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Abstract—This paper proposes a Pontryagin-based approach to
Nonlinear Model Predictive Control for autonomous guidance
and control in spacecraft maneuvering. The proposed approach
guarantees, under suitable conditions, an explicit control law
also in presence of nonlinearities. Taking advantage of the
Pontryagin Minimum (or Maximum) Principle, the optimiza-
tion problem solution turns into a two-points boundary value
problem, whose differential equations and boundary conditions
are the Karush-Kuhn-Tucker necessary conditions of optimality.
Conversely to the numerical methods for nonlinear/non-convex
optimization, the proposed methodology returns an explicit
control law without any a-priori assumption about the input
signal parametrization, achieving high performances without
increasing the computational complexity of the algorithm. The
proposed control algorithm is designed for the proximity opera-
tions of a rendez-vous problem which dynamics is described by
the so-called Clohessy-Wiltshire equations. A modified NMPC
cost function is employed in order to promote the bang-bang
behavior of the input signal. This latter yields an improvement
of the performances in terms of propellant consumption with
respect to the classic quadratic cost indexes.
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1. INTRODUCTION
Since the dawn of space exploration, the rendez-vous (RdV)
and docking maneuvers - between a chaser and a target
- represent some of the most critical in-orbit operations.
The maneuver consists in guiding and controlling a chaser
spacecraft (S/C) so that it achieves the same orbit of a target
satellite in order to approach it at a very close distance (see,
e.g. [1]). The first successful attempt was carried out during
the Gemini 8 mission, when a manned spacecraft docked an
unmanned target in Low-Earth Orbit (LEO). The mission was

designed for testing the complex RdV maneuver which would
have taken place in Lunar orbit during the Apollo Moon’s
exploration missions. With the coming of the LEO space
stations (e.g. Saljiut, Skylab, Mir, ISS, Tiangong), the RdV
and docking operations assumed a fundamental role due to
the need of supplying the space stations with the fundamental
resources for supporting the astronauts’ in-orbit life, as well
as to guarantee a continuous turnover of the crew (see, e.g.,
[2] and [3]). Furthermore, in recent years, the RdV operations
have been catching more attention among the space research
in the framework of multi-purpose space servicing vehicles
for in-orbit servicing and/or active debris removal. These
kinds of S/Cs must guarantee a high technological standard
to autonomously perform complex tasks in space (e.g. re-
fuelling service [4], small in-orbit reparations, debris removal
[5], non-collaborative target capture [6][7]).

In this context, the autonomous guidance and control strate-
gies are becoming key elements in space industry and re-
search, since they allow to optimize the resources expenditure
in designing space missions and to extend the spacecraft
lifetime by reducing the propellant consumption (see, e.g.,
[8] and [9]). The Model Predictive Control (MPC) plays
a key role within the space control environment, owning a
great potential for wide applications in future space missions
- which often involve strong nonlinear dynamics - thanks to
its capability to deal with Multi-Input Multi-Output (MIMO)
systems, input and state constraints and to optimize different
kinds of performance indexes. Furthermore, the main MPC
advantage is the capability to efficiently join the guidance and
control tasks into a single algorithm, designing a probe able
to autonomously plan the required maneuvers with a strongly
reduced human effort. Examples of MPC applications for
RdV and proximity maneuvers include [10], [11], which
tackles the RdV problem in the context of the restricted three-
body problem, [12], which proposes a sum-of-norms mini-
mum fuel controller, and [13], which achieves the sparsity in
solution by employing a LASSO MPC.

This paper presents a novel nonlinear MPC (NMPC) frame-
work for autonomous guidance and control during the ren-
dezvous proximity maneuver between a chaser S/C and a
generic non-collaborative target (a space station. an end-of-
life satellite, a debris, etc.). The NMPC optimization process
takes advantage of the Pontryagin Minimum (or Maximum)
Principle (PMP), which, under suitable conditions, provides
an explicit control law, also in presence of nonlinearities [14].
This latter is a fundamental point, since, when dealing with a
nonlinear optimization problem, the explicit solution is rarely
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available. Indeed, starting from the dual formulation of the
optimal control problem (OCP), the Hamiltonian scalar func-
tion and the Lagrange (or co-state) variables are introduced,
such that the OCP is transformed into a standard Two-Points
Boundary Value Problem (TPBVP), which solution provides
the gains for the explicit optimal control law. The advantages
of the proposed methodology are the following: i) the gradi-
ent of the Hamiltonian with respect to the input vector pro-
vides an efficient explicit strategy for the optimal guidance,
whereas it is not available with the primal OCP solution;
ii) input and (nonlinear) state constraints are incorporated
within OCP with slight modifications of the algorithm by
means of the barrier functions method (see, e.g., [15]); iii)
since the guidance and the control law are available in an
explicit form, the tuning of the NMPC design parameters
requires a minor effort. The proposed NMPC algorithm is
designed for the RdV problem, which dynamics is described
by the Clohessy-Wiltshire equations [16]. In our work we
employ a minimum-fuel cost function, promoting the bang-
bang behavior of the controller and leading to a sparse-in-
time input profile. These features yield improvements in
terms of propellant consumption with respect to the classic
quadratic performance indexes.

The paper is organized as follows: in Section 2 we describe
the S/C motion during the RdV proximity operations. In
Section 3 we introduce the NMPC mathematical formulation,
its explicit solution is dealt in Section 4 and, afterwards, is
tailored for the RdV problem in Section 5. The simulated
example is shown in Section 6. Finally, the conclusion are
drawn in Section 7.

2. SPACECRAFT LINEARIZED DYNAMICS
In most of aerospace applications, the S/C motion can be de-
scribed by means of an affine-in-the-input nonlinear system:

ẋ(t) = f (x(t))+g(x(t))u(t) (1)

where x∈Rnx , u∈Rnu are the state and the input respectively,
and implicitly assuming that the state x coincides with the
output. Examples include the two-body dynamics, which can
be equally described with the position/velocity equations [16]
and/or the Gaussian variational formulation of the Keplerian
orbital elements [16] or the equinoctial orbital elements [17].

When dealing with the relative motion for orbit phasing, RdV,
and docking operations, different alternative models of S/C
motions are available (see [18] and the references therein),
commonly based on the approximation/linearization of two-
body equations (see, e.g. [19]). In this paper we exploit
the so called Clohessy-Whiltshire (C-W) equations. The C-
W equations describe the relative motion between a chaser
spacecraft and a target. The relative dynamics is based on
the linearization of the Keplerian S/C dynamics when (i)
the chaser and the target lies on near-circular orbits; (ii) the
chaser-target distance is much shorter than the geocentric
distance; (iii) the orbital perturbations are neglected. In
formulae:

r̈x = 3ϖ
2rx +2ϖ ṙy +ux

r̈y =−2ϖ ṙx +uy

r̈z =−ϖ
2rz +uz

(2)

where r = (rx,ry,rz)
T is the chaser position, ϖ =

√
µ/a3

is the mean motion, a is the radius of the target’s circular
orbit (which coincides with the semi-major axis), and µ

is the standard gravitational parameter. The state is x =
(rx,ry,rz, ṙx, ṙy, ṙz)

T and the input is u = (ux,uy,uz)
T .

The orbital reference frame is defined as follows: the origin
is located in the target’s center of mass, the x-axis (commonly
named R-bar) lies along the vector joining the target with
the Earth’s center, the y axis (H-bar) points in the opposite
direction of the orbit normal, and the z-axis (V-bar) is mea-
sured positive in the direction of orbital motion, according to
a right-handed reference frame. Note that, in (2), the relative
motion can be decoupled in the in-plane motion (x-y plane)
and the out-of-plane motion (z direction).

3. NONLINEAR MODEL PREDICTIVE
CONTROL SETTING

Consider the system in (1), we assume that the state is
measured on-line, with a sampling time Ts. If this assumption
does not hold, an observer must be employed. The measure-
ments are x(tk), tk = TSk,k = 0,1, .... At each time t = tk,
a prediction of the system state over the interval [t, t + Tp]
is performed, where Tp > Ts is the prediction horizon. The
prediction is obtained by the integration of (1). At any time
τ ∈ [t, t + Tp], the predicted state x̂(τ) ≡ x̂(τ,u(t : τ)) is a
function of the ‘initial’ state x(t) and the input signal u(t : τ).
Note that, the notation u(t : τ) is used to indicate a signal
in the interval [t,τ]. Note also that, over the prediction
horizon inverval [tk, tk +Tp], we can alternatively denote the
initial time instant with t0 ≡ tk and the final time instant with
tF ≡ tk +Tp.

At each time t = tk, we look for an optimal input signal
u∗(t : t + Tp), minimizing a suitable cost function J(u(t :
t+Tp)), subject to possible constraints that may occur during
the system’s operations. Mathematically, at each time t = tk
the following optimization problem is solved:

u∗(t : t +Tp) = argmin
u(·)

J(u(t : t +Tp))

subject to:
˙̂x(τ) = f (x̂(τ))+g(x(τ))u(τ), x̂(t) = x(t)
x̂(τ) ∈ XC, u(τ) ∈UC.

(3)

XC and UC are sets describing possible constraints on the state
and input, respectively. A receding control horizon strategy
is employed: at a given time t = tk, only the first optimal
input is applied to the plant, the remainder of the solution is
discarded. Then, the complete procedure is repeated at the
next time t = tk+1.

Remark. The optimization problem (3) is numerically not
tractable, since u(·) is a continuous-time signal and then
the number of decision variables is potentially infinite. To
overcome this issue, when the optimum is found numerically,
an a-priori finite parametrization of the input signal u(·) must
be assumed. For example, a piece-wise constant parametriza-
tion can be assumed, with changes of value at the nodes
τ1, ...,τnN ∈ [t, t +Tp]. Note that, as it will be dealt in Section
4, the PMP-based NMPC solution does not require any a-
priori assumption about the control signal parametrization.
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4. NONLINEAR MODEL PREDICTIVE
CONTROL EXPLICIT SOLUTION

According to [20], the functional J can be taken as a sum of
weighted signal and vectors norms. We recall the definition
of the Lp signal norm in continuous time:

Lp =

(∫
I
‖ f (t)‖p

q dt
)1/p

(4)

where || · ||q is a vector norm with q ≥ 1. Since the goal
of the optimization problem is to minimize the propellant
consumption during the RdV maneuver, as suggested by [12]
and [21], we minimize the L1 of the input, since it effectively
leads to a minimum-propellant controller design. To sum up,
we employ the following mixed L1/L

2
2 functional:

J =
∫ t+TP

t
‖x̃p(τ)‖2

Q +‖Ru(τ)‖q dτ

+‖x̃p(t +TP)‖2
P.

(5)

The ‖v‖2
W notation represents the (square) weighted norm of

a vector v∈Rn such that ‖v‖2
W

.
= vTWv .

= ∑
n
i=1 wiv2

i and W =
diag(w1, ...,wn) ∈ Rn, wi ≥ 0. The predicted tracking error is
x̃p(τ) = r(τ)− x̂(τ), whereas r(τ) is the desired reference to
track and x̂(τ) is obtained by integration of (1). The weights
Q ≥ 0, R > 0 and P ≥ 0 are diagonal matrices. Note that,
Q,P ∈ Rnx×nx and R ∈ Rnu×nu .

Recalling the (3), we define the UC and XC sets describing
possible constraints affecting the input and the state respec-
tively. In the case of state constraints, we define the nonlinear
set as XC =

{
x(t) ∈Rnx : C(x(t))≤ 0,∀t

}
, whereas C(x(t)) is

a nonlinear function depending both from state and time. As
for the input constraints, the control signal is bounded into
the set UC =

{
u(t) ∈ Rnu : ‖u(t)‖q ≤ umax,∀t

}
.

Pontryagin-based Optimization Algorithm

According to [14], the necessary condition for a control u(t)
to be optimal and a trajectory x(t) to be the extremal path
is that the Hamiltonian scalar function H(x(t),u(t),λ (t)) at-
tains its minimum value when u(t) = u∗(t). Keeping implicit
the time dependence, the Hamiltonian function is defined as:

H(x,u,λ ) = Φ(x,u)+λ
T ( f (x)+g(x)u

)
(6)

where λ is the vector of Lagrangian (or co-state) variables
and Φ(x,u) is the integrand function in (5), i.e. Φ(x,u) =
‖x̃p‖2

Q + ‖Ru‖q. The optimization problem is subject to
both the dynamics in (1) and the dynamics of the co-state
variables λ , which evolution is described by the so-called
Euler-Lagrange differential equations:

λ̇ =−∇x
(
H(x,u,λ )

)
(7)

where ∇z(·) notation depicts the gradient operator with re-
spect to the generic vector variable z. The state and co-state
dynamics are the first-order optimality conditions. These
latter differential equations must satisfy a set of boundary
conditions to be imposed, at the borders of the prediction
horizon, both on the state and the co-state. As for the state,
at each time t = tk the value cannot be chosen arbitrarily: the
continuity between two successive sampling steps must be
ensured, whereas the same continuity condition is no required

for the co-states. On the other hand, the λ vector must satisfy
the boundary conditions for optimality (see [22]) at the end
of prediction horizon. In formulae:

x0 = x(t0)
λ (tF) = ∇x(tF )φ(x(tF))

(8)

where φ(x(tF)) is terminal cost rate of the functional, i.e.
φ(x(tF)) = ‖x̃p(t +TP)‖2

P.

Therefore, according to the PMP, the optimal control satisfies

u∗(t) = argmin
u(·)

H(x,u,λ ), (9)

which is equivalent to solve the equation

∇u(·)H(x,u,λ ) = 0. (10)

In the case of affine-in-the-input systems, the solution of
(9), over the prediction horizon, is quite trivial and has the
following general form:

u∗(τ) =−R−1
λ (τ)T g(x(τ)) (11)

where R is the diagonal, constant, square and full rank matrix
introduced in (5). Since the receding control horizon strategy
is adopted, only the first sample of u∗(τ) is applied to the
plant and the remainder of the solution is discarded.

In summary, the (1) jointly with the (7) and the boundary
conditions in (8) represent a TPBVP to be solved over the
prediction horizon [t, t +Tp]. The TPBVP solution provides
the λ (i.e. the gains) of the explicit control law (11), hence,
turning the OCP into a standard TPBVP. Note that, (1), (7),
and (8) are the Karush-Kuhn-Tucker (KKT) conditions of the
dual optimization problem (see, e.g. [23]).

Remark. According to the PMP, the Hamiltonian minimiza-
tion provides a local minimum for the the nonlinear opti-
mization problem, i.e. a sub-optimal solution. However, also
numerical methods (e.g. sequential quadratic programming)
would have returned a local minimum. Therefore, a PMP
sub-optimal solution is not an issue when dealing with non-
convex/nonlinear optimization problems.

Remark. The (10) - together with the KKT conditions -
provides the first-order necessary requirement for a local
minimum. Nevertheless, a sufficient condition is given when
∂ 2H/∂u2 ≥ 0 (Legende-Clebsch condition), the normality
condition, and the Jacobi condition are verified (for further
details, see [22] and [24]).

Remark. As already mentioned in Section 3, the
Pontryagin-based NMPC solution does not require an a-priori
parametrization of the input signal u(t). Indeed, as high-
lighted in (11), the optimal control u∗(τ) depends on λ (τ)
which varies, according to the Euler-Lagrange equation (7),
over the whole prediction horizon. This is a very interesting
result since the OCP algorithm achieves high performances
without increasing the computational complexity and without
any a-priori assumption on the input signal shape.

Path Constraints Management

A way to incorporate the path constraints within the OCP
is to define an augmented cost function J̃ such that, when
the state trajectory approaches the boundary of the forbidden
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set, its value tends to infinity: limC(x)→0 J̃ = ∞. Thanks to
this strategy, the constrained OCP is solved with the same
procedure described in the previous section. Hence, we
augment the cost function with a suitable barrier function
k(x) which prevents the trajectory to approach the boundaries
of the forbidden sets whilst its value is (almost) null when
far from the boundaries. This is a common methodology for
dealing with path constraints, examples are included in [25].
Thus, the cost function turns into:

J̃ =
∫ t+TP

t
‖x̃p(τ)‖2

Q +‖Ru(τ)‖q +∑
n
i=1ki(x) dτ

+‖x̃p(t +TP)‖2
P.

(12)

where n is the number of the state constraints. Given the
augmented performance index J̃, the solution of the TPBVP
follows the same aforementioned procedure, accounting the
gradient of the barrier function within the Euler-Lagrange
differential equations.

5. THE RENDEZ-VOUS PROBLEM
Once that the complete NMPC solution procedure has been
presented, the OCP can be further detailed by integrating the
RdV satellite motion. Let the path constraints be momentarily
neglected. In our specific problem, we chose not to consider
the S/C mass variation due to the maneuvers. This is a
common choice if considering electric propulsion with very
high values of specific impulse (Isp). If the Isp ∼ 1000 s
(or higher), the amount of propellant burned during the
maneuvers is a very small fraction of the overall satellite mass
which, without loss of generality, can be considered constant
throughout the whole approaching phase.

Accounting the C-W relative motion equations (2) and the
performance index (5) (setting q = 2), the Hamiltonian turns
into (keeping implicit the time dependence):

H(x,u,λ ) = ‖Ru‖2 + x̃T
p Qx̃p +λxṙx +λyṙy +λzṙz

+λẋ(3ϖ
2rx +2ϖ ṙy +ux)+λẏ(−2ϖ ṙx +uy)

+λż(−ϖ
2rz +uz)

(13)
where λ = (λx,λy,λz,λẋ,λẏ,λż)

T is the co-state vector.
Whereby, the Euler-Lagrange equations in compact form:

λ̇ = Aλ −2Qx̃ , (14)

A =

[
03×3 W
−I3×3 M

]
, (15)

W =

[−3ϖ2 0 0
0 0 0
0 0 ϖ2

]
, M =

[
0 2ϖ 0
−2ϖ 0 0

0 0 0

]
, (16)

and I is the identity matrix. The boundary conditions on λ

are imposed at the end of the prediction horizon while the
continuity of the state must be imposed at the beginning of
the prediction horizon, from (8) we have:

x0 = x(t0) ,
λ (tF) = 2Px̃p(tF).

(17)

We have formalized the TPBVP for the RdV dynamics. The
solution of TPBVP provides the values of λ of the explicit

control law. As already mentioned, the minimization of the
L1 norm of the input signal promotes the bang-bang behavior
of the controller, this latter happens when the input signal
appears linearly in the Hamiltonian.

Definition 1: A controller is said ‘bang-bang’ when its output
can only assume a null, a maximum or a minimum value. The
resulting command signal is piece-wise constant in time.

In order to explicit the optimal control law for the RdV prob-
lem, let the Hamiltonian be slightly modified. Define with Γ

the magnitude of the thrust acceleration, such that Γ = ‖u‖2,
and û is the thrust acceleration unit vector. Subdivide also the
co-state vector into two smaller vectors λR = (λx,λy,λz)

T and
λV = (λẋ,λẏ,λż)

T . The Hamiltonian is re-written as:

H = ‖Ru‖2 + x̃T
p Qx̃p +λ

T
R v+λ

T
V (h(x)+Γû) (18)

where v = (ṙx, ṙy, ṙz)
T is the velocity vector and h(x) =

(3ϖ2rx + 2ϖ ṙy,−2ϖ ṙx,−ϖ2rz)
T . Consider the cost rate

‖Ru‖2, it is well know that ‖Ru‖2 ≤ ‖R‖2‖u‖2, nevertheless,
if R is a definite positive diagonal matrix whose entries are
all equal, the ‖Ru‖2 = ‖R‖2‖u‖2 equality holds. This latter
assumption is quite common in aerospace fields, where the
weights relevant to thrust acceleration components are all
equal. Therefore, the (18) turns into:

H = ‖R‖2Γ+ x̃T
p Qx̃p +λ

T
R v+λ

T
V (g(x)+Γû). (19)

We take now advantage of the notion of primer vector p,
a remarkable property of the Lagrangian variables provided
by Lawden in [26]. Indeed, the vector of the Lagrangians
associated to the velocity λV represents the optimal firing
direction and its well know in literature as ‘primer vector’,
so that p = −λV . Therefore, the optimal thrust direction is
parallel to the primer vector direction and then û= p/P, being
P = ‖p‖2 = ‖− λV‖2 the primer vector magnitude. Hence,
P = −λ T

V û. By the previous definitions, the Hamiltonian is
re-written as:

H = ‖R‖2Γ+ x̃T
p Qx̃p +λ

T
R v+λ

T
V g(x)−PΓ

=−(P−‖R‖2)Γ+ x̃T
p Qx̃p +λ

T
R v+λ

T
V g(x).

(20)

According to (9), the Hamiltonian must be minimized over
the choice of the thrust acceleration magnitude Γ. Never-
theless, since the acceleration appears linearly in the Hamil-
tonian, the solution of the optimal control equation will
lead to an input signal with an infinite magnitude. In this
peculiar case, the problem is feasible if and only if the control
is bounded. If the control belongs to a bounded set, the
minimizing value of the Hamiltonian will depend only on
the algebraic sign of the coefficient of Γ in (20). In the
aerospace literature, the coefficient of the thrust magnitude
is well known as switching function (SF). In this particular
case, it is defined as:

SF = P−‖R‖2. (21)

The sign of the switching function defines a policy for the
engines power-on/off. Therefore, the solution that minimizes
the Hamiltonian function is bang-bang control law and the
input signal can assume only a maximum or zero value:

Γ =

{
Γmax if SF > 0,
0 if SF < 0. (22)
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Table 1. Orbital Scenario Parameters

Description Value Unit
Earth’s Planetary. Const. (µ) 398600.4418 km3 s−2

Earth’s Gravity Acc.(g0) 9.807 km s−2

Orbit Radius 42164 km
Mean Motion (ϖ) 7.2911e-05 s−1

When SF = 0, the control is called singular (or undetermined)
and it can assume any value into the admissible input set.
Clearly, when the control is singular, a suitable choice is to
set Γ = 0.

To sum up, we have defined a policy for the engines ignition
and we have proved that the L1 minimization of the input
signal provides a bang-bang control law, which magnitude
can assume only the zero or the maximum values. As for the
firing direction, we remind that the optimal thrust direction
is parallel to the primer vector direction. Briefly, the optimal
control law assumes the final form:

u∗ =

{
Γmax

p
‖λV‖2

if SF > 0,

0 if SF≤ 0.
(23)

Note that, when minimizing with respect to the Euclidean
norm of the input, the bang-bang behavior refers to the
magnitude of thrust whilst the single components can assume
any value according to (23). Conversely, if we would have
been minimized with respect to the ‖ · ‖1 of the input signal,
the bang-bang behavior would have been appeared element-
wise.

6. SIMULATED EXAMPLE
Consider a scenario where the chaser satellite is approaching
the target starting from a distance of few hundreds meters,
in order to allow the subsequent docking maneuver. The
dynamics is described by the C-W equations in (2) and the
operations take place in a geostationary orbit. The orbital sce-
nario parameters are summarized in Table 1. The trajectory of
the chaser is subject to nonlinear constraints. In the example
scenario, we design a safety sphere around the target (in order
to avoid possible chaser/target collisions) with a radius of
0.05 km. Therefore, the admissible state set is defined as:

XC =
{

x(t) ∈ R6 : 0.05−‖r(t)‖2 ≤ 0,∀t
}

(24)

The path constraint is handled by designing a proper barrier
function which prevents the S/C to violate the safety sphere
around the target. We chose to employ a Gaussian-like barrier
function of the form:

k(x) = aexp
(
−bC(x)2) (25)

where a and b are shaping parameters to be tuned during the
design phase and C(x)≡ 0.05−‖r(t)‖2. Conversely to other
kinds of barrier functions (e.g. the log-like functions), when
C(x)→ 0, the value of k(x) is very high without reaching the
infinity. This choice prevents several numerical errors that
may occur when the S/C is too close to the safety sphere.
In order to include the barrier function within the Euler-
Lagrange equation, we explicit the gradient of k(x) with

Table 2. S/C Parameters

Description Symbol Value
Mass m 500 kg

Init. Position r0 (−0.5,−0.1,0.3)T km
Init. Velocity ṙ0 (−0.001,−0.008,−0.001)T km/s
Ref. Position rr (0.08,0,0)T km
Ref. Velocity ṙr (−0.001,0,0)T km/s

Table 3. Engine Parameters

Description Symbol Value
Specific Impulse Isp 1800 s
Maximum Thrust Tmax 0.49 N

Maximum Acceleration umax 5e−5 km/s2

respect to state x:

∇xk(x) =



−2abrx exp
[
−b(‖r‖2−0.05)2

]‖r‖2−0.05
‖r‖2

−2abry exp
[
−b(‖r‖2−0.05)2

]‖r‖2−0.05
‖r‖2

−2abrz exp
[
−b(‖r‖2−0.05)2

]‖r‖2−0.05
‖r‖2

0

0

0


(26)

Let now the S/C dynamics, the propulsion system, and the
NMPC parameters be presented. The initial and the reference
state of the chaser S/C are listed in the Table 2. We chose to
guide the chaser in order to nullify the y and z components and
allowing the target to be approached and docked, in the very
last meters of the maneuvers, along the x-axis. Concerning
the propulsion system, the S/C is equipped with a cluster
of electric engines whose main parameters are highlighted
in Table 3. This choice is aimed to promote the propellant
expenditure minimization, allowing the S/C to extend its
mission life time and to equip heavier payloads. Finally, the
NMPC design parameters are listed in Table 4.

Table 4. NMPC Parameters

Parameter Value
TS 1 s
Tp 60 s
R I3×3

Q 20 · I3×3

P diag(10,10,10,1,1,1)
a 1000
b 1000
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We are now in position to present the outcomes of the sim-
ulations. The orbital simulator and the NMPC algorithm are
implemented in the Matlab/Simulink environment. In Figure
1, the chaser trajectory is sketched, showing the motion of
the S/C from the initial point towards the reference point.
Moreover, in Figure 2, the thrust direction is shown along the
S/C trajectory. Nevertheless, Figure 3 and Figure 4 give more
worthy information about the trajectory evolution of the S/C
during the maneuver. Indeed, from Figure 3, it is possible to
observe how the guidance and control algorithm is perfectly
able to track the desired reference position. On the other
hand, the chaser position radius (Figure 4) shows how the
S/C never violates the safety sphere around the target. This is
also due to the large value of the Q which allows to smooth
the oscillatory evolution of the state.

As for the S/C velocity, the evolution is shown in Figure 5.
A very important point: since during the approaching phase
the requirement on the reference velocity is not so strict (as
it will happen in the docking phase), the tolerance on the
reference has been relaxed. This latter helps to reduce the
computational effort and the time of the maneuver.

An interesting discussion can be carried out by analyzing the
plot of the thrust components and magnitude. As already
mentioned in Section 5, we designed a NMPC cost index in
order to obtain a bang-bang profile of the input. This behavior
is clear by observing the thrust acceleration magnitude in the
last subplot of Figure 6. Indeed, we remind that the bang-
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Figure 3. Chaser Position Coordinates.
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Figure 6. Thrust Components and Magnitude.

bang behavior is meant referred to the magnitude acceleration
and not component-wise. For this reason, the single com-
ponents of the thrust can assume any value within the input
set, being the input constraints always satisfied. In Figure
7, the thrusting acceleration components and magnitude are
displayed for the last phase of the RdV maneuver. Even
though the thrust acceleration evolution presents a high-
frequency behavior, the issue can be mitigated through a
proper control dispatch during the S/C engines configuration
design. Finally, concerning the mass (Figure 8), it can be
observed that, during the maneuver, only a very small fraction
of the overall S/C mass is burned (about 1.2 kg). Therefore,
without loss of generality, we can considered the S/C to have
a constant mass throughout all the maneuver interval.

7. CONCLUSION
The problem of obtaining an explicit control law for the
Nonlinear Model predictive Control was studied. We have de-
veloped an algorithm that, thanks to the Pontryagin Minimum
Principle, was able to switch from the primal optimization
problem to the dual formulation. This approach guarantees
the availability of an explicit control law which is function
of the co-state variables, whose evolution is described by the
Euler-Lagrange equations. Indeed the optimal solution was
obtained by minimizing the Hamiltonian scalar functions,
an operation that can be tackled analytically by solving an
algebraic equation. Moreover, the integration of the path
constraints was managed by exploiting a suitable barrier
function, with a slight modification of the NMPC cost func-
tion, and without any modification of the OCP algorithm.
Another key point of the dissertation was the employment
of a mixed L1/L

2
2 functional, which yielded a sparse-in-

time and bang-bang behavior of the solution. The novel

880 890 900 910 920 930 940 950 960 970 980

-5

0

5

10-5

880 890 900 910 920 930 940 950 960 970 980

-5

0

5

10-5

880 890 900 910 920 930 940 950 960 970 980

Time [s]

-5

0

5

10-5

880 890 900 910 920 930 940 950 960 970 980

Time [s]

0

2

4

6
10-5

Figure 7. Zoom of Thrust Components and Magnitude.
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approach was applied to a rendezvous space mission, which
dynamics is described by Clohessy-Wiltshire equations. The
chaser is equipped with low-thrust engines and a safety
sphere around the target was designed in order to avoid
possible chaser/target collisions. The result highlighted the
effectiveness of the NMPC algorithm, showing an excellent
reference tracking, the compliance with the path constraints,
and the desired bang-bang behavior of the engines.
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