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Abstract

In the discretization of di erential problems on complex geometrical domains,
discretization methods based on polygonal and polyhedral elements are powerful
tools. Adaptive mesh re nement for such kind of problems is very useful as well
and states new issues, here tackled, concerning good quality mesh elements and
reliability of the simulations. In this paper we numerically investigate optimal-
ity with respect to the number of degrees of freedom of the numerical solutions
obtained by the di erent re nement strategies proposed. A geometrically com-
plex geophysical problem is used as test problem for several general purpose and
problem dependent re nement strategies.

Keywords: Mesh adaptivity, Polygonal mesh re nement, Virtual Element
Method, Discrete Fracture Network ow simulations, Simulations in complex
geometries, A posteriori error estimates
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1. Introduction

In last years, a growing interest has arised for the development of numerical
methods for the solution of partial di erential equations using general polygonal
meshes. These methods are well suited for handling domains featuring geomet-
rical complexities that can yield situations where the generation of good quality
conforming meshes can be particularly expensive or even unfeasible. On the
other hand, the use of polygonal and polyhedral elements in conjunction with
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adaptive mesh re nement states new problems. In this paper we investigate
several re nement strategies for polygonal meshes.

As model problem to test the di erent re nement strategies we consider
the simulation of ow in a fractured medium. Flow simulation in underground
fractured media is a key aspect in many applications such as aquifers monitor-
ing, nuclear waste disposal, CO, geological storage or control of contaminant
dispersion in the subsoil.

In those situations where the rock matrix can be considered perfectly im-
pervious, the Discrete Fracture Network (DFN) model is often used, repre-
senting fractures as planar polygons randomly intersected in the 3D space
|28, 131, 26}, [38]. These kind of domains usually present many geometrical chal-
lenges, in particular when a conforming mesh is required, for example in order to
apply standard nite element approaches. To circumvent these di culties, many
approaches have been devised, relying on domain decomposition techniques
|45, 48], or devising particular meshing strategies [41}, 39, [34], 43}, [44], or using ex-
tensions of the nite element method [12, (36} (33} 37} (6}, 135, 142, 29, 4, (32, [25], 40, [3].
In [22] 21, 23], a PDE-constrained optimization approach was devised, enabling
for the use of completely non-conforming meshes, where nite element, extended

nite element [20] or virtual element spaces [10] can be used. A scalable parallel
implementation of such approach is discussed in [24] and a GPU accelerated ver-
sion in [19]. In [15] and [16], a residual a posteriori error estimate is devised and
applied to large scale DFNs. Here we follow the approach based on the Virtual
Element Method (VEM) [7, 2, 8] [Z7] rst introduced for DFN ow simulations
in [10] and extended in [9, [11], [14].

The huge cost of large scale simulations on the scale of a geological basin
raises the issue of e ciency. Moreover, due to the large uncertainty in geomet-
rical con gurations and hydrogeological parameters a stochastic approach is
advisable yielding to the need of many simulations. Beside e ciency, reliability
of these simulations is of crucial importance being connected with risk analysis
of human activities. E ciency and reliability strongly a ect the application of
uncertainty quanti cation techniques for the estimation of relevant quantities
of interest [17, [18]. For these reasons adaptivity plays a key role both on the
side of reliability and e ciency.

Although we focus on the simulation of ow in DFN using VEM, the re-

nement strategies explored here are suitable for any kind of method relying
on polygonal meshes, except for the so-called \Trace Direction™ re nement,
that is particularly suited for DFN problems taking into account the behaviour
of the solution approaching the traces. The approach here followed is based
on isotropic \a posteriori" error estimates and aims at generating good qual-
ity isotropic polygonal elements. Anisotropic estimates and mesh re nement
strategies are currently under investigation in [5].

In Section 2 we introduce the DFN model used to test the re nement strate-
gies and de ne some useful notations. In Section [3 we introduce its Virtual
Element discretization, we de ne the error estimators and state the \a posteri-
ori* error estimate. In Sections [4] and [§| we describe the initial mesh generation,
the adaptive algorithm, and the polygonal re nement strategies. In Section [g]



we validate their application to some test cases with known solution, and, in
Section [7, we analyse some results on a more realistic DFN.

2. Discrete Fracture Networks

Let us consider a set of open convex planar pgygonal fractures F; RS with
i =1;:5 N, with boundary @F. ADFNis = ;F;, with boundary @ . Even
though the fractures are planar, their orientations in space are arbitrary, such
that isa3D set. Theset o @ is where Dirichlet boundary conditions
are imposed, and we assume p & ;, whereas Ny =@ n p, is the portion
of the boundary with Neumann boundary conditions. Dirichlet and Neumann
boundary conditions are prescribed by the functions hP 2 H%( p) and gN 2
H %( n) on the Dirichlet and Neumann part of the boundary, respectively.
We further set ip = p \@F;, in = n~ \@Fi, and hP? = hP; . and
gN = gNj - The set S collects all the traces, i.e. the intersections between
fractures, and each trace S 2 S is given by the intersection of exactly two
fractures, S = F; \ Fj, such that there is a one to one relationship between a
trace S and a couple of fracture indices fi; jg = 1(S). We will also denote by
S; the set of traces belonging to fracture F;.
Subsurface ow is governed by the gradient of the hydraulic head H =
P + , where P = p=(%g) is the pressure head, p is the uid pressure, g is the
gravitational acceleration constant, % is the uid density and is the elevation.
We de ne the following functional spaces:
n o
Vi=Hz(Fi)= v2H'(F):v; =0 ;
n o
VP =HL(Fi)= v2H'(F):v; _=hP ;
and
V= Vviv 2V 8i=1115 N5 s(Vir) = s(vjr;): 8S2Si; fi jg=1(S) ;

VP = vivig, 28 8i=1;1115N; s(Vir) = s(Vir,): 8S2S;; fijjg=1(S) ;

where g is the trace operator onto S. In order to formulate the DFN ow
problem, let us de ne a;: V;° V; ¥ R be de ned as

a(Ww;v) = Kir wie, ;r vie, - 8w2VPv2v;
where K;j is the fracture transmissivity tensor, that we assume to be constant
on each fracture. Let us denote by H 2 V P the hydraulic head on the DFN and
by H; 2 ViD its restriction to the fracture F; and by v 2 V the test functions.
Assuming the hydraulic head modelled by the Darcy law, the whole problem on

the DFN is: nd H 2 VP such that 8v 2 V

X X D N E
a(Hisv) = (fiV)e, + GV, 1 3 :
i=1 i=1 & b H 2( Ni);HZ( Ni)

@



3. Virtual Element discretization

In this section we describe the Virtual Element discretization of equation (1)
assuming a globally conforming polygonal mesh is given on the DFN. A globally
conforming mesh ia a polygonal mesh on each fractures such that polygon edges
match exactly at traces. In Section [4] we devise a way to obtain a mesh of this
type and Section [5| describes some re nement strategies that preserve the global
conformity of the mesh.

Let T be a globally conforming polygonal mesh of  ful lling the regularity
requirements needed by the Virtual Element method [8], E 2 T be any polygon
of this tessellation. Let P (E) be the space of polynomials of degree  k de ned
on E. To de ne the discrete functional space on E, we introduce the H?!-
orthogonal projector [f.: HY(E) ¥ P(E) such that

rv keV ;P ¢ =0;8p2Py(E)
and

8

< rov;l =(v;1 ifk=1;
KEeY: oE (ViDge | ;
l'{;Ev;lEZ(v;l)E ifk 1:

The Virtual Element space of order k 2 N on E is de ned as
VE= v2HYE): Vv2P(E);v2Pk(e) 8 @E; ?5(v)2CO@E);
o
(ViPe =  keViP ¢ 80 2 Pk(E)=Px 2(E) ;

where Py (E) =Py 2(E) denotes the subspace of Px(E) containing polynomials
that are L?(E)-orthogonal to Py »(E). Furthermore, let us denote by T .; the
restriction of T to fracture F;. The Virtual Element spaceon T ; is

Vi= v2COFi):v2VEBE 2T ;
Since T is globally conforming, we can de ne the global discrete spaces as
V= v2Vivg 2V, VP = v2VP:iye 2V

A function in the above space is uniquely identi ed by the following set of
degrees of freedom:

1. the values at the vertices of the polygons;
2. ifk 2, for each edge e of the mesh, the value of v at k 1 internal points

of e;

3. ifk 2, for each E 2 T, the scaled moments %(V;m )e for all the
scaled monomials m , with = (1; 2),j j= 1+ 2 Kk 2,such
that

8(x;y) 2E; m (xy):= (x XEg i)(ryz Ye)
E

being (Xg;ye) the centroid of the cell and hg its diameter.




For any element E 2 T , given a function v 2 V E, it can be seen [7, 47] that
the values of its degrees of freedom are uniquely de ned by its L?(E)-orthogonal
projection on Py 1(E), denoted by 2 1.V » and the orthogonal projection of
its gradient on P 1(E) Pk 1(E), denoted by 1.V . A basis of the local
VEM space is de ned implicitly as the set of functions that are Lagrangian with
respect to the degrees of freedom.

To discretize by the Virtual Element method we suppose to know, for
each E 2 T, i = 1;:::;N, a bilinear form S: VE VE & R such that,
8v 2VE\ker F.,

9 ;¢ >0:c¢c (Kirv;rv)e SE(;v) c (Kirv;rv)c:

bilinear form a¥: VE VE ¥ Rsuch that, 8u ;v 2V,
a“(u;v)= Ki gqru; garv +KsSE I Furl fvog
and the global bilinear forma : VP VvV ¥ R such that

N XX

a(u;v)= a
i=1 E2T ;

E .
U jFis ViR

Finally, the Virtual Element discretization of iss ndH 2 VP such
that, 8v 2V
(@) 1
X X
aMH;v)= @ fi ¥ 1E Vi
i=1 E2T ;

E

D N E
TS iy @
We remark that the continuity conditions are automatically satis ed by the
de nition of the functional space and the degrees of freedom, viable because T
is a globally conforming discretization.

In [14], a residual a posteriori estimate was derived for the Laplace problem
proving the equivalence between the estimator and the error with respect to a
suitable polynomial projection of the VEM solution. The extension of this esti-
mate to the case of a globally conforming discretization of the Laplace problem
on a DFN is quite straightforward. Let us de ne the following error measure:

PN a; (vi;w)
J'J'J'VJ'J'J'=SL218 - '=1p' = .
w __
N, Krw

Fi



then, we denote H = [ (H ) and de ne

© £
X X p2 X h H.b 2
es2= @ = 0 F+K; H; o+ Ne '@@nl +
i=1 E2T . ! e2Ei?i‘ ! e e
> p S { 2 > 2 *
+ E I@iH i gN + h7E f 0 T 2A
K; @n i K; k 1 E
e2EN, ! e e g2t
’ O 1
s { s { 2
. > @X | he i@Hi N Kj@Hj A
o5 o2F < minfKj; Kjg on @n . .
1(S)=Tfi jg '

where 8i = 1;:::N, E"t is the set of edges of T ;; such that, 8e 2 E"f, e\S = ;
8S2Sjand e\ n; =;, EY is the set of edges e of T ; such thate\ } & ;
and 8S 2 S, E s is the set of edges e of T such that e \'S & ;. Then, there

exist two constants c¢; C > 0 independent of such that
c est jjjH Hjj C est: 3)

In view of an adaptive approach, we de ne, for each cell E, a local estimator
est .g, such that the estimators de ned on the edges are split among neighbour-
ing cells according to their areas.

4. DFN Minimal mesh construction

In this section we introduce the strategy used for the construction of the
initial coarse polygonal mesh on the DFNs. This mesh is obtained by the con-
struction of convex polygons representing sub-fractures, i.e. portion of fractures
not crossed by traces that can have traces or portion of traces or extension of
traces only on the boundary. Given a fracture and the set of its traces there
exist many partitions of the fracture in sub-fractures with a di erent number of
sub-fractures and di erent quality of the element produced. The construction
of the minimal mesh is a complex trade o between the number of the elements
and the quality of the elements produced. In our approach we aim at limiting
the number of elements. Improvement of the mesh quality is transferred to a
following suitable re ning strategy.

The approach we follow is an iterative splitting of the leaves of a tree struc-
ture. We start from the original fracture that is the root cell of the structure,
then we select a trace and we split the given cell along the trace or an extension
of the trace producing two children cells. Then we proceed iteratively choosing
a new trace and cutting the leaves of the tree with the selected trace, exclusively
in the case the trace is intersecting the internal part of the cell. At each itera-
tion each cell can be split in two children cells or can be modi ed in a unique
child cell that is the same polygon with one of the edges split in two aligned



sub-edges in order to guarantee conformity of the global mesh. The algorithm
is sketched in Algorithm 1]

In order to control the number of cells produced by the algorithm we cut
the current cells with a suitable order of traces. We start considering the traces
that cross the fracture intersecting two boundary edges of the fracture. Then
we continue considering the remaining traces from the longest to the shortest.
Considering the traces in this order usually yields to a smaller number of cells.

Algorithm 1 Minimal mesh
Given a fracture and the set of traces create a tree structure with the fracture
as root cell

1: for All the traces do

2. for All the leaves cells of the tree do

3 Compute the intersection of the trace with the cell

4 if There is an intersection with the internal part of the cell then
5 Split the cell in two children cells

6: end if

7 Update the neighbouring cell with the new edges

8: end for

9: end for

5. Re nement and Marking algorithms

In this section we brie y introduce the algorithms used for marking the cells
with largest estimators to be re ned in order to reduce the discretization error
and the di erent algorithms tested for the re nement of polygonals cells. This
re nement step is part of the usual re nement process SOLVE-ESTIMATE-
MARK-REFINE [30].

5.1. Marking Strategy

The marking strategy (see Algorithm [2)) of the cells to be re ned is simply
based on the selection of all the cells with the largest error estimators. We
mark the cells starting from those with largest estimators estz;E up to when
the cumulative error estimator est? »markFS’f the marked cells is a given ratio
C of the total error estimator est?; = .1 est?c. In this algorithm we
accept the sorting cost for the estimators vector [30] in order to maximally
contain the re nement iterations that, in practical applications to large scale
DFN simulations, can be quite expensive in the last re nement steps.

5.2. Re nement algorithms

In this section we introduce four di erent re nement algorithms used for
cutting marked convex cells in two convex sub-cells. All the algorithms are
based on a similar approach and di er for the choice of the cutting direction.



Algorithm 2 Cells marking algorithm

Given a convex polygon

[
[l

e NOOO R WDNR

Compute the cell error estimators est?z and save them in a vector V est?.
Compute the total error estimator est?
Sort the cell estimators vector V est?
Choose a constant 0 <C <1
i=0
2
est ;T imark
repeat
i+ +
est’y . =est’p  +Vest’(i)
until est? C est’;

=est’y . +Vest’(i)

ark

. Mark the cells corresponding to the rst i positions of V est?

Algorithm 3 Re nement algorithm for convex polygons

Given a convex polygon

©

0N O UR WN P

Check aspect ratio (AR)
Compute the centroid X,
Choose the cutting direction
Build a straight line passing from the centroid with the chosen direction
Choose the collapsing tolerance CollapseToll
for Each edges of the cell do
if There is an intersection then
if The intersection point is near to the begin/end point of the edge
according to the chosen tolerance CollapseToll then
Change the cutting direction and set the intersection point as the
begin/end point of the edge
else
The intersection point will be a new point in the mesh
end if
end if

: end for

Create the two children cells
Update the neighbourhood




(b) Trace Direction

(a) Maximum Momentum

(c) Maximum Number of Points (d) Maximum Edge

Figure 1: Di erent strategies for the selection of the cutting direction.

The common approach is described in the Algorithm [3 and the four di erent
approaches di er for the Step [3] of Algorithm [3]

In the following we compare four di erent re nement options for choosing
the cutting direction denoted Maximun Momentum (MaxMom), Trace Direction
(TrDir), Maximum Number of Points (MaxPnt) and Maximum Edge (MaxEdg).
At the Step [8]of the Algorithm [3]we accept to slightly modify the chosen cutting
direction in order to avoid the proliferation of edges and vertices of the new cells
and consequently of VEM degrees of freedom that do not e ciently increase the
quality of the solution and to avoid the generation of very small edges that could
sometimes induce stability problems [27, 13].

We collapse the points given by the intersection of the cutting direction with
an edge to existing vertices of the cell when the distance of the intersection from
the closest vertex are smaller than the tolerance CollapseToll multiplied by the
length of the edge intersected.

For some of the proposed cutting directions we switch from the selected
re nement criterion to the Maximum Momentum criterion in order to avoid the
generation of cells with a huge aspect ratio (AR) de ned as the ratio between the
longest distance between the centroid and the vertices and the smallest distance
between the centroid and the edges. In order to avoid the generation of elements
with a huge aspect ratio, we de ne a xed value denoted by MaxAR and if the
aspect ratio of the cell to cut is larger than MaxAR, the cutting criterion is
always MaxMom.



5.2.1. Maximum Momentum (MaxMom)

This cutting strategy of marked cells is based on the choice of cutting direc-
tion that is orthogonal to the direction of eigenvector associated to the smallest
eigenvalue of the inertia tensor of the cell (Figure .

5.2.2. Trace Direction (TrDir)

This cutting strategy is based on the choice as cutting direction of the di-
rection parallel to a trace (if any), see Figure where we have assumed that
the edge with several aligned points belongs to the trace. The rationale of this
approach is related to the known property of the solution to the considered
problem that displays strong gradient components in the direction orthogonal
to the traces. If a cell intersects more than one trace we switch to MaxMom
criterion.

5.2.3. Maximum Number of Points (MaxPnt)

This cutting strategy is based on the choice as cutting direction of the direc-
tion of the vector connecting the centroid of the cell X to the center of mass
of the vertices Xg, see Figure This vector points towards the region of the
marked cell with the highest density of vertices and should split the cell bal-
ancing the vertices of the two new subcells. In this strategy it is mandatory to
de ne the option MaxNP, to set how many points the cells can have. This strat-
egy switches to the MaxMom strategy in two cases: the rst when the number
of points of the cell to cut is less than MaxNP, the second when the centroid and
the center of mass have a distance under a xed tolerance. We remark that this
re nement strategy can be considered as a simple improvement of the MaxMom
strategy being the re nement strategy di erent only for the cells with a large
number of cells and considering that when the number of vertices of the cell is
larger than MaxNP this re nement strategy aims at dropping the number of
vertices of the two produced cells under MaxNP.

5.2.4. Maximum Edge (MaxEdg)

This cutting strategy is based on the choice as cutting direction of the di-
rection that cuts the longest edge of the cell in half, see Figure [Id] where the
longest edge is the right-bottom edge. If a cell displays aligned edges, these are
considered as one unique edge.

6. Numerical Results: optimality and e ectivity index

In order to validate our re nement algorithm we test it on two simple DFNs
for which an exact solution is known. We consider two DFNs with two and
three fractures, labelled as Problem 1 and Problem 2, respectively.

This rst set of tests aims at validating the equivalence relation stated in
between the error and the error estimator. We have tested this equiva-
lence relation on the meshes produced during the adaptive process although

10



this property holds true on any su ciently re ned mesh. We apply our adap-
tive algorithm and compare at each re nement iteration the error and the error
estimator computing the e ectivity index

err

" est

in order to verify that it is independent of the mesh size obtained by adaptive
re nements. See [14] for the same analysis performed on uniformly re ned
meshes.

As stopping criterion for the adaptive process, we require the following con-
dition on the estimated relative error:

est

P P_— 2 3
:\lzl Kir {Hi =

0:05:

4

All the simulations here presented are performed with the following methods
and parameters: VEM orders from 1 to 4, Preconditioned Conjugate Gradient
as linear solver with relative stopping residual 1:0e 15, the preconditioner
being an incomplete Cholesky factorization implemented as described in [1],
CollapseToll = 0.2, MaxAR = 10, MaxNP = 12 and C = 0.50.

6.1. Problem 1
TypeRef Order 1 Order 2 Order 3 Order 4
MaxMom = 0:50 = 0:95 = 1:38 = 1:39
err = 0:50 err = 0:94 err = 1:32 err = 1:34
TrDir = 0:49 = 0:93 = 1.67 = 156
err = 0:50 err = 0:92 err = 1:63 err = 1:30
MaxEdg = 0:50 = 0:93 = 1:37 = 155
err = 0:50 err = 0:93 err = 141 err = 1:38

Table 1: Problem 1: Rates of convergence for the estimator ( ) and the error ( err) with
re nement criteria MaxMom, TrDir and MaxEdg.

The geometry and the parameters of this test problem are described in detail
in [21, Section 5.1]. The DFN is composed by two fractures that are planar
rectangles de ned as

Fi=( 1) ( 1;1) fO0g;

Thus, the only trace of the DFN is

F>=( 1,0) f0g
1=( 10)

model is set up by choosing the following exact solutions:

hi(xy;z) = x* 1

ha(x;y;2) =z

2

1

2

( L):
fOg f0g. The di erential

1
1 x?+y? cos Earctan2(x;y) :

X2

11

1 x?+7% cos

%arctanZ(z; X)
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Step | # Cells | NDOF " PCG-It

1 4 1 0.0064 1
5 16 8 0.0221 5
10 58 44 0.0318 12
15 232 208 0.0326 23
20 958 910 0.0345 43

25 3997 3901 | 0.0343 88
30 16696 16214 | 0.0337 181
35 69827 67074 | 0.0334 370
39 219297 | 207112 | 0.0333 662
40 291581 | 274982 | 0.0332 777

Table 2: Problem 1: MaxMom re nement Order 1.

Step | # Cells | NDOF " PCG-It
1 4 1 0.0064 1
5 14 5 0.0130 1
10 46 34 0.0441 12
15 167 147 0.0364 21
20 672 712 0.0356 46

25 2760 3232 | 0.0377 94

30 11528 13848 | 0.0357 188
35 48362 57738 | 0.0353 378
39 152185 | 178922 | 0.0349 695
40 | 202798 | 237727 | 0.0347 846

Table 3: Problem 1: TrDir re nement Order 1.

Step | # Cells | NDOF " PCG-It
1 4 1 0.0064 1
5 16 7 0.0271 3
10 58 43 0.0347 12
15 239 223 0.0381 21

20 974 1007 | 0.0382 47

25 4101 4420 | 0.0382 100
30 17254 18980 | 0.0380 205
35 72401 80561 | 0.0386 414
37 128831 | 139214 | 0.0385 545

Table 4: Problem 1: MaxEdg re nement Order 1.

13



where arctan2(x;y) is the four-quadrant inverse tangent, that is the arctan of
y=xin[ ; ]. The transmissivity of both fractures is set to 1.

In Figure [2) we report some of the meshes generated during the re nement
process. We remark that in this test problem the presence of a known forcing
function on the fractures induces a re nement in the whole domain, this will
not be the same for the ow simulations in which the rock matrix surrounding
the DFNs is considered impervious (Section [7)).

In Figurewe report the convergence behaviour of the error (errH') and of
the error estimator (est ) and the nal rates of convergence with respect to the
total number of degrees of freedom (NDOF): est (NDOF) , computed on
the basis of the last ve re nement iterations, considering the strategy MaxMom
criterion. We can clearly appreciate a parallel behaviour of error and error
estimator as well as the almost optimal asymptotic rate of convergence very
close to 0:5 and 1 for the VEM orders 1 and 2, respectively. For higher
VEM orders the sub-optimal rates of convergence are due to the bounded Besov
regularity of the solution around the internal trace-tip. In Table (1] we report
the rates of convergence for the estimator and for the error obtained by the
re nement strategies MaxMom, TrDir and MaxEdg. For this problem we do
not report results for the MaxPnt criterion that is always the MaxMom criterion
being the number of vertices of the cells always smaller than MaxNP.

In Tables 2, [3]and [4] we report the most signi cant quantities to describe the
re nement process for the MaxMom, TrDir and MaxEdge strategies: NCell is
the total number of cells on the DFN, NDOF is the total numbers of degrees of
freedom, " is the e ectivity index, PCG-It is the number of conjugate gradient
iterations performed. For all the strategies, we highlight the relatively small
variations of " with respect to the large variations of number of cells and degrees
of freedom, after the rst iterations corresponding to very small number of
NDOF. We also remark the weak growing of PCG-It with respect to the growing
of NDOF.

6.2. Problem 2
TypeRef Order 1 Order 2 Order 3 Order 4
MaxMom = 048 = 093 = 1:22 = 1:49
err = 0:49 err = 0:95 err = 1:23 err = 1:52
TrDir = 0:49 = 095 = 114 = 149
err = 0149 | or= 0:92| o= 120 | er= 152
MaxEdg = 049 = 0:92 = 1:32 = 147
err = 047 | or= 094 | o= L135| ¢r= 168

Table 5: Problem 2: Rates of convergence for the estimator ( ) and the error ( err) with
re nement criteria MaxMom, TrDir and MaxEdg.

The geometry and the parameters of this test problem are described in detail
in [9, Section 6.1]. The DFN is composed by three fractures and three traces,

de ned as
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(b) Step 25 MaxMom re nement Order
1

(a) Initial mesh

(d) Step 25 MaxEdg re nement Order
1

(c) Step 25 TrDir re nement Order 1

Figure 4: Problem 2: DFN with meshes at re ning step 25

Figure 5: Problem 2: Rates of convergence ( ) for error and estimator with MaxMom re ne-
ment.
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Step | # Cells | NDOF " PCG-It

1 12 2 0.0296 1

5 30 16 0.0472 6

10 114 87 0.0541 13
15 455 432 0.0552 25
20 1875 1979 | 0.0557 55
25 7752 8622 | 0.0552 114
30 32221 | 36261 | 0.0531 234
32 57076 | 64484 | 0.0520 309

Table 6: Problem 2: MaxMom re nement Order 1.

Step | # Cells | NDOF " PCG-It
1 12 2 0.0296 1
5 30 16 0.0441 5
10 113 92 0.0500 13
15 433 428 0.0531 32
20 1741 1933 | 0.0596 77
25 7047 8221 | 0.0581 152
30 28933 | 34475 | 0.0574 411
33 67557 | 80552 | 0.0562 542

Table 7: Problem 2: TrDir re nement Order 1.

Step | # Cells | NDOF " PCG-It
1 12 2 0.0296 1
5 30 16 0.0476 6
10 113 89 0.0555 12
15 450 418 0.0578 24
20 1847 1885 | 0.0614 55
25 7737 8203 | 0.0636 114
30 32385 | 34978 | 0.0679 243
31 43231 | 47014 | 0.0681 286

Table 8: Problem 2: MaxEdg re nement Order 1.
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1 1

Fi= L3 (LD fog; | =F\F= 15 fog fog;
F2=( 1,0) fog ( 1;1); 2=Fi1\F3=( 1,0) fog ( 1;1);
Fs3= % (L) (L1); | 3s=F\Fz= % fog ( 1;1):

The chosen exact solution is de ned on each fracture as follows:

hi(x;y;z) = % X + % 8xy x?+y? arctan2(y;x) +x° ;
. 1 1 o
ho(Xiy:2) = 15 X+5 x*(@ 8 jz));

hs(x;y;2) =y(y DY+ z;

and all fractures have transmissivities set to 1.

In Figure [4 we report some of the meshes generated by the re nement
process. Similarly to the previous test, a re nement is induced also far from
traces due to the presence of a non-null forcing term.

In Figure we report the rates of convergence ( ) of the error and of the
error estimator considering the strategy MaxMom. The rates of convergence
for the strategies MaxMom, TrDir and MaxEdg are shown in the Table[5] The
convergence rates are computed on the basis of the last ve re nement iterations:
again we can remark a very good agreement between the error and the estimator.
The sub-optimal rates of convergence with higher VEM orders is still due to the
bounded regularity of the solution.

In Tables[6Hg we report the same quantities reported in Tables [2H4]in order to
describe the re nement process. We observe again that the e ectivity index is
almost independent of the meshsize since, as the mesh starts to have a su cient
number of DOFs, it displays small variations.

7. Numerical Results on a realistic DFN

In this section we discuss the results obtained by the four presented re ne-
ment strategies when applied to more realistic DFNs. The geometry of the
considered DFNs is xed and is composed by 86 fractures and 159 traces, with
a maximum number of traces per fracture equal to 11 and a mean value of
traces per fracture equal to 1.85, see Figure[6l We consider two test cases where
the transmissivities of the fractures are sampled from two log-normal distribu-
tions having standard deviations equal to 10 and 10*, respectively. These two
problems are tagged with the labels DFN86E01 and DFN86E0A4.

The problems considered have no forcing terms, and the ux is driven by
the presence of two Dirichlet boundary conditions (10 on the boundaries at
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x = 0 and 0 at the boundaries at x = 1000), whereas homogeneous Neumann
boundary conditions are imposed on all the other boundaries.

In the following analysis we display the convergence rates of the error esti-
mate with respect to the number of degrees of freedom and we assess how the
re nement strategies impact on the aspect ratio of the cells of a selected fracture
(Fracture 72), and on the iterations of the preconditioned conjugate gradient
method used to solve the linear system.

Figure 6: DFN with 86 fractures.

In Figures[7]and 8| we display the behaviour of the estimators with respect to
the number of DOFs for the four re nement strategies considered and we report
the slope of the estimator for each VEM order, for the two problems. We can
observe that all the re nement strategies display an optimal asymptotic rate of
convergence up to VEM order 2 ( 0:5 for the VEM Order 1 and 1:0 for the
VEM Order 2). For higher VEM orders the bounded regularity constraints the
rates of convergence. The trend of the rate of convergence results similar even
if the uxes in the these two DFNs are completely di erent.

In Figure @] we plot the behaviour of the ratio PCG-1t/NDOF. After the
initial noisy behaviour we can observe a decreasing asymptotical trend for all
the considered re nement strategies. These plots highlight the advantages of a
suitably re ned mesh also on the performances of the linear solver.

In Figure [10] we report the minimal mesh on Fracture 72: this is the com-
mon initial mesh for all the re nement strategies and for both DFN86EOL and
DFNB86E04. In Figures [11] and [I2 we display the meshes produced by all the
considered re nement strategies. The TrDir strategy produces a stronger and
sharper re nement along the traces. The switch from TrDir to MaxMom for ele-
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ments with an aspect ratio over MaxAR prevents the generation of badly shaped
elements parallel to the traces. The MaxPnt strategy produces a mesh quite
similar to the mesh produced by MaxMom due to the fact that we fave few cells
with a number of vertices larger than MaxNP during the re nement process. In
Figures [13 and [14] we report the minimum, the mean and the maximum aspect
ratios of the cells on Fracture 72 along the re nement process. We remark that
in all the strategies we use MaxMom strategy to re ne the elements with large
aspect ratio. The MaxMom and the MaxEdg strategies produce a decreasing
mean aspect ratio, whereas TrDir and MaxPnt have a di erent behaviour. A
slight di erence from the two gures can be seen in the TrDir plots. The av-
erage AR grows in the DFN86E04 test case because the MaxMom strategy is
less used due to the weaker re nement around the traces due to the di erent
transmissivities on the intersecting fractures that justify a smaller ux (notice
the more coarse mesh for DFN86E04 comparing Figures [11] and [12).

(a) MaxMom re nement. (b) TrDir re nement.

(c) MaxPnt re nement. (d) MaxEdg re nement.

Figure 7: DFN86EO01: Estimator vs. NDOF
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