

F(z)
+ z

�(k, z)

F(z)
− sz

�(k, z)

F(z)

)

𝜙z(s, k, z) =e
−z
(
gz(s, k, z) − g(s, k, z)

)
+ hz(s, k, z) < 0 ∀z > 0,∀k, s ∈ [−1, 1].

(21)gz(s, k, z) − g(s, k, z) < 0 ∀z > 0,∀k, s ∈ [−1, 1].

gz(s, k, z) − g(s, k, z) = W(s, k, z) cosh(sz) + Q(s, k, z) sinh(sz)
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and

In view of the elementary implication:

for all W,Q ∶ (0,+∞) → ℝ continuous functions, it follows that a sufficient condition for 
(21) to hold is

We consider

The maps [−1, 1] ∋ s ↦ W(s, k, z) ± Q(s, k, z) are concave parabolas for all z > 0 and 
k ∈ [−1, 1] fixed. Indeed, we have

W(s, k, z) ∶=

[
�(k, z)

F(z)
+ z

�(k, z)

F(z)

]

z

−

[
�(k, z)

F(z)
+ z

�(k, z)

F(z)

]

+ s

(
�(k, z)

F(z)
+ 2z

�(k, z)

F(z)
−

[
z
�(k, z)

F(z)

]

z

)
− s2z

�(k, z)

F(z)

Q(s, k, z) ∶=

[
�(k, z)

F(z)
+ z

�(k, z)

F(z)

]

z

−

[
�(k, z)

F(z)
+ z

�(k, z)

F(z)

]

+ s

(
� (k, z)

F(z)
+ 2z

�(k, z)

F(z)
−

[
z
�(k, z)

F(z)

]

z

)
− s2z

�(k, z)

F(z)
.

(22)W(z) + |Q(z)| < 0 ⇒ W(z) cosh(𝜈z) + Q(z) sinh(𝜈z) < 0 ∀z > 0,∀𝜈 ∈ ℝ

(23)
W(s, k, z) + Q(s, k, z) < 0 ∧ W(s, k, z) − Q(s, k, z) < 0 ∀z > 0 ,∀k , s ∈ [−1, 1] .

(24)

W(s, k, z) + Q(s, k, z) = − s2z

[
�(k, z)

F(z)
+

�(k, z)

F(z)

]

+ s

(
�(k, z)

F(z)
+

� (k, z)

F(z)
+ 2z

�(k, z)

F(z)
+ 2z

�(k, z)

F(z)
−

[
z
�(k, z)

F(z)
+ z

�(k, z)

F(z)

]

z

)

+

[
� (k, z)

F(z)
+ z

�(k, z)

F(z)
+

�(k, z)

F(z)
+ z

�(k, z)

F(z)

]

z

−

[
� (k, z)

F(z)
+ z

�(k, z)

F(z)
+

�(k, z)

F(z)
+ z

�(k, z)

F(z)

]

W(s, k, z) − Q(s, k, z) = − s2z

[
�(k, z)

F(z)
−

�(k, z)

F(z)

]

+ s

(
�(k, z)

F(z)
−

� (k, z)

F(z)
+ 2z

�(k, z)

F(z)
− 2z

�(k, z)

F(z)
−

[
z
�(k, z)

F(z)
− z

�(k, z)

F(z)

]

z

)

+

[
� (k, z)

F(z)
+ z

�(k, z)

F(z)
−

�(k, z)

F(z)
− z

�(k, z)

F(z)

]

z

−

[
� (k, z)

F(z)
+ z

�(k, z)

F(z)
−

�(k, z)

F(z)
− z

�(k, z)

F(z)

]
.
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Furthermore, there hold:

and

The first condition assures that the abscissa s of the parabolas vertex satisfies, respectively, 
s > 1 or s < −1 , implying that the maximum is achieved, respectively, at s = 1 or at s = −1 ; 
condition (27) implies the negativity of such maxima proving (23) and, in turn, (21). We 
postpone the (long) proofs of (25), (26) and (27), respectively, to Sects. 4.3, 4.4 and 4.5.

Remark 4.1  It is worth pointing out that the proofs of (26) and (27) are achieved by repeat-
ing several times the scheme outlined above, i.e., we first put in evidence an expression 
of the type: W cosh(�z) + Q sinh(�z) , for suitable functions W and Q, and then, in order to 
show that this expression is always negative, we exploit (22) and we come to study the sign 
of W ± Q . As in (24), the functions W ± Q can always be seen as parabolas with respect 
to one of the variables: we locate the maximum point of these parabolas, and we estimate 
the sign of the maximum in a suitable interval. The advantage of this procedure is that, at 
each step, we obtain a reduction in the number of variables. Indeed, we start with the three-
variable functions W and Q in (24) and we reduce to two or one variables functions, see 
e.g. (33).

Remark 4.2  Except for (26), all steps in the proof of the monotonicity issue (6) hold for all 
� ∈ (−1, 1) . Our numerical experiments suggest that (23) is still satisfied when � ∈ (−1, 0) 
but the vertex of the parabolas s ↦ W(s, k, z) ± Q(s, k, z) in (24), differently to what hap-
pens for � ∈ [0, 1) , may belong to the interval [−1, 1] . Therefore, to extend the proof to the 
case � ∈ (−1, 0) , condition (27) should be modified accordingly.

4.2 � Proof of the positivity issue in (6).

By (20) the sign of �m(y, �) is the same of the function �(s, k, z) = e−zg(s, k, z) + h(s, k, z) . 
Since h(s, k, z) > 0 for all z > 0 , k, s ∈ [−1, 1] , to obtain the positivity of �m in (6) we prove 
that e−zg(s, k, z) ⩾ 0 for all z > 0 , k, s ∈ [−1, 1] . For z → +∞ , by direct inspection, we get 
that e−zg(s, k, z) → L with L = 0 for all k, s ≠ ±1 and L =

4+(1+�)2

(1−�)2
 if k = s = ±1 . Therefore, 

the strict monotonicity of e−zg(s, k, z) proved in Sect. 4.1 assures the positivity of �(z, k, s) , 
i.e., the positivity issue in (6).

4.3 � Proof of inequality (25).

Here and after, we will exploit the inequalities

(25)
𝜓(k, z)

F(z)
±

𝜔(k, z)

F(z)
> 0 ∀z > 0, k ∈ [−1, 1].

(26)
[
z
𝜓(k, z)

F(z)
± z

𝜔(k, z)

F(z)

]

z

−

[
𝜁 (k, z)

F(z)
±

𝜗(k, z)

F(z)

]
< 0 ∀k ∈ [−1, 1], z > 0

(27)
[
𝜁 (k, z)

F(z)
±

𝜗(k, z)

F(z)

]

z

< 0 ∀k ∈ [−1, 1], z > 0.
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where F(z) and F(z) are as in (10). The proof of (28) is immediate, while inequality (29) 
simply follows by noticing that F(z) > F(z) > 0 for all z > 0 . Next, we prove (25).

Lemma 4.3  Given F(z), F(z) as in (10) and �(k, z) , �(k, z) as in (18), we have

Proof  Thanks to (28) and cosh(kz) − k sinh(kz) > 0 for all z > 0 and k ∈ [−1, 1] , we have 
that

Hence, through the first of (29), a sufficient condition for the validity of (30) is 
𝜓(k, z) ± 𝜔(k, z) > 0 . But by (28), we immediately deduce

for all k ∈ [−1, 1] and z > 0 . This concludes the proof. 	�  ◻

4.4 � Proof of inequality (26).

The proof of (26) is given in Lemma 4.4.

Lemma 4.4  Given F(z), F(z) as in (10) and � (k, z) , �(k, z) , �(k, z) , �(k, z) as in (18), we 
have that

for all k ∈ [−1, 1] and z > 0.

Proof  Thanks to the symmetry properties of the functions involved, see (19), the second 
term of (31) is given by the sum of an even and an odd function with respect to k. Hence, to 
obtain (31), it is enough to prove that

(28)2 cosh(𝜈z) − (1 + 𝜎) sinh(𝜈z) > 0 ∀z > 0 ,∀𝜈 ∈ ℝ ,

(29)
1

F(z)
±

1

F(z)
> 0 and

1

[F(z)]2
±

1

[F(z)]2
> 0 ∀z > 0 ,

(30)
𝜓(k, z)

F(z)
±

𝜔(k, z)

F(z)
> 0 ∀k ∈ [−1, 1], z > 0.

𝜓(k, z) =
(
2 + (1 − 𝜎)z

)
cosh(kz) cosh(z) +

(
− (1 + 𝜎) + z(1 − 𝜎)

)
cosh(kz) sinh(z)

− kz(1 − 𝜎) sinh(kz) cosh(z) − kz(1 − 𝜎) sinh(kz) sinh(z) > 0 ∀k ∈ [−1, 1], z > 0 .

𝜓 + 𝜔 =
(
2 + (1 − 𝜎)(1 − k)z

)
cosh[(1 + k)z] +

(
− (1 + 𝜎) + z(1 − 𝜎)(1 − k)

)
sinh[(1 + k)z] > 0,

𝜓 − 𝜔 =
(
2 + (1 − 𝜎)(1 + k)z

)
cosh[(1 − k)z] +

(
− (1 + 𝜎) + z(1 − 𝜎)(1 + k)

)
sinh[(1 − k)z] > 0,

(31)

[
z
𝜓

F
± z

𝜔

F

]

z

−

[
𝜁

F
±

𝜗

F

]
=

(𝜓 + z𝜓z − 𝜁 )F − z𝜓F�

F2
±

(𝜔 + z𝜔z − 𝜗)F − z𝜔F
�

F
2

< 0

(32)

(𝜓 + z𝜓z − 𝜁 )F(z) − z𝜓F�

F2
+

(𝜔 + z𝜔z − 𝜗)F − z𝜔F
�

F
2

< 0 ∀k ∈ [−1, 1], z > 0 .
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We rewrite (32) as

where

and

Clearly, the above definitions can be simplified by exploiting the identity 
cosh(z) + sinh(z) = ez but for the sake of computations it is convenient to keep the hyper-
bolic functions here and after. By (22), (33) follows if 𝜒±(k, z) ∶= W(k, z) ±Q(k, z) < 0 for 
all k ∈ [−1, 1] and z > 0 , namely if

and

We prove the validity of (35) and (36) here below; this concludes the proof of Lemma 4.4.
Proof of (35).
By (34), s(z) + p(z) < 0 for all z > 0 , hence �+(k, z) is a concave parabola with respect 

to k. Therefore, 𝜒+(k, z) < 0 if the ordinate of its vertex is negative, namely if

Through many computations, we obtain

(33)cosh(kz)W(k, z) + sinh(kz)Q(k, z) < 0 ∀k ∈ [−1, 1], z > 0

W(k, z) ∶= k2z2 s(z) + kz t(z) + u(z), Q(k, z) ∶= k2z2 p(z) + kz q(z) + r(z)

(34)

p(z) ∶ = −
(1 − 𝜎)

F(z)
[cosh(z) + sinh(z)] < 0

q(z) ∶ =
1

F(z)

(
2(1 + 𝜎) cosh(z) − 4 sinh(z) + z(1 − 𝜎)[cosh(z) + sinh(z)]

F�(z)

F(z)

)

r(z) ∶ =
1

F(z)

{
[cosh(z) + sinh(z)]

(
−

2(1 + 𝜎)

1 − 𝜎
+ 2z(1 − 𝜎) + z2(1 − 𝜎)

)

− z

(
cosh(z)[−1 − 𝜎 + z(1 − 𝜎)] + sinh(z)[2 + z(1 − 𝜎)]

)
F
�
(z)

F(z)

}

s(z) ∶ = −
(1 − 𝜎)

F(z)
[cosh(z) + sinh(z)] < 0

t(z) ∶ =
1

F(z)

(
− 4 cosh(z) + 2(1 + 𝜎) sinh(z) + z(1 − 𝜎)[cosh(z) + sinh(z)]

F
�
(z)

F(z)

)

u(z) ∶ =
1

F(z)

{
[cosh(z) + sinh(z)]

(
−

2(1 + 𝜎)

1 − 𝜎
+ 2z(1 − 𝜎) + z2(1 − 𝜎)

)

− z

(
cosh(z)[2 + z(1 − 𝜎)] + sinh(z)[−1 − 𝜎 + z(1 − 𝜎)]

)
F�(z)

F(z)

}
.

(35)
𝜒+(k, z) ∶= k2z2 [s(z) + p(z)] + kz [t(z) + q(z)] + u(z) + r(z) < 0 ∀k ∈ [−1, 1], z > 0

(36)
𝜒−(k, z) ∶= k2z2 [s(z) − p(z)] + kz [t(z) − q(z)] + u(z) − r(z) < 0 ∀k ∈ [−1, 1], z > 0 .

4[s(z) + p(z)][u(z) + r(z)] − [t(z) + q(z)]2

4[s(z) + p(z)]
=∶

𝜇(z)

4[s(z) + p(z)]
< 0 ∀z > 0.
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We have

since [2z cosh(2z) − sinh(2z)]�(z) = 4z sinh(2z) > 0 for all z > 0 . Hence, recalling (29), the 
first term in the definition of � is positive. Moreover, by estimating sinh(2z) > 2z for z > 0 , 
we have

By Lemma 6.1 in “Appendix,” we know that 2F(z)−F
�(z)

[F(z)]2
+

2F(z)−F
�
(z)

[F(z)]2
< 0 , therefore if

then 𝜇(z) > 0 . To this aim, we consider

since �1(0) = 0 and

we have 𝜇1(z) > 0 for all z > 0 . On the other hand, for all z > 0 , we have

implying (37). This assures 𝜒+(k, z) < 0 for all k ∈ [−1, 1] and for all z > 0.
Proof of (36).
First of all, we notice that �−(k, z) is a concave parabola with respect to k, since

�(z) = 2(1 − �)(3 + �)

[
1

[F(z)]2
−

1

[F(z)]2
+ 2

z

F(z)F(z)

(
F�(z)

F(z)
−

F
�
(z)

F(z)

)]

+
(3 + �)2

[F(z)F(z)]2

[
cosh(2z)

(
(7 + 10� − �2) sinh2(2z) − 4(1 − �)2z2

)

+ sinh(2z)

(
(7 + 10� − �2) sinh2(2z) + 4(1 − �)2z2

)]

− [cosh(2z) + sinh(2z)]z(1 − �)2
(
2F(z) − F�(z)

[F(z)]2
+

2F(z) − F
�
(z)

[F(z)]2

)
×

×

[
(4 + 2z)F(z) − zF�(z)

[F(z)]2
+

(4 + 2z)F(z) − zF
�
(z)

[F(z)]2

]
.

F�(z)

F(z)
−

F
�
(z)

F(z)
=

(3 + 𝜎)(1 − 𝜎)

F(z)F(z)
[2z cosh(2z) − sinh(2z)] > 0 ∀z > 0

(7 + 10𝜎 − 𝜎2) sinh2(2z) − 4(1 − 𝜎)2z2 > 8z
2(𝜎 + 2

√
3 − 3)(3 + 2

√
3 − 𝜎) > 0 ∀z > 0

(7 + 10𝜎 − 𝜎2) sinh2(2z) + 4(1 − 𝜎)2z2 = (𝜎 + 4

√
2 − 5)(5 + 4

√
2 − 𝜎) sinh2(2z)

+ 4(1 − 𝜎)2z2 > 0 ∀z > 0.

(37)
(4 + 2z)F(z) − zF�(z)

[F(z)]2
+

(4 + 2z)F(z) − zF
�
(z)

[F(z)]2
> 0 ∀z > 0,

�1(z) ∶= (4 + 2z)F(z) − zF�(z) = (3 + �){z[sinh(2z) − cosh(2z)] + 2 sinh(2z)} − (1 − �)(3z + 2z2);

𝜇�
1
(z) = (3 + 𝜎){cosh(2z)[3 + 2z] + sinh(2z)[1 − 2z]} − (1 − 𝜎)(3 + 4z)

> 2{(3 + 𝜎)z[cosh(2z) − sinh(2z)] + 3 + 3𝜎 + z(1 + 3𝜎)} > 0 ∀z > 0,

𝜇
2
(z) ∶= (4 + 2z)F(z)−zF

�
(z) = (3 + 𝜎){z[sinh(2z) − cosh(2z)] + 2 sinh(2z)}

+ (1 − 𝜎)(3z + 2z
2) > 𝜇

1
(z) > 0 ,
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We prove that the parabola has a point of maximum for k < −1 , i.e., that

To this aim, we study

By Lemma 6.1 in “Appendix,” we have that the last term above is negative; about the 
remaining terms, we distinguish the cases z ∈ (0, 1] and z > 1 . For z ∈ (0, 1] , we have

We observe that dv

d𝜎
= 4z

[
(1 + 𝜎) sinh(z) − 2 cosh(z)

]
< 0 ; hence, 

v(𝜎) < 2z[5 sinh(z) − 4 cosh(z)] < 0 for z < log 3 , implying 𝜇(z) < 0 for z ∈ (0, 1] . For 
z > 1 , we rewrite

where

and, by (22), we prove that � is negative by showing that W(z) ± Q(z) < 0 for z > 1.
The case W(z) − Q(z) < 0 is trivially true for all z > 0 ; then, it remains to study

We consider �1(z) ∶= (1 + z) cosh(4z) − 2z sinh(4z) − 1 and �
�

1
(z) = (1 − 8z) cosh(4z)

+2(1 + 2z) sinh(4z) , so that �1(z) has stationary points satisfying tanh(4z) = (8z − 1)∕

[2(1 + 2z)] ∶= �(z) . We observe that �(z) is always increasing for z > 0 , �(z) = 1 if and only 
if z = 3∕4 < 1 , implying 𝜇�

1
(z) < 0 for z > 1 ; since 𝜇1(1) = 2e−4 − 1 < 0 , then 𝜇1(z) < 0 

for z > 1 and in conclusion W(z) + Q(z) < 0 for all z > 1 . This proves (38). In view of (38), 
to obtain 𝜒−(k, z) < 0 for all k ∈ [−1, 1] and z > 0 , it is enough to study the sign of

s(z) − p(z) = −(1 − 𝜎)

[
1

F(z)
−

1

F(z)

]
[cosh(z) + sinh(z)] < 0 ∀z > 0 .

(38)𝜇(z) ∶= t(z) − q(z) + 2z[p(z) − s(z)] < 0 ∀z > 0.

�(z) =
2

F(z)F(z)

[
sinh(z)

[
(1 + �)F(z) + 2F(z)

]
− cosh(z)

[
2F(z) + (1 + �)F(z)

]]

+ z(1 − �)[cosh(z) + sinh(z)]

[
2F(z) − F�(z)

[F(z)]2
−

2F(z) − F
�
(z)

[F(z)]2

]
.

sinh(z)
[
(1 + 𝜎)F(z) + 2F(z)

]
− cosh(z)

[
2F(z) + (1 + 𝜎)F(z)

]

=
(3 + 𝜎)2

2
sinh(2z)[sinh(z) − cosh(z)] + z(1 − 𝜎)2[cosh(z) + sinh(z)]

< 2z
[
(𝜎2 + 2𝜎 + 5) sinh(z) − 4(1 + 𝜎) cosh(z)

]
∶= v(𝜎).

�(z) = cosh(z)W(z) + sinh(z)Q(z) ,

W(z) ∶= −
4

F(z)
−

2(1 + �)

F(z)
+ z(1 − �)

(
2F(z) − F�(z)

[F(z)]2
−

2F(z) − F
�
(z)

[F(z)]2

)

Q(z) ∶=
2(1 + �)

F(z)
+

4

F(z)
+ z(1 − �)

(
2F(z) − F�(z)

[F(z)]2
−

2F(z) − F
�
(z)

[F(z)]2

)

W(z) + Q(z) = z
(1 − �)2

[F(z)F(z)]2

[
(3 + �)2

(
(1 + z) cosh(4z) − 2z sinh(4z) − 1 − z

)
− 8z3(1 − �)2

]
.
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where

and

Recalling that F(z) > F(z) > 0 for all z > 0 , if

we conclude that 𝜒(−1, z) < 0 and the thesis. By (22), this follows by showing that 
�W(z) ± �Q(z) < 0 for all z > 0 , namely that

These inequalities hold true for all z > 0 thanks to Lemma 6.1 in “Appendix”. 	�  ◻

4.5 � Proof of inequality (27).

The proof of (27) is given in Lemma 4.5.

Lemma 4.5  Given F(z), F(z) as in (10) and � (k, z) , �(k, z) as in(18), we have

�−(−1, z) = z2
[
s(z) − p(z)] − z [t(z) − q(z)] + u(z) − r(z)

= −
2(1 + �)

1 − �

(
1

F(z)
−

1

F(z)

)
[cosh(z) + sinh(z)]

+ z

{
cosh(z)

[
2
2F(z) − F�(z)

[F(z)]2
+ (1 + �)

2F(z) − F
�
(z)

[F(z)]2

]

− sinh(z)

[
(1 + �)

2F(z) − F�(z)

[F(z)]2
+ 2

2F(z) − F
�
(z)

[F(z)]2

]}

= −
2(1 + �)

1 − �

(
1

F(z)
−

1

F(z)

)
[cosh(z) + sinh(z)] + z

{
cosh(z) W̃(z) + sinh(z) Q̃(z)

}

W̃(z) ∶= 2
2F(z) − F�(z)

[F(z)]2
+ (1 + �)

2F(z) − F
�
(z)

[F(z)]2

Q̃(z) ∶= −(1 + �)
2F(z) − F�(z)

[F(z)]2
− 2

2F(z) − F
�
(z)

[F(z)]2
.

cosh(z) �W(z) + sinh(z) �Q(z) < 0 ∀z > 0,

(1 − 𝜎)

[
2F(z) − F�(z)

[F(z)]2
−

2F(z) − F
�
(z)

[F(z)]2

]
< 0 (3 + 𝜎)

[
2F(z) − F�(z)

[F(z)]2
+

2F(z) − F
�
(z)

[F(z)]2

]
< 0.

(39)
[
𝜁

F
±

𝜗

F

]

z

=
𝜁zF − 𝜁F�

[F]2
±

𝜗zF − 𝜗F
�

[F]2
< 0 ∀k ∈ [−1, 1], z > 0 .
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Proof  Thanks to the symmetry properties of the functions involved, see (19), the second 
term of (39) is given by the sum of an even and an odd function with respect to k; hence, to 
obtain (39), it is enough to prove that

for all k ∈ [−1, 1] and z > 0 . We rewrite (40) as

where

and

Then, by (22), we obtain the thesis if Ξ(k, z)± ∶= V(k, z) ± P(k, z) < 0 for all k ∈ [−1, 1] 
and z > 0 , i.e., if

and

We prove the validity of (42) and (43) here below. This concludes the proof of Lemma 4.5.
Proof of (42).
We consider

(40)
𝜁z(k, z)F(z) − 𝜁 (k, z)F�(z)

[F(z)]2
+

𝜗z(k, z)F(z) − 𝜗(k, z)F
�
(z)

[F(z)]2
< 0,

cosh(kz)V(k, z) + sinh(kz)P(k, z)

V(k, z) ∶= k2 a(z) + k b(z) + c(z), P(k, z) ∶= k2 d(z) + k e(z) + f (z),

(41)

a(z) ∶= −
z

F(z)
[2 cosh(z) − (1 + 𝜎) sinh(z)] < 0

b(z) ∶=
1

F(z)

(
2(1 + 𝜎)

1 − 𝜎
[cosh(z) + sinh(z)] + z[2 sinh(z) − (1 + 𝜎) cosh(z)]

F
�
(z)

F(z)

)

c(z) ∶=
1

F(z)

{
cosh(z)

(
2𝜎(1 + 𝜎)

1 − 𝜎
+ 2z

)
+ sinh(z)

(
2(3 − 𝜎)

1 − 𝜎
− z(1 + 𝜎)

)

−

[
cosh(z)

(
4

1 − 𝜎
− z(1 + 𝜎)

)
+ sinh(z)

(
(1 + 𝜎)2

1 − 𝜎
+ 2z

)]
F�(z)

F(z)

}

d(z) ∶= −
z

F(z)
[2 sinh(z) − (1 + 𝜎) cosh(z)]

e(z) ∶=
1

F(z)

(
2(1 + 𝜎)

1 − 𝜎
[cosh(z) + sinh(z)] + z[2 cosh(z) − (1 + 𝜎) sinh(z)]

F�(z)

F(z)

)

f (z) ∶=
1

F(z)

{
cosh(z)

(
2(3 − 𝜎)

1 − 𝜎
− z(1 + 𝜎)

)
+ sinh(z)

(
2𝜎(1 + 𝜎)

1 − 𝜎
+ 2z

)

−

[
cosh(z)

(
(1 + 𝜎)2

1 − 𝜎
+ 2z

)
+ sinh(z)

(
4

1 − 𝜎
− z(1 + 𝜎)

)]
F
�
(z)

F(z)

}
.

(42)
Ξ+(k, z) ∶= k2 [a(z) + d(z)] + k [b(z) + e(z)] + c(z) + f (z) < 0 ∀k ∈ [−1, 1] , z > 0

(43)
Ξ−(k, z) ∶= k2 [a(z) − d(z)] + k [b(z) − e(z)] + c(z) − f (z) < 0 ∀k ∈ [−1, 1] , z > 0 .
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Since, from (29), we have

by (22) we infer that a(z) + d(z) < 0 ; hence, the map k ↦ Ξ+(k, z) is a concave parabola for 
all z > 0 . Now we prove that the parabola has the abscissa vertex at k = k with k > 1 ; this 
follows by showing that

We have

Through (22), (44) holds if

this condition is guaranteed for all z > 0 by Lemma 6.1 in “Appen-
dix”. Hence, the maximum of Ξ+(k, z) is achieved at k = 1 ; we prove that 
Ξ+(1, z) = a(z) + d(z) + b(z) + e(z) + c(z) + f (z) < 0 for all z > 0 . To this aim, we consider

Recalling that F(z) > F(z) > 0 for all z > 0 , we obtain that Ξ+(1, z) < 0 by showing that 
𝜍(z) < 0 and 𝜍(z) + 𝜍(z) < 0 . Through many computations, we get

a(z) + d(z) = −z

[
cosh(z)

(
2

F(z)
−

(1 + �)

F(z)

)
+ sinh(z)

(
2

F(z)
−

(1 + �)

F(z)

)]
.

2

F(z)
−

(1 + 𝜎)

F(z)
±

(
2

F(z)
−

(1 + 𝜎)

F(z)

)
= [2 ∓ (1 + 𝜎)]

(
1

F(z)
±

1

F(z)

)
> 0 ∀z > 0,

(44)b(z) + e(z) + 2[a(z) + d(z)] > 0 ∀z > 0.

b(z) + e(z) + 2[a(z) + d(z)] =
2(1 + �)

(1 − �)
[cosh(z) + sinh(z)]

(
1

F(z)
+

1

F(z)

)

+ z

{
cosh(z)

[
2

(
F�(z)

F(z)2
−

2

F(z)

)
− (1 + �)

(
F
�
(z)

F(z)2
−

2

F(z)

)]

+ sinh(z)

[
2

(
F
�
(z)

F(z)2
−

2

F(z)

)
− (1 + �)

(
F�(z)

F(z)2
−

2

F(z)

)]}
.

[2 ∓ (1 + 𝜎)]

(
F�(z) − 2F(z)

F(z)2
±

F
�
(z) − 2F(z)

F(z)2

)
> 0;

Ξ+(1, z) =
1

F(z)2

{
cosh(z)

[
2(1 + �)2

1 − �
F(z) + F�(z)

(
z(3 + �) −

4

1 − �

)]

+ sinh(z)

[
8

1 − �
F(z) − F�(z)

(
z(3 + �) +

(1 + �)2

1 − �

)]}

+
1

F(z)2

{
cosh(z)

[
8

1 − �
F(z) − F

�
(z)

(
z(3 + �) +

(1 + �)2

1 − �

)]

+ sinh(z)

[
2(1 + �)2

1 − �
F(z) + F

�
(z)

(
z(3 + �) −

4

1 − �

)]}

∶=
�(z)

F(z)2
+

�(z)

F(z)2
.
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Considering �̃(z) ∶= −(1 − �)2z − 4(1 + �) + (3 + �)2ze−4z , we have that 
�𝜍(0) = −4(1 + 𝜎) < 0 and �̃(z) → −∞ as z → +∞ ; furthermore, 
�̃�(z) = −(1 − �)2 + (3 + �)2e−4z(1 − 4z) so that �̃�(z) = 0 if and only if 
ze−4z =

e−4z

4
−

(1−�)2

4(3+�)2
 . We have

Since −(1 − 𝜎)2(z +
1

4
) − 4(1 + 𝜎) + (3 + 𝜎)2

e−4z

4
< 0 for all z > 0 , we infer that �𝜍(z) < 0 

and, in turn, that

This yields 𝜍(z) < 0 for all z > 0 . On the other hand, we have 
𝜍(z) + 𝜍(z) = −4

(1+𝜎)(3+𝜎)

1−𝜎
e−z < 0 for all z > 0 . By this, we conclude that Ξ+(1, z) < 0 for 

all z > 0 and, in turn, that Ξ+(k, z) < 0 for all k ∈ [−1, 1] and z > 0.
Proof of (42).
We have

Since

by (22), we infer that a(z) − d(z) < 0 and the map k ↦ Ξ−(k, z) is a concave parabola for all 
z > 0 . Now we prove that the abscissa k of the parabola vertex satisfies k < −1 , namely that

We have that

Through (22), (46) follows if

�(z) =
ez

2

[
− (1 − �)2z − 4(1 + �) − 4

(3 + �)(1 + �)

1 − �
e−2z + (3 + �)2ze−4z

]
.

�̃(z) = −(1 − �)2
(
z +

1

4

)
− 4(1 + �) + (3 + �)2

e−4z

4
.

(45)�𝜍(z) = −(1 − 𝜎)2z − 4(1 + 𝜎) + (3 + 𝜎)2ze−4z < 0 ∀z > 0 .

a(z) − d(z) = −z

[
cosh(z)

(
2

F(z)
+

(1 + �)

F(z)

)
− sinh(z)

(
2

F(z)
+

(1 + �)

F(z)

)]
.

2

F(z)
+

(1 + 𝜎)

F(z)
±

(
2

F(z)
+

(1 + 𝜎)

F(z)

)
= [2 ± (1 + 𝜎)]

(
1

F(z)
±

1

F(z)

)
> 0 ∀z > 0,

(46)b(z) − e(z) + 2[d(z) − a(z)] < 0 ∀z > 0.

b(z) − e(z) + 2[d(z) − a(z)] = −
2(1 + �)

(1 − �)
[cosh(z) + sinh(z)]

(
1

F(z)
−

1

F(z)

)

+ z

{
cosh(z)

[
2

(
2

F(z)
−

F�(z)

F(z)2

)
+ (1 + �)

(
2

F(z)
−

F
�
(z)

F(z)2

)]

+ sinh(z)

[
− 2

(
2

F(z)
−

F
�
(z)

F(z)2

)
− (1 + �)

(
2

F(z)
−

F�(z)

F(z)2

)]}
.

[2 ± (1 + 𝜎)]

(
2F(z) − F�(z)

F(z)2
±

2F(z) − F
�
(z)

F(z)2

)
< 0;
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this condition is guaranteed for all z > 0 by Lemma 6.1 in “Appendix”. 
Hence, by (46), Ξ−(k, z) achieves its maximum at k = −1 ; we prove that 
Ξ−(−1, z) = a(z) − d(z) − b(z) + e(z) + c(z) − f (z) < 0 for all z > 0 . To this aim, we 
consider

where �(z) and �(z) are as defined in the proof of (42). We have already proved that 𝜍(z) < 0 
for all z > 0 , by (45) we also get 𝜍(z) − 𝜍(z) = ez �𝜍(z) < 0 for all z > 0.

Hence, through (29) we deduce that Ξ−(−1, z) < 0 for all z > 0 . This assures Ξ−(k, z) < 0 
for all k ∈ [−1, 1] , z > 0 and concludes the proof of (43). 	�  ◻

5 � Proof of Theorem 2.2

The proof is achieved by showing the positivity of the Green function Gp(q) for p and q 
belonging to suitable rectangles or union of rectangles covering Ω̃ . By Theorem 2.1, we 
know that

In this section, we will omit the dependence of �m from y and � , implying that all relations 
we write hold true for all y, � ∈ [−d, d] ; for this reason and for brevity, we will write G(x, �) 
instead of Gp(q) = G(x, y, �, �) . Furthermore, we will repeatedly exploit the fact that

We start by showing the positivity of Gp(q) for p or q far from the hinged edges of Ω.

Proposition 5.1  There holds

Proof  Thanks to Theorem 2.1-(6), we know that

Ξ−(−1, z) =
1

F(z)2

{
cosh(z)

[
2(1 + �)2

1 − �
F(z) + F�(z)

(
z(3 + �) −

4

1 − �

)]

+ sinh(z)

[
8

1 − �
F(z) − F�(z)

(
z(3 + �) +

(1 + �)2

1 − �

)]}

−
1

F(z)2

{
cosh(z)

[
8

1 − �
F(z) − F

�
(z)

(
z(3 + �) +

(1 + �)2

1 − �

)]

+ sinh(z)

[
2(1 + �)2

1 − �
F(z) + F

�
(z)

(
z(3 + �) −

4

1 − �

)]}

∶=
�(z)

F(z)2
−

�(z)

F(z)2
,

Gp(q) =

+∞∑
m=1

1

2�

�m(y, �)

m3
sin(m�) sin(mx) ∀q = (x, y) ∈ Ω, ∀p = (�, �) ∈ Ω.

(47)G(x, �) = G(�, x) ∀ (x, �) ∈ [0,�] × [0,�] .

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

[
𝜋

4
,
3

4
𝜋

]
×
(
0,𝜋

)
and ∀(x, 𝜉) ∈

(
0,𝜋

)
×

[
𝜋

4
,
3

4
𝜋

]
.



	 E. Berchio, A. Falocchi 

1 3

Noting that | sin(m𝜉)| < m sin(𝜉) for all � ∈ (0,�) , see, e.g., [13], we obtain

from which

Since

we infer that

and, in turn, that

We denote by

hence, through (48) we have G(x, 𝜉) > 0 for all (x, �) ∈ (x1,� − x1) × (0,�) , implying

The positivity in the region (x, �) ∈ (0,�) ×
[ �
4
,
3

4
�
]
 follows by (47). 	�  ◻

Our next aim is to show the positivity issue for both p and q near the same hinged edge, 
i.e., near x = 0 and � = 0 or near x = � and � = � . The first step of the proof is given by the 
following:

Lemma 5.2  Fixing N ⩾ 3 integer, there holds

and

0 < 𝜙m < 𝜙1 ∀m > 1.

�m

m3
| sin(m�) sin(mx)| ⩽ �1

m2
sin(�)| sin(mx)| ∀x, � ∈ (0,�),

∞∑
m=2

�m

m3
| sin(m�) sin(mx)| ⩽ �1 sin(�)

∞∑
m=2

| sin(mx)|
m2

∀x, � ∈ (0,�).

∞∑
m=2

| sin(mx)|
m2

⩽

∞∑
m=2

1

m2
=

�2

6
− 1 ∀x ∈ (0,�),

∞∑
m=2

�m

m3
sin(m�) sin(mx) ⩾ −�1 sin(�)

(
�2

6
− 1

)
∀x, � ∈ (0,�)

(48)G(x, �) ⩾
�1

2�
sin(�)

[
sin(x) −

(
�2

6
− 1

)]
∀x, � ∈ (0,�).

x1 ∶= arcsin

(
𝜋2

6
− 1

)
≈ 0.70 <

𝜋

4
;

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

[
𝜋

4
,
3

4
𝜋

]
× (0,𝜋).

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

[
𝜋

N + 2
,

𝜋

N + 1

)
×

(
0,

𝜋

N + 1

)
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Proof  We fix N ⩾ 3 and we rewrite G(x, �) as follows

Then, we exploit the elementary inequality

(see Lemma 6.2 in “Appendix” for a proof) and Theorem 2.1-(6) to get

On the other hand, through | sin(m𝜉)| < m sin(𝜉) for all � ∈ (0,�) and Theorem 2.1-(6), we 
get

By combining (49) and (50), we infer

where

Next, we denote by xN the unique solution to the equation

the above definition makes sense for all N ⩾ 1 since the map N ↦ CN is positive, strictly 
decreasing and 0 < CN < 1 . We prove that

When N = 3 , we have x3 ≈ 0.25 <
𝜋

5
 and (53) follows. We complete the proof of (53) by 

showing that

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

(
0,

𝜋

N + 1

)
×

[
𝜋

N + 2
,

𝜋

N + 1

)
.

G(x, �) =
1

2�

N∑
m=1

�m

m3
sin(mx) sin(m�) +

1

2�

∞∑
m=N+1

�m

m3
sin(mx) sin(m�) .

sin(mx) sin(m𝜉) > sin(x) sin(𝜉) ∀x, 𝜉 ∈

(
0,

𝜋

N + 1

)
, ∀m = 2,… ,N

(49)
N∑

m=1

𝜙m

m3
sin(mx) sin(m𝜉) > 𝜙N sin(x) sin(𝜉)

N∑
m=1

1

m3
∀x, 𝜉 ∈

(
0,

𝜋

N + 1

)
.

(50)

||||
∞∑

m=N+1

�m

m3
sin(mx) sin(m�)

|||| ⩽
∞∑

m=N+1

�m

m3
| sin(mx) sin(m�)| ⩽ �N sin(�)

∞∑
m=N+1

1

m2
.

(51)G(x, �) ⩾
�N

2�
sin(�)

(
N∑

m=1

1

m3

)[
sin(x) − CN

]
∀x, � ∈

(
0,

�

N + 1

)
,

(52)CN ∶=

∞∑
m=N+1

1

m2

N∑
m=1

1

m3

.

sin(xN) = CN xN ∈ (0,�∕2) ;

(53)xN <
𝜋

N + 2
∀N ⩾ 3 .
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To this purpose, we write some estimates on the numerical series; it is easy to see that

implying

To tackle (54), we use the estimate:

Combining (55) and (56), (54) follows by noticing that 1
N

<
3

N + 2
 for all N ⩾ 4 . Finally, 

in view of (53), the first part of the statement of Lemma 5.2 readily comes from the posi-
tivity of the r.h.s. of (51). Instead, the second part of the statement follows by exploiting 
(47). 	�  ◻

Finally, from Lemma 5.2, we get

Proposition 5.3  There holds

Proof  Fixing N ⩾ 3 integer, from Lemma 5.2, we get

 and taking the infinite union of the above sets, we get

which is the first part of the statement of Proposition 5.3. To complete the proof, we set 
x = � − x , � = � − � and we observe that

Then, the thesis comes from (57) written for x and � . 	�  ◻

It remains to study the sign of the Green function for p and q near to opposite 
hinged edges, i.e., near x = 0 and � = � or near x = � and � = 0 . At first, we prove the 
following:

(54)CN < sin

(
𝜋

N + 2

)
∀N ⩾ 4 .

N∑
m=1

1

m3
> 1 and

∞∑
m=N+1

1

m2
⩽ ∫

∞

N

1

x2
dx =

1

N
∀N ⩾ 2,

(55)CN <
1

N
∀N ⩾ 2.

(56)sin(x) ⩾
3

�
x ∀x ∈

(
0,

�

6

]
.

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

(
0,

𝜋

4

)
×

(
0,

𝜋

4

)
and ∀(x, 𝜉) ∈

(
3

4
𝜋,𝜋

)
×

(
3

4
𝜋,𝜋

)
.

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

(
0,

𝜋

N + 1

)2

⧵

(
0,

𝜋

N + 2

)2

(57)G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

∞⋃
N=3

(
0,

𝜋

N + 1

)2

⧵

(
0,

𝜋

N + 2

)2

=

(
0,

𝜋

4

)2

G(x, �) = G(� − x,� − �) = G(x, �) ∀x, � ∈

(
3

4
�,�

)
,∀x, � ∈

(
0,

�

4

)
.
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Lemma 5.4  Fixing N ⩾ 3 , odd integer, there hold

and

Proof  We consider the function G(x, �) ∶= G(x,� − �) with � ∈
(
0,

�

N+1

)
 . For N ⩾ 3 , odd 

integer, we have that

By Theorem 2.1, we know that 𝜙m > 0 and is strictly decreasing with respect to m ∈ ℕ+ for 
all y, � ∈ [−�,�] ; hence, we have

Exploiting the inequality

(see Lemma 6.4 in “Appendix” for a proof) and (58), we get

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

[
𝜋

N + 3
,

𝜋

N + 1

)
×

(
𝜋 −

𝜋

N + 1
,𝜋

)

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

(
0,

𝜋

N + 1

)
×

(
𝜋 −

𝜋

N + 1
,𝜋 −

𝜋

N + 3

]
.

G(x, �) =
1

2�

∞∑
m=1

(−1)m+1
�m

m3
sin(mx) sin(m�)

=
1

2�

N∑
m = 1

odd

[
�m

m3
sin(mx) sin(m�) −

�m+1

(m + 1)3
sin[(m + 1)x] sin[(m + 1)�]

]

+
1

2�

∞∑
m=N+2

(−1)m+1
�m

m3
sin(mx) sin(m�) ∀x, � ∈

(
0,

�

N + 1

)
.

(58)

𝜙1 sin(x) sin(𝜉) −
𝜙2

23
sin(2x) sin(2𝜉) = sin(x) sin(𝜉)

[
𝜙1 −

𝜙2

2
cos(x) cos(𝜉)

]

>
𝜙2

2
sin(x) sin(𝜉) >

𝜙N+1

2
sin(x) sin(𝜉) ∀x, 𝜉 ∈

(
0,

𝜋

2

)
, ∀N ⩾ 3.

sin(mx) sin(m𝜉)

m3
−

sin[(m + 1)x] sin[(m + 1)𝜉]

(m + 1)3
> sin(x) sin(𝜉)

[
1

m
3

2

−
1

(m + 1)
3

2

]2

∀x, 𝜉 ∈

(
0,

𝜋

N + 1

)
, ∀m = 3,… ,N, ∀N ⩾ 3, odd,

(59)

N∑
m = 1

odd

[
𝜙m

m3
sin(mx) sin(m𝜉) −

𝜙m+1

(m + 1)3
sin[(m + 1)x] sin[(m + 1)𝜉]

]

> 𝜙N+1 sin(x) sin(𝜉)

[
1

2
+

N∑
m = 3

odd

(
1

m
3

2

−
1

(m + 1)
3

2

)2]
∀x, 𝜉 ∈

(
0,

𝜋

N + 1

)
∀N ⩾ 3, odd.
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On the other hand, since | sin(m𝜉)| < m sin(𝜉) for all � ∈ (0,�) and through the monotonic-
ity of the �m , we get

From (59)–(60), for all N ⩾ 3 odd, we infer

where

Next, we denote by xN the unique solution to the equation

The above definition makes sense for all N ⩾ 3 , odd, since the map N ↦ CN is positive, 
strictly decreasing and 0 < CN < 1 . We prove that

To this aim, we note that

implying

From (56), (62) follows by noticing that 2

N + 1
⩽

3

N + 3
⩽ sin

(
�

N + 3

)
 for all N ⩾ 3 . 

Recalling that G(x, �) = G(x,� − �) , the above estimate yields the proof of the first part of 
the statement of Lemma 5.4. Similarly, the proof of the second part follows by exploiting 
the fact that G(x, �) = G(�, x) for all (x, �) ∈ [0,�] × [0,�] , by which

	�  ◻

(60)

||||
∞∑

m=N+2

(−1)m+1
�m

m3
sin(mx) sin(m�)

|||| ⩽ �N+1 sin(�)

∞∑
m=N+2

1

m2
∀� ∈ (0,�), ∀N ⩾ 3.

G(x, �) ⩾
�N+1

2�
sin(�)

[
1

2
+

N∑
m = 3

odd

(
1

m
3

2

−
1

(m + 1)
3

2

)2]
(sin(x) − CN) ∀x, � ∈

(
0,

�

N + 1

)
,

(61)
C

N
∶=

∞∑
m=N+2

1

m
2

1

2
+

N∑
m = 3

odd

�
1

m

3

2

−
1

(m + 1)
3

2

�2 .

sin(xN) = CN xN ∈ (0,�∕2).

(62)CN < sin

(
𝜋

N + 3

)
∀N ⩾ 3, odd.

1

2
+

N∑

m = 3

odd

[
1

m

3

2

−
1

(m + 1)
3

2

]2
>

1

2
and

∞∑
m=N+2

1

m
2
⩽ ∫

∞

N+1

1

x
2
dx =

1

N + 1
,

CN <
2

N + 1
∀N ⩾ 3.

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

(
0,

𝜋

N + 1

)
×

[
𝜋

N + 3
,

𝜋

N + 1

)
.
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Finally, by Lemma 5.4, we obtain:

Proposition 5.5  There holds

Proof  Fixing N ⩾ 3 , odd integer, from Lemma 5.4 we have that

and taking the infinite union of the above sets (over N ⩾ 3 odd), we conclude that

which is the first part of the statement of Proposition 5.5. The second part simply follows 
by (47). 	�  ◻

Proof of Theorem 2.2 completed  The proof follows by combining the statements of Proposi-
tions 5.1, 5.3 and 5.5.
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Appendix 1

In this section, we prove an inequality used in Sect. 4 to get the monotonicity issue (6) of 
Theorem 2.1.

Lemma 6.1  Given F(z) and F(z) as in (10), there holds:

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

(
0,

𝜋

4

)
×

(
3

4
𝜋,𝜋

)
and ∀(x, 𝜉) ∈

(
3

4
𝜋,𝜋

)
×

(
0,

𝜋

4

)
.

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

(
0,

𝜋

N + 1

)
×

(
𝜋 −

𝜋

N + 1
,𝜋

)
⧵

(
0,

𝜋

N + 3

)
×

(
𝜋 −

𝜋

N + 3
,𝜋

)
,

G(x, 𝜉) > 0 ∀(x, 𝜉) ∈

(
0,

𝜋

4

)
×

(
3

4
𝜋,𝜋

)
,

http://creativecommons.org/licenses/by/4.0/
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Proof  We have

 and we observe that 𝛼(0) = −2(1 + 𝜎) < 0 and �(z) ∼ −2z(1 − �) → −∞ for z → +∞ ; 
�(z) has stationary points satisfying (3 + �)[sinh(2z) − cosh(2z)] = −(1 − �) , hence 
𝛼(z) = −2(1 − 𝜎)z < 0 for all z > 0 , implying 𝛼(z) < 0 for all z > 0 . From above and 
recalling that F(z) > F(z) > 0 for all z > 0 , a sufficient condition for the thesis is: 
2F(z) − F�(z) ± [2F(z) − F

�
(z)] < 0 for all z > 0 . To this aim, we notice that:

Therefore, it remains to prove the negativity of the term below for all 0 < z ⩽ 1∕2:

We have �(0) = ��(0) = 0 and 32

9
���(z) = 9

[
− ze4z + e−4z(3z − 1)

]
+ 1 − 6z ∶= �(z) . 

For z ∈ [
1

6
,
1

2
] we get 𝜌(z) ⩽ 9z[e−4z − e4z] < 0 , while for z ∈ (0,

1

6
] we have 

𝜌(z) ⩽ 1 −
9

2
e
−

2

3 < 0 , implying 𝜌(z) < 0 for all z ∈ (0,
1

2
] and, in turn, the thesis. 	�  ◻

Appendix 2

In this section, we prove two inequalities that we repeatedly exploit in the estimates of the 
Fourier series of the Green function in Sect. 5.

Lemma 6.2  Let N ⩾ 2 be an integer. There holds

Proof  Let m ⩾ 2 be an integer. It is readily seen that

2F(z) − F�(z)

[F(z)]2
±

[
2F(z) − F

�
(z)

[F(z)]2

]
< 0 ∀z > 0.

2F(z) − F�(z) = (3 + �)[sinh(2z) − cosh(2z)] + (1 − �)(1 − 2z) ∶= �(z)

2F(z) − F
�
(z) = (3 + �)[sinh(2z) − cosh(2z)] − (1 − �)(1 − 2z)

2F(z) − F�(z) + 2F(z) − F
�
(z) = 2(3 + 𝜎)[sinh(2z) − cosh(2z)] < 0 ∀z > 0

2F(z) − F�(z) − 2F(z) + F
�
(z) = 2(1 − 𝜎)(1 − 2z) < 0 ∀z >

1

2
.

2F(z) − F�(z)

[F(z)]2
−

2F(z) − F
�
(z)

[F(z)]2

=
(1 − �)(3 + �)2

8[F(z)F(z)]2

{
e4z

(
1 − 2z

)
+ e−4z(1 + 6z) − 4z − 2 + 16

(1 − �)2

(3 + �)2
(z2 − 2z3)

}

⩽
(1 − �)(3 + �)2

8[F(z)F(z)]2

{
e4z

(
1 − 2z

)
+ e−4z(1 + 6z) − 4z − 2 +

16

9
(z2 − 2z3)

}

∶=
(1 − �)(3 + �)2

8[F(z)F(z)]2
�(z).

(63)sin(mx) sin(m𝜉) > sin(x) sin(𝜉) ∀x, 𝜉 ∈

(
0,

𝜋

N + 1

)
, ∀m = 2,… ,N.
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By this, since (sin(mx) − sin(x))�(0) = m − 1 > 0 , we infer that sin(mx) − sin(x) > 0 for all 
x ∈

(
0,

�

m+1

)
 and, in turn, the thesis. 	�  ◻

Before stating and proving the second inequality, we need the following lemma.

Lemma 6.3  Let m ⩾ 3 be an integer and set am ∶=
[

1

m3∕2
−

1

(m+1)3∕2

]2 . The function

vanishes at t = 0 and t = ±t1 with t1 ∈
(

2�

2m+1
,
3�

2m

)
 . Furthermore, 𝜐m(t) > 0 in [− 2�

m+1
,−t1) 

and (0, t1) while 𝜐m(t) < 0 in (−t1, 0) and (t1,
2�

m+1

]
.

Proof of Theorem  2.2 completed  Since �m is odd, it is sufficient to study its behavior in 
[0,

2�

m+1

]
 . We compute

For all m ⩾ 3 , we have that 𝜐�
m
(0) =

m2−m−1

m3(m+1)
+

1

(m+1)3∕2

(
2

m3∕2
−

1

(m+1)3∕2

)
> 0 and, by exploit-

ing the fact that sin
(
2(m+1)�

2m+1

)
= − sin

(
2m�

2m+1

)
= − sin

( �

2m+1

)
 and (56), that 

𝜐m
(

2𝜋

2m+1

)
> sin

( 𝜋

2m+1

)[
1

m2
+

1

(m+1)2

]
−

1

m3
> 0 . Let us write

Clearly, w′ < 0 in [0, 2�

2m+1

]
 ; since w(0) > 0 and w( 2𝜋

2m+1
) < 0 , we infer that �′′

m
 is first posi-

tive and then negative in [0, 2�

2m+1

]
 . Since �m(0) = 0, 𝜐�

m
(0) > 0 and 𝜐m(

2𝜋

2m+1
) > 0 , we con-

clude that 𝜐m > 0 in [0, 2�

2m+1

]
.

Now, by exploiting the complex identities for the trigonometric functions, we observe 
that

Hence, sin[(m + 1)t] > sin(mt) for t ∈
(
0,

�

2m+1

)
∪
(

3�

2m+1
,

2�

m+1

]
 and 𝜐��

m
(t) > 0 for 

t ∈
(
0,

�

2m+1

)
∪
(

3�

2m+1
,

2�

m+1

]
 . Since 𝜐

m

(
3𝜋

2m

)
= −

1

m
2
−

1

(m+1)2
sin

[
(m + 1)

3𝜋

2m

]
− a

m
sin

(
3𝜋

2m

)
< 0 

and 𝜐m
(

2𝜋

m+1

)
< 0 , the convexity of �m(t) implies that 𝜐m(t) < 0 for t ∈

[
3�

2m
,

2�

m+1

]
.

On the other hand, from the fact that cos(mt) < cos[(m + 1)t] for t ∈
(

2�

2m+1
,

2�

m+1

]
 and 

cos(mt) < 0 for t ∈
(

2�

2m+1
,
3�

2m

)
 , we get cos(mt) < m

m+1
cos[(m + 1)t] for t ∈

(
2�

2m+1
,
3�

2m

)
 . This 

sin(mx) − sin(x) = 0 ⟺ x =
2k�

m − 1
∨ x =

(2k + 1)�

m + 1
for k ∈ ℤ.

�m(t) ∶=
sin(mt)

m2
−

sin[(m + 1)t]

(m + 1)2
− am sin(t) , t ∈

[
−

2�

m + 1
,

2�

m + 1

]

��
m
(t) =

cos(mt)

m
−

cos[(m + 1)t]

m + 1
− am cos(t) ,

���
m
(t) = sin[(m + 1)t] − sin(mt) + am sin(t).

���
m
(t) = 2

[
cos

(2m + 1)t

2
+ am cos

t

2

]
sin

t

2
=∶ 2w(t) sin

t

2
.

sin[(m + 1)t] − sin(mt) = 0 ⟺ t = 2k�,
(1 + 2k)�

2m + 1
∀k ∈ ℤ

cos[(m + 1)t] − cos(mt) = 0 ⟺ t = 2k�,
2k�

2m + 1
∀k ∈ ℤ.
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implies 𝜐�
m
(t) < 0 for t ∈

(
2�

2m+1
,
3�

2m

)
 and yields the existence of a unique zero for �m(t) in (

2�

2m+1
,
3�

2m

)
 which is the thesis. 	�  ◻

Lemma 6.4  Let N ⩾ 3 be an integer. For all x, � ∈
(
0,

�

N+1

)
 and all m = 3,… ,N , there 

holds

Proof  As in the previous lemma, we set am ∶=
[

1

m3∕2
−

1

(m+1)3∕2

]2 and we consider the 
function

with Q ∶=
[
0,

�

m+1

]2 . By Weierstrass Theorem, Sm admits maximum and minimum in Q. 
To locate the stationary points of Sm , it is convenient to exploit the change of variables: 
(�, �) ∶= (� − x, � + x) according to which Sm reads

for (�, �) ∈ Q1 ∶=
[
−

�

m+1
,

�

m+1

]
×
[
0,

2�

m+1

]
 . For �m as defined in the statement of Lemma 

6.3, we have

By Lemma 6.3, it is readily deduced that Sm admits only two stationary points (0, 0) and 
(0, t1) with t1 ∈

(
2�

2m+1
,
3�

2m

)
 . Since (0, 0) ∈ �Q1 , we only need to study the nature of (0, t1) . 

We have 𝜕
2Sm(0,t1)

𝜕𝜄2
= −𝜐�

m
(0) < 0 , �

2Sm

����
(0, t1) = 0 and 𝜕

2Sm(0,t1)

𝜕𝛾2
= 𝜐�

m

(
t1
)
< 0 , see the proof of 

Lemma 6.3. This implies that (0, t1) is a maximum point. Coming back to the original vari-
ables, from the above analysis we infer that ( t1

2
,
t1

2
) is a local maximum point for Sm . About 

Sm(x, �) constrained to �Q , we have: Sm(x, 0) = Sm(0, �) = 0 for all x, � ∈
[
0,

�

m+1

]
 ; hence, 

we only need to study Sm(x,
�

m+1
) and Sm(

�

m+1
, �) for all x, � ∈

[
0,

�

m+1

]
 ; since they have the 

same analytic expression, we only focus on

(64)

sin(mx) sin(m𝜉)

m3
−

sin[(m + 1)x] sin[(m + 1)𝜉]

(m + 1)3
> sin(x) sin(𝜉)

[
1

m
3

2

−
1

(m + 1)
3

2

]2
.

Sm(x, �) =
sin(mx) sin(m�)

m3
−

sin[(m + 1)x] sin[(m + 1)�]

(m + 1)3
− am sin(x) sin(�)

Sm(�, �) =
1

2

(
cos(m�) − cos(m�)

m3
−

cos[(m + 1)�] − cos[(m + 1)�]

(m + 1)3

− am
[
cos(�) − cos(�)

])

⎧⎪⎨⎪⎩

�Sm
��
(�, �) = −

�m(�)

2
= 0

�Sm

��
(�, �) =

�m(�)

2
= 0 .

Sm

(
x,

�

m + 1

)
= sin

(
�

m + 1

)[
sin(mx)

m3
− am sin(x)

]
∶= sin

(
�

m + 1

)
w̃m(x)

for x ∈

[
0,

�

m + 1

]
,
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where sin
(

m𝜋

m+1

)
= sin

( 𝜋

m+1

)
> 0 for all m ⩾ 3 . We have w̃m(0) = 0 and 

�wm

( 𝜋

m+1

)
= sin

( 𝜋

m+1

)
1

(m+1)
3
2

[
2

m
3
2

−
1

(m+1)
3
2

]
> 0 for all m ⩾ 3 . Moreover, since 

sin(mx) − sin(x) > 0 for all x ∈
(
0,

�

m+1

)
 and 1

m
> am for all m ∈ ℕ+ , we get 

�w��
m
(x) = −

[
sin(mx)

m
− am sin(x)

]
< 0 for x ∈ [0,

�

m+1
] , implying w̃m(x) ⩾ 0 for all x ∈

[
0,

�

m+1

]
 . 

Once established that Sm(x, �) is nonnegative on �Q and admits no internal minimum points 
in Q, we conclude that Sm(x, �) ⩾ 0 for all (x, �) ∈ Q . Finally, the strict inequality in (64) 
comes by observing that Sm(x, �) = 0 for (x, �) ∈ Q , if and only if x = 0 or � = 0 . 	�  ◻
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