
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Detecting discriminatory risk through data annotation based on Bayesian inferences / Beretta, Elena; Vetro', Antonio;
Lepri, Bruno; De Martin, Juan Carlos. - STAMPA. - (2021), pp. 794-804. (Intervento presentato al  convegno ACM
Conference on Fairness, Accountability, and Transparency 2021 (ACM FAccT 2021) tenutosi a Online nel March 3-10,
2021) [10.1145/3442188.3445940].

Original

Detecting discriminatory risk through data annotation based on Bayesian inferences

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3442188.3445940

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2858625 since: 2021-05-08T13:11:01Z

Association for Computing Machinery



Detecting discriminatory risk through data annotation based on
Bayesian inferences

Elena Beretta
elena.beretta@polito.it

Nexa Center for Internet & Society
Department of Control and Computer Engineering

Politecnico di Torino
Turin, Italy

Fondazione Bruno Kessler
Trento, Italy

Antonio Vetrò
antonio.vetro@polito.it

Nexa Center for Internet & Society
Department of Control and Computer Engineering

Politecnico di Torino
Turin, Italy

Bruno Lepri
lepri@fbk.eu

Fondazione Bruno Kessler
Trento, Italy

Juan Carlos De Martin
demartin@polito.it

Nexa Center for Internet & Society
Department of Control and Computer Engineering

Politecnico di Torino
Turin, Italy

ABSTRACT
Thanks to the increasing growth of computational power and data
availability, the research in machine learning has advanced with
tremendous rapidity. Nowadays, the majority of automatic decision
making systems are based on data. However, it is well known that
machine learning systems can present problematic results if they
are built on partial or incomplete data. In fact, in recent years sev-
eral studies have found a convergence of issues related to the ethics
and transparency of these systems in the process of data collection
and how they are recorded. Although the process of rigorous data
collection and analysis is fundamental in the model design, this
step is still largely overlooked by the machine learning community.
For this reason, we propose a method of data annotation based on
Bayesian statistical inference that aims to warn about the risk of
discriminatory results of a given data set. In particular, our method
aims to deepen knowledge and promote awareness about the sam-
pling practices employed to create the training set, highlighting
that the probability of success or failure conditioned to a minority
membership is given by the structure of the data available. We
empirically test our system on three datasets commonly accessed
by the machine learning community and we investigate the risk of
racial discrimination.
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1 INTRODUCTION
In the last decades machine learning systems are widely spreading
in different academic domains, as well as many public and pri-
vate sectors are increasing the exploitation of these systems. Their
widespread and pervasiveness is mainly driven by the exponential
growth of computational power and the extensive availability of
large amounts of data [27]. Supervised machine learning models
are also particularly widespread and now deeply rooted in differ-
ent sectors due to their usage versatility. The predictive ability of
supervised machine learning systems is deployed in disparate ar-
eas of application: credit reliability [27], justice system [2, 7], job
recommendations [39], university selection process [25], cultural
contents [38],[23] and purchases recommendations [35]. The key
ingredient that supervised machine learning models have in com-
mon is the availability of a set of labeled data used to train the
model in elaborating a response related to past events [17]. Since
the known properties of the available set of data is used to create
a classifier that makes predictions about new entities of the same
type, the structure, properties and quality of the data are aspects
that largely and directly influence the quality of the model and the
results it produces [34], [1]. Although data-driven decision models
have been shown to produce both economic and social benefits,
many researchers have highlighted several problems and damages
related to their use in different areas, especially if they are built on
partial or incomplete data [20], [12]. As a matter of fact, in recent
years several studies have found a convergence of issues related to
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the ethics and transparency of these systems in the process of data
collection and in the way they are recorded [30]. While the process
of rigorous data collection and analysis is fundamental to the design
of the model, this step is still largely overlooked by the machine
learning community [6, 24]. As the practice of removing protected
attributes from available data has been shown to potentially exac-
erbate further discrimination [44] - making bias even more difficult
to detect - practices related to data collection, data transparency
and data explainability become even more relevant and urgent. The
aim of our work is to provide a data annotation system that serves
as a diagnostic framework containing immediate information about
the data appropriateness in order to more accurately assess the
quality of the available data used in training models. We propose a
data annotation method based on Bayesian statistical inference that
aims to warn of the risk of discriminatory results of a given data set.
In particular, our method aims to deepen the statistical knowledge
related to the information contained in the available data, and to
promote awareness of the sampling practices used to create the
training set, highlighting that the probability of a discriminatory
result is strongly influenced by the structure of the available data.
We test our data annotation systems on three dataset widely spread
in machine learning community: the COMPAS dataset [21], the
Drug Consumption dataset [15], [16] and the Adult dataset [28].

1.1 Problem Statement
The majority of machine learning systems are based on historical
data processing [32]. This is particularly true in supervised machine
learning models. Several studies have shown evidence that many
equity and discrimination issues are due to input data properties
[5]. Most of today data sets used to train models are chosen through
non-probabilistic methods, generating problems of data imbalance
and representativeness [14, 32]. This means that different fractions
of the population do not show the same opportunity to be repre-
sented within the sample - aka, training sets -, leading some groups
of individuals to have a lower probability of being represented.
Common observed effects of a bad sampling are underestimation
and overestimation of some groups [4]. Undetected distortions in
data may also easily represent a spurious statistical noise. This
happens when the data structure induces dependence between two
variables that are not linked by a real cause-effect relationship.

Data Sampling. A key moment in the pipeline of a machine
learning model is when the programmed algorithm is supplied with
training data representing the entities on which the model itself
trains its knowledge to make predictions. The quality of the data
used in this phase is fundamental for the desired result, according
to the principle of "garbage in - garbage out": even the most so-
phisticated models can present distorted results in the presence of
low quality data [42]. One of the main causes of data distortion is
the way the data is selected and provided to the algorithm display-
ing problems related to inaccuracy, lack of update or inadequate
representativeness. However, while knowledge of bias typologies
has proliferated over the years, less attention is paid to issues con-
cerning data collection, notation and sampling [31]. In the spirit
of fostering a broader awareness of data handling, we provide a
reasoned list of issues that may arise during this phase:

i Data Selcetion: the large proliferation of data sets availability
on the same kind of problem to be analyzed, make hard the
a priori choice of a given data set [17];

ii Inadequate sampling methods: most models are trained with
data sets that have been "found" and not subjected to prob-
abilistic sampling methods, leading to limited or no data
control [3];

iii Cost and Time Limit: collecting large amounts of data that
present proportional representations of each property with
respect to a sensitive attribute is time consuming and often
costly and labor-intensive [8];

iv Data set validation: in the design of amachine learningmodel,
more attention is paid to the mathematical basis of the clas-
sifier, restricting the data formation process to a black box
[18, 19];

v Validation planning: data validation, when applied, is often
performed only after the model has been trained and used,
making the feedback cycle inefficient and often ineffective
[22];

vi Lack of statistical rigorousness: the suitability of the data set
varies depending on the task for which the data are prepared.
For instance, models based on linear regression imply as-
sumptions of normality on the measurement error [17, 43].
This specificity is often absent in the pipeline of machine
learning models.

Miss-dependency. Two-dimensional or bivariate statistics is the
study of the degree to which two distinct characters of the same sta-
tistical unit are connected. However, the connection only measures
the degree of statistical dependency without inducing a cause-effect
relationship or dependency between the variables. For instance,
it can be shown that people with small feet make more spelling
mistakes than people with large feet. However, this statistical de-
pendency does not indicate that having small feet is the cause of
spelling mistakes; the greater frequency of spelling mistakes may in
fact be due to the younger age of people with small feet. In this case
there could be a third variable, age, responsible for the cause-effect
relationship. While in a human-centered model - where the human
makes the decisions - this distinction is quite evident, in a machine
learning model miss-dependency is not always deductible. This
depends on two reasons: i) the machine does not recognize the
meaning of the instance but looks at the properties of the variables;
ii) the way in which the data are structured modifies the interpreta-
tion that the machine is having regarding the relation of statistical
dependency. This means that, while in a human-centered model it
is the human to verify that the relationships of statistical depen-
dence detected in the available data are leading to a cause-effect
relationship, in machine learning models the machine is not always
able to recognize a spurious connection, erroneously assigning to
two or more variables a cause relationship. In other words, the
structure of the available data is responsible for the successful or
failed relationships established with the protected attributes (eth-
nicity, gender, etc.) in the data. In addition, the rapid growth and
spread of current machine learning systems is due in part to the
ease of design of the models themselves, which thanks to modern
software allows the construction of predictive models avoiding the
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understanding and adoption of rigorous statistical analysis. The sim-
plicity of design has therefore created a gap between predictive and
analytical-explicative power, favoring misinterpretation between
causality and statistical dependence. The distinction between sta-
tistical dependence and causal dependence in data is therefore a
primary issue in machine learning models, especially to determine
the causes of failure, potential biases encoded in the data and the
reliability of application.
Based on the problems highlighted, our contribution aims to answer
the following research questions:

RQ1 Is it possible to establish the probability of composition of
the training data from the available data set?

RQ2 Do the available data known to the machine learning com-
munity present a discriminatory future risk based on their
structure?

2 BACKGROUND
When machine learning model decisions are based on historical
records, they tend to embed distortions that exist in reality and
crystallize them. Prejudices and human bias therefore become part
of the technology itself. This is particularly evident with regard
to ethnic discrimination. Over the last years, the rise of machine
learning models in various sectors is leading to a dramatic increase
of discriminatory outcomes for ethnic minorities, across different
fields of application. A striking and well known case is the COM-
PAS software, used in U.S. court to estimate the probability of
defendants’ recidivism, which has been shown to underestimate
the risk of recidivism for white defendants and overestimate it for
black defendants [21]. However, the COMPAS case is not an iso-
lated phenomenon. In a 2017 experiment conducted on the Airbnb
platform, applications from guests with typically African Ameri-
can names were found to be 16% less likely to be accepted than
identical guests with typically white names [13]. Also in 2017, a
geo-statistical analysis revealed that the design of the popular Poké-
mon GO game strengthens existing geographical prejudices, for
example by benefiting urban areas and neighborhoods with smaller
minority populations, economically disadvantaging ethnic minority
areas [10]. Several studies have demonstrated the discriminatory
potential of targeting advertising [41], [40], which is only recently
receiving interventions to remove the prejudicial content of the
model. For example, Facebook after years of scandals related to
ads that exclude people based on race [2] has finally removed the
racial targeting option for ads [29]. In a 2019 study, the commercial
algorithm widely used in the U.S. health care system to guide health
care decisions was found to discriminate against black patients [33].
The algorithm falsely assigned a healthier condition to black pa-
tients despite the risk of complications being the same for white
patients, making black people less likely to receive more financial
resources for extra care. Although facial recognition technologies
are now used in several domains, they still present many discrimi-
natory issues related to differences in margins of error - generally
software has a 20% higher margin of recognition error for black
women [36] -. As an example, we report what happened recently
with Google Vision AI, a computer vision service for image labeling
[26]. By providing the system with two images of people holding
a body temperature thermometer, it labeled the image containing

the white person as an "electronic device", while in the image con-
taining the black person the device held was labeled as a "gun". In a
later experiment it was shown that it was sufficient to apply a pink
mask on the black person’s hand in order the software labeled the
image as "tool". Racial bias encoded in machine learning systems is
likely to spread silently and like wild fire in everyday technologies.
The increasing and ubiquitous spread of such models also intended
to make allocative decisions about people’s lives makes the problem
of prejudice and rational discrimination more urgent than ever. For
this reason and for the historical moment we are experiencing, our
work intends to focus on rational discrimination in data.

3 MOTIVATING EXAMPLE
Given a population composed of 60% Caucasians, 35% black people
and 15% Asian people, the probability of positive outcome for the
respective ethnic groups is 70% for Caucasians, 20% for Blacks and
60% for Asians. What is the probability of failure with respect to the
protected attribute Ethnicity?

In this example the probabilities are given rather than the nu-
merosity in order to simplify the following notation. To offer a
better a better understanding of the Methodology this data will be
used in Section 4. The data gives the probability of success, but the
similar reasoning is also valid for cases where the probability of
failure is known. The intent is to verify whether the probabilities of
success or failure of a subgroup are influenced by group member-
ship - and vice versa - and more specifically how these probabilities
affect the composition of the training set.

4 METHODOLOGY
Our data annotation system is based on four modules:

I Dependence: assesses the degree of connection among the
protected attribute - in our study, the ethnicity - and the
target variable;

II Diverseness: provides the training diversification probabil-
ity in respect to each level of the protected attribute and the
target variable;

III Inclusiveness: provides the probability that two properties
are simultaneously included in the training set;

IV Training Likelihood: provides the occurrence likelihood
of the protected attribute levels given the target variable
levels - and vice versa - before the training set is sampled.

4.1 Quantifying Dependence
Excluding some specific domains where the dependence of some
protected attributes with the response variable is not considered
problematic, but rather it is fundamental for the understanding of
a certain problem (for example the gender attribute in the medical
field in the detection of particular diseases [11]), in the broad field
of machine learning systems the dependence between the protected
attribute and the response variable has caused severe consequences
[32, 34]. The dependence between the protected attribute and the
response variable is therefore one of the major causes of discrimi-
nation and as such must be rigorously examined. The first step for
a correct bias detection within the data is given by the dependency
analysis between the different modalities of a protected attribute
and the response variable. In statistics, the measurement of the
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degree of dependence of two qualitative variables is called con-
tingency; contingency measures the degree of connection of two
categorical variables. To determine the degree of connection, the
marginal frequencies and the combined frequencies of the bivari-
ate table are used. Given two categorical variables 𝑥𝑖 and 𝑦𝑖 , the
dependency or independence is established through the theoretical
independence table 𝑓 ′(𝑥𝑖 , 𝑦 𝑗 ) once the table of the observed real
data 𝑓 ′(𝑥𝑖 , 𝑦 𝑗 ) is given. The contingency𝐶 (𝑥𝑖 ;𝑦 𝑗 ) is therefore given
by the difference between the observed and theoretical frequencies:

𝐶 (𝑥𝑖 ;𝑦 𝑗 ) = 𝑓 (𝑥𝑖 , 𝑦 𝑗 ) − 𝑓 ′(𝑥𝑖 , 𝑦 𝑗 ) (1)

If the table of the observed real data and the theoretical table of
independence coincide - that is if for each cell the value is null -
then the two variables are independent. Otherwise, it is necessary
to measure the degree of connection between the variables. The de-
gree of connection between two categorical variables is commonly
measured by the Pearson connection index, obtained as the sum of
the relative quadratic contingencies. The index assumes a value of
zero in case of independence in distribution and increases as the
degree of connection between variables increases:

𝜒2 =
∑︁
𝑖, 𝑗

𝐶2 (𝑥𝑖 ;𝑦 𝑗 )
𝑛𝑖, 𝑗

= 𝑛

(∑︁
𝑖, 𝑗

𝑛2
𝑖, 𝑗

𝑛𝑖0𝑛0𝑗

)
(2)

In order to support Pearson’s connection index, the contingency
coefficient is adopted with the purpose of reducing the 𝜒2 in the
range [0;1]:

𝐶 =

√︄
𝜒2

𝜒2 + 𝑛
(3)

However, the effect size of the degree of connection between two
categorical variables is not always easy to interpret, where by ef-
fect size we mean a quantitative measure of the magnitude of a
phenomenon. To offer a better understanding of the relationship
of dependency between two variables, several simplified methods
of interpretation have been proposed, especially to guide social
scientists in the interpretation of statistical test results. In the spirit
of simplifying the interpretation of the dependency between the
response variable and the protected categories for a data set user,
we introduce the concept of the Effect Size Index w (ES w):

𝑤 =

√︄∑︁
𝑖=1

(𝑃1𝑖 − 𝑃0𝑖 )2
𝑃0𝑖

, (4)

where 𝑝0𝑖 and 𝑝1𝑖 are the value of the ith cells. Notice that unlike the
contingency coefficient, the ESw is not derived from frequencies but
from proportions. The relationship between the Pearson connection
index, the contingency coefficient and the ES Index is given by the
following formula:

𝐶 =

√︄
𝜒2

𝜒2 + 𝑛
=

√︄
𝑤2

𝑤2 + 1
(5)

Alternatively to the Formula 4 it is also possible to calculate the ES
w from the contingency coefficient:

𝑤 =

√︄
𝐶2

1 −𝐶2
(6)

The size of the ES w between two variables is then evaluated
through the use of Table 1, which relates the magnitude of the
ES with a nominal label. The advantage of using the conventional

Table 1: Conventional definitions of Effect Size Indexwmag-
nitude

Magnitude Value
SMALL w = 0.1
MEDIUM w = 0.3
LARGE w = 0.5

conversion table for the user of the data set is that the magnitude
of the dependency is displayed quickly and immediately without
the need for more complex statistical tests.

4.2 Estimating Diverseness
Intuitively, the probability of an event represents how likely the
event will occur. According to the classical definition the probability
is given by the following ratio:

𝑃 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠
(7)

We now apply this elementary theory to the problem of data col-
lection in machine learning. When the data set is partitioned into
training and test sets, a split with amore or less standard ratio (70/30
or 80/20) is generally performed, i.e. a sampling is performed on the
available data. Let’s consider the case in which the training data set
is generated by random sampling on the original data set without
considering further techniques (stratification or re-sampling) - for
example in the case of a non expert user -. The probability an event
occurs turns into the probability that the training set shows some
existing properties contained in the original data set:

𝑃 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠
(8)

In our data annotation this ratio is introduced to allow the dataset
user to answer questions like: "If I perform a random sampling on
the original dataset, what is the probability that the training set is
mainly composed of positive examples? What is the probability of
belonging to a certain group with respect to the target variable?"

Prior Probabilities. The a priori probability of a data property
is the degree of belief of the property in the absence of other infor-
mation, also known as the unconditional probability. The degree
of belief is the probability of a property to be true in an uncertain
environment. The probability is referred to the belief and not to the
truth of the fact, as it is not possible for the user to know exactly
the truth, that is if the original data are representative of the real
world. Since the user does not have access to the complete infor-
mation, several hypotheses on how the real data is structured have
to be drawn, assigning to each of them a probability of being true.
Formally:

𝑃 = (𝑌 = 𝑦)
𝑃 = (𝐴 = 𝑎) (9)

We estimate the prior probabilities by using the data of the problem
introduced in Section 3, where the target variable 𝑌 assumes value
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1 in case of negative outcome, otherwise 0. In this specific case,

Table 2: Example of prior probabilities

Formula Probability
𝑃 (𝑌 = 0) P = 0.48
𝑃 (𝑌 = 1) P = 0.52
𝑃 (𝐴 = 𝑤ℎ𝑖𝑡𝑒) P = 0.6
𝑃 (𝐴 = 𝑏𝑙𝑎𝑐𝑘) P = 0.35
𝑃 (𝐴 = 𝐴𝑠𝑖𝑎𝑛) P = 0.15

the prior probabilities indicate that the training set has probability
0.48 to be composed by individuals who display a positive outcome
and 0.52 to be composed by individuals who display a negative
outcome; finally, the probabilities that it is formed by individuals
of white, black and Asian ethnicity are respectively 0.6, 0.35 and
0.15 (Table 2).

4.3 Estimating Inclusiveness
Posterior Probabilities. Given two events A and B, the prob-

ability 𝑃 (𝐴|𝐵) is said posterior probability because it allows to
calculate the probability of A, knowing that B occurred. In our case
the posterior probability means to compute the probability that
𝑌 = 𝑦, knowing that 𝐴 = 𝑎 has occurred (and vice versa). In other
words, the probability that the training set shows the property Y = y,
knowing the property𝐴 = 𝑎 has occurred (and vice versa). We start
by estimating the probability that two events occur simultaneously.
From the definition of conditional probability:

𝑃 (𝐴 = 𝑎 ∩ 𝑌 = 𝑦) = 𝑃 (𝐴 = 𝑎)𝑃 (𝑌 = 𝑦 |𝐴 = 𝑎)
𝑃 (𝑌 = 𝑦 ∩𝐴 = 𝑎) = 𝑃 (𝑌 = 𝑦)𝑃 (𝐴 = 𝑎 |𝑌 = 𝑦) (10)

Since from Compound Probability Theorem [37] 𝑃 (𝐴 = 𝑎 ∩ 𝑌 = 𝑦)
is equal to 𝑃 (𝑌 = 𝑦 ∩𝐴 = 𝑎), i.e. the probability of both properties
occurring is the same, either of the two formulas can be employed
indistinctly.

Table 3: Example of properties occurring simultaneously

Formula Probability
𝑃 (𝑌 = 0 ∩𝐴 = 𝑤ℎ𝑖𝑡𝑒) P = 0.42
𝑃 (𝑌 = 0 ∩𝐴 = 𝑏𝑙𝑎𝑐𝑘) P = 0.07
𝑃 (𝑌 = 0 ∩𝐴 = 𝐴𝑠𝑖𝑎𝑛) P = 0.09
𝑃 (𝑌 = 1 ∩𝐴 = 𝑤ℎ𝑖𝑡𝑒) P = 0.18
𝑃 (𝑌 = 1 ∩𝐴 = 𝑏𝑙𝑎𝑐𝑘) P = 0.28
𝑃 (𝑌 = 1 ∩𝐴 = 𝐴𝑠𝑖𝑎𝑛) P = 0.06

4.4 Estimating Training Likelihood
From the definition of conditional probability, we derive the Bayes
Theorem for the properties of the training set:

𝑃 (𝐴 = 𝑎 |𝑌 = 𝑦) = 𝑃 (𝐴 = 𝑎)𝑃 (𝑌 = 𝑦 |𝐴 = 𝑎)
𝑃 (𝑌 = 𝑦)

𝑃 (𝑌 = 𝑦 |𝐴 = 𝑎) = 𝑃 (𝑌 = 𝑦)𝑃 (𝐴 = 𝑎 |𝑌 = 𝑦)
𝑃 (𝐴 = 𝑎)

(11)

In the case of binary classification and in the case of protected
attributes we are in the presence of a certain event partition. This
means that the events are disjointed from each other 𝑌𝑖 ∩ 𝑌𝑗 = ∅
and 𝐴𝑖 ∩𝐴 𝑗 = ∅ if 𝑖 ≠ 𝑗 and that as a whole they are the only ones
possible, i. e., if a certain property occurs, one and only one certainly
appeared. In other words, it is not possible that the training set is
composed of individuals who belong simultaneously to the black
and white ethnic group, or who simultaneously show a positive
and negative outcome. The union of the occurrence of the single
properties is therefore the whole set of possible properties. For the
properties outcome and ethnicity the generalization formula are
respectively:

Ω : ∪𝑁
𝑖=1𝑌𝑖 = Ω, ℎ𝑒𝑛𝑐𝑒

𝑁∑︁
𝑖=1

𝑃 (𝑌𝑖 ) = 𝑃 (∪𝑁
𝑖=1𝑌𝑖 )

Ω : ∪𝑁
𝑖=1𝐴𝑖 = Ω, ℎ𝑒𝑛𝑐𝑒

𝑁∑︁
𝑖=1

𝑃 (𝐴𝑖 ) = 𝑃 (∪𝑁
𝑖=1𝐴𝑖 )

(12)

By applying Formulas 10 and 12 the Bayes Theorem can be gener-
alized for each property of the training set:

𝑃 (𝑌 = 𝑦 |𝐴) = 𝑃 (𝑌 = 𝑦)𝑃 (𝐴|𝑌 = 𝑦)
𝑃 (𝐴) =

𝑃 (𝑌 = 𝑦)𝑃 (𝐴|𝑌 = 𝑦)∑𝑁
𝑖=1 𝑃 (𝐴|𝑌𝑖 )𝑃 (𝑌𝑖 )

𝑃 (𝐴 = 𝑎 |𝑌 ) = 𝑃 (𝐴 = 𝑎)𝑃 (𝑌 |𝐴 = 𝑎)
𝑃 (𝑌 ) =

𝑃 (𝐴 = 𝑎)𝑃 (𝑌 |𝐴 = 𝑎)∑𝑁
𝑖=1 𝑃 (𝑌 |𝐴𝑖 )𝑃 (𝐴𝑖 )

(13)

The first equation in Formula 13 derives the probability of the out-
come property given the ethnic property, while the second equation
derives the probability of the ethnic property given the outcome
property. In other words, it derives the probability of composition
of the training set based on the posterior probabilities of the out-
come and ethnicity properties. Carried out a random sampling on
the original data, the Formula answers the following questions:

i In the sampled training set what is the probability of belong-
ing to an ethnic group with respect to the outcome variable?

ii In the sampled training set what is the probability of obtain-
ing a certain outcome with respect to the ethnic group?

Complementarily, the two equations can be interpreted as the prob-
ability of bias within the training set.

Table 4: Example of posterior probabilities

Formula Probability
𝑃 (𝑌 = 0|𝐴 = 𝑤ℎ𝑖𝑡𝑒) P = 0.7
𝑃 (𝑌 = 0|𝐴 = 𝑏𝑙𝑎𝑐𝑘) P = 0.2
𝑃 (𝑌 = 0|𝐴 = 𝐴𝑠𝑖𝑎𝑛) P = 0.6
𝑃 (𝑌 = 1|𝐴 = 𝑤ℎ𝑖𝑡𝑒) P = 0.3
𝑃 (𝑌 = 1|𝐴 = 𝑏𝑙𝑎𝑐𝑘) P = 0.8
𝑃 (𝑌 = 1|𝐴 = 𝐴𝑠𝑖𝑎𝑛) P = 0.4
𝑃 (𝐴 = 𝑤ℎ𝑖𝑡𝑒 |𝑌 = 1) P = 0.34
𝑃 (𝐴 = 𝑤ℎ𝑖𝑡𝑒 |𝑌 = 0) P = 0.87
𝑃 (𝐴 = 𝑏𝑙𝑎𝑐𝑘 |𝑌 = 1) P = 0.53
𝑃 (𝐴 = 𝑏𝑙𝑎𝑐𝑘 |𝑌 = 0) P = 0.15
𝑃 (𝐴 = 𝐴𝑠𝑖𝑎𝑛 |𝑌 = 1) P = 0.11
𝑃 (𝐴 = 𝐴𝑠𝑖𝑎𝑛 |𝑌 = 0) P = 0.18
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5 CASE STUDIES DATASETS
COMPAS (Correctional Offender Management Profling for Alter-
native Sanctions)1 is a popular tool used by U.S. court to estimate
the defendants’ probability of recidivism. This dataset displays the
probability of reoffending based on two year of further studies. The
dataset has been shown to underestimate the risk of recidivism for
white defendants and overestimate it for black defendants [21].
Drug Consumption [15, 16] contains information on the con-
sumption of 18 drugs based on personality traits and socio-economic
attribute. For simplicity of analysis we assumed the consumption
of Cannabis as target variable but the annotation of the dataset can
be made on each target drug.
Adult Dataset [28] The data set contains adult income annual
census from the US Census Bureau. It is commonly employed in
forecasting tasks in order to predict the factors leading to income
below or above $50,000.

Table 5: Summary of Datasets Prominent Properties

Property COMPAS Drug Adult
Consumption Dataset

Size 6172x9 1885x31 48842x15
Target 0 → no 0 → non user 0 →> 50𝐾
variable 1 → yes 1 → user 1 →≤ 50𝐾

Levels of Asian Asian AIE 𝑎

ethnicity Black Black API 𝑏
attribute Caucasian Black/Asian Black

Hispanic Caucasian Caucasian
NA𝑐 White/Asian Other

Other White/Black
Other

𝑎 American-Indian/Eskimo, 𝑏 Asian-Pac-Islander, 𝑐 Native American

6 RESULTS AND DISCUSSION
We performed the analyses that constitute our data annotation
system for each of the datasets presented in Section 5. Sub-sections
6.1, 6.2, 6.3 and 6.4 report the analysis for eachmodule - dependency,
diverseness, inclusiveness, training likelihood, respectively - and
contain an example graphic module. Figures 4 and 5 shows an
illustrative example of the graphical visualization for the complete
notation.

6.1 Dependence
This module aims to analyze the connection relationships between
the protected attribute Ethnicity and the target variable that are
established and depend on the available data. For instance, for the
COMPAS dataset the module highlights the dependency relation-
ships between recidivism and different ethnic minorities. Summary
results for dependence module are shown in Table 6.

1Retrieved from: https://www.propublica.org/datastore/dataset/compas-recidivism-
risk-score-data-and-analysis

Table 6: Summary of Dependence Prominent Properties

COMPAS Drug Adult
Consumption Dataset

Contingency 0.1413 0.1558 0.0994
coefficient
Effect size w 0.1427 0.1578 0.0999
variable
Magnitude of SMALL SMALL VERY
Effect size w SMALL

None of the three datasets displays worrying dependency values
among the protected attribute Ethnicity and the target variable,
showing the magnitude of the Effect Size w as small or very small.
However, the results of the COMPAS dataset - which is proven to
contain bias - indicate that this module alone is not sufficient to
show a latent bias risk. The degree of bias depends on the sam-
ple size and the value of the contingency coefficient of the target
variable and the protected attribute [45]. Smaller samples lead to
more bias and higher variance [46] and therefore the results of the
dependency must be analyzed in relation to the amount of data
available. In order to facilitate the interpretation of the connection

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis


Detecting discriminatory risk through data annotation based on Bayesian inferences Conference’17, July 2017, Washington, DC, USA

Figure 1: Example of Dependence graphic visualization

relations, we propose a graphic notation for dependence. Figure
1 shows the graphical representations of the dependency modules
based on different connection magnitude.

6.2 Diverseness
This module aims to analyze the diverseness of the data available
by estimating prior probabilities. They determine the probability
that training set will display an a priori environment based on the
original data available, i.e. they show the probability of training set
composition stratified by each of target variable and protected at-
tribute levels. For example, in our case study the module highlights
the probability that training set will be equally composed by ethnic
minorities and ethnic majorities. Summary results for diverseness
module are shown in Table 7. In terms of target variable probabili-
ties, the results show strong distortions for the Drug Consumption
and Adult datasets with a high probability of positive examples
- i.e. showing a negative outcome - while the probabilities of the
COMPAS dataset are quite homogeneous. Regarding the probabil-
ities of the protected attribute ethnicity, the distortions are even
more pronounced than the target variable ones, revealing a very
high probability of composition for the Caucasian ethnicity in the
Drug Consumption and Adult datasets. In the case of the COMPAS
dataset the probabilities are indeed distorted, although still not such
as to predict at this point of the analysis more severe future distor-
tions, which is why more in-depth analysis are required. Figure 4.2
shows the graphical representation of the diverseness module that
simplifies the display of prior probabilities. In the example is given

Table 7: Summary of Diverseness Analysis Results

COMPAS Drug Adult
Consumption Dataset

0 0.545 0.329 0.239
1 0.455 0.671 0.761
Caucasian 0.341 0.912 0.855
Black 0.514 0.018 0.096
Asian 0.005 0.014
Hispanic 0.082
Native American 0.002
Other 0.056 0.033 0.008
White/Black 0.011
White/Asian 0.011
Black/Asian 0.002
Amer-Indian-Eskimo 0.010
Asian-Pac-Islander 0.031

Figure 2: Example of Diverseness graphic visualization

the notation for a dataset where both the levels of the target vari-
able and those of the protected attribute ethnicity are equiprobable.

6.3 Inclusiveness
This module aims to analyze the inclusiveness of the data available
by estimating the simultaneously probabilities. They determine
the probability that training set will simultaneously display two
by two the target variable and the protected attribute properties.
For instance, in our case study the module highlights the probabil-
ity that in training set the property Asian appears simultaneously
with property success. Summary results for diverseness module
are shown in Table 8. The results of this module show that the
probability that two properties will occur simultaneously is related
to the sample size. Evidence of this can be found in the results of the
Drug Consumption and Adult datasets, where the highest probabil-
ities of simultaneous events involve the Caucasian property. The
COMPAS dataset shows quite homogeneous probabilities especially
with regard to the Black property, while for the Caucasian property
the highest probabilities are related to the simultaneous occurrence
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Table 8: Summary of Inclusiveness Analysis Results

COMPAS Drug Adult
Consumption Dataset

0∩AIE𝑎 0.0006
0∩Asian 0.0023 0.0019
0∩API𝑏 0.0041
0∩Black 0.1514 0.0023 0.0057
0∩Black/Asian 0.0000
0∩Caucasian 0.1281 0.0555 0.1061
0∩Hispanic 0.0320
0∩NA𝑐 0.0006
0∩Other 0.0219 0.0013 0.0005
0∩White/Asian 0.0004
0∩White/Black 0.0006
1∩AIE 0.0042
1∩Asian 0.0008 0.0007
1∩API 0.0111
1∩Black 0.1661 0.0010 0.0412
1∩Black/Asian 0.0003
1∩Caucasian 0.0822 0.1165 0.3115
1∩Hispanic 0.0189
1∩NA 0.0005
1∩Other 0.0124 0.0050 0.0036
1∩White/Asian 0.0016
1∩White/Black 0.0014

𝑎 American-Indian/Eskimo, 𝑏 Asian-Pac-Islander, 𝑐 Native American

Figure 3: Example of Inclusiveness graphic visualization

with the Non-recidivist property. Since the simultaneous probabili-
ties depend on the number of examples within the available data
and the sample size, this result alone is not sufficient to establish
a priori the certain presence of serious data distortions, although
some evidence can already be seen. Figure 3 shows the graphical
representation of the inclusiveness module that simplifies the dis-
play of simultaneously probabilities. In the example is given the
notation for a dataset where all the properties of the target variable
and those of the protected attribute ethnicity are equiprobable.

6.4 Training Likelihood
This module aims to analyze the training likelihood of the data
available by estimating the posterior probabilities. They determine

the probability that in the training set the occurrence of the proper-
ties of the protected attribute is given by the properties of the target
variable - and vice versa - . For example, in the COMPAS dataset
they determine the probability that the occurrence of reoffending
is given by the properties of the protected attribute ethnicity. Sum-
mary results for training likelihood module are shown in Table
9.

The results of this module show that the posterior probabilities of
target variable and protected attribute ethnicity are quite skewed in
all dataset. In the case of the Adult dataset given as occurred event
1 or event 0, the probability of occurrence of the Caucasian ethnic
group is respectively 0.908 and 0.839, - i.e. very high for both events
- while the probabilities of all other ethnic groups conditioned to
the target variable are all significantly lower; this means that the
original data contain many examples of individuals belonging to
the Caucasian ethnic group. In the case of Drug Consumption, a
similar reasoning can be carried out for the ethnicity probabilities
conditioned to the target variable; moreover, notice that given the
property Black/Asian, the probability of occurrence of event 1, i. e.
that the individual is a consumer, is 1 - while the probability of 0 is
0 - which means that in the available data there are no examples of
individuals belonging to the ethnic group Black/Asian showing a
positive outcome - i. e. negative examples -. Figures 4 and 5 shows
the graphical visualization of our data annotation system for the
COMPAS dataset. The analysis of the COMPAS dataset shows that
if an individual is randomly sampled from the original data for the
training set, the probability that this individual is black knowing
that the re-offending property has occurred - i.e. knowing the out-
come of the re-offending event - is 0.591, while the probability that
the individual is white knowing that the re-offending property has
occurred is 0.293. Instead, given as occurred the property Black the
probability that the individual has not reoffended is 0.477, while
the probability that the individual has reoffended is 0.523; given
the property Caucasian, the probability that the individual has not
reoffended is 0.609, while the probability that the individual has
reoffended is 0.391, that is significantly lower. This means that in
this dataset the reoffending is related to ethnicity, and that success
or failure are determined by the membership to a specific ethnic
group. The differences in probability between the properties high-
light the risk of future bias, and in the case of the COMPAS dataset
they anticipate the underestimation of recidivism for the Caucasian
ethnic group and the overestimation of recidivism for the Black
ethnic group proven in recent studies [21].

6.5 Final Remarks
RQ1: in traditional sampling practices, instead of observing all the

units of a population, only a subset of a population is de-
tected, which must show certain probabilistic characteristics.
In machine learning models the training set is sampled not
from the real population but from the available data. While
in classical sampling the empirical knowledge alone is effec-
tively of a sample nature, in machine learning systems the
available data are often of sample nature too, precisely due
to the fact that it is not possible to make assumptions on the
real population. Considering a random sampling from the
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Table 9: Summary of Training Likelihood Analysis Results

COMPAS Drug Adult
Consumption Dataset

0|AIE𝑎 0.117
0|Asian 0.742 0.731
0|API𝑏 0.269
0|Black 0.477 0.697 0.121
0|Black/Asian 0.000
0|Caucasian 0.609 0.323 0.254
0|Hispanic 0.629
0|NA𝑐 0.545
0|Other 0.638 0.206 0.123
0|White/Asian 0.200
0|White/Black 0.300
1|AIE 0.883
1|Asian 0.258 0.269
1|API 0.731
1|Black 0.523 0.303 0.879
1|Black/Asian 1.000
1|Caucasian 0.391 0.677 0.746
1|Hispanic 0.371
1|NA 0.455
1|Other 0.362 0.794 0.877
1|White/Asian 0.800
1|White/Black 0.700
AIE|0 0.005
AIE|1 0.011
Asian|0 0.007 0.031
Asian|1 0.003 0.006
API|0 0.035
API|1 0.030
Black|0 0.450 0.037 0.048
Black|1 0.591 0.008 0.111
Black/Asian|0 0.000
Black/Asian|1 0.002
Caucasian|0 0.381 0.895 0.908
Caucasian|1 0.293 0.921 0.839
Hispanic|0 0.095
Hispanic|1 0.067
NA|0 0.002
NA|1 0.002
Other|0 0.065 0.021 0.004
Other|1 0.044 0.040 0.010
White/Asian|0 0.006
White/Asian|1 0.013
White/Black|0 0.010
White/Black|1 0.011
𝑎 American-Indian/Eskimo, 𝑏 Asian-Pac-Islander, 𝑐 Native American

available data, we have shown that the probability of com-
position of the training set can be predicted, highlighting
that the structure of the data directly affects the probability
of properties distribution;

Figure 4: Data annotation visualization for COMPAS dataset

RQ2: we analyzed three datasets frequently accessed by machine
learning community. Of these, all three showed more or less
pronounced distortions for the protected attribute Ethnicity.
Although the COMPAS dataset is the sole one that has been
shown to discriminate against black people, the Drug Comp-
suntion and Adult datasets reveal possible future bias in the
detriment of ethnic minorities.

7 RELATEDWORK
Although there are a number of papers that for ethical purposes
deal with data annotation they are all very recent, indicating that
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Figure 5: Data annotation visualization for COMPAS dataset

this field of study is still partially explored and has only recently
received considerable attention. Our contribution differs from the
others because it induces a probabilistic reasoning on the causes of
model discrimination based on sampling problems; our intention
is to deepen the knowledge of data validation analysis, focusing
on the meaning of probabilities. From a graphical point of view,
our work has been inspired by the Data Nutrition Labels [22], a
data labeling system mainly based on descriptive data statistics. A
similar approach is addressed in [6], where an operational frame-
work is proposed to identify the bias risks of automatic decision
systems. In [17] the authors propose a data labeling system based
on discursive data sheets. In [9] the authors propose a collaborative
crowdsourcing system to improve the quality of the labels.

Since ethically data annotation represent a quite new field of
study, there are several works that provide different types of labels.
We believe that at present the focus should not be on achieving
a unified data annotation system in the short term, but rather on
the fact that the fair machine learning community is working to-
gether to focus attention on the data collection problem. Especially
because awareness of data issues is often not rooted outside of this
community. It is important that this field and this work inspire
greater awareness of the possible causes of discrimination due to
the fundamental ingredient that all users and designers of machine
learning systems (from the most to the least experienced) use, data.

8 CONCLUSIONS
The purpose of the current study was to detect the potential race dis-
criminatory risk for future machine learning system by providing a
data annotation system based on Bayesian Inference. Our notation
serves as a diagnostic framework to immediately visualize data
appropriateness and potential bias occurring when sampling the
training set from an available dataset. The investigation of the prob-
abilities of the training set sampling has shown that it is possible to
establish a risk of future bias by observing prior and posterior proba-
bilities of the ethnicity and target variable properties. The empirical
findings in this study provide a new perspective on data annota-
tion practices by showing that Bayesian inferences may reveal the
risk of bias in three different widespread dataset. Furthermore, this
study has raised important questions about the awareness of most
widely data sampling practices in machine learning community.
The findings of this investigation complement those of earlier stud-
ies. Our data annotation system is limited to the binary case and
to the analysis of categorical variables for classification tasks. This
would be a fruitful area for further work. Our intent is to expand the
work in the following directions: i) extend the notation to multiple
protected attributes - the probabilities of the training set will then
be given by the vectors of the protected attribute combinations
- ; ii) extend the notation to the non-binary case - for prediction
tasks involving regression analysis for example - ; iii) extend the
probabilistic notation to non-labeled data.
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