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ABOUT SYMMETRY IN PARTIALLY HINGED COMPOSITE PLATES

ELVISE BERCHIO AND ALESSIO FALOCCHI

Abstract. We consider a partially hinged composite plate problem and we investigate qualitative prop-
erties, e.g. symmetry and monotonicity, of the eigenfunction corresponding to the density minimizing
the first eigenvalue. The analysis is performed by showing related properties of the Green function of the
operator and by applying polarization with respect to a fixed plane. As a by-product of the study, we
obtain a Hopf type boundary lemma for the operator having its own theoretical interest. The statements
are complemented by numerical results.

1. Introduction

Let Ω = (0, π)× (−`, `) ⊂ R2 with ` > 0, we consider the weighted eigenvalue problem:

(1.1)


∆2u = λ p(x, y)u in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−`, `)
uyy(x,±`) + σuxx(x,±`) = uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0 for x ∈ (0, π) ,

where σ ∈ [0, 1) and, for α, β ∈ (0,+∞) with α < β fixed, p belongs to the following family of weights:

(1.2) Pα,β :=

{
p ∈ L∞(Ω) : α 6 p 6 β a.e. in Ω and

∫
Ω
p dxdy = |Ω|

}
.

The interest for problem (1.1) is due to the fact that it describes the oscillating modes of the non-
homogeneous partially hinged rectangular plate Ω which, up to scaling, can model the decks of foot-
bridges and suspension bridges, see [6, 23, 25] for more details; in particular, the partially hinged
boundary conditions reflect the fact that decks of bridges are supported by the ground only at the
short edges. We also remark that, in this framework, σ represents the so-called Poisson ratio which
for most materials belongs to the interval [0, 1), p represents the density function of the plate and the
integral condition in (1.2) means that the total mass of the plate is preserved.

In order to study the stability properties of the plate it is important to investigate the effect of the
density function p on the eigenvalues, i.e on the frequencies of the plate. In this respect, the starting
point of the study is the minimization problem:

(1.3) inf
p∈Pα,β

λ1(p) ,

where λ1(p) denotes the first eigenvalue of (1.1). There exists a rich literature dealing with the second
order Dirichlet version of (1.1)-(1.3) which is usually named composite membrane problem; this corre-
sponds to the problem of building a body of prescribed shape and mass, out of given materials in such
a way that the first frequency of the resulting membrane is as small as possible, see e.g. [14]-[17] and
the monograph [27]. In the fourth order case, problem (1.3) is named composite plate problem and
has been mainly studied under clamped (Dirichlet) or hinged (Navier) boundary conditions, see e.g.
[3],[18]-[22], [29]. As far as we are aware, the partially hinged composite plate problem (1.1)-(1.3) has
only been studied in [9], see also [7] for results about higher eigenvalues; in [9] it is proved that the
infimum in (1.3) is achieved by the piecewise constant density:

p̂(x, y) = αχS(x, y) + βχΩ\S(x, y) ,
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2 ELVISE BERCHIO AND ALESSIO FALOCCHI

where χS denotes the characteristic function of a suitable set S ⊂ Ω, see Proposition 2.6 in Section
2. This information is useful in engineering applications, since the assemblage of two materials with
constant density is simpler than the manufacturing of a material having variable density; however,
the region S is given in terms of sub and super level sets of the eigenfunction up̂ of λ1(p̂) which
is not explicitly known. Hence, in order to find more precise information about the location of the
two materials, it is important to study the qualitative properties of up̂ . In this field of research,
typical results are qualitative properties, such as symmetry or monotonicity, of the first eigenfunction
corresponding to the minimizer of (1.3), see e.g. [3], [15] and references therein. From this point
of view, a crucial obstruction, when passing from the membrane to the plate problem, i.e. from the
second to the fourth order case, is represented by the loss of maximum and comparison principles
which usually enter in the techniques applied to prove symmetry results, such as reflections methods
or moving planes techniques. Nevertheless, some interesting results have been recently obtained in [19]
and [20] for the fourth order equation by exploiting suitable choices of the boundary conditions and of
the geometry of the domain for which proper comparison principles hold (e.g. by considering Navier
boundary conditions on sufficiently smooth domains or Dirichlet boundary conditions on balls).

Regarding problem (1.1), the above mentioned difficulties are further increased by the unusual bound-
ary conditions and only few results about qualitative properties of the first eigenfunction were proved
in [9] for p = p(y). An important step forward in the study of (1.1) has been recently done in [8]
by computing explicitly the Fourier expansion of the Green function of the operator in (1.1) and by
showing its positivity, see Proposition 2.1 below. In particular, as a direct consequence of these results,
it follows the positivity of the first eigenfunction of (1.1) and the simplicity of the first eigenvalue
which are not obvious facts when dealing with higher order PDEs. The main aim of the present paper
is to investigate reflection and monotonicity properties of the Green function in order to, possibly,
exploit them to deduce related properties of the eigenfunction up̂. Broadly speaking, the idea is to
replace maximum principle arguments, not available in this case, with arguments based on the explicit
knowledge of the Green function. To our best knowledge, this idea was first exploited in [10] and [24];
in particular, in [10] a variant of the moving plane method, relying on fine estimates for the Green
function [11], was developed in order to prove Gidas-Ni-Nirenberg type symmetry results for higher
order Dirichlet problems in the ball. A similar approach has also been recently adopted in [19] for the
Dirichlet composite plate problem in the ball, in order to prove radial symmetry and monotonicity of
the first eigenfunction. We notice that all above mentioned proofs are based on polarization, a simple
two-point rearrangement for functions which is well defined in first order Sobolev spaces, spaces of
continuous functions or Lp-spaces, see e.g. [5, 12, 13, 31, 32].

However, since the Green function to (1.1) is only known in terms of its Fourier expansion, it is hard
to get in our case all the precise information available for the Green function of the Dirichlet problem
in balls, see [26, Chapter 6], and, in turn, to adopt in our framework the moving plane method as done
in [19]. Nevertheless, we still managed to apply polarization by fixing the plane of reflection equal to
the line x = π/2 and by exploiting suitable reflection properties proved for the Green function with
respect to this line. More precisely, we first establish a duality principle which reduces our minimization
problem in H2 to a maximization problem in L2 and then, with the help of polarization, we prove a
partial symmetry result in the x-direction for the maximizers of the reduced problem. We remark that,
in general, it is quite delicate to exploit polarization in the higher order case since the polarization of an
H2-function is not contained in H2 anymore; the duality principle helps us to overcome this difficulty,
see Lemma 5.1. We refer the interested reader to [10] where a similar idea was originally exploited to
prove partial symmetry of minimizers for subcritical higher order Sobolev embeddings into weighted
Lp spaces. Unfortunately, the fact of reflecting with respect to a fixed plane does not allow us to get
monotonicity information about up̂ as it happens, instead, when applying the moving plane method.
However, by a direct inspection of the Green function derivatives we succeed in deducing some local
information about the derivatives of up̂. It is worth mentioning that, as a by-product of our analysis,
we also obtain a Hopf type boundary lemma for the operator (1.1) having it own theoretical interest,
see Corollary 2.3.
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The paper is organised as follows: in Section 2 we set precisely our problem an we state our main
results while in Section 3 we complement the study with suitable numerical results. The other sections
are devoted to the proofs of the results.

2. Main results

The natural functional space where to set problem (1.1) is

H2
∗ (Ω) =

{
u ∈ H2(Ω) : u = 0 on {0, π} × (−`, `)

}
.

Note that the condition u = 0 has to be meant in a classical sense because Ω is a planar domain and
the energy space H2

∗ (Ω) embeds into continuous functions. Furthermore, for σ ∈ [0, 1) fixed, H2
∗ (Ω) is

a Hilbert space when endowed with the scalar product

(u, v)H2
∗(Ω) :=

∫
Ω

[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dx dy

with associated norm ‖u‖2H2
∗(Ω) = (u, u)H2

∗(Ω) which is equivalent to the usual norm in H2(Ω), see [23,

Lemma 4.1]. Problem (1.1) in weak form reads

(2.4) (u, ϕ)H2
∗(Ω) = λ(p u, ϕ)L2(Ω) ∀ϕ ∈ H2

∗ (Ω).

Hence, the first eigenvalue can be characterized as follows:

(2.5) λ1(p) := min
u∈H2

∗(Ω)\{0}

‖u‖2H2
∗

‖√p u‖22
.

It is well known that the sign and simplicity property of the first eigenfunction of a differential operator
are strictly related to the sign property of its Green function. For p = (ρ, w) ∈ Ω fixed, the Green
function to the operator in (1.1) is, by definition, the unique solution G(·, p) ∈ H2

∗ (Ω) to:

(G(·, p), ϕ)H2
∗(Ω) = 〈δp, ϕ〉 = ϕ(p) ∀ϕ ∈ H2

∗ (Ω)

and it has been recently computed in [8]; we recall the precise statement here below.

Proposition 2.1. [8] There holds

(2.6) G(x, y, ρ, w) =
1

2π

+∞∑
m=1

ϕm(y, w)

m3
sin(mρ) sin(mx) ∀(x, y) ∈ Ω ∀(ρ, w) ∈ Ω,

where the ϕm ∈ C2([−`, `]× [−`, `]) are strictly positive and strictly decreasing with respect to m, i.e.

(2.7) 0 < ϕm+1(y, w) < ϕm(y, w) ∀m ∈ N+,∀y, w ∈ [−`, `] .

Furthermore, G ∈ C0(Ω× Ω) and

(2.8) G(x, y, ρ, w) > 0 ∀(x, y) ∈ (0, π)× [−`, `] ∀(ρ, w) ∈ (0, π)× [−`, `].

For the explicit (and very involved) expression of the functions ϕm, we refer the interested reader to
[8]. In the present paper we enrich the statement of Proposition 2.1 by showing that:

Theorem 2.2. For all y, w ∈ [−`, `], there holds:

Gx(0, y, ρ, w) > 0 and Gx(π, y, ρ, w) < 0 ∀ρ ∈ (0, π);

Gx

(
π

2
, y, ρ, w

)
< 0 ∀ρ ∈

(
0,
π

2

)
; Gx

(
π

2
, y,

π

2
, w

)
= 0 ; Gx

(
π

2
, y, ρ, w

)
> 0 ∀ρ ∈

(
π

2
, π

)
,

where the derivative of G in the x-direction are meant in classical sense and Gx ∈ C0(Ω×Ω). Further-
more, since G(x, y, ρ, w) = G(ρ, y, x, w), the above results hold by inverting x and ρ.
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It’s worth pointing out that neither the proof of (2.8) or that of Theorem 2.2 trivially follow from
(2.6); indeed, they require an accurate inspection of each term of the expansion and sharp estimates.
In this respect, the hardest part is the proof of (2.7) which follows only after lengthy computations.

A remarkable consequence of Proposition 2.1 is the validity of the positivity preserving property for
the operator in (1.1) whereas Theorem 2.2 can be exploited to prove a Hopf type boundary lemma. For
the sake of clarity we collect both statements in the following:

Corollary 2.3. If f ∈ L2(Ω) and u ∈ H2
∗ (Ω) is a (weak) solution to

∆2u = f in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−`, `)
uyy(x,±`) + σuxx(x,±`) = uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0 for x ∈ (0, π) ,

then the following implication holds

(2.9) f > 0, f 6≡ 0 in Ω ⇒

{
u > 0 in (0, π)× [−`, `];
ux(0, y) > 0 and ux(π, y) < 0 ∀ y ∈ [−`, `] ,

where the derivatives of u in (2.9) are meant in classical sense.

Coming back to problem (1.1), in what follows we will always assume

0 < α < 1 < β .

By exploiting Proposition 2.1 and Theorem 2.2, we also obtain the following statement about the first
eigenfunction of (1.1):

Corollary 2.4. Let p ∈ Pα,β with Pα,β as in (1.2). Then, the first eigenvalue λ1(p) of problem (1.1) is

simple and the first eigenfunction up is of one sign in Ω. Furthermore, up ∈ C3,γ(Ω) for some 0 < γ < 1
and, assuming up positive, we have:

(2.10) (up)x(0, y) > 0 and (up)x(π, y) < 0 ∀ y ∈ [−`, `] .

Next we set

(2.11) λα,β := inf
p∈Pα,β

λ1(p) .

Definition 2.5. A couple (p̂, û) ∈ Pα,β × H2
∗ (Ω) is called optimal pair if p̂ achieves the infimum in

(2.11) and û is an eigenfunction associated with λ1(p̂) .

From [9, Theorem 3.2], suitably combined with Corollary 2.4, we have the following:

Proposition 2.6. [9] There exists and optimal pair (p̂, û) ∈ Pα,β×H2
∗ (Ω) with û positive. Furthermore,

(2.12) p̂(x, y) = pû(x, y) := αχS(x, y) + βχΩ\S(x, y) for a.e. (x, y) ∈ Ω ,

where χS and χΩ\S are the characteristic functions of the sets S and Ω \ S; S ⊂ Ω is such that

|S| = β−1
β−α |Ω| and S := {(x, y) ∈ Ω : 0 < û(x, y) 6

√
t} for some t > 0.

Proposition 2.6 gives the useful information that optimal plates, in the sense of Definition 2.5, are
made by only two materials. However, the region S is given in terms of the optimal eigenfunction û
which is not explicitly known, hence, in order to locate the position of the materials, it is important to
investigate symmetry and monotonicity properties of û. To this aim, we set

(2.13) Hπ
2

:=

{
(x, y) ∈ R2 : x 6

π

2

}
and we denote by (x, y) ∈ R2 the reflection of (x, y) ∈ R2 with respect to ∂Hπ

2
, i.e. x = π − x. By

exploiting related reflection properties of the Green function, see Lemma 6.4 in Section 6, we prove:

Theorem 2.7. Let (p̂, û) ∈ Pα,β×H2
∗ (Ω) be an optimal pair with û positive. Then, one of the following

alternative holds:
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(i) û(x, y) > û(x, y) for all (x, y) ∈ (0, π2 )× [−`, `] ;
(ii) û(x, y) < û(x, y) for all (x, y) ∈ (0, π2 )× [−`, `] ;

(iii) û(x, y) = û(x, y) for all (x, y) ∈ [0, π]× [−`, `].

In few words, according to Theorem 2.7, two situations may occur: either up̂ is symmetric w.r.t.
∂Hπ

2
, i.e. (iii) occurs, or it is “concentrated” on one of the two half plates delimited by ∂Hπ

2
, i.e. (i) or

(ii) occurs. In particular, if (i) occurs then, by symmetry, we can always find an optimal pair such that
also (ii) occurs and uniqueness of the optimal pair certainly fails. We notice that uniqueness is even
not guaranteed in case (iii) since there could exist many weights symmetric with respect to x = π

2 and
having the form (2.12); this case could be ruled out by showing very precise monotonicity information
about û. Unfortunately, the polarization approach adopted in the proof of Theorem 2.7, by keeping
the reflection plane fixed, nothing says about the monotonicity of û; nevertheless, by direct inspection
of the representation formula of solutions, we get the following local information.

Proposition 2.8. Let (p̂, û) ∈ Pα,β ×H2
∗ (Ω) be an optimal pair with û positive.Then, û satisfies (2.10)

and one among the following:

- if case (i) of Theorem 2.7 holds, then ûx
(
π
2 , y
)
< 0 for all y ∈ [−`, `];

- if case (ii) of Theorem 2.7 holds, then ûx
(
π
2 , y
)
> 0 for all y ∈ [−`, `];

- if case (iii) of Theorem 2.7 holds, then ûx
(
π
2 , y
)

= 0 for all y ∈ [−`, `].

For what so far stated, piecewise constant densities symmetric with respect to x = π
2 and with the

denser material β located near this line are among the candidates for being optimal in the sense of
Definition 2.5. Nevertheless, due to the high complexity of the analytic expression of the coefficients in
(2.6), a theoretical proof of their optimality seems out of reach by means of our techniques; this issue
is instead supported by the numerical results we provide in Section 3.

We conclude the section by pointing out that, even in the second order case, the picture of results
about symmetry and monotonicity properties of minimizers of Poincaré inequalities on rectangular
domains is far from being complete, when mixed boundary conditions are dealt with. See e.g. [4, Section
6] where the authors left as on open problem the one dimensionality of extremals for certain Poincaré
inequalities arising when dealing with the stationary Navier-Stokes equation in a square, under mixed
Dirichlet-Neumann boundary conditions. For results in this direction, but under Neumann boundary
conditions, we refer the interested reader to [28, Chapter II.5], [30] and references therein.

3. Numerical results

In this section we illustrate some numerical results which complete the statements of Theorem 2.7
and Proposition 2.8.

3.1. Numerical algorithm to solve (2.11). In order to find an optimal weight, we adopt an algo-
rithm based on the following rearrangement lemma.

Lemma 3.1. [7, Lemma 5.4] Let u ∈ H2
∗ (Ω) be strictly positive in Ω. Then, the problem

Mα,β := sup
p∈Pα,β

∫
Ω
p(x, y)u2 dx dy

admits the solution pu(x, y) = αχS(x, y) + βχΩ\S(x, y) for a.e. (x, y) ∈ Ω, where S = S(u) ⊂ Ω is such

that |S| = β−1
β−α |Ω|. Moreover, set

t := sup

{
s > 0 : |{(x, y) ∈ Ω : 0 < u(x, y) 6

√
s}| < β − 1

β − α
|Ω|
}
,

we have that {(x, y) ∈ Ω : 0 < u(x, y) <
√
t} ⊆ S ⊆ {(x, y) ∈ Ω : 0 < u(x, y) 6

√
t} .

To solve (2.11) we run the numerical scheme below adjusted from [7], see also [18] where the algorithm
was proposed for the clamped and simply supported problems and [15] for related numerical results in
the second order case.
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(i) We solve numerically (1.1) with an arbitrary weight p(i) and we determine the corresponding

first eigenvalue λ
(i)
1 and the first eigenfunction u(i).

(ii) We compute numerically t(i) > 0 such that |S(i)| = |{(x, y) ∈ Ω : 0 < u(i)(x, y) 6
√
t(i)}| =

β−1
β−α |Ω| and we define the weight

p(i+1) := pu(i) = αχS(i)(x, y) + βχΩ\S(i)(x, y).

(iii) We solve numerically (1.1) with the weight p(i+1) and we determine the corresponding first

eigenvalue λ
(i+1)
1 and the first eigenfunction u(i+1).

(iv) Thanks to Lemma 3.1 we get

‖
√
p(i+1)u(i)‖22 > ‖

√
p(i)u(i)‖22.

Notice that we can apply Lemma 3.1 with S = S(i) as in step (ii) since the u(i) solve the equation
in (1.1) a.e. hence, being strictly positive, their level sets must have zero measure.

(v) We use the characterization (2.5)

λ
(i+1)
1 = min

u∈H2
∗(Ω)\{0}

‖u‖2H2
∗

‖
√
p(i+1) u‖22

=
‖u(i+1)‖2H2

∗

‖
√
p(i+1) u(i+1)‖22

6
‖u(i)‖2H2

∗

‖
√
p(i+1) u(i)‖22

6
‖u(i)‖2H2

∗

‖
√
p(i) u(i)‖22

= λ
(i)
1 .

(vi) Iterating the procedure, we obtain a non increasing sequence i 7→ λ
(i)
1 bounded from below by

λα,β, so that the convergence of the algorithm to a certain λ1 > λα,β is assured.

The only drawback of this algorithm is that we do not know a priori whether λ1 = λα,β; from a numerical
point of view the problem may be circumvented by repeating the procedure with several different initial
weights and noticing that we always get the same limit. To find the approximate solution of (1.1), for
a given weight, we expand the solutions in Fourier series, adopting as orthonormal basis of L2(Ω) the
explicit eigenfunctions of (1.1) with p ≡ 1, known from [23]; in order to get a numerical approximation,
we truncate the series at a certain N ∈ N+ and we solve a linear system of 2N equations where the
unknowns are the Fourier coefficients, see [7] for the details.

Figure 1. The level sets of u(1) (left) and u (right) corresponding respectively to the

densities p(1)(x, y) and p(x, y). We assume N = 20 and (3.14).

3.2. Conclusions. In Figures 1 and 2 we show some of our results on a plate having the following
features:

(3.14) σ = 0.2 , ` =
π

5
, α = 0.5 , β = 6α.

More precisely, in Figure 1 we compare the level sets of u(1) (left) and of u (right) corresponding,

respectively, to the weights p(1) and p plotted below, i.e. the initial and the last weight of our algorithm:
even if p(1) and u(1) are not π/2-symmetric, p and u are π/2-symmetric. A comparison between the
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Figure 2. A comparison betwen the level sets of u(1) (black) and u (red) corresponding

respectively to the densities p(1) and p
.

level sets of u(1) (black) and u (red) is given in Figure 2. We triggered the algorithm with very different

initial weights p(1) either symmetric or not; after some iterations, we always get that the procedure
converges to the same density p symmetric with respect to x = π/2. Furthermore, we repeated the
experiments reducing the width of the plate ` towards choices consistent with common bridge design,
e.g. ` = π

150 . In any case, we recorded the same kind of results which suggest to locate the denser
material in the middle of the plate; we point out that by reducing ` we find weights p equals to β on a
region which is approximately a rectangle centered at π/2.

In conclusion, the observed results lead us to state the following conjecture:

there exists an optimal pair (p̂, û) of (2.11) with û symmetric w.r.t. x = π/2 and s.t.

ûx(x, y) > 0 ∀(x, y) ∈
(

0,
π

2

)
× [−`, `] ; ûx(x, y) < 0 ∀(x, y) ∈

(
π

2
, π

)
× [−`, `] ;

ûy(x, y) > 0 ∀(x, y) ∈ (0, π)× (0, `] ; ûy(x, y) < 0 ∀(x, y) ∈ (0, π)× [−`, 0) .

Clearly, if the above conjecture holds, by taking p̂ = pû as given in (2.12), we get that the corresponding
optimal weight is symmetric w.r.t. x = π/2 and it is equal to β in the central part of the plate.

4. Proof of Theorem 2.2

We define the series

(4.15) S1(z) :=

+∞∑
m=1

ϕm
m2

sin(mz) and S2(z) :=

+∞∑
m=1

(−1)m
ϕm
m2

sin(mz) ,

with the ϕm as in (2.6), and we state two preliminary lemmas. Notice that we neglect the dependence
on y, w since it does not play a role in the proofs.

Lemma 4.1. Let the series S1(z) be as in (4.15); then

(4.16) S1(z) > 0 ∀z ∈ (0, π) .

Proof. We split the proof into three steps.

Step 1. Thanks to Theorem 2.1-(2.7) we know that 0 < ϕm < ϕ1 ∀m > 1, then we obtain∣∣∣∣ ∞∑
m=2

ϕm
m2

sin(mz)

∣∣∣∣ 6 ϕ1

∞∑
m=2

| sin(mz)|
m2

6 ϕ1

∞∑
m=2

1

m2
= ϕ1

[
π2

6
− 1

]
∀z ∈ (0, π)

and, in turn, that

(4.17) S1(z) > ϕ1

[
sin(z)−

(
π2

6
− 1

)]
∀z ∈ (0, π).



8 ELVISE BERCHIO AND ALESSIO FALOCCHI

Since arcsin
(
π2

6 − 1
)
< π

4 , through (4.17) we have

(4.18) S1(z) > 0 ∀z ∈
[
π

4
,
3

4
π

]
.

Step 2. We fix N > 3 and write S1(z) =
∑N

m=1

ϕm
m2

sin(mz) +
∑∞

m=N+1

ϕm
m2

sin(mz) . Then, we

exploit the elementary inequality sin(mz) > sin(z), ∀z ∈
(
0, π

N+1

)
and ∀m = 2, . . . , N (see [8, Lemma

6.3] for a proof) and Theorem 2.1-(2.7) to get

(4.19)
N∑
m=1

ϕm
m2

sin(mz) > ϕN sin(z)
N∑
m=1

1

m2
∀z ∈

(
0,

π

N + 1

)
.

On the other hand, through Theorem 2.1-(2.7), we get

(4.20)

∣∣∣∣ ∞∑
m=N+1

ϕm
m2

sin(mz)

∣∣∣∣ 6 ∞∑
m=N+1

ϕm
m2
| sin(mz)| 6 ϕN

∞∑
m=N+1

1

m2
.

By combining (4.19) and (4.20) we infer

S1(z) > ϕN

(
N∑
m=1

1

m2

)
[sin z − CN ] ∀z ∈

(
0,

π

N + 1

)
,(4.21)

where

CN :=

( ∞∑
m=N+1

1

m2

)(
N∑
m=1

1

m2

)−1

.

Next we denote by zN the unique solution to the equation:

sin(z) = CN z ∈ (0, π/2) ;

the above definition makes sense for all N > 1 since the map N 7→ CN is positive, strictly decreasing
and 0 < CN < 1. We prove that

(4.22) zN <
π

N + 2
∀N > 3 .

When N = 3, z3 ≈ 0.21 < π
5 and (4.22) follows. We complete the proof of (4.22) by showing that

(4.23) CN < sin

(
π

N + 2

)
∀N > 4 .

To this purpose we notice that
N∑
m=1

1
m2 > 1 and

∞∑
m=N+1

1
m2 <

∫∞
N

1
x2
dx = 1

N , implying that

(4.24) CN <
1

N
∀N > 2.

To tackle (4.23) we use the estimate:

(4.25) sin(x) >
3

π
x ∀x ∈

(
0,
π

6

]
.

Combining this with (4.24), (4.23) follows by noticing that
1

N
<

3

N + 2
for all N > 4. Finally, in view

of (4.22), we get

(4.26) S1(z) > 0 ∀z ∈
[

π

N + 2
,

π

N + 1

)
∀N > 3.
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Hence, by combining (4.18) with (4.26) written for all 3 6 N 6 N , we obtain S1(z) > 0 ∀z ∈
[

π
N+2

, 3
4π
]

and passing to the limit as N → +∞ we conclude that

(4.27) S1(z) > 0 ∀z ∈
(

0,
3

4
π

]
.

Step 3. It remains to consider z ∈
(

3
4π, π

)
. For N > 3, odd integer, we set z = π− z and we rewrite

the series as

S1(z) =

N∑
m=1
odd

[
ϕm
m2

sin(mz)− ϕm+1

(m+ 1)2
sin[(m+ 1)z]

]
+

∞∑
m=N+2

(−1)m+1ϕm
m2

sin(mz) ∀z ∈
(

0,
π

4

)
.

(4.28)

By Theorem 2.1 we know that ϕm > 0 and it strictly decreasing with respect to m ∈ N+ for all
y, w ∈ [−`, `]; hence the following estimate holds:

ϕ1 sin(z)− ϕ2

23
sin(2z) = sin(z)

[
ϕ1 −

ϕ2

22
cos(z)

]
>

3

4
ϕ2 sin(z) >

3

4
ϕN+1 sin(z) ∀z ∈

(
0,
π

2

)
.(4.29)

Next, by exploiting the inequality

sin(mz)

m2
− sin[(m+ 1)z]

(m+ 1)2
> sin(z)

[
1

m
− 1

m+ 1

]2

∀z ∈
(

0,
π

N + 1

)
, ∀m = 3, . . . , N,

(see Lemma 7.1 in the Appendix for a proof) and (4.29), we get

N∑
m=1
odd

[
ϕm
m2

sin(mz)− ϕm+1

(m+ 1)2
sin[(m+ 1)z]

]
> ϕN+1 sin(z)

[
3

4
+

N∑
m=3
odd

(
1

m
− 1

m+ 1

)2]
,(4.30)

for all z ∈
(

0,
π

N + 1

)
. On the other hand, through the monotonicity of the ϕm, we get

(4.31)

∣∣∣∣ ∞∑
m=N+2

(−1)m+1ϕm
m2

sin(mz)

∣∣∣∣ 6 ϕN+1

∞∑
m=N+2

1

m2
∀z ∈ (0, π), ∀N > 3.

From (4.30)-(4.31), for all N > 3 odd, we infer

S1(z) > ϕN+1

[
3

4
+

N∑
m=3
odd

(
1

m
− 1

m+ 1

)2]
(sin(z)− CN ) ∀z ∈

(
0,

π

N + 1

)
,

where

CN :=

( ∞∑
m=N+2

1

m2

)3

4
+

N∑
m=3
odd

[
1

m
− 1

m+ 1

]2


−1

.

Next we denote by zN the unique solution to the equation

sin(z) = CN z ∈ (0, π/2).

The above definition makes sense for all N > 3, odd, since the map N 7→ CN is positive, strictly
decreasing and 0 < CN < 1.

We prove that CN < sin
(

π
N+3

)
for all N > 3, odd. To this aim we note that 3

4 +
N∑
m=3
odd

[
1
m −

1
m+1

]2
> 3

4

and
∞∑

m=N+2

1
m2 <

∫∞
N+1

1
x2
dx = 1

N+1 , implying CN < 4
3(N+1) ∀N > 3. Finally, by exploiting (4.25), we

get CN < 4
3(N+1) 6

3
N+3 6 sin

(
π

N+3

)
for all N > 3.
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Summarizing, from the above estimates we get

S1(z) > 0 ∀z ∈
[

π

N + 3
,

π

N + 1

)
∀N > 3, odd .

By repeating the above argument for all 3 6 N 6 N with N and N odd and taking the union of the
sets, we finally obtain S1(z) > 0 ∀z ∈

(
3
4π, π −

π
N+3

]
. Hence, passing to the limit as N → +∞, and

combining with (4.27) we obtain (4.16). �

Lemma 4.2. Let the series S2(z) be as in (4.15); then

(4.32) S2(z) < 0 ∀z ∈ (0, π).

Proof. It suffices noticing that:

S2(z) = S2(π − z) = −S1(z) ∀ z, z ∈ (0, π)

with S1 as given in (4.15). Then, the thesis comes from Lemma 4.1 since S1(z) > 0 ∀ z ∈ (0, π).
�

Proof of Theorem 2.2 completed. We neglect the dependence on y, w since it does not affect the
results. Differentiating (2.6) with respect to x we get

Gx(x, ρ) =
1

2π

+∞∑
m=1

ϕm
m2

sin(mρ) cos(mx) .

By (4.15), we may write

Gx(0, ρ) =
S1(ρ)

2π
and Gx(π, ρ) =

S2(ρ)

2π
∀ρ ∈ (0, π).

Therefore, the sign of Gx(0, ρ) and of Gx(π, ρ) follows from from Lemma 4.1 and Lemma 4.2.
Next we turn to the sign of Gx for x = π

2 . Clearly, Gx
(
π
2 ,

π
2

)
= 0. For ρ ∈ (0, π2 ), we have

Gx

(
π

2
, ρ

)
=

1

8π

∞∑
k=1

(−1)k
ϕ2k

k2
sin(2kρ) =

1

8π

∞∑
k=1

(−1)k
ϕ2k

k2
sin(kρ̃) ∀ρ̃ = 2ρ ∈ (0, π) .

For ρ ∈ (π2 , π) we have

Gx

(
π

2
, ρ

)
=

1

8π

∞∑
k=1

(−1)k
ϕ2k

k2
sin(2kρ) =

1

8π

∞∑
k=1

ϕ2k

k2
sin(kρ̃) ∀ρ̃ = 2ρ− π ∈ (0, π).

Since the ϕ2k are decreasing with respect to k, see Theorem 2.1-(2.7), the proof of the sign of the above
term follows by arguing as in the proof of Lemmas 4.1 and 4.2 with minor changes.

5. Proof of Corollary 2.3, Corollary 2.4 and duality principle

5.1. Proof of Corollary 2.3. Since u writes

u(x, y) =

∫
Ω
G(x, y, ρ, w) f(ρ, w) dρ dw ∀(x, y) ∈ Ω ,

the proofs of both the sign and the monotonicity issues follow as direct consequence of the related
properties of the Green function given in Proposition 2.1 and Theorem 2.2.
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5.2. Proof of Corollary 2.4. The proof that the first eigenfunction is of one sign, and hence simple,
follows by exploiting the so-called dual cone decomposition technique which relies on the positivity
preserving property stated in Corollary 2.3. Since the proof is standard we omit it and we refer the
interested reader to [9, Lemma 7.2] where the same issue, together with the simplicity of the first
eigenvalue, was proved for a related fourth order eigenvalue problem in dimension 1. As concerns the
regularity of up, it follows by combining elliptic regularity and embedding arguments. Indeed, it was
proved in [23, Lemma 4.2] that the operator in (1.1) satisfies the the complementing conditions of
Agmon-Douglis-Nirenberg [2], hence elliptic regularity theory applies. In particular, from λ1(p)pup ∈
L∞(Ω) we infer that up ∈ W 4,q(Ω) for all 1 < q < +∞; then the thesis comes by noticing that

W 4,q(Ω) ⊂ C3,γ(Ω) for some 0 < γ < 1, see [1, Theorem 5.4].
Now we turn to the sign of (up)x on the short edges. Recalling Theorem 2.2, we have

(up)x(0, y) = λ1(p)

∫
Ω
Gx(0, y, ρ, w) p(ρ, w)up(ρ, w) dρ dw > 0 ∀y ∈ [−`, `] .

Similarly, we get (up)x(π, y) < 0 for all y ∈ [−`, `] and this concludes the proof.

5.3. Duality principle. Let G : L2(Ω) → H2
∗ (Ω) denote the solution operator for the biharmonic

equation under partially hinged boundary conditions defined by

(5.33) (Gf, ϕ)H2
∗(Ω) :=

∫
Ω
fϕ for all ϕ ∈ H2

∗ (Ω).

In terms of the Green function (2.6), we get the usual integral representation:

(5.34) [Gf ](x, y) =

∫
Ω
G(x, y, ρ, w)f(ρ, w) dρdw ∀(x, y) ∈ Ω.

Next, inspired by [10, Lemma 12], we associate to (2.5) the following dual maximization problem:

(5.35) Θ1(p) = sup
v∈L2(Ω)\{0}

∫
Ω G(p v) p v dxdy

‖√p v‖22
.

By standard compactness arguments, the supremum in (5.35) is achieved, furthermore, if v is a maxi-
mizer, by exploiting (5.34) and the positivity of G, also |v| ∈ L2(Ω) is a maximizer; hence, a maximizer
to (5.35) can always be assumed nonnegative. Finally we state:

Lemma 5.1. (Duality principle) Let p ∈ Pα,β, then Θ1(p) = λ−1
1 (p). Furthermore,

(i) if u ∈ H2
∗ (Ω) is a positive minimizer of (2.5) with ‖√p u‖2 = 1, then u is a maximizer for

(5.35);
(ii) if v ∈ L2(Ω) is a nonnegative maximizer of (5.35) with ‖√p v‖2 = 1, then v ∈ H2

∗ (Ω) and it is
a minimizer for (2.5), hence positive.

Proof. Let u ∈ H2
∗ (Ω) be a positive minimizer for (2.5) with ‖√p u‖2 = 1. Then u solves problem (1.1),

therefore u = λ1G(p u). By multiplying both sides of this equality by p u and integrating over Ω, we
get λ1

∫
Ω G(p u) p u dxdy =

∫
Ω p u

2 dx = ‖√p u‖22 = 1, hence

(5.36) Θ1 >

∫
Ω G(p u) p u dxdy

‖√pu‖22
=

1

λ1
.

Viceversa let v ∈ L2(Ω) be a nonnegative maximizer for (5.35) with ‖√p v‖2 = 1. The corresponding
Euler-Lagrange equation in weak form reads∫

Ω
G(p v) pϕ dxdy = Θ1

∫
Ω
p v ϕ dxdy ∀ϕ ∈ L2(Ω),

implying G(p v) = Θ1 v a. e. in Ω. Therefore, taking v = 1
Θ1
G(p v) ∈ H2

∗ (Ω), we obtain by (5.33)

Θ1‖v‖2H2
∗(Ω) = Θ1(v, v)H2

∗(Ω) = (G(p v), v)H2
∗(Ω) =

∫
Ω
p v2 dxdy = 1,
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so that

(5.37) λ1 6
‖v‖2H2

∗(Ω)

‖√p v‖22
=

1

Θ1
.

By (5.36) and (5.37) we get Θ1(p) = λ−1
1 (p). But then the first inequality in (5.36) must be an equality,

and (i) follows. Similarly, the first inequality in (5.37) must be an equality, and (ii) follows. �

6. Proof of Theorem 2.7

By Proposition 2.6 we know that there exists an optimal pair (pû, û) ∈ Pα,β × H2
∗ (Ω), with pû as

given in (2.12). For the sake of simplicity, in the following we will simply denote (pu, u) this pair, hence

(6.38) pu(x, y) := αχ{0<u6
√
t}(x, y) + βχ{u>

√
t}(x, y) with (x, y) ∈ Ω

and t > 0 is fixed as in the statement of Proposition 2.6.
To begin with we recall some notations about the polarization of a function, adapting the technique

to our framework. Let Hπ
2
⊂ R2 be the half-plane defined in (2.13); for every (x, y) ∈ R2 we denote by

(x, y) ∈ R2 the reflection of (x, y) with respect to ∂Hπ
2
, i.e. x = π − x. For every measurable function

v : Ω→ R we define its polarization with respect to Hπ
2

as vHπ
2

: Ω→ R such that

vHπ
2

(x, y) :=

{
max{v(x, y), v(x, y)} if (x, y) ∈ Hπ

2
∩ Ω

min{v(x, y), v(x, y)} if (x, y) ∈ Ω \ Hπ
2
.

In the sequel, for the sake of brevity, we will simply write H instead of Hπ
2

and vH instead of vHπ
2

. It

is readily seen that the following pointwise identity holds:

(6.39) v(x, y) + v(x, y) = vH(x, y) + vH(x, y) ∀(x, y) ∈ Ω.

Now, for t > 0 as fixed in (6.38), we also consider the weight:

puH(x, y) := αχ{0<uH6
√
t}(x, y) + βχ{uH>

√
t}(x, y) with (x, y) ∈ Ω .

By direct inspection, arguing as in the proof of Lemma 6.3 below, we have that
∫

Ω puH dxdy =∫
Ω p dxdy = |Ω|, hence puH ∈ Pα,β. Next we state two technical lemmas whose proofs can be ob-

tained by slightly modifying the proofs of similar statements in [19], hence we omit them.

Lemma 6.1. [19, Lemma 5.3] The following identity holds:

[pu u]H ≡ puHuH in Ω .

Lemma 6.2. [19, Lemma 5.4] There holds:

(i) if pu(x, y)u(x, y) ≡ [pu(x, y)u(x, y)]H in Ω, then u(x, y) ≡ uH(x, y) in Ω;
(ii) if pu(x, y)u(x, y) ≡ [pu(x, y)u(x, y)]H in Ω, then u(x, y) ≡ uH(x, y) in Ω .

Finally, we prove the identity:

Lemma 6.3. We have ∫
Ω
puHu

2
H dxdy =

∫
Ω
puu

2 dxdy.
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Proof. We compute:∫
Ω

puH(x, y)u2
H(x, y) dxdy = α

∫
{uH(x,y)6

√
t}
u2
H(x, y) dxdy + β

∫
{uH(x,y)>

√
t}
u2
H(x, y) dxdy

= α

∫
{(x,y)∈Ω∩H:u(x,y)>u(x,y)∩u(x,y)6

√
t}
u2(x, y) dxdy + α

∫
{(x,y)∈Ω∩H:u(x,y)>u(x,y)∩u(x,y)6

√
t}
u2(x, y) dxdy

+ α

∫
{(x,y)∈Ω\H:u(x,y)>u(x,y)∩u(x,y)6

√
t}
u2(x, y) dxdy + α

∫
{(x,y)∈Ω\H:u(x,y)>u(x,y)∩u(x,y)6

√
t}
u2(x, y) dxdy

+ β

∫
{(x,y)∈Ω∩H:u(x,y)>u(x,y)∩u(x,y)>

√
t}
u2(x, y) dxdy + β

∫
{(x,y)∈Ω∩H:u(x,y)>u(x,y)∩u(x,y)>

√
t}
u2(x, y) dxdy

+ β

∫
{(x,y)∈Ω\H:u(x,y)>u(x,y)∩u(x,y)>

√
t}
u2(x, y) dxdy + β

∫
{(x,y)∈Ω\H:u(x,y)>u(x,y)∩u(x,y)>

√
t}
u2(x, y) dxdy

= α

∫
{(x,y)∈Ω:u(x,y)6

√
t}
u2(x, y) dxdy + β

∫
{(x,y)∈Ω:u(x,y)>

√
t}
u2(x, y) dxdy =

∫
Ω

pu(x, y)u2(x, y) dxdy ,

where the first equality in the last line simply comes by changing variables. �

Next we turn to the proof of some reflection properties of the Green function G that will be crucial
in the following.

Lemma 6.4. For (x, y) ∈ H ∩ Ω and (ρ, w) ∈ H ∩ Ω we have:

(i) G(x, y, ρ, w) > max{G(x, y, ρ, w), G(x, y, ρ, w)} with strict inequality if x, ρ 6= 0, π2 ;
(ii) G(x, y, ρ, w) = G(x, y, ρ, w);

(iii) G(x, y, ρ, w) = G(x, y, ρ, w).

Proof. The variables y, w do not play a role, hence we fix them and we do not write them in the proof.

Proof of (i). We study the sign of

G(x, ρ)−G(x, ρ) =
1

π

+∞∑
m=1

ϕm
m3

sin(mρ) sin

[
m

(
x− π

2

)]
cos

(
m
π

2

)

=
1

π

+∞∑
k=1

ϕ2k

(2k)3
sin(2kρ)(−1)k sin(2kx)(−1)k ∀(x, ρ) ∈ [0, π/2]2.

For x̃ = 2x and ρ̃ = 2ρ, we observe that

1

8π

+∞∑
k=1

ϕ2k

k3
sin(kρ̃) sin(kx̃) > 0 ∀(x̃, ρ̃) ∈ (0, π)2 .

The proof the above inequality can be obtained by repeating, with minor changes, the proof of (2.8) as
given in [8, Theorem 2.2]. The main ingredient is the monotonicity of the functions ϕ2k with respect
to k. This implies that G(x, ρ)−G(x, ρ) > 0 for all (x, ρ) ∈ (0, π/2)2. We observe that for x ∈ {0, π/2}
or ρ ∈ {0, π/2} we have G(x, ρ) = G(x, ρ), giving G(x, ρ) > G(x, ρ) for all (x, ρ) ∈ [0, π/2]2.

Repeating the above arguments, but inverting the variables x and ρ, we get the statement (i).

Proof of (ii) and (iii). For all (x, ρ) ∈ [0, π]2 we get

G(x, ρ) =
1

2π

+∞∑
m=1

ϕm
m3

sin[m(π − ρ)] sin[m(π − x)] =
1

2π

+∞∑
m=1

ϕm
m3

sin(mρ) sin(mx) = G(x, ρ) ,

G(x, ρ) =
1

2π

+∞∑
m=1

ϕm
m3

sin(mρ) sin[m(π − x)] =
1

2π

+∞∑
m=1

(−1)m+1ϕm
m3

sin(mρ) sin(mx) = G(x, ρ) .

�

Thanks to Lemma 6.4 we obtain:
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Lemma 6.5. Let G : L2(Ω)→ H2
∗ (Ω) denote the solution operator defined by (5.33). Then,∫

Ω
G(puu) pu(x, y)u(x, y) dxdy 6

∫
Ω
G(puHuH) puH(x, y)uH(x, y) dxdy,(6.40)

and the equality holds in (6.40) if and only if

pu(x, y)u(x, y) = [pu(x, y)u(x, y)]H a.e. in Ω or pu(x, y)u(x, y) = [pu(x, y)u(x, y)]H a.e. in Ω .

Proof. We define

A(g, h) :=

∫
Ω×Ω

G(x, y, ρ, w)pg(x, y)ph(ρ, w)g(x, y)h(ρ, w) dxdydρdw

where g and h have to be meant equal to u or uH . Then, by writing Ω × Ω = [(Ω ∩ H) × (Ω ∩ H)] ∪
[(Ω∩H)× (Ω \H)]∪ [(Ω \H)× (Ω∩H)]∪ [(Ω \H)× (Ω \H)] and changing variables properly, we get

A(uH, uH)−A(uH, u) =∫
(Ω∩H)×(Ω∩H)

G(x, y, ρ, w)puH(x, y)uH(x, y)[puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)] dxdydρdw

+

∫
(Ω∩H)×(Ω∩H)

G(x, y, ρ, w)puH(x, y)uH(x, y)[puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)] dxdydρdw

+

∫
(Ω∩H)×(Ω∩H)

G(x, y, ρ, w)puH(x, y)uH(x, y)[puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)] dxdydρdw

+

∫
(Ω∩H)×(Ω∩H)

G(x, y, ρ, w)puH(x, y)uH(x, y)[puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)] dxdydρdw.

By Lemma 6.1 and (6.39) we have

puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w) = −[puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)] ∀(ρ, w) ∈ Ω,

so that

A(uH, uH)−A(uH, u) =∫
(Ω∩H)×(Ω∩H)

[G(x, y, ρ, w)−G(x, y, ρ, w)]puH(x, y)uH(x, y)[puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)] dxdydρdw

+

∫
(Ω∩H)×(Ω∩H)

[G(x, y, ρ, w)−G(x, y, ρ, w)]puH(x, y)uH(x, y)[puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)] dxdydρdw.

Then, thanks to Lemma 6.4 (ii) and (iii) we conclude that

A(uH, uH)−A(uH, u) =

∫
(Ω∩H)×(Ω∩H)

[G(x, y, ρ, w)−G(x, y, ρ, w)]

× [puH(x, y)uH(x, y)− puH(x, y)uH(x, y)][puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)] dxdydρdw .

(6.41)

With similar arguments we get

A(uH, u)−A(u, u) =

∫
(Ω∩H)×(Ω∩H)

[G(x, y, ρ, w)−G(x, y, ρ, w)]

× [pu(x, y)u(x, y)− pu(x, y)u(x, y)][puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)] dxdydρdw

(6.42)

and combining (6.41)-(6.42) we obtain

A(uH, uH)−A(u, u) =

∫
(Ω∩H)×(Ω∩H)

[G(x, y, ρ, w)−G(x, y, ρ, w)][puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w)]

× [puH(x, y)uH(x, y)− puH(x, y)uH(x, y) + pu(x, y)u(x, y)− pu(x, y)u(x, y)] dxdydρdw.

Now, by Lemma 6.4-(i), we know that G(x, y, ρ, w)−G(x, y, ρ, w) > 0 while, by Lemma 6.1, we get

puH(ρ, w)uH(ρ, w)− pu(ρ, w)u(ρ, w) = [pu(ρ, w)u(ρ, w)]H − pu(ρ, w)u(ρ, w) > 0 ∀(ρ, w) ∈ Ω ∩H .
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Finally, (6.40) follows by noticing that, through Lemma 6.1 and (6.39), we have

[puH(x, y)uH(x, y)− puH(x, y)uH(x, y) + pu(x, y)u(x, y)− pu(x, y)u(x, y)]

= 2{[pu(x, y)u(x, y)]H − pu(x, y)u(x, y)} > 0 ∀(x, y) ∈ Ω ∩H .

To prove the last part of the statement we set D1 := {(x, y) ∈ Ω∩H : pu(x, y)u(x, y) > pu(x, y)u(x, y)}
and D2 := {(ρ, w) ∈ Ω ∩H : [pu(ρ, w)u(ρ, w)]H > pu(ρ, w)u(ρ, w)}. If equality holds in (6.40) we get

0 = A(uH, uH)−A(u, u)

=

∫
D1×D2

[G(x, y, ρ, w)−G(x, y, ρ, w)]{[pu(ρ, w)u(ρ, w)]H − pu(ρ, w)u(ρ, w)}

× 2{[pu(x, y)u(x, y)]H − pu(x, y)u(x, y)} dxdydρdw .

(6.43)

Now, (6.43) makes sense if and only if |D1| = 0 or |D2| = 0, i.e., if and only if [pu(x, y)u(x, y)]H =
pu(x, y)u(x, y) or [pu(x, y)u(x, y)]H = pu(x, y)u(x, y) a.e. in Ω. �

Proof of Theorem 2.7 completed. Thanks to Lemma 5.1 we have that u is a maximizer for (5.35)
with p = pu. Then, since (u, pu) is an optimal pair, uH ∈ L2(Ω) and puH ∈ Pα,β, we infer that∫

Ω G(puu) pu u dxdy

‖√pu u‖22
= Θ1(pu) > Θ1(puH) >

∫
Ω G(puHuH) puH uH dxdy

‖√puH uH‖22
.

Recalling that, by Lemma 6.3, ‖√puHuH‖2 = ‖√puu‖2, from above we get that∫
Ω
G(puu) pu u dxdy >

∫
Ω
G(puHuH) puH uH dxdy .

Then, by Lemma 6.5, (6.40) holds with the equality and, in view of Lemma 6.2, this implies u(x, y) =
uH(x, y) or u(x, y) = uH(x, y) a.e. in Ω. Since u is continuous, we obtain

u(x, y) > u(x, y) in Ω ∩H or u(x, y) 6 u(x, y) in Ω ∩H.(6.44)

Let us consider the first case of (6.44); then, it is readily seen that:

(6.45) pu(x, y)u(x, y) > pu(x, y)u(x, y) ∀(x, y) ∈ Ω ∩H .

Indeed, if pu(x0, y0)u(x0, y0) < pu(x0, y0)u(x0, y0) for some (x0, y0) ∈ Ω∩H, by (6.44) we get pu(x0, y0) =
α and pu(x0, y0) = β. But then u(x0, y0) 6 u(x0, y0) 6

√
t and pu(x0, y0) = α which is a contradiction.

Suppose now that there exists (x1, y1) ∈ Ω ∩ H such that the strict inequality holds in the first of
(6.44), clearly x1 6= 0, π/2. Then, by continuity, there exists a subset U ⊂ (Ω ∩H) of positive measure
such that u(x, y) > u(x, y) for all (x, y) ∈ U and, by arguing as for the proof of (6.45), such that

(6.46) pu(x, y)u(x, y) > pu(x, y)u(x, y) ∀(x, y) ∈ U .

Finally, through Lemma 6.4, (6.45) and (6.46), for all (x, y) ∈ (0, π2 )× [−`, `] we obtain

u(x, y)− u(x, y) =

∫
Ω

[G(x, y, ρ, w)−G(x, y, ρ, w)]pu(ρ, w)u(ρ, w) dρdw

=

∫
Ω∩H
{[G(x, y, ρ, w)−G(x, y, ρ, w)]pu(ρ, w)u(ρ, w) + [G(x, y, ρ, w)−G(x, y, ρ, w)]pu(ρ, w)u(ρ, w)} dρdw

=

∫
Ω∩H

[G(x, y, ρ, w)−G(x, y, ρ, w)][pu(ρ, w)u(ρ, w)− pu(ρ, w)u(ρ, w)] dρdw

>
∫
U

[G(x, y, ρ, w)−G(x, y, ρ, w)][pu(ρ, w)u(ρ, w)− pu(ρ, w)u(ρ, w)] dρdw > 0,

implying that (i) or (iii) holds. Similarly, if we consider the second inequality in (6.44), we get that
(ii) or (iii) holds. This concludes the proof.
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7. Proof of Proposition 2.8

First, for all ρ ∈ (0, π) and y, w ∈ [−`, `], we note that

Gx

(
π

2
, y, ρ, w

)
=

1

8π

∞∑
k=1

(−1)k
ϕ2k(y, w)

k2
sin(2kρ) = −Gx

(
π

2
, y, ρ, w

)
.

By exploiting the above equality we write

ux

(
π

2
, y

)
=

∫ `

−`

∫ π/2

0
Gx

(
π

2
, y, ρ, w

)
[pu(ρ, w)u(ρ, w)− pu(ρ, w)u(ρ, w)] dρdw ∀y ∈ [−`, `].

From Theorem 2.2 we know that Gx
(
π
2 , y, ρ, w

)
< 0 for all ρ ∈

(
0, π2

)
; then, if case (i) of Theorem 2.7

holds, by (6.45)-(6.46), we get pu(ρ, w)u(ρ, w) > pu(ρ, w)u(ρ, w) and, in turn, that ux
(
π
2 , y
)
< 0 for all

y ∈ [−`, `]. Similarly, the reverse inequality holds if case (ii) occurs. Finally, when (iii) holds, then
pu(ρ, w)u(ρ, w) ≡ pu(ρ, w)u(ρ, w) in Ω, hence ux

(
π
2 , y
)

= 0 for all y ∈ [−`, `].

Appendix

Lemma 7.1. Let N > 3 be an integer. For all z ∈
(
0, π

N+1

)
and for all m = 3, . . . , N , there holds

υm(z) :=
sin(mz)

m2
− sin[(m+ 1)z]

(m+ 1)2
− sin(z)

[
1

m
− 1

(m+ 1)

]2

> 0 .

Proof. Clearly, υm(0) = 0; we set am :=
[

1
m2 − 1

(m+1)2

]2
and we compute

υ′m(z) =
cos(mz)

m
− cos[(m+ 1)z]

m+ 1
− am cos(z) υ′′m(z) = sin[(m+ 1)z]− sin(mz) + am sin(z).

Using the complex identities for the trigonometric functions we obtain

sin[(m+ 1)z]− sin(mz) = 0 ⇐⇒ z = 2kπ,
(1 + 2k)π

2m+ 1
∀k ∈ Z(7.47)

Hence sin[(m+ 1)z] > sin(mz) for z ∈
(
0, π

2m+1

)
and υ′′m(z) > 0 for z ∈

(
0, π

2m+1

)
; this readily implies

that υm(z) > 0 for z ∈
(
0, π

2m+1

]
.

For z ∈
(

π
2m+1 ,

π
m+1

)
we have

υm(z) =
sin(mz)

m2
− sin[(m+ 1)z]

(m+ 1)2
− sin z

m

[
1

m
− 1

m+ 1

]
+

sin z

m+ 1

[
1

m
− 1

m+ 1

]
>

sin(mz)

m2
− sin[(m+ 1)z]

(m+ 1)2
−

sin
[

π
m+1

]
m

[
1

m
− 1

m+ 1

]
:= υm(z).

We study the sign of υm(z) for z ∈
(

π
2m+1 ,

π
m+1

)
. We have

υ′′m(z) = sin[(m+ 1)z]− sin(mz) < 0 ∀z ∈
(

π

2m+ 1
,

π

m+ 1

)
,

since, by (7.47), we have sin[(m+ 1)z]− sin(mz) < 0 for z ∈
(

π
2m+1 ,

3π
2m+1

)
and π

m+1 <
3π

2m+1 for m > 3.

Thus if υm
(

π
m+1

)
> 0 and υm

(
π

2m+1

)
> 0 we conclude that υm(z) > 0 for z ∈

(
π

2m+1 ,
π

m+1

)
and, in

turn, υm(z) > 0 for all z ∈
(

π
2m+1 ,

π
m+1

)
.

Recalling that sin
(
mπ
m+1

)
= sin

(
π

m+1

)
we get

υm

(
π

m+ 1

)
= sin

(
π

m+ 1

)[
1

m2
− 1

m2
+

1

m(m+ 1)

]
> 0 ∀m > 3.

Moreover sin
(

mπ
2m+1

)
= sin

( (m+1)π
2m+1

)
so that

υm

(
π

2m+ 1

)
= sin

(
mπ

2m+ 1

)[
1

m2
− 1

(m+ 1)2

]
− sin

(
π

m+ 1

)[
1

m2
− 1

m(m+ 1)

]
.
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We observe that sin
(

mπ
2m+1

)
> sin

(
π

m+1

)
> 0 for all m > 3, indeed π

2 >
mπ

2m+1 >
π

m+1 > 0 for all m > 3;

moreover we have 1
m2 − 1

(m+1)2
> 1

m2 − 1
m(m+1) > 0, implying υm

(
π

2m+1

)
> 0. This concludes the

proof. �
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