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Fast Image Clustering based on Compressed Camera
Fingerprints

Sahib Khan, Tiziano Bianchi1

DET, Politecnico di Torino, Corso Duca degli Abruzzi, 24 10129 TO, Italy

Abstract

Every camera sensor leaves unique traces on the acquired images that can be
thought of as a camera fingerprint. This work presents an efficient algorithm for
clustering images based on their camera fingerprints. The algorithm performs a
fast preliminary clustering based on a compressed representation of the camera
fingerprints, then it refines the initial clusters using full-size fingerprints. The
efficiency of the method is further improved by scanning the images according
to a ranking index that depends on fingerprint estimation quality. The results
confirm that the proposed method achieves a performance comparable to the
state of the art approaches, with a significantly lower computational complexity,
especially on large datasets. The method can also handle cases in which the
number of clusters is much larger than the average size of the clusters.

Keywords: Image clustering, photo response non-uniformity, computational
complexity, source camera identification

1. Introduction

Capturing life events and keeping them safe in the form of digital images is
a common practice nowadays. The trend is increasing rapidly day by day due
to the availability of high-resolution cameras in mobile phones at reasonably
low prices. The contents and quality of the images are of main interest to the5

general viewer. However, for forensic experts, the knowledge about the source
of an image is essential, because it can help in finding non-obvious clues and
solving criminal cases. This information is available in the metadata, e.g., the
Exif header, of the image captured with some camera models, but not available
in all cameras models. Along with this, metadata are modifiable and can be10

easily changed or even removed. Forensic applications need stable, irremovable,
unique camera features, which can be reliably considered and used as source
information about the cameras. In the literature, it has been found that due to
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manufacturing imperfections, the sensors of the image acquisition devices leave
some traces, called sensor pattern noise (SPN), which can be used for source15

identification of images. The SPN is mostly contributed by photo response non-
uniformity (PRNU)[1, 2]. Due to the uniqueness and stable nature of PRNU,
it can be used as a camera fingerprint [3, 4] to find the source of an image, link
an image with the source device, and group images from the same camera.

In this paper, we will consider the problem of analyzing a set of images and20

grouping them according to the source device. The problem is illustrated in
Fig. 1. A set of images is provided to the forensic analyst, possibly without any
prior information regarding the different cameras that acquired them. The aim
of the forensic analyst is to divide the images into different clusters, where each
cluster should contain images acquired by the same camera. This process can25

be useful in several practical settings. For example, one can analyze a gallery of
images in a suspect’s social network profile and infer all the different cameras
used by the suspect. This can be later used to link images from different crime
scenes with the suspect’s cameras or to match different user profiles across social
platforms [5, 6].30

The camera fingerprints are usually estimated by acquiring a certain num-
ber of images from the cameras under test. A proper and reliable estimation
of a camera fingerprint can be made from a sufficient number of flat, unsatu-
rated, and uniformly bright images [2]. However, when the source camera is
not available, it is impossible to have a suitable number of flat, unsaturated,35

and uniformly bright images from the same camera. Moreover, in the absence
of any side information on the analyzed images, we do not know a priori which
images have to be grouped to estimate the camera fingerprint. Therefore, in
the most challenging clustering scenario, the camera fingerprint is simply deter-
mined from the noise residual of a single image, by subtracting the de-noised40

image from the original image [7, 8].
The clustering of camera fingerprints presents some intrinsic problems like

high computational cost, I/O cost, large memory requirements, sensitivity to
outliers, and the absence of prior information, which make most of the classical
clustering algorithms [9, 10] unsuitable for this problem. Almost all currently45

available camera fingerprint-based clustering algorithms rely on the normalized
correlation and use it as a similarity measure for clustering. The pairs of finger-
prints are considered from the same source if the normalized correlation between
them is above a specific threshold. Along with this, most of the existing image
clustering algorithms [11, 12, 13, 14] can be computationally expensive, since50

they compute the full cross-correlation matrix among n fingerprints requiring
(n(n−1))/2 correlations. Another problem occurs when the number of cameras
(NC) is much larger than the average number of images captured by a single
camera (SC). Several existing algorithms [11, 14, 15, 10] have low performance
in this case.55

The main objective of the proposed algorithm is to cluster images based on
camera fingerprints obtaining an accuracy of the output clusters comparable to
that of state of the art algorithms but reducing the computational complex-
ity. There are many ideas in the proposed approach: 1) a simple clustering
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Figure 1: Depiction of the clustering problem considered in this paper. A set of images should
be divided in smaller subsets, where each subset corresponds to images acquired by the same
camera. In the most challenging scenario, we assume that there is no prior information
regarding the cameras that acquired the set of images.

strategy uses a suitably selected reference fingerprint among the unclustered60

fingerprints to construct a cluster and avoid computing n(n− 1)/2 correlations;
2) the fingerprints are sequentially processed using a ranking index depending
on their quality, to increase performance; 3) a preliminary clustering stage uses
compressed fingerprints, to further reduce complexity.

Some of the above ideas were first introduced in two our previous papers.65

A simple reduced complexity image clustering algorithm using camera finger-
prints was devised in [16], where a fingerprint is randomly selected as reference
fingerprint to attract other fingerprints close to it. The clustering process can
be made faster using a proper fingerprint ordering [17]. The camera finger-
prints are arranged in descending order of quality, and clusters are constructed70

by selecting the best fingerprint among the unclustered fingerprints as a refer-
ence fingerprint. With respect to the above papers, in this work we add several
important contributions. The clustering process is split in two stages. In an
initial stage, a compressed version of the fingerprint is used to obtain a pre-
liminary clustering with very low complexity. Then, the clusters are refined75
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using merged full fingerprints of the constructed clusters. Different compres-
sion strategies have been analyzed, in order to find the configuration offering
the best performance/complexity trade-off. Moreover, the proposed algorithm
has been experimentally evaluated both on small and large scale datasets, pro-
viding insights on its behavior when there is large variability in the number of80

cameras and the number of images per camera. The results reveal that the com-
pressed fingerprints based clustering has lower computational complexity than
state-of-the-art clustering algorithms [18, 19] and our previously proposed algo-
rithms [16, 17], while it constructs clusters of comparable quality. Along with
lower complexity, the proposed algorithm does not suffer from the NC � SC85

problem.
The rest of the paper is organized as follows. Section 2 presents a literature

review of previous works on the subject. Section 3 presents the detailed im-
plementation of the proposed algorithm. The experimental setup, results, and
analysis of the proposed algorithm is described in Section 4. The comparison90

of the proposed algorithm with state-of-the-art methods is made in Section 4.8.
Concluding remarks are given in Section 5.

2. Related Work

This section presents a brief literature review of camera fingerprints-based
image clustering techniques. One of the first attempts was made in the work of95

Bloy [18], where the author used the modified pairwise nearest neighbor (PNN)
algorithm [20]. PNN algorithm operates recursively and initially considers all
the elements of the dataset as individual clusters and calculates pairwise dis-
tances between them. The closest clusters are merged to make a new cluster.
The process continues until a stopping condition is met. Bloy modified the100

PNN algorithm by randomly picking a couple of clusters, searching all neigh-
bors, merging the closest ones, and then proceeding with another pair of clusters.
This technique needs a suitable threshold for merging a pair of clusters.

With the addition of fingerprint enhancement, other variants of this tech-
nique are presented in [8, 11]. In [11], Li used enhanced fingerprints as random105

variables, and a Markov random field (MRF) is used to cluster these fingerprints
iteratively. A subset of images is randomly chosen, and a pairwise similarity
matrix is generated. The reference similarity and membership committee are
determined, based on the matrix. The likelihood probability of belonging to a
class is calculated for the corresponding fingerprint, which is assigned to a class110

on the basis of the highest likelihood probability in the membership committee.
This process ends when no change is observed in the class label after two con-
secutive iterations. In the end, fingerprints not belonging to the training set are
assigned to their closest clusters identified in the training set. This algorithm is
very efficient when used for clustering small databases. However, it is computa-115

tionally expensive and not suitable for situations when the number of cameras
NC is much larger than the average size of cluster SC.

Liu et al. treated camera fingerprint clustering as a graph partitioning prob-
lem in [12] and considered it as a weighted unidirectional graph, with fingerprints
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as vertexes and similarity between two fingerprints as the weight of edge that120

link the fingerprints. The K-nearest neighbor graph is constructed, where K is a
parameter controlling the sparsity of the graph. The edge weights of a randomly
selected vertex with all the other vertices are calculated. The (K + 1)th closest
vertex to the initial center is chosen as the new center, and excluding the first
center, its edge weights with all the other vertices are calculated. The process125

ends when the number of vertices not used as a center is no larger than K. Af-
terwards, a multi-class spectral clustering algorithm [13] is used to partition the
vertices of the constructed K-nearest graph. The spectral clustering is repeated
until the size of the smallest cluster equals 1. This algorithm is more efficient
than Li’s algorithm [11], but it has high I/O cost and needs to know the number130

of partitions in advance.
In [14], a faster solution based on hierarchical clustering is proposed, to-

gether with a criterion based on a silhouette coefficient [21]. The fingerprints
are enhanced, and instead of a complete dataset, a randomly selected training
set is used for clustering. All selected fingerprints are treated as an individual135

cluster, and a pairwise similarity matrix is generated. A couple of clusters with
maximum similarity are merged, and the matrix is updated. After updating,
the silhouette coefficient is calculated for each fingerprint. The silhouette co-
efficients are averaged to give a global measure of the aptness of the current
partition. When all fingerprints have been merged into one cluster, the parti-140

tion corresponding to the highest aptness is deemed to be the optimal partition.
In [22], Gisolf reduced PRNU-related computation, and the compressed finger-
prints were used instead of the original fingerprints for iterative clustering. In
each iteration, a couple of clusters with the highest correlation are selected as
candidates. Finally, in [21], a refinement step based on Hu’s moment vector145

is applied to improve performance. The framework with some modifications is
used in [15] for smart-phone clustering. The silhouette coefficient is calculated
for each cluster instead of each individual fingerprint. It is claimed in [14], that
the silhouette coefficient based algorithm is faster than [11] and provides com-
parable accuracy. However, its computational cost is still very high and makes150

it unsuitable for large databases.
The algorithms discussed earlier are either computationally too expensive,

or the computational cost is reduced by clustering a randomly selected training
set, and using the obtained clusters for attracting the remaining fingerprints.
However, the training set should adequately represent the complete dataset for155

successful classification. The dataset and training set must include a suitable
number of representatives of all clusters. If the dataset does not have a sufficient
number of fingerprints for all clusters, i.e., we are in the NC � SC scenario, it
is almost impossible to select a suitable training set which represents well the
complete dataset. As a result of the bad selection of training sets, the remaining160

unclassified fingerprints are miss-classified.
A solution to the clustering of a large database under the NC � SC problem

was proposed by Lin and Li in [19]. The proposed algorithm splits a large
dataset in several small datasets that can be quickly loaded on RAM. Then
coarse clusters are obtained using a simple clustering algorithm. The coarse165
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clusters are then refined using fine clustering, followed by attraction and post-
processing, to enhance the clustering results. Lin and Li’s technique generates
high quality clusters in a much faster way, especially for large databases.

In a recent approach, Li and Lin, in [23], presented a fast source-oriented
image clustering technique based on the pairwise correlation among camera fin-170

gerprints. By considering each fingerprint as a random variable, Markov random
field (MRF) technique is used to assign a class label to each fingerprint. Li and
Lin formulate a cost function and assign different voting power to neighbors
to determine class labels, depending on their similarity. This algorithm does
not require any prior information about the dataset. The algorithm reduced175

the computational complexity of each iteration and accelerated the speed of
convergence. However, this algorithm did not addressed the NC � SC prob-
lem. In [5, 24], Phan et al., presented a sparse subspace clustering (SSC) based
technique [25]. The SSC technique is based on the concept that a data point
can be written by the linear combination of other points in the same subspace.180

This technique uses the sparse representation of each camera fingerprint, using
l1-regularized least squares and estimating appropriate parameters in a data-
driven manner.

The classical clustering algorithms are not used for clustering digital im-
ages using camera fingerprints, because these algorithms have some serious185

limitations in this scenario. The K-means [26] and CLARANS [9] clustering
algorithms need prior information about the number of clusters and requires
high computational resources to process large datasets. DBSCAN [27] has large
memory requirements and has large I/O cost [10]. The hierarchical clustering
algorithms like [10] and [28] reduce the input size for large databases but suffer190

from the NC � SC problem. Some hierarchical clustering algorithms, such as
BIRCH [29] and CHAMELEON [30], are designed for large-scale databases, but
these are very sensitive to outliers and have high I/O cost due to the generation
of a K-nearest neighbor graph.

The clustering of images based on camera fingerprints is a computationally195

expensive process. It also has high I/O cost and large memory requirements.
Although the existing clustering algorithms result in high quality clusters, they
suffer from all or some of the above problems. Many of the above clustering
algorithms [5, 11, 12, 13, 24] compute the full cross-correlation matrix among
the n fingerprints, which requires (n(n− 1))/2 correlations and can be compu-200

tationally intensive, especially in the case of large datasets. Along with these
problems, some algorithms, such as [14, 19, 9, 29], suffer when the number of
cameras (NC) is much larger than the average number of images captured by
a single camera (SC).

Very recently, machine learning techniques using convolutional neural net-205

works (CNN) have been applied to camera identification. Whereas classical
supervised techniques seems to provide good results only for camera model iden-
tification [31], a recent approach based on a Siamese CNN named noiseprint [32]
has been successfully extended to camera sensor identification [33, 34]. Using the
above techniques in a large scale clustering scenario has not been investigated210

yet, however it can provide an interesting avenue for future research.
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Figure 2: Block diagram of the proposed algorithm.

3. Proposed Algorithm

In this section, we provide a detailed description of the different steps com-
posing the proposed algorithm, hereafter named as Fast Image Clustering based
on Compressed Camera Fingerprints (FIC3F). The block diagram of the pro-215

posed algorithm is shown in Fig. 2. We consider a scenario in which the dataset
of images to be analyzed have all the same size, so that there is no side in-
formation apart from the camera fingerprint. As a first step, we compute a
ranking index <I depending on the image content, which tells how reliably a
fingerprint can be estimated from that image. Then the camera fingerprint is220

estimated from each of the images by subtracting the de-noised image from the
original image. This estimated camera fingerprint is denoted as full fingerprint
F . The full fingerprints are further compressed to get reduced fingerprints Fr.
The reduced fingerprints are sorted in decreasing order of the respective <I.
The FIC3F algorithm uses the reduced and sorted camera fingerprints Fr to225

compute initial clusters. Then, for each of the initial clusters, a reference fin-
gerprint for the cluster is obtained by averaging the full fingerprints belong to
that cluster. The new reference fingerprints are then used in a fine clustering
step to refine the clusters.

The different steps of the FIC3F algorithm are described in the following230

sections.
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3.1. Fingerprint Estimation

As a preliminary step, the camera fingerprint is estimated for each image in
the dataset. The estimation of the camera fingerprint is a standard procedure
when a sufficiently large number of image samples are available [1]. However,235

in the case of image clustering, it is not possible to use multiple images, since
there is no side information to infer the source camera. Therefore, each image
is treated individually.

Camera fingerprint estimation is based on a simplified linear model of camera
sensor output [2], each image is de-noised using Mihcak filter operation [1], and240

subtracted from the original image to get the camera fingerprint [2, 35]. A set
of, initially un-clustered, camera fingerprints M are obtained from a dataset of
images I and standardized to zero mean and unit variance using Eq. 1.

M = {Fi|Fi = Φ(Xi −D(Xi)) ∧ 1 6 i 6 n,Xi ∈ I} (1)

Where D(.) is the de-noising function, Φ(.) denotes common post processing
operations including Wiener filtering and mean removal to suppress non unique245

artifacts (NUAs) as explained in [36], as well as normalization to zero mean
and unit variance, n is the number of images in dataset, Xi is the ith image in
dataset and Fi is the camera fingerprint obtained from Xi.

3.2. Fingerprint Compression

The compression of camera fingerprints is one of the key processes in the250

implementation of the FIC3F algorithm. The compression process reduces the
size of the camera fingerprint, which in turn helps to reduce the computational
cost and memory requirement of the clustering process. Several techniques
have been proposed to compress camera fingerprints. These include trimming
and cropping [37], fingerprint digest [37], Gaussian random projections [38] and255

binarization [39]. Trimming unwraps camera fingerprint column-wise and trim
the fingerprint by preserving only the Pr first samples. Cropping preserves only
the center portion of the camera fingerprint. The fingerprint digest technique
builds a digest by keeping the Pr highest energy components and their positions.
This technique relays on the assumption that the most prominent peaks of the260

extracted camera fingerprints can be used as a suitable camera attribute. The
Gaussian random projections based compression technique was introduced by
Valsesia et al. The basic idea is to project the one-dimensional unwrapped
camera fingerprint from a vector space of a large dimension to a subspace of
reduced dimension Pr. The binarization technique obtains binarized camera265

fingerprint by performing element-wise quantization. This can be used even
after the earlier mentioned camera fingerprints compression techniques.

In this paper, we explore two different methods for fingerprint compression.
The first method is based on decimation, random projection, and dead-zone
quantization, as presented in [40]. This compression technique is presented in270

Algorithm 1. The second method directly applies dead-zone quantization to
the decimated camera fingerprints and is presented in Algorithm 2. The aim of
introducing both algorithms is to investigate whether random projections can
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provide any advantage in this setting. The reduced fingerprints obtained by the
above methods are approximate representations of their respective full camera275

fingerprints. However, they preserve the correlation among fingerprints and can
be used to obtain a reliable initial clustering.

The steps involved in the compression of the fingerprints are presented in
the following subsections.

3.2.1. Decimation280

In [40], Bondi et al. considered the estimated fingerprints extracted from
flat-field and natural images to analyze the effect of JPEG compression on the
power spectral density (PSD) for different quality factors. The analysis re-
veals that increasing compression level lower the power of the residue at high
spatial frequencies. At the same time, camera fingerprint contributions in high-285

frequency bins are combined with residuals of blockiness artifacts due to JPEG
compression that cannot be entirely removed by the residue extraction process
[41, 40]. Taking this into account, the authors in [40] propose to attenuate the
high-frequency components by decimating F by a factor d > 1 along rows and
columns. The operation is accomplished via interpolation with a cubic kernel290

[42] Hc(z) defined as

hc(z) =


1.5|z|3 − 2.5|z|2 + 1 if |z| ≥ 1

−0.5|z|3 + 2.5|z|2 − 4|z|+ 2 if 1 < |z| ≤ 2

0 otherwise

. (2)

Given a vector y of length Ly, if the vector y is decimated by a factor d then
the ith element of the decimated vector yd is

yd(i) =

Ly−1∑
j=0

hc(j − id)y(j),∀i ∈ {0, ..., bLy/dc}. (3)

After applying a decimation process on a camera fingerprint F , we get a
decimated camera fingerprint Fd of reduced size |F |/d2.295

3.2.2. Random Projection

After decimation, the next step is to generate random projections for the
given decimated camera fingerprint Fd. The random projections are obtained
using a Gaussian sensing matrix [38], which has proven to be an effective way
of compressing camera fingerprints. The sensing matrix Ψ of dimension Pr ×300

|Fd| is generated with samples being extracted from a i.i.d zero-mean Gaussian
distribution. The resulting projection RP of the decimated camera fingerprint
Fd is obtained by taking a simple matrix product between the sensing matrix
Ψ and the decimated camera fingerprint Fd

RP = ΨFd (4)

The random projection process reduces the size of camera fingerprint from305

|Fd| to Pr, where Pr ≤ |Fd|.
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3.2.3. Dead-Zone Quantization

Binarization of random projections is an effective technique to preserve good
performance in terms of detection [40]. Here, we binarize the fingerprints by
using dead-zone quantization. Given σ, the standard deviation of RP , the ith310

element of Fr for i = 1, . . . , Pr is obtained as

Fr(i) =


+1 if RP (i) > δσ

0 if −δσ ≤ RP (i) ≤ δσ
−1 if RP (i) < −δσ

. (5)

where δ is a parameter controlling the sparseness of the quantized finger-
prints. Dead-zone quantization has two advantages; first, it preserves the peaks,
which are very important in terms of cross-correlation. Secondly, the variable
threshold of the quantization process allows reducing the bit-rate of Fr via en-315

tropy coding by increasing δ while keeping Pr fixed. However, in this paper we
prefer a simple two-bit encoding of ternary values versus optimized entropy cod-
ing because this simplifies computing the correlation of binarized fingerprints.
Hence, the size of the Fr in terms of bits will be 2× Pr bits.

Algorithm 1 Fingerprints compression using decimation, random projections
and dead zone quantization

Input: F : Camera fingerprint, σ : Standard deviation of camera fingerprint,
d : Decimation factor, Pr : Number of random projections, Ψ : Sensing
matrix, δ : Dead-Zone threshold

1: Fd = Decimate(F, d)
2: RP = ΨFd

3: Fr(i) =


+1 if RP (i) > δσ

0 if −δσ ≤ RP (i) ≤ δσ
−1 if RP (i) < −δσ

.

Algorithm 2 Fingerprints compression using decimation and dead zone quan-
tization

Input: F : Camera fingerprint, σ : Standard deviation of camera fingerprint,
d : Decimation factor, Pr : Number of random projections, δ : Dead-Zone
threshold

1: Fd = Decimate(F, d)

2: Fr(i) =


+1 if Fd(i) > δσ

0 if −δσ ≤ Fd(i) ≤ δσ
−1 if Fd(i) < −δσ

.

3.3. Fingerprint Sorting320

Clustering images according to a common source would be much easier if the
centroids of clusters were known in advance, since the centroids could be used
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to attract images from the same camera with linear complexity in the number of
fingerprints. In practice we do not have any information regarding the centroids,
and we can only blindly select one of the fingerprints as reference. However,325

we can assume that fingerprints with lower estimation error would be closer to
the true reference fingerprint of the respective camera. We know that camera
fingerprints estimated from a uniformly bright, flat and unsaturated image have
the least estimation error, so they can be considered as the most suitable candi-
date for being a centroid, among the available camera fingerprints. The FIC3F330

algorithm is based on the same assumption. The algorithm computes a ranking
index <I, using the inherent gray-level, saturation, and texture information of
the images. The <I index indicates the quality of estimated camera fingerprints:
the higher the <I of an image the better the quality of the camera fingerprint
estimated from it.335

To compute <Ii for an image Xi ∈ I the average and normalized gray-level
Gi and saturation Si are calculated as in Eq. 6 and Eq. 7, respectively.

Gi =

∑|Xi|
j=1 Xi(j)

255× |Xi|
(6)

Si =

∑|Xi|
j=1(Xi(j) == 255)

|Xi|
(7)

The texture information of an image Xi is obtained by calculating the nor-
malized edges energy. The edges Li of an image Xi are computed using a
Laplacian filter, applied to the image Xi, which highlights the regions of rapid340

gray-level change. The edges Li of an image Xi are given by Eq. 8.

Li = imfilter(Xi, A) (8)

Where, imfilter(.) denotes 2D filtering, and A is a kernel that approximates
the second-order derivative, given by

A =

 0 −1 0
−1 4 −1
0 −1 0

 . (9)

The texture level Ti is obtained by computing the energy of edges normalized
with respect to the total energy of the image Xi, as given in Eq. 10.345

Ti =

∑|Xi|
j=1 Li(j)

2∑|Xi|
j=1 Xi(j)2

(10)

Finally, the <Ii for image Xi is obtained by combining the values of Gi, Si,
and Ti according to the following equation.

<Ii = G
1
α
i × (1− Si)

1
β × (1− Ti)

1
γ (11)

11



where, α, β and γ are factors defining the contribution of Gi, Si and Ti in
<Ii, respectively.

Eq. 11 shows that unsaturated and flat images with average grayscale values350

will results in high values of <I, whereas saturated, highly textured, or dark
images will result in lower values of <I. So, we assume that images with high
values of <I will yield fingerprints characterized by a lower estimation error.

After computing the <I for each image, the camera fingerprints F and quan-
tized camera fingerprints Fr are arranged in decreasing order of <I, to get a355

set of sorted fingerprints MO. These fingerprints are then used for clustering.

3.4. Initial Clustering

The processes of camera fingerprints estimation, computation of compressed
camera fingerprints, <I computation, and sorting of camera fingerprints based
on <I, are followed by clustering. The clustering is performed in two steps. The360

first step is denoted as initial clustering, the second step is called fine clustering.
The initial clustering is performed using reduced camera fingerprints Fr. The
clusters are refined in the fine clustering step using full camera fingerprints F .
The clustering process works iteratively, performing different rounds, where each
round results in a new cluster. Each clustering round is denoted by the cluster365

index K. In each round K, a cluster CK = ∅ is initialized by the algorithm.
The un-clustered fingerprints are assigned to a set UCK .

At the start of clustering, we set K = 1 and all sorted camera fingerprints
are assigned to the set of un-clustered fingerprints UCK i.e., UC1 = MO. To
build the Kth cluster i.e., CrK , the FIC3F algorithm always selects as reference370

fingerprint RF rK the best-reduced fingerprint Fr from the set of sorted and un-
clustered fingerprints UCK and the corresponding full fingerprint F is assigned
to cluster CrK . If the ranking index is consistent, RF rK will be the best-estimated
fingerprint among all the un-clustered fingerprints UCrK and the best represen-
tative of the respective cluster CrK . The normalized cross-correlation (NCC) ρ375

between the reference fingerprint RF rK and all other fingerprints Fri is used to
decide whether the given Fri belongs to the same camera as that of RF rK , or
not.

The normalized cross correlation ρ between Fri and RF rK can be computed
as in Eq. 12.380

ρ(i) =

Pr∑
x=1

RF rK [x]Fri[x] (12)

Where Pr is the dimension of the reduced fingerprint Fri.
If the NCC ρ between the reduced fingerprint F ri and reference fingerprint

RF rK has a value greater than or equal to a threshold value Th, Fi is assigned
to the cluster CrK , otherwise the reduced fingerprint F ri and corresponding full
fingerprint Fi are assigned to the set of un-clustered fingerprints UCK+1. In385

order to guarantee a certain probability of false alarm PFA, i.e., the probability
of assigning a wrong fingerprint to CrK , under the assumption that the NCC ρ
for two unrelated fingerprints can be modeled by a Gaussian distribution with
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zero mean and standard deviation σρ, the threshold value can be computed as
follows390

Th = σρ ×
√

2 erfc−1(2× PFA) (13)

where erfc−1(.) is the inverse of the complementary error function. The
variance of ρ can be computed as follows. The reduced camera fingerprints
are quantized in the dead zone quatization process, and each entry of these
quantized fingerprints has only three possible values among +1, 0 and −1. Let
us denote the probability of having an entry equal to zero as Po, so that the395

probability of +1 or −1 is (1−Po)/2. Hence, the variance of ρ when the reduced
fingerprints come from different cameras can be computed as σ2

ρ = Pr(1− Po),
leading to the following expression for the threshold:

Th =
√

2× Pr(1− Po) erfc−1(2× PFA) (14)

While constructing the cluster CrK , a total of |UCK |−1 correlation operations
are performed, and a total of |UCK+1| = |UCK | − |CrK | fingerprints are left un-400

clustered. To cluster the remaining fingerprints, if any, the cluster index K
is incremented by 1 and the un-clustered UCK+1 fingerprints are processed to
construct a new cluster CrK+1 by repeating the same procedure. The process
continues till all fingerprints are assigned to a cluster, and UCK+1 gets empty.

At the end of each round, the full fingerprints F in each cluster CrK are405

merged by averaging them, to compute a full reference fingerprint RF fK for each

cluster. The full reference fingerprints RF fK is then used in the fine clustering
stage to attract other clusters.

The complete process is detailed in Algorithm 3.

3.5. Fine Clustering410

The fine clustering process uses the full reference fingerprints RF fK for the
possible attraction of clusters CrK . Initially, we have a set of full reference
fingerprints MRF f . All the reference fingerprints are treated as un-clustered
fingerprints. The fine clustering index H is initiated and set to one i.e., H = 1,
and all reference fingerprints are assigned to the set of un-clustered fingerprints,415

i.e., UC1 = MRF f . To construct the Hth fine cluster CFH , the FIC3F algorithm

always selects as reference fingerprint RF fH the first full reference fingerprint

RF f1 from the un-clustered full fingerprints UCH and all the fingerprints in the
corresponding cluster CrH are assigned to the fine cluster CFH , i.e. CFH ← CrH .
Due to the way average full fingerprints are constructed in the initial clustering420

stage, full fingerprints inherit the order according to the ranking index, so the
first full reference fingerprint can be assumed the best candidate for attracting
the other clusters. The NCC ρf between the full reference fingerprint RF fH and

all other full reference fingerprints RF fi is calculated as follows

ρf (i) =

d̄∑
x=1

RF fH [x]RFFi [x] (15)

13



Algorithm 3 Initial clustering

Input: MO, K, PFA, Pr
Output: CrK ,RF fK

Initialization : K = 1 , UCK = |MO|
1: Th =

√
2× Pr(1− Po) erfc−1(2× PFA)

2: while (|UCK | 6= 0)
3: UCK+1 = ∅
4: CrK = ∅
5: RF rK = Fr1

6: CrK ← F1

7: for j = 2 to |UCK | do
8: ρ(j) =

∑Pr
x=1RF

r
K [x]Frj [x]

9: if (ρ(j) ≥ Th) then
10: CrK ← Fj
11: else
12: UCK+1 ← Frj
13: UCK+1 ← Fj
14: end if
15: end for

16: RF fK =
∑|CrK |
i=1 Fi
|CrK |

where Fi ∈ CrK
17: K = K + 1
18: endwhile
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If the NCC ρf between the two reference fingerprints has a value greater425

than a threshold value T , all the fingerprints in cluster Cri , are assigned to the

cluster CfH and the reference fingerprints are merged, otherwise the reference

fingerprint RF fi is assigned to the set of un-clustered fingerprints UCH+1 and
the corresponding Cri is left unaffected. Since reference fingerprints are normal-
ized vectors of dimension d̄, the variance of ρf for unrelated fingerprints can be430

obtained as σ2
ρf = d̄ and, according to (13), the threshold value T is computed

as

T =
√

2× d̄ erfc−1(2× PFA) (16)

At the end of round H a fine cluster CfH is constructed. While constructing

the cluster CfH , a total of |UCH | − 1 correlation operations are performed, and

a total of |UCH+1| = |UCH | − |CfH | fingerprints are left un-clustered.435

The cluster index H is incremented by 1 and the full reference fingerprints
in UCH+1, are processed to construct a new fine cluster CfH+1 by repeating
the same procedure. The process continues till all fingerprints of the CrH are

assigned to a fine cluster CfH , and UCH+1 gets empty.
The complete procedure is detailed in Algorithm 4440

Algorithm 4 Fine clustering

Input: MRF f , H, RF fH , PFA

Output: CfH
Initialization : H = 1 , UCK = |MRF f |

1: T =
√

2× d̄ erfc−1(2× PFA)
2: while (|UCH | 6= 0)
3: UCH+1 = ∅
4: CfH = ∅
5: RF fH = RF f1
6: CfH ← CrH
7: for j = 2 to |UCH | do
8: ρf (j) =

∑d̄
x=1RF

f
H [x]RF fj [x]

9: if (ρf (j) ≥ T ) then

10: CfH ← Crj

11: RF fH =
(RF fH+RF fj )

2
12: else
13: UCH+1 ← RF fj
14: Crj un-affected
15: end if
16: end for
17: H = H + 1
18: endwhile
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The fine clustering uses the average of multiple full fingerprints F as ref-
erence fingerprints which are a more stable and reliable estimation of the true
fingerprint [1]. Therefore, in the fine clustering stage many clusters composed
by a single fingerprint are usually attracted by the correct cluster.

3.6. Computational Complexity, I/O Cost and RAM Requirements445

In this section, we discuss the total computational complexity, I/O cost and
RAM requirements and the reasons for the suitability of the FIC3F algorithm
for large scale clustering.

Computational Complexity
The FIC3F algorithm is composed of initial clustering and fine clustering.450

Both of these stages contributes to the computational cost. The computational
cost T rc of initial clustering is given by Eq. 17.

T rc = ζ ×

(
NCr∑
i=1

|UCi| −NCr

)
(17)

where NCr is the total number of clusters constructed in initial clustering and
ζ is the ratio between the sizes (in bits) of the reduced and full fingerprints.

The computational cost of the fine clustering stage is measured only in terms455

of the total number of correlations performed. The computational cost T fc of
the fine clustering stage is given by Eq. 18.

T fc =

NCf∑
i=1

|UCi| −NCf (18)

where, NCf is the total number of clusters obtained at the end of fine clustering.
The total computational cost T tc of the FIC3F algorithm is the sum of the

computational cost of fine clustering T fc , scaled computational cost of initial460

clustering T fc and the cost of merging fingerprints Costmerging, given by Eq.
19.

T tc = T fc + T rc + Costmerging (19)

The merging of fingerprints requires only additions so its cost can be as-
sumed as negligible compared to the combined cost of initial clustering and
fine clustering. Overall, the total cost of the FIC3F algorithm is dominated by465

the number of correlations, which is significantly less than the reference value
n(n − 1)/2 when the number of images per camera SC is greater or equal to
2 i.e., SC ≥ 2, while for SC = 1 the computational cost is comparable to the
reference complexity. For example, if we have a dataset of n fingerprints with
SC = 1 and the fingerprints are correctly clustered without any false positive,470

then the FIC3F algorithm will perform ζ(n(n−1)/2) and n(n−1)/2 correlations
in initial and fine clustering, respectively. Hence, the total cost of clustering will
be (ζ + 1)(n(n− 1)/2) which is ζ + 1 times larger than the reference complexity
i.e., n(n−1)/2. However, if SC ≥ 2, the computational complexity of the FIC3F
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algorithm, as compared to the reference complexity, decreases as the size of the475

dataset increases. This make the algorithm suitable for large scale clustering.
RAM Requirements
Along with the computational cost, it is essential to discuss the maximum

RAM requirements of the FIC3F algorithm. During the initial clustering, the
FIC3F algorithm has one reduced fingerprint Frj and a reduced reference finger-480

print RF rK in RAM. The maximum RAM occupied during the initial clustering
always remains constant and is equal to 2×Pr. After the initial clustering, the
full fingerprints of each cluster are merged together by averaging them. The av-
erage full fingerprints remain in the RAM and are used in fine clustering stage.
Therefore, the RAM usage reaches its peak which gradually decreases with the485

possible merging of clusters during the fine clustering. The maximum RAM
RAMmax required by the FIC3F algorithm is given by Eq. 20.

RAMmaxr = 64×NCr × |F |+ 2× Pr (20)

where 64× |F | is the size of full fingerprints in terms of bits.
I/O Cost
Here it is also important to discuss the I/O cost of the FIC3F algorithm.490

The I/O cost of the algorithm depends on the number of clusters constructed
in the initial clustering. The I/O of the FIC3F algorithm is given in Eq. 21.

I/O =

NCr∑
i=1

|UCi|+ n (21)

where n is representing the I/O cost of full fingerprints. Each full fingerprint
is loaded once while computing the average full fingerprints and the I/O cost
due to full fingerprints is equal to n.495

The FIC3F algorithm has a lower RAM requirement, however the I/O is
quite large. The I/O cost can be reduced by loading all reduced fingerprints on
RAM during the initial clustering. In this case, the I/O cost and the maximum
RAM RAMmax required are given in Eq. 22 and Eq. 23, respectively.

I/O = (1 + ζ)n (22)

RAMmax = 64×NCr × |F |+ n× 2× Pr bits (23)

This can result in a significant reduction in I/O cost. However, it increases500

the load on RAM. Hence, a trade-off can be made between the I/O cost and
maximum RAM requirements.

4. Experiments

In this section, we provide an experimental evaluation of the FIC3F cluster-
ing algorithm. First, a set of experiments is conducted to find the optimal value505

of parameters, like sigma σ, and the size of compressed camera fingerprints Pr,
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which are selected and used throughout all experiments. Then, we validate the
performance of our algorithm under different settings, considering both medium
and large scale datasets and different distributions of clusters. The algorithm is
also analyzed under the NC � SC scenario.510

4.1. Dataset

The FIC3F clustering algorithm has been evaluated on the Dresden image
database [43, 44]. The dataset is composed of 10960 images from 53 cameras of
18 different models and 10 different brands. Starting from the original Dresden
dataset, different datasets are selected according to different requirements. As515

we know, it is very challenging to cluster images of different cameras of the same
model based on camera fingerprints, because images taken by different devices
of the same model undergo the same or similar in-camera processing procedures.
Therefore, we classify the clustering task into easy and hard levels. The easy
level includes only images taken by cameras of different models, while the hard520

level, considers images from devices of the same model.
Along with this, in real scenarios, the number of images captured by different

cameras varies widely, which results in different contributions of cameras and
different class distributions within the dataset. Therefore, we classify datasets
into symmetric and asymmetric. In symmetric datasets, all cameras contribute525

equally to the dataset while in asymmetric datasets, the contribution is not
equal.

To have a detailed analysis of the NC � SC problem, we need a larger
number of cameras. A dataset with a large number of cameras is built using the
images of the existing cameras in the Dresden dataset. The images of an existing530

camera are divided into different non-overlapping patches of size 1023 × 1023
which are considered as separate images. The patches do not share any part
of camera sensors; therefore, each created image will have unique PRNU. The
part of the sensor array that has captured the particular patch is considered as
a single camera. A dataset of images with 295 cameras and a contribution of535

20 images by each camera is built in this way.
Finally, we set up the following seven datasets for the experiment:

• D0: Small dataset. It consists of 600 images taken by 15 cameras, each
equally contributing 40 images. The 15 cameras are of different models
and nearly cover 8 all of the popular camera brands.540

• D1: Easy symmetric dataset. It consists of 1, 000 images taken by 25
cameras, each equally contributing 40 images.The 25 cameras are of dif-
ferent models and nearly cover 8 all of the popular camera brands, such
as Cannon, Nikon,Olympus, Pentax, Samsung, and Sony.

• D2: Easy asymmetric dataset. The dataset is also composed of 1, 000545

images taken by the same 25 cameras as in D1. These camera alternatively
contribute 20, 30, 40, 50 and 60 images.
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• D3: Hard symmetric dataset. It consists of 1, 000 images taken by 50
cameras, each contributing 20 images. The 50 cameras only cover 12
popular models, so some of them are of the same model.550

• D4: Hard asymmetric dataset. The same 50 cameras as in D3 are part of
this dataset, alternatively contributing 10, 15, 20, 25 and 30 images.

• D5: Dresden dataset. The dataset is composed of 10960 images from 53
cameras of 18 different models and 10 different brands.

• D6: Large Number of Cameras dataset. It consists of 5900 images from555

295 cameras, each contributing 20 images.

The D0 dataset is used to investigate the choice of parameters for the FIC3F
algorithm. The other four datasets, i.e., D1, D2, D3, and D4, are used for
examining the performance of the algorithm on different types of small datasets.
These datasets are also used for comparing the FIC3F algorithm with state-of-560

the-art algorithms. The D5 and D6 datasets are used for large scale clustering
analysis and investigating the NC � SC problem.

4.2. Evaluation Metric

A measure of agreement is essential for the evaluation of the FIC3F clus-
tering algorithm and its comparison with state-of-the-art techniques. The most565

popular metrics used for assessment of clustering algorithms, are based on the
matching of sets, e.g., Precision P , Recall R and F-measure, on information
theory, e.g., mutual information MI and normalized mutual information NMI,
and pair of objects counting e.g., rand index RI and adjusted rand index ARI
[45, 46]. However, clustering solutions with many clusters results in higher values570

of NMI when compared with ground truth classes [47]. This may be mislead-
ing while comparing different clustering algorithms yielding different numbers
of clusters. Hence, MI and NMI are not used in this paper.

The P , R, F −measure, RI and ARI are used for evaluating the proposed
clustering framework and comparing it with the state-of-the-art algorithms.575

These metrics are computed using ground truth classes Ω and generated clusters
C. Let’s denote the ground truth as

Ω = {ω1, ω2, ω3, . . . , ωNC} (24)

where each ω denotes a set of fingerprints coming from the same camera. C
is the set of clusters generated by clustering algorithm and is given as

C = {c1, c2, c3, . . . , cy} (25)

where each c denotes a set of fingerprints assigned to a cluster. The precision580

P and recall R are calculated from the classes and clusters as given in the
following equations.

P =

∑
k(maxj |ck ∩ ωj |)∑

k |ck|
(26)

19



R =

∑
j(maxk|ck ∩ ωj |)∑

j |ωj |
(27)

where |ck| and |ωj | are cardinalities of cluster ck and ground truth class ωj ,
respectively, maxj |ck ∩ ωj | is used to find the largest number of fingerprints
in cluster ck that comes from a ground truth class and maxk|ck ∩ ωj | returns585

the largest number of fingerprints in ground truth class ωj that are also in a
recovered cluster.

A high precision value means that each of the recovered clusters mostly
contains images coming from a single camera. Conversely, if the clusters are
polluted by images coming from different cameras, the precision will decrease.590

A high recall value means the the obtained clusters have recovered most of the
ground truth clusters. When a ground truth cluster is split into two or more
recovered clusters, the recall will decrease.

As an overall measure of clustering accuracy, we use the F−measure defined
as the harmonic mean of P and R:595

F −measure = 2× (P ×R)

(P +R)
. (28)

The RI and ARI are computed using Eq. 29 and Eq. 30, respectively
[48, 49, 50].

RI =
(a+ d)

a+ b+ c+ d
=

(a+ d)(
n
2

) . (29)

Where, a is the number of pairs of fingerprints which are in the same set
in Ω and in the same set in C, b is the number of pairs of fingerprints which
are in the same set in Ω and in different sets in C, c is the number of pairs of600

fingerprints which are in different sets in Ω and in the same set in C and d is the
number of pairs of fingerprints which are in different sets in Ω and in different
sets in C [51].

ARI =
RI −E[RI]

1−E[RI]
. (30)

The expected value of RI between two random partitions is not a constant.
The problem is corrected by the ARI that assumes the generalized hyper-605

geometric distribution as the model of randomness. The ARI has maximum
value 1, and its expected value is 0 in the case of random clusters. A larger
ARI means a higher agreement between two partitions. Therefore ARI is rec-
ommended for measuring agreement even when the partitions compared have
different numbers of clusters.610

Along with the quality of clusters of an algorithm, it is also essential eval-
uate its computational complexity, and for this purpose and a metric called
complexity reduction Cr [16, 17] is introduced. The Cr evaluates the relative

20



complexity of an algorithm with respect to the reference complexity n(n− 1)/2
and is computed as given by Eq. 31615

Cr =
n× (n− 1)

2× T tc
. (31)

The higher the value of Cr, the faster the algorithm is and vice versa. The
total computational complexity T tc is measured as the sum of the equivalent
number of correlations between full camera fingerprints. This can be estimated
as the actual number of correlation between full fingerprints NCC Full plus
a weighted number of correlations between the compressed camera fingerprints620

NCC R, i.e., T tc = NCC Full + ζNCC R, where ζ is ratio of the size of
compressed fingerprint in bits to the size of full fingerprint in bits, i.e., ζ =
2×Pr

64×|F | .

4.3. Experimental setup

The datasets are first pre-processed so that all images share the same size.625

All images are center cropped to 1023× 1023 pixels and camera fingerprints are
extracted using the technique mentioned in [1, 2]. These are called full camera
fingerprints. The center cropped images are then used to compute the ranking
index <I for each image. Each image X, in each dataset is used to compute
average and normalized gray level G, saturation level S and texture T , using630

Eq. 6, Eq. 7 and Eq. 10, respectively. The G, S and T are further used to
compute <I for the image X, with α = 2, β = 0.5 and γ = 2, as given in Eq.
12. The extracted full camera fingerprints are sorted in the decreasing order of
<I.

In all experiments, the threshold is computed by setting PFA = 10−6.635

4.4. The analysis of FIC3F algorithm using different reduced fingerprints.

Reduced camera fingerprints can be obtained according to different settings.
We can use decimation, random projections, and dead-zone quantization, as
explained in Algorithm. 1 or we can apply dead-zone quantization directly to
full fingerprint after decimation or without decimation as given in Algorithm.640

2. Along with these, we may use a different number of projections and values
of quantization factor δ to get the reduced fingerprints. Therefore, it is im-
portant to investigate which choice of parameters leads to the best clustering
performance.

For Algorithm 1, we tested a decimation factor equal to 2, a random projec-645

tion length Pr of 60000, 96000, or 192000, and the parameter δ for dead-zone
quantization was chosen in the set {0, 0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 1}.
For Algorithm 2, we tested the decimation factors d = 1 and d = 2, while
the parameter δ of dead-zone quantization is chosen in the same set as above.
To differentiate between the two types of reduced fingerprints, the reduced fin-650

gerprints estimated using the first method are represented by F rPr and those
computed with the second method are represented by F rd .
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(e) ARI.

Figure 3: Evaluation measure based analysis of FIC3F algorithm using different reduced
fingerprints Fr for different δ.
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The results in Fig. 3a show that F rd at d = 1 results in clusters achieving
the highest P of 0.998 for δ equal to 0.3, 0.35, 0.4 and 0.6. Along with the
precision, the highest value 0.855 of R and highest value 0.921 of F −measure655

are achieved by F rd at d = 1 for δ equal to 0.3, as shown in Fig. 3b and Fig.
3c, respectively. Similarly, the FIC3F algorithm using reduced fingerprint F rd
at d = 1 and δ = 0.3 results in the highest values of RI and ARI, as shown in
Fig. 3d .

The results of Cr, NCC R, and NCC Full for different reduced fingerprints660

at different values of δ are shown in Fig. 4a, Fig. 4b and Fig. 4c, in that order.
Considering the performance of the FIC3F algorithm in terms of complexity
reduction, it has been observed that the FIC3F algorithm obtains the minimum
value of NCC R and NCC Full when using F rd at d = 1 for δ equal to 0.35
and 0.3, respectively.665
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(c) NCC Full.

Figure 4: Computational complexity based analysis of FIC3F algorithm using different re-
duced fingerprints Fr for different δ.

In short, the configuration that maximizes the complexity reduction without
affecting the performance is that using F rd at d = 1 and δ = 0.3. This can be
explained because using only quantization avoids the approximation due to ran-
dom projections, while still achieving a significant reduction in the complexity
of fingerprint correlation operations. From now on, with reduced fingerprints670
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Fr we denote only the fingerprints estimated from full fingerprints without any
decimation and using dead-zone quantization at δ = 0.3.

4.5. Small Scale Clustering

In this section, we are investigating the performance of the FIC3F algorithm
on symmetric easy D1, asymmetric easy D2, symmetric hard D3 and asym-675

metric hard D4 datasets, varying the number of images per camera SC while
keeping the number of cameras fixed. The number of cameras in symmetric easy
and asymmetric easy datasets is 25, while in the other two datasets the num-
ber of contributing cameras NC is 50. Full camera fingerprints F and reduced
camera fingerprints F r are estimated for each image of each dataset.680

A number of 200, 400, 600, 800 and 1000 fingerprints are selected in each
experiment corresponding to a SC of 8, 16, 24, 32 and 40 respectively in case
of easy datasets and to a SC of 4, 8, 12, 16 and 20 in the case of hard datasets.

The experimental results for the different performance metrics are shown in
Fig. 5. The results in Fig. 5a show that the FIC3F algorithm results in high685

values of P for almost all cases. A small reduction in P has been observed for
400 and 600 images for D2 and D4 datasets, respectively. The reduction in
P can be due to the attraction of wrong fingerprints during the fine clustering
stage. The results obtained for R and F − measure in Fig. 5b-c show that
FIC3F obtains a recall between 75% and 90% for the different datasets. The690

results also show that the recall is higher for the easy dataset compared to the
hard ones. A similar behavior can be observed for the ARI on Fig. 3e, while
the values of RI remains similar for easy and hard datasets.

The results in Fig. 5f show that the computational complexity of FIC3F,
with respect to the reference complexity of n(n−1)/2, decreases with an increase695

in the number of fingerprints. Moreover, the complexity reduction is higher in
case of easy datasets i.e., D1 and D2 than in the case of the hard datasets i.e.,
D3 and D4, showing that the FIC3F algorithm tends to be faster when there
are less clusters.

4.6. Large Scale Clustering700

For large scale analysis the FIC3F algorithm is applied to different subsets
of images selected from D5 dataset using the same number of cameras, i.e.,
NC = 53, and varying the average number of images from each camera SC.
The experiments are performed using 106, 265, 371, 477, 530, 795, 1325, 1855,
2385, 2915, 3445 and 3975 images.705

The experimental results in Fig. 6a show that the values of P , R and
F−measure decrease, when SC increases. The reduction in R and F−measure
can be due to the construction of more singleton clusters, i.e., clusters formed
by a single fingerprint, in the initial clustering stage when SC increases and
due to the difficulty of attracting singleton clusters in the fine clustering stage.710

While the reduction in P can be due to the attraction of some wrong fingerprints
during the fine clustering stage. Fig. 4b shows that the values of RI are very
high and remains stable while the values of ARI tends to decrease with the
increasing number of images.
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Figure 5: Performance of FIC3F algorithm on small datasets, i.e., D1, D2, D3 and D4
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Figure 6: Large scale dataset analysis of FIC3F algorithm.
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The results in Fig. 6c-d show that the complexity reduction of the FIC3F715

algorithm increases as the SC increases. It can be observed that NCC Reduced
and NCC Full increase with an increase of SC, as shown in Fig. 6d. This in-
crease is due the increase in the size of dataset. The clustering of a large number
of images will perform a large number of NCC, both NCC R and NCC Full.
However, the NCC R and NCC Full grow slower than the n(n − 1)/2, as n720

increases. Hence, the overall Cr, which compares the total computational cost
with the reference complexity n(n− 1)/2, decreases.

4.7. NC � SC analysis

In this section, we are evaluating the robustness of the FIC3F algorithm
under the NC � SC scenario on D6 dataset, which has a significantly larger725

NC than the datasets used in the previous experiments. The experiments are
performed by keeping the size of clusters fixed and varying the number of cam-
eras NC. The experimental results obtained for NC equal to 50, 75, 100, 125,
150, 175, 200, 250 and 295 with fixed SC = 20, are shown in Fig. 7. The results
show that as the NC gets much larger than SC, the evaluation metrics of P ,730

R and F − measure improve, while the resulting RI and ARI values remain
almost constant for the different configurations.

The results also show that the complexity reduction is not affected signifi-
cantly by the number of clusters. This can be explained by the fact that the
complexity reduction is mostly affected by the average size of the clusters, which735

is constant in this experiment.
Further experiments are performed for fixed NC = 295 and varying the

SC. The experimental results obtained for SC equal to 2, 3, 5, 10, 15 and
20, are shown in Fig. 8. The results show that the evaluation metrics of P ,
R and F −measure slightly decrease when SC increases. While the values of740

RI and ARI tends to be almost constant. Fig. 8c shows that as the average
number of images per camera SC increases, the complexity reduction increases.
Confirming that the complexity of the proposed algorithm mainly depends on
the parameter SC.

Overall, the above results show that FI3CF algorithm is robust in the NC �745

SC scenario, since the performance is not significantly affected even in very
unbalanced scenarios, while the complexity reduction mainly depends on the
average size of clusters and is not affected by the number of clusters.

4.8. Comparison

The main focus of the FIC3F algorithm is to reduce the computational com-750

plexity per image while preserving the quality of the constructed clusters. In
this section, the FIC3F algorithm is compared with state-of-the-art algorithms
for camera fingerprint clustering, namely the blind camera fingerprinting, im-
age clustering (BCFIC) algorithm [18], the large scale clustering (LSC) algo-
rithm [19], the reduced complexity image clustering algorithm without attrac-755

tion (RCIC) and with attraction (RCIC-A) [16] and fast image clustering al-
gorithm based on camera fingerprint ordering without attraction (FICFO) and
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Figure 7: The robustness of FIC3F algorithm to NC � SC problem, for various values of
NC and fixed SC = 20.
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Figure 8: The robustness of FIC3F algorithm to NC � SC problem, for various values of SC
and fixed NC = 295.
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with attraction (FICFO-A) [17] using the four datasets D1, D2, D3, and D4
[19]. Since the RCIC and FICFO algorithms can be seen as a baseline version of
the proposed algorithm without using compression, the following results permit760

to directly appreciate the effect of compression on the clustering.
The results in Fig. 9a show that the FIC3F algorithm has a comparable P

with state-of-the-art BCFIC and LSC algorithms. However, the FIC3F algo-
rithm performs similar or better than RCIC, RCIC-A, FICFO and FICFO-A
algorithms in terms of P . While, the R and F −measure of the proposed algo-765

rithm is comparable with BCFIC algorithm and higher than that obtained by
LSC, RCIC, RCIC-A, FICFO and FICFO-A algorithms. However, in case of D4
the FICFO-A has slightly higher R than the proposed algorithm, as shown in
Fig. 9d. The resulting values of RI show that the FIC3F algorithm has a per-
formance equivalent to that of the other clustering algorithms. In terms of ARI,770

the FIC3F algorithm is less efficient than BCFIC, RCIC-A and FICFO-A on
easy datasets. Similarly, on hard datasets the RCIC-A and FICFO-A perform
better than the FIC3F algorithm, but the performance of the BCFIC algorithm
is lower than the proposed algorithm. The ARI of the proposed algorithm is
higher than the rest of the clustering algorithms i.e., LSC, RCIC and FICFO.775

The complexity reduction Cr obtained by all the algorithms is presented
in Fig. 9e. The total complexity tc of BCFIC, RCIC, RCIC-A, FICFO, and
FICFO-A algorithms is computed by counting the number of correlations, since
these algorithms use only full camera fingerprints. However, the FIC3F algo-
rithm and the LSC algorithm use both reduced and full camera fingerprints for780

clustering, therefore, the total complexity tc for these algorithms is computed
in a different way. Since the two algorithms use different versions of reduced
fingerprints, the number of correlation operations performed on reduced and full
fingerprints are weighted differently. In case of LSC, the total complexity tc is
calculated as tc = ncf + (r/|F |) × ncr, where, ncf and ncr are the number of785

correlation among full and reduced fingerprints respectively, while r is the sizes
of reduced fingerprints. While, in the case of FIC3F, total computational cost
is computed as tc = NCC Full + (ζ × NCC R), where ζ = 2×Pr

64×|F | , while Pr
and |F | are the dimensions of the reduced fingerprints and full fingerprints, re-
spectively. Here it is important to mention that FICFO, FICFO-A, and FIC3F790

algorithms perform some computation while calculating G, S, T , and <I and
also in sorting fingerprints. However, the cost of calculating G, S, T and <I
is negligible with respect to the estimation of fingerprints. The cost of sorting
fingerprints is also far less than computing the correlations of very long vec-
tors. Therefore, the cost of computing <I and sorting fingerprints is neglected,795

while computing the total computational complexity tc and the corresponding
complexity reduction.

The results show that the FIC3F algorithms has lower computational com-
plexity than the state-of-the-art methods. The reduction in the computational
cost is mainly due to the use of sorted reduced fingerprints for clustering. BCFIC800

algorithm has a high computation cost because it performs three rounds to con-
struct a single cluster. These rounds are repeated for each cluster. Conversely,
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Figure 9: Comparison of the FIC3F with state-of-the-art clustering techniques.
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the proposed algorithm picks the best reduced fingerprint to build a cluster and
performs a small number of correlations on full fingerprints in the fine cluster-
ing stage. The complexity of the LSC algorithm is quite evident due to coarse805

clustering, fine clustering, and attraction. The complexity of RCIC, RCIC-A,
FICFO, and FICFOA algorithms is higher than the proposed algorithm due to
the use of full fingerprints for clustering as well as in attraction, whenever used.

5. Conclusions

In this paper we have introduced a fast and efficient image clustering algo-810

rithm to group images based on their camera fingerprints. The proposed al-
gorithm computes a ranking index <I indicating the quality of each estimated
fingerprint and sorts all fingerprints in descending order of <I. Using the high-
est quality fingerprints as attractors, an initial clustering stage constructs coarse
clusters in a fast way based on a compressed version of the fingerprints. Then,815

the full fingerprints of each initial cluster are merged together by averaging them
and the highest quality clusters are used as attractors to merge and refine the
clusters. The results obtained on different subsets of the Dresden dataset show
that the proposed clustering algorithm performs similarly or better than prior
related work, with a significantly lower computational complexity. Namely, the820

results show that the initial clustering stage perform most of the correlations
among the reduced fingerprints, while a very small number of correlations are
performed on full camera fingerprints during the fine clustering stage. The pro-
posed algorithm is suitable for large datasets since computational complexity
per image decreases as the size of the image dataset increases. At the same825

time, the proposed algorithm is also robust when the size of clusters is small
compared to the number of cameras, which is a typical problem in this kind of
application.
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