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Abstract. In this work, a delayed frequency preconditioner (DFP) is developed and applied
in structural problems for speeding-up the frequency response computation. The challenge of
computing the frequency response lies in the computation of the linear system that involves
the excitation forces and also the dynamic stiffness which is frequency-dependent. For each
frequency, the dynamic stiffness must be updated and a new factorization must be performed,
which introduces a high computational cost on the solutions of the linear systems. Alternatively,
iterative solver such as GMRES can be applied to avoid the cost of factorization, however they
require good preconditioners that are traditionally also frequency-dependent. In the new ap-
proach, the dynamic stiffness operator is updated with the frequency whereas the preconditioner
is kept constant for a range of frequencies serving as a low-cost preconditioner for the iterative
solver. This technique saves computation time because a new factorization is avoided for each
frequency point. On the other hand, the effectiveness of the delayed preconditioner is destroyed
when the frequency of the dynamic operator is too far away from each other. Therefore, we
propose a heuristic approach to update the preconditioner when it is underperforming. The al-
gorithm is tested on structural problems and the results show that this approach can drastically
reduce the number of iterations for the computation of the frequency response.
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1 INTRODUCTION

Frequency Response (FR) is commonly computed to find the steady-state response of struc-

tures under periodic load since they have significantly less computational cost compared to the

time integration methods. FR computation is essential in several aspects of design, optimization

and analysis [1–6] and in various fields ranging from large aircraft components [7] to micro-

electro-mechanical systems [8].

Structural components and assembly models, due to geometrical intricacies and complexity,

require very fine three-dimensional discretization. The model order becomes so large that the

frequency response computational cost becomes very high. The response is generally desired

at more than one frequency, hence, adding extra folds to the computational burden. In such

cases, one way of computing the FR is by modal superposition method which helps reduce

the problem size depending on the number of mode shapes retained [9]. Another way is to

use reduced order models (ROM) that condense static or dynamic information to a smaller

number of degrees-of-freedom (DoF) [1]. Even for the ROM, the modal superposition method is

preferred over direct solution techniques [10] that require factorization of the dynamic stiffness

matrix. Since these methods are approximate, their accuracy highly depends on the selected

range of frequency – usually the low frequency range. Specific methods for FR computation

avoiding excessive computation burden, that are based on interpolatory model order reduction

methods, are reviewed in [11]. In particular, it discusses how several Krylov sequence vectors

of dynamics stiffness are computed and used as a reduction basis to find the harmonic response

over the frequency range of interest. This approach is called ”Moment Matching” or ”Padé

approximation”.

It is well-known that direct solvers are not feasible for very large problems. Iterative solvers,

for example, Conjugate Gradient or GMRES method [12], are then employed which use an

initial guess of the solution and iterate until the error has been minimized [13]. Preconditioners

are used for improving their performance. Preconditioners computed using LU factorization

of the matrix are very effective but they are expensive [14]. Computing good preconditioners

while reducing the cost of computation is an active area of research since the cost of computing

preconditioners influences largely the overall cost of the iterative solver. In [15], a new precon-

ditioner for solving the Helmholtz equation using iterative solver is discussed. Another precon-

ditioner for the same equation is proposed in [16]. Moreover, efficient algorithms and imple-

mentation are necessary [17]. Perconditioning also can be done using parallel algorithms [18]

when parallel computers are used. Numerous other studies propose new preconditioners for

specific problems since there is no ideal preconditioner for every problem [19]. Nevertheless,

some examples of popular preconditioners are Incomplete Cholesky, Incomplete LU, Succes-

sive over-relaxation (SOR), Symmetric SOR and Multigrid [20] which can be found in most of

the computational libraries.

In this paper, a simple method for reusing preconditioners for the FR computation is pro-

posed to reduce the computational cost. The concept of recycling preconditioners has been

investigated for other problems. For instance, [21] proposes recycling preconditioners for topol-

ogy optimization problems and analyses the advantages. Authors in [22, 23] investigate recy-

cling preconditioners for the variational Monte Carlo problem. The simulation involves the

solution of a series of Monte-Carlo steps. The preconditioner from one step is updated and

mapped to another step. This updated preconditioner is then reused in the next step instead of

computing a new preconditioner.

Since frequency response for a structural problem is generally computed for many frequen-
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cies, the preconditioner at one frequency is proposed to be reused for some frequencies until its

recycling becomes costly for the iterative solver. The so-called Delayed Frequency Precondi-

tioner (DFP) is explained in detail and demonstrated on a beam problem. The method is very

simple to implement and saves a lot of preconditioner computations.

The next section presents the system of equations of a typical mechanical system. Section 3

and 4 discuss the iterative solvers and the proposed delayed frequency preconditioner, respec-

tively. In Section 5, results in terms of computation of the DFP are discussed in detail.

2 Equation of Motion of Structural Systems

A simplified structural problem can be represented by the differential equation of motion

with mass M, stiffness K and a viscous damping1 C matrix:

Mü(t) +Cu̇(t) +Ku(t) = f(t) (1)

where u(t) is a time varying displacement vector due to action of linear force f(t). The sin-

gle dot and double dot over u(t) denote velocity and acceleration, respectively. Assuming a

periodic force f(t) = f̃eiωt, the equation can be transformed to frequency domain

(−ω2M+ iωC+K)ũ(ω) = f̃(ω) (2)

The expression in parentheses is called dynamic stiffness of the system to be denoted here by

Z(ω) � −ω2M+ iωC+K (3)

and substituting back in Eq. (2) gives the familiar form of linear system of equations

Z(ω)ũ(ω) = f̃(ω) (4)

Note that Eq. (4) needs to be solved at every frequency ω = ωj in a desired bandwidth [ω1, ωN ]
with N spectral points. Keeping in mind that the problem needs to be solved for N excitation

frequencies in the frequency range of interest, the above quantities are denoted at jth step for

the following discussion as:

ũ(j) � ũ(ωj), Z(j) � Z(ωj), f̃ (j) � f̃(ωj) (5)

3 Iterative Solution of the Linear System with Preconditioners

The linear system of Eq. (4) needs to be solved at each frequency point within the band-

width. This can be computed by direct solvers which require factorization of the matrix, for

example, LU factorization. It would be eminent immediately that such an operation would

be extremely expensive given the size of typical discretized mechanical systems (on the order

of 106 DoF) and that for all the spectral points. An alternate approach is to use the iterative

solvers. Some of the solvers, based on Krylov Subspace, are Conjugate Gradient (CG), BiCG,

MINRES, GMRES among many others. The iterative processes require good preconditioners

for faster convergence. Some examples of preconditioners are Incomplete Cholesky, Incom-

plete LU, Successive over-relaxation (SOR), Symmetric SOR and Multigrid [20]. Eq. (4) can

be written for the iterative formulation as:

Z(j)(ũ
(j)
k +Δũ) = f̃ (j) with Δũ � ũ

(j)
k+1 − ũ

(j)
k (6)

1The choice of damping model is arbitrary. A linear damping (Rayleigh or proportional) model is used in this

work
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where k = 0, 1, , , Nk is the iteration index of the iterative solver. Rearranging the terms in

Eq. (6)

Z(j)Δũ = −Z(j)ũ
(j)
k + f̃ (j) (7)

and preconditioning the above equation with P(j) at ωj:

P(j)Δũ = −Z(j)ũ
(j)
k + f̃ (j)

P(j)(ũ
(j)
k+1 − ũ

(j)
k ) = −Z(j)ũ

(j)
k + f̃ (j)

P(j)ũ
(j)
k+1 = (P(j) − Z(j))ũ

(j)
k + f̃ (j)

(8)

and muliplying both sides of the last of Eq. (8) with [P(j)]−1 gives the equation used in the

iterative solvers.

ũ
(j)
k+1 =

(
I− [P(j)]−1 Z(j)

)
ũ
(j)
k + [P(j)]−1 f̃ (j) (9)

Given an iterative solver, Eq. (9) requires that a preconditioner is computed at ωj for which

the solver would take some iterations to converge. Then for all subsequent frequency steps

ωj+1, ωj+2, . . . , ωN , new preconditioners [P(j+1)]−1, [P(j+2)]−1, , . . . , [P(N)]−1 will have to be

computed. Since this N times repeated preconditioner computation is a costly operation for

frequency response calculation, we aim to reduce it by recycling the preconditioner. This will

be presented in the next section.

4 Delayed Frequency Preconditioner (DFP)

Generally, the dynamic stiffness Z(j) is a different matrix at every ωj , and therefore, requires

a new preconditioner P(j). The difference lies in the eigenvalues Λ(j) of Z(j). This is expounded

by writing the eigen-decomposition of Z at two discrete frequency steps.

Z(j) = ΦΛ(j)ΦT

Z(j+1) = ΦΛ(j+1)ΦT
(10)

where Φ are eigenvectors of Z that remain unchanged at every ω. The eigenvalue matrix Λ(j)

and Λ(j+1) have different diagonal elements which can be interpreted as the modal participation

factors of the invariant modes Φ. In the limiting case when δω = ωj+1−ωj is small, the change

in eigenvalues of Z(j) and Z(j+1) is small, i.e.

Λ(j+1) ≈ Λ(j) when δω −→ 0

=⇒ Z(j+1) ≈ Z(j)
(11)

This property can be exploited to use P(j) as P(j+1) = P(j) at ω = ωj+1. The preconditioner

[P(j)]−1 is thus recycled at ωj+1, ωj+2, . . . in the GMRES or CG iterative solver until a set

criterion. If [P(j)]−1 is a good preconditioner for the dynamic matrix Z(j), it should make the

expression [P(j)]−1Z(j) in Eq. (9) similar to an identity matrix. Using the same preconditioner

in the successive linear system Z(j+1) (perturbed by small δω Eq. (3)), [P(j)]−1 is still good

enough and so is the resulting Krylov basis (upon which the GMRES or CG solvers are based

on). However, the effectiveness of the preconditioner [P(j)]−1 decreases slightly. The solver

may take more iterations to converge. By continuing recycling the preconditioner, the solver

will take more and more iterations. In order to avoid excessively high iterations, a heuristic
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approach can be implemented in the algorithm. For example, as soon as a fixed number of

iterations Nk of the iterative solver has been reached, a new preconditioner will be computed

and reused for the next linear systems’ solutions. However, it should be noted that successive

increase in the number of iterations may still be cheaper than computing a new preconditioner

at every step. This should be considered when choosing the fixed number of iterations Nk.

Assuming that a preconditioner was computed at frequency ωj to solve Eq. (9). The same

preconditioner was used for some τ number of frequencies. Thus, Eq. (9) can be expressed for

the proposed delayed preconditioner in the following form:

ũ
(j+τ)
k+1 =

(
I− [P(j)]−1 Z(j+τ)

)
ũ
(j+τ)
k + [P(j)]−1 f̃ (j+τ) (12)

Comparing this equation with Eq. (9), note the change in superscripts of ũ, f̃ and Z while it

remains unchanged for the recycled preconditioner P(j). With the recycled preconditoner, it

may not be known a priori the total number of preconditioner computations Nτ in the entire

frequency band. However, the recycling is beneficial if Nτ < N and it scales such that Nτ <<
N when N is large in the same bandwidth (higher frequency resolution).

Since the preconditioner computation is delayed by τ in frequency, it is termed as Delayed
Frequency Preconditioner or DFP. This reduces the computational burden significantly over the

whole spectrum. An indicative algorithm of this method is also presented below:

Algorithm 1 Delayed Frequency Preconditioner

1: ω = ω1, ω2...ωN � frequency points

2: update = True � initialize with preconditioner at ω1

3: for j = 1, 2, 3 to N do
4: Z(j) = −ω2

jM + iωjC +K � dynamic stiffness matrix

5: if (update = True) then
6: P = compute preconditioner(Z(j)) � e.g. iLU preconditioner

7: end if
8: ũ, k = iterative solver(Z(j), f̃ (j),P) � Output: solution and number of iterations k
9: if (k � Nk) then

10: update = True
11: else
12: update = False
13: end if
14: end for

It should be evident that the DFP is only a recycled preconditioner which can be obtained

by any common methods. In this paper, the choice of the preconditioner is restricted to Incom-

plete and Complete LU. If the system matrix is symmetric and positive definite, the LU can be

replaced by Cholesky factorization.

5 Application of the Method

The proposed DFP is tested on a simple beam with a small number of DoF in order to test

various parameters. A simple cantilevered steel beam of Fig. 1 is subject to a dynamic load at

its free end. It has been discretized into 200 elements. The choice of number of elements arises

from the fact that, generally, the reduced order models have a similar model order in many

design and optimization studies to conduct parametric studies.
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F =100 kN

Young’s Modulus 210 GPa
Density 7860 kg/m3

Poisson’s ratio 0.3
Beam Size 8 m× 3 m
Number of DoF 462
Element Type Plane-stress

4-node quadrilateral

Damping Model αM+ βK
α 1× 10−3

β 1× 10−6

Figure 1: The cantilevered beam with force applied on its unconstrained edge. The beam mechanical properties

are also given on the right.

Figure 2: The forced response of the beam at the blue marked DoF in Fig. 1.

A displacement response function of the beam is shown in Fig. 2. The corresponding dis-

placement DoF is shown in Fig. 1 with the blue marker. The frequency band is 0-800 Hz with

150 data points.

The accuracy of an iterative solver is determined by the tolerance limit. In the following

analyses, the same tolerance limit is used for frequency response (FR) when a new precondi-

tioner is computed at every frequency and when a delayed preconditioner is used. Therefore,

the accuracy of the results from the solver remains the same for both the methods. Due to this

reason, the comparison amongst different solvers with preconditioners and the proposed DFP

is not deemed necessary. Instead, the results will be discussed only from the perspective of

computational performance. The iterative solver chosen for the study is GMRES (in the scipy
sparse linear algebra library of Python) with two preconditioners i.e. complete and incomplete

LU. The two will be used as the DFP.

In Fig. 3, the number of iterations by the GMRES solver is plotted with an incomplete LU

preconditioner. It can be seen that it takes mostly 4 or 5 or more iterations for the solver

to converge at different frequencies. Since no DFP has been used, a new preconditioner was

computed at each step. The small jumps in the number of iterations correspond to the resonance

frequencies where the dynamic stiffness is ill-conditioned due to the dominance of the modes.

The DFP algorithm is implemented with the two preconditioners (complete LU and incom-

plete LU denoted simply by LU and iLU, respectively) in Fig. 4 which has the same axes as

Fig. 3. Comparing the two figures, with only iLU preconditioner, the number of iterations is

the same at the first frequency. The iterations start to increase gradually (Fig. 4) as the precon-
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Figure 3: Number of GMRES iterations to convergence when using incomplete LU preconditioners. A new

preconditioner is computed at each frequency.

ditioner at the first frequency is being reused until 135 Hz. This is where a new factorization

was performed for a new preconditioner indicated by the encircled markers. The criterion for

this was set to be 10 iterations Nk = 10. As soon as the limit is crossed, a new factorization is

performed. The algorithm then continues with the new preconditioner for the next frequencies.

Throughout the frequency band, only 17 factorizations were performed with iLU. Again near

the resonances, the number of iterations becomes higher and the preconditioner is no longer

valid for further frequency points. The complete LU preconditioner is also included in this fig-

ure. An LU factorization will be very expensive for a large system, however, in this case, only a

few such factorizations are required. This can be afforded and analyzed for the given problem.

At the outset of a new factorization, the solver converges in only one iteration since the solution

process is direct. But it requires a few iterations as the preconditioner is recycled at the next

frequencies. The number of LU factorizations are only 11 compared to 17 for iLU. It should be

noted that the computational cost of iLU factorization is cheaper depending on the number of

matrix entries that are dropped.

Figure 4: Number of GMRES iterations to convergence when using delayed frequency preconditioners (DFP)

algorithm. The delayed preconditioners are incomplete PD
iLU and complete PD

LU .

The new factorizations with the DFP are correlated with the condition number of the expres-

sion [P]−1Z(j) which is plotted in Fig. 5 for different P. If P = PI is an identity matrix, the
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Figure 5: Comparison of condition number with no preconditioner PI –an identity matrix, a simple iLU precon-

ditioner PiLU and the DFP iLU preconditioners PD
iLU .

Figure 6: Number of iteration for convergence with BiCGSTAB iterative solver and using delayed preconditioners

– incomplete iLU PD
iLU and complete LU PD

LU .

condition number corresponds exactly to that of the dynamic stiffness Z which becomes high

near the resonances. In its vicinity, the eigenvalues of Z(j) change rapidly with ωj . By using

the conventional preconditioning technique discussed with iLU preconditioner, the condition

number decreases but the behaviour remains the same. It requires more iterations for the solver

to converge in the regions where the condition number is high, as was shown in Fig. 3. With

the DFP algorithm, the condition number (Fig. 5) behaviour is quite different. It gradually in-

creases and requires more iterations successively (Fig. 3). The change in eigenvalues2 of Z(j)

renders the reused preconditioner inappropriate. Therefore, a new factorization is performed

shown with an encircled marker in Fig. 5.

The method is tested for the same problem with a Bi-Conjugate Gradient Stabilized (BiCG

STAB) iterative solver and the same two preconditioners for the DFP method. The number

of iterations is shown in Fig. 6. The behaviour is similar to the GMRES solver, however, it

2The change in eigenvalues is inferred from the fact that the condition number is the ratio of the largest and

smallest singular values of a matrix.
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DFP
PiLU PD

iLU PD
LU

Number of frequencies 150 150 150

GMRES
Number of Iterations 732 1219 1140

Number of preconditioners 150 17 11

BiCGSTAB
Number of Iterations 423 1024 1005

Number of preconditioners 150 8 5

Table 1: Performance Comparison of GMRES and BiCGSTAB with and without Delayed Frequency Precondi-

tioner

Iteration limit Nk 5 10 15 20 25 30 40 50 60

PiLU Total Iterations 2424 2424 2424 2424 2424 2424 2424 2424 2424

PD
iLU

Total Iterations 2424 2419 2430 2580 2749 2981 3249 3375 3661

Number of preconditioners 150 147 80 15 4 3 2 2 1

Percentage reduction in

computation time
-0.4 1.5 22.5 41.1 41.8 39.2 37.8 33.7 28.5

Table 2: Effect of different iteration limits Nk on the performance of the DFP method. The test was done on the

beam problem of Fig. 1with 8122 DoF.

requires a lower number of refactorizations. This is possibly because of the inherent difference

of the objective function minimization in the solvers. The comparison of the DFP performance

is tabulated in Table 1 for the two solvers. The significant observation is a great reduction in

the number of preconditioners from 150 without DFP to 17 and 8 with DFP for GMRES and

BiCGSTAB solvers, respectively. It should be noted that BiCGSTAB has also a lesser number

of iterations to convergence along with lower refactorizations.

In the following, the computational performance of the method is analyzed. The ratio of the

computational cost of computing the LU and iLU preconditioners to the cost of one iteration of

the solver increases with an increase in the size of matrices. Since the beam problem considered

so far has a small number of DoFs, this ratio is small. Hence, the time saved is not significant. In

order to show an appreciable reduction in computation time, a similar problem with 8122 DoFs

was used. The time for computing FRF with BiCGSTAB solver using iLU preconditioner with

and without the delayed preconditioner was measured for various iteration limits Nk in Table 2

along with the other parameters. When the iteration limit is small, for example, Nk = 5, a new

preconditioner is computed at all the frequencies. So, the performance of the DFP method is

the same as without the DFP. As the iteration limit was increased, the number of preconditioner

computations were reduced and there was an improvement in the performance of the method.

It can be seen that for Nk = 25, the preconditioner was computed only 4 times and there was

a 41.8% reduction in the computation time when the DFP algorithm is used. As the iteration

limit was further increased, the performance no longer increases. This is due to the fact that the

iterative solver then took more total iterations and time to converge, thereby overpowering the

time saved by reducing the number of preconditioner computations. As it be seen at Nk = 60
that only one preconditioner needed to be computed but it is not quite effective anymore. From

the above observations, it can be concluded that the computational time shows an optimum-like

behaviour as the iteration limit is changed.

So far, various results were shown for 150 frequency data points in the entire band of fre-

quency. At this point, the scalability for variation in the data points or resolution is discussed.
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Table 3 lists the number of preconditioner computations as the number of frequency data points

is increased. It is clearly seen that a remarkably smaller number of refactorizations are needed

in comparison to the number of data points. In the absence of the DFP, many refactorizations

would be needed which is quite expensive. In the limiting case, when the frequency resolution

is very coarse, the DFP algorithm will behave as without a delayed preconditioner.

Number of frequencies 10 50 100 150 250 400 1000 2000

Number of P Computations 4 8 11 11 11 13 14 14

Table 3: Scalability of the DFP: Effect of increasing the number of frequencies in the given range (making δω
smaller) on number of refactorizations for the preconditioners is listed. A complete LU factorization was used and

recycled for the data.

6 Conclusions and Future Work

A method for reusing information about preconditioners during frequency response compu-

tation was proposed. This method is tested on a beam problem. Two iterative solvers, GMRES

and BiCG, were used for this study. The performance of the method was studied for two precon-

ditioners, LU and iLU. The method helps to reduce the number of preconditioner computations

significantly, thereby reducing the overall computation cost. The computational performance

of the method depends on the iteration limit Nk and shows that an optimum value of Nk may

be needed for maximum computational savings. If this limit is low, in the worst-case scenario,

factorization has to be done at every other frequency. If the limit is too high, very few precon-

ditioners are computed but it would take more iterations to converge and hence would require

more time. Further, it was shown that the method is more effective when the gap between the

frequency points becomes smaller.

The method can also be extended to other problems and improvements can be suggested as

follows:

• Only linear problems have been considered in this paper. Nonlinearity might arise through

material properties or friction contact. This method could be extended to such non-linear

problems.

• In this study, only single domain geometries are considered. For very large problems,

domain-decomposition method needs to be used. For such cases, the same method can be

extended to reuse information from each subdomain.

• The performance of the method can be tested for other linear solvers and preconditioners.
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