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NASCaps: A Framework for Neural Architecture Search
to Optimize the Accuracy and Hardware Efficiency of

Convolutional Capsule Networks
ABSTRACT
Deep Neural Networks (DNNs) have made significant improvements to
reach the desired accuracy to be employed in a wide variety of Machine
Learning (ML) applications. Recently the Google Brain’s team demonstrated
the ability of Capsule Networks (CapsNets) to encode and learn spatial
correlations between different input features, thereby obtaining superior
learning capabilities compared to traditional (i.e., non-capsule based) DNNs.
However, designing CapsNets using conventional methods is a tedious
job and incurs significant training effort. Recent studies have shown that
powerful methods to automatically select the best/optimal DNN model
configuration for a given set of applications and a training dataset are based
on the Neural Architecture Search (NAS) algorithms. Moreover, due to their
extreme compute and memory requirements, DNNs are employed using
the specialized hardware accelerators in IoT-Edge/CPS devices.

In this paper, we propose NASCaps, an automated framework for the
hardware-aware NAS of different types of DNNs, covering both traditional
convolutional DNNs and CapsNets. We study the efficacy of deploying a
multi-objective Genetic Algorithm (e.g., based on the NSGAA-II algorithm).
The proposed framework can jointly optimize the network accuracy and the
corresponding hardware efficiency, expressed in terms of energy, memory,
and latency of a given hardware accelerator executing the DNN inference.
Besides supporting the traditional DNN layers (such as, convolutional
and fully-connected), our framework is the first to model and supports
the specialized capsule layers and dynamic routing in the NAS-flow. We
evaluate our framework on different datasets, generating different network
configurations, and demonstrate the tradeoffs between the different output
metrics. We will open-source the complete framework and configurations
of the Pareto-optimal architectures at https://BlindedLink.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are advanced machine learning-
based algorithms that claim to surpass the human-level accuracy
in a certain set of tasks, such as image classification, object
recognition, detection, and tracking, when extensively trained over
large datasets [3][6][22]. Designing the best DNN for a given set of
applications and a given dataset is an extremely challenging effort.
Highly-accurate DNNs require a significant amount of hardware
resources, which may not be feasible on resource-constrained IoT-
Edge devices [15][27]. The advanced DNN models, called Capsule
Networks (CapsNets) [23], are able to learn the hierarchical and
spatial information of the input features in a closer manner to
our current understanding of the human brain’s functionality.
However, the layers made of capsules introduce an additional
dimension w.r.t. the matrices of the convolutional and fully-
connected layers of traditional Convolutional Neural Networks
(CNNs), which, besides the dynamic routing computations, put an
extremely heavy computation and communication workload on the

underlying hardware [14]. In Fig. 1 we compare the CapsNet [23]
with the LeNet [12] and the AlexNet [11], and analyze their
memory footprints and total number of multiply-and-accumulate
(MAC) operations required to perform an inference pass. Note, the
MACs/memory ratio is a good indicator to show the computational
complexity of the network, thus demonstrating the higher compute-
intensive nature of CapsNets, compared to traditional CNNs.
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Figure 1: Memory footprint and (Multiply-and-Accumulate
operations vs. memory) ratio (MACs/Memory) for the LeNet [12],
CapsNet [23] and AlexNet [11].

1.1 Research Problem & Associated Challenges
In the literature, many DNN models/architectures have been
proposed [5][11][24][28][29]. In the pioneering age of deep
learning, the DNN architectures were designed manually.
However, their structures became very complex. Therefore, Neural
Architecture Search (NAS) methodologies emerged as an attractive
procedure to select the optimal DNN model for a given set of
applications and a training dataset [32]. Evolutionary Algorithm
(EA) based methodologies [26] were proposed for learning small
DNNs. However, for more complex DNNs, EAs have been used for
improving certain parameters of single/individual DNN layers [18],
as well as global DNN hyperparameters [17], or the connection
between submodules [31].

Most of the automatic tools based on a NAS algorithm that
have been proposed in the literature only focus on optimizing
the DNN accuracy [26][33]. Only a few of them have recently
introduced the hardware constraints in the optimization problem,
for instance, considering the hardware resources (e.g., #FLOPs,
memory requirements, etc.) available for performing the DNN
inference [8][9][13][25]. To the best of our knowledge, none of them
include in the design space the possibility of employing capsule
layers and dynamic routing, which are inevitable for automatically
designing the CapsNets.

Toward this, we propose NASCaps, a framework for the NAS
of DNNs, that not only incorporates the most common types of
DNN layers (such as convolutional, fully-connected) but also, for
the first time, the different types of capsule layers. Our framework
supports multi-objective hardware-aware optimizations because
it investigates the network accuracy, and it accounts for different
hardware efficiency parameters (such as memory usage, energy
consumption, and latency) that are crucial for embedded DNN
inference accelerators.

However, the huge variety of possible configurations that should
be explored to obtain an exhaustive set of Pareto-optimal solutions
might dramatically explode. In addition to this, despite adopting
the most advanced learning policies and employing high-end
GPU clusters, complex CapsNets and CNNs typically require long



training time [4][16]. Complete detailed post-synthesis hardware
measurements are not feasible for this search due to their long
simulation times. The above-discussed limitations challenge the
applicability of such an exploration in real-case HW/SW co-design
searches, with stringent time-to-market constraints.

1.2 Our Key Research Contributions
To address the above challenges, we devise different optimizations
and integrate them into our NASCaps framework (Fig. 2). The steps
are summarized in the following novel contributions:
• We present a framework, called NASCaps, to automatically
search the DNN model architecture configurations, based on
convolutional layers and capsule layers. (Section 3)
• Wemodel the operations involved in the CapsNet architectures in
a parametric way, including the different types of capsule layers
and the dynamic routing. (Section 3.1)
• Wemodel the functional behavior of a given specialized CNN and
CapsNet hardware accelerator at a high level, to quickly estimate
the memory usage, energy consumption, and latency, when
different DNN architectural models are executed. (Section 3.2)
• Based on the NSGA-II method [2], we developed a specialized
multi-objective genetic algorithm for solving the optimization
problem targeted in this paper, i.e., a multi-objective Pareto-
frontier selection of DNN architectures while optimizing the
neural network’s accuracy, energy consumption, memory usage,
and latency. (Section 3.3)
• To reduce the training time for the exploration of different
solutions, we propose a methodology to evaluate the accuracy
of partially-trained DNNs. The number of training epochs is
chosen based on the tradeoff between training time and Pearson
correlation coefficient w.r.t. fully-trained DNNs. (Section 4.2)
• During the exploration phase, we trained and evaluated more
than 600 candidate DNN solutions running on the GPU-HPC
computing nodes equipped with four high-end Nvidia V100-
SMX2 GPUs. The Pareto-optimal solutions generated by our
NASCaps framework are competitive w.r.t. the previous SoA
accuracy values for CapsNets, i.e., the DeepCaps [21], while
improving the corresponding hardware efficiency, thereby
opening new avenues towards the deployment of high-accurate
DNNs at the edge. (Section 4.4)
• Towards encouraging fast advancements in the DNN
research community, we will open-source the complete
NASCaps framework and configurations of the Pareto-optimal
architectures at https://BlindedLink.
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Figure 2: Overview of our NASCaps framework.

Before proceeding to the technical sections, we provide a brief
overview of the CapsNets and the hardware accelerators executing
CapsNet inference. (Section 2)

2 BACKGROUND: CAPSULE NETWORKS
The idea of grouping the neurons to form a capsule was first
proposed by G. Hinton et al. in [7]. The purpose of the capsules

is to retain the instantiation probability of an entity or a feature,
together with information on its instantiation parameters, such as
the position, rotation, or width. On the contrary, traditional neurons
can only detect features without any knowledge of their spatial
characteristics and inter-correlation.

The first DNN with capsules, i.e., a Capsule Network (CapsNet),
was proposed in [23] by the Google Brain’s team. In this model,
the neurons inside a capsule are arranged into the shape of a
vector. Each neuron encodes a spatial parameter of the entity
associated with the capsule, and the length of the vector represents
the probability that the object is present. The CapsNet in [23]
consists of three layers, as shown in Fig. 3.a:

(1) Conv Layer: a convolutional (Conv) layer that applies a 9x9
kernel with stride 1 to the input image and produces 256 output
channels.

(2) PrimaryCaps layer: a Conv layer that applies a 9x9 kernel
with stride 2 and produces 256 output channels. The output
channels are divided into 32 channels of 8-D capsules. Since the
length of the capsules encodes a probability, the squash function
(Eq. 1) is applied to force the length in the range [0,1].

y =
|x|2

(1 + |x|)2
x
|x| (1)

(3) DigitCaps layer: a fully-connected (FC) layer of capsules with
10 output 16-D capsules (for a 10-classes dataset). The DigitCaps
layer performs the dynamic routing, an iterative algorithm that
associates coupling coefficients to the predictions obtained
from the PrimaryCaps layer. The iterations of the algorithm
maximize the coupling coefficients of the capsules predicting the
same result (similar spatial parameters) with greater confidence
(higher probability of instantiation).

CapsNets belong to a particular category of DNNs, i.e.,
autoencoders, that can reconstruct the image they receive as input.
Therefore, the three layers listed above are followed by a decoder,
consisting of three FC layers that reconstruct the input image
from the output of the DigitCaps layer. During training, two
losses are computed, the loss of the classification network and
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Figure 3: (a) CapsNet model [23] with the decoder for image
reconstruction; (b) DeepCaps model [21] (the decoder is omitted);
(c) CapsCell used in the DeepCaps model; (d) legend of the
activation functions used in each layer.



the reconstruction network. When the inference is performed for
classification purposes, the reconstruction network can be removed.

The DeepCaps, a novel deeper CapsNet architecture, has been
recently proposed in [21]. The architecture, shown in Fig. 3.b, is
formed by a traditional Conv layer, FC capsule layers (cFC), and
Conv capsule layers (cConv). The latter are arranged in blocks,
here referred to as CapsCells (Fig. 3.c), where a cConv layer
runs in parallel to two cConvs layers. The decoder used as a
reconstruction network consists of a series of de-convolutional
layers. The DeepCaps also introduce a skip connection between
the last CapsCells to mitigate the vanishing gradient effects that
affect deeper networks.
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Figure 4: Architectural view of the
CapsAcc [14] accelerator.

The capsule layers
involve operations that
are not performed by
the traditional DNNs,
and consequently, they
are not supported by
already existing DNNs
hardware accelerators.
Moreover, CapsNets
require modified data
mapping. CapsAcc, a
hardware platform targeting CapsNets acceleration, is proposed
in [14] and shown in Fig. 4. The computational core of CapsAcc
consists of an array of processing elements (PEs), followed by an
accumulator that properly adds the partial sums. There is then an
activation unit that can apply ReLU, softmax, or squash functions
to the output of the accumulator. The activations and weights are
stored in data and weight memories, respectively, and there are
three buffers used during the computation to exploit data reuse
and minimize the accesses to the larger memories. In particular,
a data and a weight buffer store the activations and the weights,
and a routing buffer is used to store partial results of the dynamic
routing iterations. A control unit selects the paths for the mapping
of different layers onto the PE array.

3 NASCAPS: NEURAL ARCHITECTURE
SEARCH OF CONVOLUTIONAL CAPSNETS

Our multi-objective NASCaps framework generates and evaluates
convolutional- and capsule-based DNNs, by performing a multi-
objective NAS, to find a set of accurate yet resource-efficient
DNN models, i.e., jointly considering the DNN validation accuracy,
energy consumption, latency, and memory footprint. The search is
based on our specialization of the genetic NSGA-II algorithm [2],
to enable a search with multi-objective comparison and selection
among the generated candidate DNNs.

The overall structure and workflow of the NASCaps framework
is shown in Fig. 5. As input, it receives the configuration of the
underlying hardware accelerator (that would execute the generated
DNN in the real-world scenario) and a given dataset used for DNN
training, as well as a collection of the possible types of layers that
can be used to form different candidate DNNs. First, we create
a layer library that includes convolutional layers, capsule layers
(as defined in [23]), and the CapsCell and FlatCaps layers defined
in [21]. We envision that, due to the modular structure of our
framework, other types of layers can easily be integrated into its
future versions to further extend the search-space, also thanks to the

use of a simple modular representation of the candidate networks
relying on the combination of single-layer descriptors, as discussed
in Section 3.1.
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Figure 5: Overview of our NASCaps framework, showing different
components and their interconnections defining the workflow.

The automated search is initialized with 𝑁 randomly-generated
DNNs used as input to start the evolutionary search process. Each
candidate DNN is evaluated in terms of its validation accuracy
after being trained for a limited number of epochs. As we will
discuss in Section 4.2, this optimization is designed to curtail the
computational cost and to reduce the required computational time
for the search, while keeping a good level of correlation w.r.t.
the full-training accuracy, measured with the Pearson correlation
coefficient. Moreover, each DNN under test is also characterized
for its energy consumption, latency, and memory footprint, by
modeling its inference processing considering the final real-
world use case of executing the generated DNN on a specialized
DNN hardware accelerator. At this evaluation point, the genetic
algorithm proceeds to the next step, finding at each iteration a new
Pareto-frontier that contains the best candidate DNN solutions. At
the end of this selection process, the Pareto-optimal DNN solutions
are fully-trained1, to make an exact accuracy evaluation. In the
following sub-sections, we discuss the key components of our
framework in detail.

3.1 Parametric Modeling of Capsule Network
Layers and Architectures

The proposed genetic-based NASCaps framework is relying on
an explicit position-based representation for each layer of the
candidate DNNs. This representation allows to define the key
parameters of each layer uniquely.

The DNN layers have been constructed using a layer descriptor,
which encodes the information needed to build and model a given
candidate network, in a very compact form. Each layer descriptor
is a 9-element position-based structure, thus guaranteeing the
modularity for constructing any given candidate DNN architecture.
The elements of the layer descriptor are listed as follows:

(1) type of layer,

1A complete training up to the 100th epoch for the MNIST, Fashion-MNIST, and SVHN
datasets, and up to the 300th epoch for the CIFAR-10 dataset is conducted.



(2) size of the input feature maps 𝑛𝑖𝑛 ,
(3) number of input channels 𝑐ℎ𝑖𝑛 ,
(4) number of input capsules 𝑐𝑎𝑝𝑠𝑖𝑛 ,
(5) kernel size 𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒 ,
(6) stride size 𝑠𝑡𝑟𝑖𝑑𝑒𝑠𝑖𝑧𝑒 ,
(7) size of the output feature maps 𝑛𝑜𝑢𝑡 ,
(8) number of output channels 𝑐ℎ𝑜𝑢𝑡 ,
(9) number of output capsules 𝑐𝑎𝑝𝑠𝑜𝑢𝑡 .

Such a representation allows to describe even more complex
structures by simply defining a new layer type. For instance, a layer
descriptor can define amore complex repeating structure, composed
of multiple elements, like a CapsCell in the DeepCaps architecture.
In this way, the DeepCaps architecture has been described with six
layer descriptors. The first one for the single convolutional layer,
four CapsCell blocks, and a final Class Capsule layer.

The complete DNN architecture description is then completed
by two non-layer terms, that allow to encode the position of a skip
connection, and an indicator, called resize flag, to explicitly indicate
if the resizing of the inputs is required. Fig. 6 shows the format
proposed to describe a candidate DNN architecture, which is, from
now on, referred to as the genotype.

Genotype

type nin
kernel

size stride

Layer 0 Layer 1 Layer i Layer N-1 Skip
connection

Layer descriptor

Resize
flag... ...

chin capsin nout chout capsout

Output shapeInput shape

Figure 6: Proposed structure of the genotype.

3.2 Modeling the Execution of CapsNets in
Hardware Accelerators

The NASCaps framework can receive any given hardware
accelerator executing DNN inference as an input. For illustration,
we showcase the modeling of the CapsAcc accelerator; this choice
is related to the fact that it supports the execution of all the capsule
layers. Starting from the RTL-level description of the CapsAcc
architecture, we extract and model the different micro-architectural
configurations at a higher abstraction level, which constitutes
the inputs for our model. First, the description of the operation-
specific parameters of the layers is presented. Afterward, the global
parameters, that are strictly related to the CapsAcc accelerator, are
discussed.
3.2.1 Operation-Specific Modeling for different Layers.
The operation-specific parameters that can be extracted from the
execution of different operations in the hardware are the following:
• 𝑤𝑒𝑖𝑔ℎ𝑡𝑠: number of weights in the layer,
• 𝑠𝑢𝑚𝑠_𝑝𝑒𝑟_𝑜𝑢𝑡 : number of terms to be added for an output value,
• 𝑑𝑎𝑡𝑎_𝑝𝑒𝑟_𝑤𝑒𝑖𝑔ℎ𝑡 : number of feature maps that are multiplied by
the same weight.

For each operation, these parameters are computed by different
equations, due to the different nature of the respective types of
computations, see Table 1. Note that, by setting 𝑐𝑎𝑝𝑠𝑖𝑛 and 𝑐𝑎𝑝𝑠𝑜𝑢𝑡
to 1, the ConvCaps and ClassCaps layers become a traditional
convolutional layer and fully-connected layer, respectively.
3.2.2 Global Parameter Modeling.
Our models estimate the latency and the energy consumption of
the inference of one input, for a given CapsNet, while the memory

footprint is computed as the sum of the number of weights for
each layer. They are modeled for each operation in a modular way
(i.e., bottom-up). First, the weights must be loaded onto the PE
array, then reused as long as they need to be multiplied by other
inputs. Afterward, the next group of weights is loaded until all the
computations of the layers are done (see Eqs. 2-4). The adopted
model parameters are the following:
• 𝑤_𝑙𝑜𝑎𝑑_𝑐𝑦𝑐𝑙𝑒𝑠: number of clock cycles required to load the
weight onto the PE array,
• 𝑤_𝑙𝑜𝑎𝑑𝑠 : number of groups of weights loaded onto the PE array,
• 𝑐𝑦𝑐𝑙𝑒𝑠 (𝑙): number of cycles required to execute the layer 𝑙 ,
• 𝑚𝑎: number of memory accesses,
• 𝑒𝑛𝑚𝑒𝑚 : energy consumption of a single memory accesses,
• 𝑝𝑤𝑟𝑃𝐸𝐴: power consumption of the PE array.

𝑤_𝑙𝑜𝑎𝑑_𝑐𝑦𝑐𝑙𝑒𝑠 = 16 (2)

𝑤_𝑙𝑜𝑎𝑑𝑠 =
⌈

𝑤𝑒𝑖𝑔ℎ𝑡𝑠

16 ·min (16, 𝑠𝑢𝑚𝑠_𝑝𝑒𝑟_𝑜𝑢𝑡)

⌉
(3)

𝑐𝑦𝑐𝑙𝑒𝑠 (𝑙) = 𝑤_𝑙𝑜𝑎𝑑_𝑐𝑦𝑐𝑙𝑒𝑠 ·𝑤_𝑙𝑜𝑎𝑑𝑠 + 𝑑𝑎𝑡𝑎_𝑝𝑒𝑟_𝑤𝑒𝑖𝑔ℎ𝑡 (4)
The overall latency is then computed as the sum of the

contributions of the layers (Eq. 5).

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =
∑
𝑙 ∈𝐿

𝑐𝑦𝑐𝑙𝑒𝑠 (𝑙) ·𝑇 (5)

In the Eq. 6, the number of memory accesses is computed by
distinguishing whether the operation is a convolutional layer or not.
Such a distinction has been implemented by analyzing the value of
𝑑𝑎𝑡𝑎_𝑝𝑒𝑟_𝑤𝑒𝑖𝑔ℎ𝑡 , which is greater than 1 for convolutional layers
and 1 otherwise.

𝑚𝑎 =

{
256, if 𝑑𝑎𝑡𝑎_𝑝𝑒𝑟_𝑤𝑒𝑖𝑔ℎ𝑡 = 1
16 ·max(𝑠𝑢𝑚𝑠_𝑝𝑒𝑟_𝑜𝑢𝑡 − 15, 1), otherwise

(6)

The energy of the accelerator (Eq. 7) is estimated as the sum of the
energy of memory accesses and the sum of the power consumption
of each layer processed in the PE array, multiplied by its latency
(period 𝑇 and the number of cycles). Note that the average power
consumption of the PE array is used in our model.

𝑒𝑛𝑒𝑟𝑔𝑦 =

⌈
𝑚𝑎 · 8
128

⌉
· 𝑒𝑛𝑚𝑒𝑚 +

∑
𝑙 ∈𝐿

𝑐𝑦𝑐𝑙𝑒𝑠 (𝑙) ·𝑇 · 𝑝𝑤𝑟𝑃𝐸𝐴 (7)

3.3 The Multi-Objective NSGA-II Algorithm
The selection of the Pareto-optimal solutions for the NASCaps
framework is based on the evolutionary algorithm NSGA-II [2].
It has a main loop (lines 2-14 of Algorithm 1) whose iterations
represent a single generation of the overall evolution process of
an initial population. The initial population (sized n) is randomly
generated and can be referred to as 𝑃1 (line 1 of Algorithm 1).
This set of solutions represents the initial parent generation of
the algorithm. The crossover among the solutions belonging to 𝑃𝑡
(line 3) allows the generation of a new set of offspring individuals
𝑄𝑡 . At this point, the population 𝑃𝑡 ∪ 𝑄𝑡 is sorted according to
a non-domination criterion. For each iteration of the inner loop
(lines 6-13), the candidate solutions are grouped into different
fronts 𝐹𝑖 . The ones included in the first front 𝐹1 represent the best-
found solutions of the overall population. Each subsequent front
(𝐹2, 𝐹3, . . . ) is instead constructed by removing all the preceding
fronts from the population and then finding a new Pareto-front.



Table 1: Equations for the operation-specific modeling of CapsNets.

Operation 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑠𝑢𝑚𝑠_𝑝𝑒𝑟_𝑜𝑢𝑡 𝑑𝑎𝑡𝑎_𝑝𝑒𝑟_𝑤𝑒𝑖𝑔ℎ𝑡

ConvCaps layer (𝑐ℎ𝑖𝑛 · 𝑘𝑒𝑟𝑛𝑒𝑙2𝑠𝑖𝑧𝑒 + 1) · 𝑐ℎ𝑜𝑢𝑡 · 𝑐𝑎𝑝𝑠𝑜𝑢𝑡 · 𝑐𝑎𝑝𝑠𝑖𝑛 (𝑘𝑒𝑟𝑛𝑒𝑙2
𝑠𝑖𝑧𝑒
+ 1) · 𝑐ℎ𝑖𝑛 · 𝑐𝑎𝑝𝑠𝑖𝑛 (𝑛𝑜𝑢𝑡 )2 · 𝑐ℎ𝑖𝑛 · 𝑐𝑎𝑝𝑠𝑖𝑛

ConvCaps3D layer (𝑐ℎ𝑖𝑛 · 𝑘𝑒𝑟𝑛𝑒𝑙3𝑠𝑖𝑧𝑒 + 1) · 𝑐ℎ𝑜𝑢𝑡 · 𝑐𝑎𝑝𝑠𝑜𝑢𝑡 · 𝑐𝑎𝑝𝑠𝑖𝑛 (𝑘𝑒𝑟𝑛𝑒𝑙3
𝑠𝑖𝑧𝑒
+ 1) · 𝑐ℎ𝑖𝑛 · 𝑐𝑎𝑝𝑠𝑖𝑛 (𝑛𝑜𝑢𝑡 )2 · 𝑐ℎ𝑖𝑛 · 𝑐𝑎𝑝𝑠𝑖𝑛

ClassCaps layer (𝑐ℎ𝑖𝑛 · 𝑛2𝑖𝑛 + 1) · 𝑐ℎ𝑜𝑢𝑡 · 𝑐𝑎𝑝𝑠𝑜𝑢𝑡 · 𝑐𝑎𝑝𝑠𝑖𝑛 (𝑛2
𝑖𝑛
+ 1) · 𝑐ℎ𝑖𝑛 · 𝑐𝑎𝑝𝑠𝑖𝑛 1

Dynamic Routing 𝑐ℎ𝑖𝑛 · 𝑘𝑒𝑟𝑛𝑒𝑙2𝑠𝑖𝑧𝑒 · 𝑐ℎ𝑜𝑢𝑡 𝑐𝑎𝑝𝑠𝑖𝑛 1

Since the first front may be composed of less than n individuals,
also the solutions from subsequent fronts will be selected to be part
of the next parent generation.

To have exactly n parents in the output set, the solutions that
are part of the last front are ranked using the crowded distance
comparison approach (line 11), which consists of sorting the
population of that front according to each objective function value
in ascending order. These steps are shown in Fig. 7. Only half of
the population becomes part of the next parent generation, while
the other half is discarded.

Figure 7: Sorting of the population.

These steps repeat for a certain number 𝑔 of generations.
The complete pseudocode is reported in Algorithm 1, where the
following procedures are used:
• 𝑅𝑎𝑛𝑑𝑜𝑚𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑛) randomly generates𝑛 configurations
belonging to the search space.
• 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝐴𝑛𝑑𝑀𝑢𝑡𝑎𝑡𝑒 (𝑋,𝑛) generates 𝑛 new offsprings from
parents 𝑃 by crossover and mutation (described in Section 3.3.1).
• 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑋 ) evaluates the new candidate solutions
from a set 𝑋 .
• 𝑃𝑖𝑐𝑘𝑃𝑎𝑟𝑒𝑡𝑜 (𝑋 ) selects the Pareto-optimal solutions from a set 𝑋 ,
and these solutions are removed from the set.
• 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔(𝑋,𝑛) returns 𝑛 solutions from a set 𝑋 (as
described in [2]).
The advantage of a multi-objective algorithm lies in the fact

that it re-constructs the Pareto-front at each generation, aiming to
cover all the possible solutions. The algorithm’s output is a set of
non-dominated solutions.

3.3.1 Crossover and mutation operations.
The two key operators in the progression of a genetic algorithm
are crossover and mutation. The standard single-point crossover
operation allows to generate the offspring solutions, given two
parent solutions 𝑃𝑎 and 𝑃𝑏 that have been previously randomly
picked among the current population candidates. The genotypes
of the two parent individuals are split into two parts each. The
splitting point is pseudo-randomly selected. Initially, a cut point is
randomly chosen. Then, a series of checks are performed to verify
the validity of the output genotypes. The following criteria have
been applied to choose the splitting point correctly:

Algorithm 1 : The genetic NSGA-II algorithm used in our NASCaps
framework.
Require: search space 𝑆 , sizes of population |𝑃 |, |𝑄 |, number of

generations 𝑔
Ensure: Pareto set 𝐹 ⊆ 𝑃1 × 𝑃2 × · · · × 𝑃𝑘
1: 𝑃1 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ( |𝑃 |)
2: for 𝑔 = 1 . . .𝐺 do
3: 𝑄𝑖 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝐴𝑛𝑑𝑀𝑢𝑡𝑎𝑡𝑒 (𝑃𝑖 , |𝑄 |)
4: 𝑇 ← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑃𝑖 ∪𝑄𝑖 )
5: 𝑃𝑖+1 ← ∅
6: while |𝑃𝑖+1 | < |𝑃 | do
7: 𝐹 = 𝑃𝑖𝑐𝑘𝑃𝑎𝑟𝑒𝑡𝑜 (𝑇 )
8: if |𝑃𝑖+1 | + |𝐹 | ≤ |𝑃 | then
9: 𝑃𝑖+1 ← 𝑃𝑖+1 ∪ 𝐹
10: else
11: 𝑃𝑖+1 ← 𝑃𝑖+1 ∪𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔 (𝐹, |𝑃 | − |𝑃𝑖+1 |)
12: end if
13: end while
14: end for
15: return 𝑃𝑖𝑐𝑘𝑃𝑎𝑟𝑒𝑡𝑜 (𝑃𝑔)

• the cut-points are chosen to ensure that the generated DNN is
made up of at least one initial convolutional layer and a minimum
of 2 capsule layers,
• no convolutional layer is placed between two capsule layers.

Note, the reason behind the second constraint lies in the fact that
capsules aim to derive higher-level information w.r.t. convolutional
layers. At this point, the actual crossover operation is performed.
As shown in Fig. 8, the last parts of the parent genes 𝑃𝑎 and 𝑃𝑏 are
switched.

L 0 L 1 L 2 L 3 L 4 SC RF L 0 L 1 L 2 L 3 L 4 L 5 L 6 SC RF

L 3 L 4 L 5 SC RFL 0 L 1 L 2 SC RFL 0 L 1 L 2 L 3 L 4 L 5 

Parent A Parent B

Offspring A Offspring B

Splitting 
point A

Splitting 
point B

Figure 8: Example of crossover between two genotypes.

The second key operation performed by the algorithm is
mutation. As it has been implemented for ourNASCaps framework,
the operator performs a mutation by randomly choosing one of the
layer descriptors from the genotype of the input candidate network,
and by randomly modifying one of the main parameters of the
selected layer with a probability 𝑝𝑚 . In particular, the parameters
that can be affected by a mutation are the kernel size, the strides, the
number of output capsules, and the position of the skip connection.

After these two operations, a further step is performed to ensure
the validity of the output genotypes that, in a large number of
cases, will represent an invalid DNN. This correction step allows
to properly adjust the input and output tensor dimensions for



every layer for genotypes derived from a mutation or a crossover
operation, which can randomly modify or join different parent
genotypes together.

4 EVALUATING OUR NASCAPS FRAMEWORK
4.1 Experimental Setup
The overview of our experimental setup and tool-flow is shown
in Fig. 9. The training and testing for accuracy of the candidate
DNNs have been conducted with the TensorFlow library [1],
while extensive experiments are performed using the GPU-HPC
computing nodes equipped with four NVIDIA Tesla V100-SXM2
GPUs. Our proposed NASCaps framework has been evaluated for
the MNIST [12], Fashion MNIST (FMNIST) [30], SVHN [19] and
CIFAR-10 [10] datasets. The implementation of the HW model
is based on an open-source SoA Capsule Network accelerator
(CapsAcc) [14], as described in Section 3.2. The core processing
elements were synthesized using the Synopsys Design Compiler
with a 45nm technology node and a clock period 𝑇 of 3ns.

GPU-HPC with 4 Nvidia Tesla V100-SXM2

Design Compiler (DC)

HW Accelerator 
RTL Description

HW Accelerator 
Model

Candidate 
DNN

DNN Training with 
Limited Epochs

Partially-Trained 
DNN

Fully-Trained 
DNN

Fully-Trained 
Inference

Partially-Trained 
Inference DNN Training with 

Full Epochs

Energy, memory, 
latency for a 

single operation

Energy, memory, 
latency for the 
complete DNN

# Required 
Operations

Partially-Trained 
Accuracy

Fully-Trained 
Accuracy

Figure 9: Setup and tool-flow for conducting our experiments.

The experiments were divided into three steps. (1) In the first
step, a basic random search has been performed, to investigate how
many training epochs are necessary to train the candidate DNNs
and evaluate their accuracy in the loop of the genetic NSGA-II
algorithm. (2) During the second step, the search algorithm for
finding Pareto-optimal DNN architectures for the energy, memory,
latency, and accuracy objectives is executed. (3) Finally, the selected
Pareto-optimal DNNs have been fully-trained. To evaluate the
transferability of the selected DNNs w.r.t. different datasets, the
selected DNNs have been fully-trained also for the other datasets.
Moreover, the following settings have been used to conduct the
experiments:
• Initial parent population size |𝑃 | = 10
• Offspring population size: |𝑄 | = 10
• Maximum number of generations for the genetic loop 𝑔 = 20
• Mutation probability: 𝑝𝑚 = 10%
• 𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒 ∈ {3 × 3, 5 × 5, 9 × 9}
• 𝑠𝑡𝑟𝑖𝑑𝑒𝑠𝑖𝑧𝑒 ∈ {1, 2}
• 𝑐ℎ𝑜𝑢𝑡 = {1, 2, . . . , 64}
• 𝑐𝑎𝑝𝑠𝑜𝑢𝑡 = {1, 2, . . . , 64}

4.2 Results for Reduced Training Epochs for
Full-Training Accuracy Estimation

One of the most crucial aspects linked to the NAS problem lies in
its high computational exploration cost. This is due to the large
number of candidate networks that constitute the population and
the time-consuming training steps needed to evaluate the accuracy.
To limit the time needed to perform the complete search and

consequently, its computational cost, we propose a two-stage
evaluation approach. (1) The first step consists of training the
population of candidate networks with a limited number of epochs,
producing a set of partially-trained DNNs. The validation accuracy
obtained by the partially-trained DNNs has been used for the
evaluation of the Pareto-fronts in the NSGA-II algorithm, as
discussed in Section 3.3. The choice of the number of epochs has
been determined carefully by analyzing the impact of different
epoch sizes over the achieved accuracy for different datasets. (2)
Afterward, the candidate networks that show their accuracy and
hardware efficiency in a Pareto-front are fully-trained to evaluate
their actual validation accuracy.

Hence, this approach allowed to use only a reduced number of
training epochs to predict the full-training accuracy of the DNNs.
This approach has been tested using 66 randomly generated DNNs
(in addition to CapsNet and DeepCaps architectures) and performing
a full-training on them, while recording the obtained validation
accuracy at each training epoch. The Pearson correlation coefficient
(𝑃𝐶𝐶) [20] has been computed to analyze the correlation between
the accuracy of the fully-trained DNNs and the accuracy of the
same DNNs at the intermediate steps.

Table 2 shows the values of the 𝑃𝐶𝐶 , computed between the
accuracy of the DNNs after 𝑛 training epochs and their accuracy
after a full training. The median cumulative training time needed
to perform an 𝑛 epoch training is also reported. This study allowed
to determine, as expected, that more complex datasets require a
larger number of training epochs to distinguish the most promising
networks from the rest correctly. For the case of the MNIST dataset,
5 epochs are sufficient to reach a 𝑃𝑃𝐶 equal to 0.9999. Instead, for the
CIFAR-10 dataset, such a high value of confidence is never reached
within the first few epochs. In this case, 10 training epochs are
selected, which ensure a 𝑃𝐶𝐶 equal to 0.9334. This choice leveraged
the tradeoff between the correlation coefficient and the required
training time. Of course, a larger number of training epochs can
also be selected, but it would drastically increase the exploration
time due to the DNN training, which is a crucial parameter to
consider when large populations and/or number of generations
are explored by the NASCaps framework. On the other hand, the
selection performed after 10 epochs of training allowed to discard
more Pareto-dominated candidate networks than what would have
been discarded after 5 epochs. For the Fashion-MNIST and SVHN
datasets, the selection stage has also been performed after 5 epochs
of training.
Table 2: Pearson correlation coefficient (PCC) and median
cumulative training time expressed in seconds (MCTT) for the
MNIST, Fashion-MNIST (FMNIST), SVHN and CIFAR-10 datasets.

Epoch n. 1 3 5 10 15 20

MNIST PCC 0.8407 0.9998 0.9999 1.0000 1.0000 1.0000
MCTT 55.4 166.2 277.0 554.0 831.0 1108.0

FMNIST PCC 0.8306 0.8963 0.9013 0.9935 0.9989 0.9998
MCTT 86.2 258.7 431.1 862.3 1293.4 1724.6

SVHN PCC 0.6812 0.8733 0.9518 0.9531 0.9667 0.9876
MCTT 128.3 385.0 641.6 1283.3 1924.9 2666.6

CIFAR-10 PCC 0.2969 0.4259 0.7279 0.9334 0.9518 0.9879
MCTT 61.6 184.7 307.9 615.8 923.6 1231.5

Note, a certain set of networks can be discarded relatively early,
i.e., after a few training epochs, since they do not improve their
accuracy much. The candidate networks that pass the selection
stage can then complete their training. A second selection stage



is beneficial for performing a more fine-grained selection of the
candidate networks, and avoiding the tedious and computational-
hungry full-training of Pareto-dominated DNNs.

4.3 NASCaps Results for the Partially-Trained
DNNs

Our NASCaps framework is first applied to the MNIST dataset
to evaluate its efficiency and correct behavior. The number of
generations is set at 20, but a maximum time-out of 12 hours
has been imposed in the cases of the MNIST and Fashion-MNIST
datasets, while a 24-hour maximum search time has been used for
the CIFAR-10 and SVHN datasets.

The search for theMNIST-NAS lasted for 20 complete generations,
and the single candidate networks were trained for 5 epochs.
This setup led to train and evaluate a total of 210 DNNs. The
resulting individual solutions are compared to the two reference
SoA solutions, that are the CapsNet and DeepCaps architectures.
In Fig. 10a, each individual DNN architecture is represented w.r.t.
the four objectives of the search.

1 1 1

2 2 2

(a)

3

(b)
Figure 10: Partially-TrainedDNNNAS for (a) theMNISTdataset, and
(b) the CIFAR-10 dataset. The color shows in which generation the
solution occurs first.

The Fashion-MNIST search ended at its 19th generation (in 12
hours) and evaluated a total of 200 candidate architectures. The
search for the SVHN dataset lasted for 12 generations, and it allowed
to evaluate 130 architectures. For the CIFAR-10 dataset, the search
reached its 14th generation, with a total of 150 tested architectures.

Fig. 10 shows how the evolutionary search algorithm progressed
for the MNIST and CIFAR-10 datasets. Note that the red dots, i.e.,
the initial population at the generation 0 (see pointer 1 in Fig. 10a),
represent randomly generated DNNs. The objectives significantly
improve during the following iterations (see pointer 2 ), when our
evolutionary algorithm finds better candidate DNN architectures
using crossover and mutation operations iteratively. The reduced
epoch training allowed to evaluate a large number of candidate
networks (a total of nearly 700 architectures) based on convolutional
and capsule layers. This method led to finding multiple candidate
architectures that have been able to reach an accuracy up to 30.86%
higher than the best among the partially-trained SoA solutions, i.e.,
within the limits of a strongly reduced training time. For instance,

the NAS for the CIFAR-10 dataset produced a network with an
accuracy of 76.46% after 10 epochs, while the DeepCaps architecture
reached only 45.60% accuracy within the same training interval
(see pointer 3 in Fig. 10b). This corroborates the fact that our
NASCaps can generate networks with higher accuracy compared to
DeepCaps-like structures, when both are subjected to short training
time constraints.

4.4 NASCaps Results for the Selected
Fully-Trained DNNs

After the first selection stage, the candidate DNNs belonging to the
Pareto-optimal subsets have been fully-trained to evaluate their
final accuracy. Fig. 11 shows the Pareto-optimal solutions at the
end of the full-training process.
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Figure 11: Fully-trained DNN results for (a) the MNIST, (b) the
Fashion-MNIST, (c) the SVHN, and (d) CIFAR-10 datasets.

4.4.1 NASCaps for the MNIST Dataset.
The highest-accuracy architecture (see pointer 4 in Fig. 11a) found
during the MNIST search allowed to reach an accuracy of 99.65%
in 93 epochs of training. However, that particular solution requires
2.8×more energy, 2.5×more time, and 2.4×more memory w.r.t. the
CapsNet architecture. The red front (see pointer 5 ) also highlights
other interesting solutions belonging to the derived Pareto-optimal
front, with a slightly lower accuracy, but up to a couple of orders
of magnitude lower energy, memory and latency achieved by our
identified solutions.



4.4.2 NASCaps for the Fashion-MNIST Dataset.
One of the best solutions (see pointer 6 in Fig. 11b) achieves
an accuracy of 92.15% in 51 epochs. This solution improved the
latency (-79.38%), energy (-88.43%), and memory footprint (-63.05%)
compared to both the CapsNet and DeepCaps architectures, with
almost the same accuracy as the last one, which is 93.94%.

4.4.3 NASCaps for the SVHN Dataset.
The set of experiments for the SVHN dataset produced a solution
(see pointer 7 in Fig. 11c) that reached an accuracy of 93.17% in
56 epochs. This solution also significantly reduced the energy by
97.05% and latency by 29.56%, compared to the DeepCaps, but it
requires 1.6x more memory. On the other hand, another interesting
solution (see pointer 8 ) reached an accuracy of 92.53%, while
requiring 30.59% lower energy, 59.63% lower latency and 62.70%
lower memory, compared to the DeepCaps.

4.4.4 NASCaps for the CIFAR-10 Dataset.
A solution found by the CIFAR10-NAS (see pointer 9 in Fig. 11d)
achieved an accuracy of 85.99% after 300 epochs of training, while
significantly improving all the other objectives, compared to the
DeepCaps architecture. This particular solution (NASCaps-C10-
best in Table 3) reduced the energy consumption by 52.12%, the
latency by 64.34% and the memory footprint by 30.19%, compared
to the DeepCaps executed on the CapsAcc accelerator, while
encountering a slight accuracy drop of about 1%, while using the
same training settings. Table 3 reports also other Pareto-optimal
DNN architectures found by ourNASCaps framework for the CIFAR-
10 dataset.
Table 3: Selected CIFAR-10 architectures after 300-epoch training.

Architecture Accuracy Energy Latency Memory

DeepCaps [21] 87.10%2 36.30 mJ 4.29 ms 9,052 kiB
NASCaps-C10-best 9 85.99% 17.38 mJ 1.53 ms 6,319 kiB
NASCaps-C10-a0d 74.11% 4.53 mJ 1.12 ms 1,718 kiB
NASCaps-C10-9fd 74.00% 5.11 mJ 0.36 ms 713 kiB
NASCaps-C10-658 73.91% 5.06 mJ 1.54 ms 5,573 kiB
CapsNet [23] 55.85%2 88.80 mJ 1.82 ms 8,573 kiB

4.4.5 Transferability of the Selected DNNs Across Different Datasets.
To test the transferability of the DNN solutions found by our
NASCaps framework, the dataset-specific found DNNs have been
also trained and tested on the rest of the considered datasets. Table 4
reports the matrix of highest-accuracy solutions, obtained by this
transferability analysis.

The NASCaps-C10-best architecture of Table 3 resulted also
particularly accurate for the other datasets. For the MNIST dataset,
it achieved an accuracy of 99.72% in 37 epochs of training, which
is also higher than the solutions found by the MNIST-NAS. For
the Fashion-MNIST dataset, it reached an accuracy of 93.87% in
32 epochs of training, which is even higher than the DeepCaps
after 100 epochs of training. When tested on the SVHN dataset,
it reached an accuracy of 96.59%, thus outperforming the highest-
accuracy DNN found during the SVNH-NAS. The NASCaps-C10-
best architecture is similar to the DeepCaps, but it has two initial
convolutional layers and three CapsCell blocks, without skip
2Note: The accuracy reported for the DeepCaps and CapsNet do not 100% match with
the ones reported in [21]. This can be attributed to the differences in the training hyper-
parameter setup, as their papers do not disclose the complete in-depth information
about the training that can ensure reproducibility of their results.

connection. The highest-accuracy architecture found by the MNIST-
NAS also proved to work well with the Fashion-NMIST dataset,
reaching an accuracy of 93.34% after 91 epochs of training.

Table 4: Highest-Accuracy DNNs found by the dataset-specific NAS,
which are then trained for the other datasets for 100 epochs.

Architecture MNIST FMNIST SVHN CIFAR-10

NASCaps-MNIST-best 4 99.65% 93.34% 96.36% 71.44%
NASCaps-FMNIST-best 6 99.49% 92.15% 93.12% 68.34%
NASCaps-SVHN-best 7 99.51% 91.43% 93.17% 63.72 %
NASCaps-C10-best 9 99.72% 93.87% 96.59% 76.46%

The results reported in Table 4 show how the solution NASCaps-
C10 is the best overall architecture found during the four searches
performed. This is due to multiple reasons: the evolutionary process
was based on a random initial parent population that has been newly
generated at each search. Moreover, the small size of the initial
parent population may have contributed to a non-convergence of
the four dataset-specific searches that have been performed. Also,
not each one of the four searches reached the same generation at
the end of the experiments.

4.5 Summary of Key Results
The above results show how our NASCaps framework has been
able to explore multiple solutions with diverse tradeoffs, thanks to
the usage of an evolutionary algorithm for a multi-objective search.
It has been possible to generate and test 690 candidate networks
for the four dataset-specific searches. Our approach allowed to
outperform many objectives of the SoA solutions when performing
the full-training, despite the strict time constraints applied to the
single searches. In summary, our framework allowed to:
• Derive some interesting architectures, such as the above-
discussed NASCaps-C10-best that reached an almost similar
accuracy as of the SoA, while significantly improving all other
objectives of the search, i.e., energy, memory and latency.
• Perform early candidate selection while still achieving high
accuracy after performing the full training.
• Achieve good transferability between different datasets, as
demonstrated by the fact that the NASCaps-C10-best DNN, which
is found for the CIFAR10-specific search, outperforms other
dataset-specific searches also on other datasets.

5 CONCLUSION
In this paper, we presented NASCaps, a framework for the Neural
Architecture Search (NAS) of Convolutional Capsule Networks
(CapsNets). The set of optimization goals for our framework are
the network accuracy and the hardware efficiency, expressed in
terms of energy consumption, memory footprint, and latency, when
executed on the specialized hardware accelerators. We performed
a large-scale NAS using GPU-HPC nodes with multiple Tesla V100
GPUs, and found interesting DNN solutions that are hardware-
efficient yet highly-accurate, when compared to SoA solutions.
Our framework is even more beneficial when the design times are
short, training resources at the design center are limited, and the
DNN design is subjected to short training durations. Our NASCaps
framework can ease the deployment of DNNs based on capsule
layers in resource-constrained IoT/Edge devices. We will open-
source our framework at https://BlindedLink.
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