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Smart sensors present in ubiquitous Internet of Things (IoT) devices often obtain high energy efficiency by 
carefully tuning how the sensing, the analog to digital (A/D) conversion and the digital serial transmission are 
implemented. Such tuning involves approximations, i.e. alterations of the sensed signals that can positively affect 
energy consumption in various ways. However, for many IoT applications, approximations may have an impact 
on the quality of the produced output, for example on the classification accuracy of a Machine Learning (ML) 
model. While the impact of approximations on ML algorithms is widely studied, previous works have focused 
mostly on processing approximations.

In this work, in contrast, we analyze how the signal alterations imposed by smart sensors impact the accuracy 
of ML classifiers. We focus in particular on data alterations introduced in the serial transmission from a smart 
sensor to a processor, although our considerations can also be extended to other sources of approximation, such 
as A/D conversion. Results on several types of models and on two different datasets show that ML algorithms 
are quite resilient to the alterations produced by smart sensors, and that the serial transmission energy can be 
reduced by up to 70% without a significant impact on classification accuracy. Moreover, we also show that, 
contrarily to expectations, the two generic approximation families identified in our work yield similar accuracy 
losses.
1. Introduction

The explosive growth of machine learning (ML) algorithms, espe-

cially based on deep neural networks (DNNs) is expected to enhance a 
wide range of Internet of Things (IoT) applications, ranging from ac-

tivity tracking to embedded natural language processing and computer 
vision [1]. These algorithms are originally developed to run on pow-

erful GPU-based servers on the cloud. However, in many application 
domains, it is desirable to implement them locally on the IoT devices 
(i.e. at the “edge”) [2, 3]. This eliminates the need of transmitting raw 
data to the cloud, typically through a wireless link, and can therefore 
yield several benefits, including:

• A reduced and more predictable response latency in presence of 
slow or intermittent connectivity

• An improved security for the user since private raw data never 
leave the device

• A reduced energy consumption, since wireless transmission is a 
very energy-hungry operation

* Corresponding author.

E-mail addresses: daniele.jahier@polito.it (D. Jahier Pagliari), massimo.poncino@polito.it (M. Poncino).

Despite these promises, implementing ML algorithms on IoT edge 
devices are not an easy task. Besides the well known limitations in 
terms of processing speed and memory space [2], another issue is re-

lated to the limited energy budget of IoT devices, which are typically 
battery-operated and expected to operate for months or years without 
recharging [4]. Running on battery for such a long time requires an op-

timal management of the available energy in all phases of operation of 
an IoT edge device. Therefore, all subsystems are optimized for energy, 
including sensing, Analog-to-Digital (A/D) and Digital-to-Analog (D/A) 
conversion, processing, actuation and data transmission [1, 5]. Such 
energy-optimized components often obtain high efficiency by means of 
various forms of data approximations [6, 7, 8, 9, 10, 11, 12, 13, 14]. 
They are, in other words, designed according to the so-called Approx-

imate Computing paradigm, which has recently gained a lot of traction 
in both academia and industry [15, 16, 17]. The impact of approximate 
computing strategies on ML algorithms has been widely studied in lit-
erature [2, 3, 18, 19]. However, the great majority of focus has been 
devoted only to processing approximations [20, 21, 22, 23, 24, 25, 26, 
27, 28, 29].
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Fig. 1. Conceptual block diagram of a sensor.

In this work we take on a different and novel perspective, namely, 
we assess the impact of the energy-driven approximations in the data 
acquisition path on the quality of the ML algorithms. Specifically, we fo-

cus on the approximated transmission of data from a smart sensor to a 
processor, through energy-efficient bus encodings [7, 8, 9, 10, 11]. Be-

sides being relevant per se, due to the large amount of energy consumed 
by off-chip sensor-processor connections [10], these approximations are 
also similar to (and therefore representative of) other data alterations 
that can appear in data acquisition chains, such as adaptive sampling 
frequency [6, 30, 31] and adaptive A/D conversion [32, 33]. There-

fore, the analysis of serial transmission also provides relevant insights 
on other elements of the chain.

In our experiments, we assess the effectiveness of three smart sensor 
transmission approximations on two edge ML tasks, i.e. activity recog-

nition based on Inertial Measurement Units (IMUs) and image classifica-

tion. The approximations considered are based on opposing underlying 
principles, which we denote as smoothing and rounding. Results show 
that ML classification algorithms are in general quite resilient to the al-

terations produced by smart sensors. Energy reductions up to 70% can 
be obtained on both target tasks, without a significant impact on clas-

sification accuracy. Moreover, we also show that approximations that, 
contrary to expectations, approximations based on the smoothing and 
rounding principles yield comparable results and that the latter actually 
have the potential to reach even greater savings for a given accuracy 
level.

The rest of the paper is structured as follows. Section 2 describes 
the types of approximations that can be implemented by a smart sensor 
and their impact on energy consumption. Section 3 then focuses specif-

ically on serial transmission approximations, which are the main focus 
of this work, while Section 4 analyzes related research on the impact of 
approximations on ML tasks. Finally, Section 5 contains experimental 
results and Section 6 concludes the paper.

2. Smart sensors and approximation

2.1. Smart sensor operations

A generic smart sensor consists of three main elements as shown in 
Fig. 1.

The transducer constitutes the interface with the external world, and 
translates the environmental signal (light, sound, vibration, tempera-

ture, etc) into the electrical domain. The transducer typically includes 
also some circuitry for signal conditioning, such as the adjustment of 
the signal bias and magnitude (via amplification) to match the require-

ments of the downstream components. Moreover, conditioning typically 
includes circuitry to “clean” the signal through various types of filtering

that depend on the characteristics of the signal itself.

The conditioned and filtered analog electrical signal is periodically 
sampled and converted to the digital domain by an Analog to Digital 
(A/D) converter. In the most common scenario (uniform quantization), 
the digital value is assigned proportionally to the ratio between the 
sampled analog value and a reference value, in the range from 0 to 
2

2𝑛 − 1 where 𝑛 is the resolution of the converter, i.e. the number of bits 
in the output code.

Digital samples are then transferred to the processing part of the 
system as data to be used for the computation. The de-facto standard 
is to transfer these data serially, using standard protocols such as I2C, 
SPI or CAN [34]. Serial links are preferred to parallel ones for several 
reasons, such as the reduced skew and jitter issues, which allow larger 
transmission frequencies, the reduced pin count and wire area, and the 
easier routing layout on a Printed Circuit Board (PCB).

Approximations are possible in each of the three blocks described 
above, as summarized in Table 1.

Which of these knobs is the best to use depends on the target op-

timization metric or on the specific type of sensed data. Moreover, 
alterations on a given block also affect downstream components. As 
a simple example, reducing the A/D bit resolution of an accelerometer 
from the typical 11- or 12-bit to 8-bit also speeds up and reduces the 
energy for data transmission [10].

2.2. Signal and information content

The energy benefits arising from signal approximation during data 
acquisition (described in Section 2.3) have an impact that depends on 
the nature of the signals and on the application which uses them. As 
observed in various previous works [7, 8, 9, 10, 11], a common char-

acteristic of sensor data is the burstiness of the signals, i.e. the fact that 
variations are concentrated in short time windows. This phenomenon 
is shown in Fig. 2 for three sensed signals: from and ECG sensor (a), 
from an accelerometer (b), and from an image sensor (c). An observa-

tion done in many previous works [8, 10, 11] is that the “relevant” 
data tend to be localized where variations occur. In the case of the 
ECG, spikes in the signal correspond to heart pulses, while almost-

constant sections correspond to the interval between two heart beats. 
Similarly, a relatively constant accelerometer signal corresponds to a 
still device, while sudden value changes correspond to movements. Fi-

nally, variations in the grayscale or RGB pixels transmitted by a camera 
correspond to image features such as edges and lines, whereas constant 
sections correspond to uniform or slowly-varying colors, which convey 
less information. This property can be considered as a variable temporal 
correlation of the signals, and is exhibited by the majority of sensors, as 
detailed in [9].

Intuitively, this characteristic of sensed signals could be leveraged to 
reduce the impact of approximations resulting from the application of 
the knobs listed in Table 1. In particular, by approximating more aggres-

sively the regions with high correlation (dotted ovals in figure) and less 
aggressively (or not at all) the remaining ones, the impact of approx-

imations on downstream tasks (such as a ML classification algorithm) 
could be reduced, assuming that the features extracted and processed by 
these algorithms are related for instance to image lines, accelerometer 
movements or ECG pulses. In our experiments, we verify this intuition 
by comparing two different types of approximation, one focusing only 
on high-correlation areas of a signal (smoothing, see Section 2.3), and 
the other applying approximations on all samples indistinctly (round-

ing). We show that, contrary to expectations, the former does not yield 
quantifiably better ML accuracy for a given approximation level.

2.3. Smart sensors approximations

As mentioned in Section 2.1, there are multiple points within a data 
acquisition chain where data approximations can be leveraged in order 
to achieve energy reductions (see Table 1). Therefore, before focusing 
on one specific type of approximation used for our practical experi-

ments, we describe the general underlying principles of data acquisition 
approximations, and how these impact power and energy consumption. 
In abstract terms, there are two fundamental signal alterations imple-

mented in smart sensors that can impact the power and/or energy, 
which we call rounding and smoothing.
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Table 1. Knobs for signal approximation in a sensor.

Block Operation Alteration

Transducer Sensing Type and operating mode of transducer

Signal Conditioning Bias regulation, Type and order of filter

A/D converter Sampling Sampling frequency

Quantization Bit resolution

Serializer/Encoder Encoder Data encoding
Fig. 2. Signal samples from three different sensors: ECG (a), accelerometer (b), 
and camera (c).

The first family of approaches is based on rounding samples accord-

ing to predefined quantization intervals, i.e. approximating over values. 
For instance, rounding to multiples of 16 means that any value between 
8 and 23 will be approximated as 16, whereas values between 24 and 
47 will be approximated as 32, and so on.

Rounding can be physically implemented directly when quantizing 
the analog signal, i.e. by reducing the resolution of the A/D, as shown 
in [35]. Common A/D types, such as those based on the Successive Ap-

proximation Register (SAR) principle, compute each digital output bit 
sequentially starting from the MSB. For these components, a smaller 
output resolution results in a faster conversion and in a consequent re-

duction of the overall energy consumption [9]. Alternatively, rounding 
can also be implemented during the transmission of digital data, as de-

tailed in Section 3. [7].

With the term smoothing, we refer instead to the principle of elim-

inating small variations between consecutive values, i.e. considering sim-

ilar consecutive values as identical. With respect to rounding, which 
quantizes all values to “bins”, smoothing only joins similar consecu-

tive samples (e.g. nearby pixels in case of a camera, or samples for an 
accelerator). Smoothing reduces energy because it is equivalent to ap-

proximating a signal over time: if two similar signals are approximated 
as identical, there is no need to store them, transmit them, or process 
them twice.
3

Both rounding and smoothing distort the input signal, the former by 
altering its amplitude non-linearly, and the latter its frequency com-

ponents. As for rounding, smoothing can be implemented either when 
sampling the analog signal, by reducing the sampling frequency when 
data are similar, [6, 30, 31], or when transmitting digital data, e.g. by 
only sending one datum of each group that is approximated as identical, 
as detailed in the next section [8, 10].

In the rest of the paper, we concentrate on data transmission approx-

imations, both because of their relevance for energy consumption, and 
because they allow to easily implement both rounding and smoothing 
approaches.

3. Approximations in sensor data transmission

3.1. Energy consumption in serial buses

Serial buses are a de-facto standard for interconnecting off-chip 
I/O peripherals in embedded digital systems such as most IoT edge 
devices [34]. Even if consisting of few physical wires, off-chip serial 
buses can still be significant contributors to the total energy budget 
of a device. In fact, these buses are typically implemented as PCB 
traces (e.g., microstrips), whose capacitances are orders of magnitude 
larger than those of on-chip interconnects. As a consequence, the en-

ergy consumption per unit length of a PCB trace is in the order of 1-2 
pJ/bit/inch [36], and considering that a PCB trace can span several 
centimeters, the transmission of a single bit can require up to ≈10 pJ. 
For comparison, a small 32-bit micro-controller (MCU) for sensor-based 
systems can have active currents in the order of 50-100 𝜇𝐴∕𝑀𝐻𝑧, 
translating to ≈10 pJ/instruction for typical operating frequencies [37]. 
Therefore, the transmission of each single bit on an off-chip serial bus 
consumes an energy comparable to the execution of one 32-bit instruc-

tion on a MCU.

To estimate their energy consumption, off-chip serial connections 
can be modeled, in first approximation, as purely capacitive chan-

nels [36, 38]. Under this model, all power dissipation occurs in corre-

spondence of electrical level changes, i.e., it coincides with the dynamic 
power, and can be computed as:

𝑃𝑐ℎ𝑎𝑛 = 𝑃𝑑𝑦𝑛 = 𝛼𝐶𝑡𝑜𝑡𝑉 2
𝑠𝑤𝑖𝑛𝑔

𝑓 (1)

where 𝐶𝑡𝑜𝑡 is the total load capacitance, including line driver, pin and 
wire, 𝑉𝑠𝑤𝑖𝑛𝑔 is the voltage swing between electrical levels, and 𝑓 is the 
transmission frequency. Finally, 𝛼 ∈ [0, 1] is the switching probability 
factor, that accounts for the probability of a level transition in a given 
clock cycle.

3.2. Approximate bus encodings

Bus encodings for smart sensors [7, 8, 9, 10, 11, 36, 38] obtain en-

ergy savings by reducing 𝛼 in (1). In other words, they attempt to min-

imize the transition count (TC), i.e. the number of logic-value changes 
seen on the bus. Transitions are generated by adjacent bits with oppo-

site logic values, either within a word (intra-word) or among subsequent 
words (inter-word).

The importance of serial off-chip connections in modern embedded 
and IoT computing systems has generated quite a vast literature on se-

rial bus encodings. Older solutions are lossless, i.e. they do not exploit 
data approximations [38]. More recently, approximate serial encod-

ings, which trade-off greater energy (i.e. TC) reductions for small errors 



D. Jahier Pagliari and M. Poncino Heliyon 6 (2020) e05750
in the decoded data, have started being investigated [7, 8, 9, 10, 11, 
36]. One of the first efforts in this sense is described in [36], where 
the authors propose an encoding called Rake, which heuristically in-

verts the logic value of some bits within a word, in order to generate 
long sequences of 1s or 0s, and thus reduce the TC. Inversions are per-

formed under a maximum error constraint, in order to balance power 
saving and data fidelity. More recently, three other encodings called 
Approximate Differential Encoding (ADE) [9], Serial T0 (ST0) [10] and 
Axserbus [11] have been proposed, all of which outperform Rake. Inter-

estingly, ADE implements a rounding approximation, whereas ST0 and 
Axserbus perform smoothing. Therefore, we decided to focus on these 
three encodings, as they offer us a simple way to compare the afore-

mentioned generic approximation strategies. Each of them is described 
in detail in the next subsections.

3.2.1. ADE

ADE, first introduced in [7], is the approximate extension of so-

called Differential Encoding (DE). The original DE exploits the burstiness

of sensor signals by constructing code-words as the bitwise difference 
(i.e. Hamming distance) between consecutive samples, i.e.:

𝐵𝑖[𝑡] = 𝑏𝑖[𝑡]⊕𝑏𝑖[𝑡− 1], ∀𝑖 ∈ [1, 𝑛] (2)

where ⊕ indicates the binary XOR operator, 𝑏𝑖[𝑡] is the i-th bit of the 
input word at time 𝑡, and 𝐵𝑖[𝑡] is the corresponding bit of the DE code-

word [38]. DE decoding is implemented as:

𝑏̂𝑖[𝑡] =𝐵𝑖[𝑡]⊕𝑏𝑖[𝑡− 1], ∀𝑖 ∈ [1, 𝑛] (3)

DE yields TC reductions because correlated samples tend to generate 
Hamming distances with long constant sequences in the Most Signifi-

cant Bits (MSBs), as explained in [38].

On top of DE, ADE adds a rounding approximation, simply obtained 
by saturating some of the Least Significant Bits (LSBs). Calling 𝑛 the bit-

width of the input samples and 𝑙 the number of saturated LSBs, ADE 
encoding works as follows:

𝐵𝑖[𝑡] = 𝑏𝑙+1[𝑡]⊕𝑏𝑙+1[𝑡− 1], ∀𝑖 ∈ [1, 𝑙]

𝐵𝑖[𝑡] = 𝑏𝑖[𝑡]⊕𝑏𝑖[𝑡− 1], ∀𝑖 ∈ [𝑙 + 1, 𝑛]
(4)

The maximum error introduced by ADE for integer data representa-

tions can be computed as 𝐸𝑀𝐴𝑋 = 2𝑙 − 1. ADE decoding is identical to 
DE. Rounding has the effect of reducing the TC on LSBs, hence further 
improving the total energy savings compared to standard DE. For a de-

tailed discussion on ADE and its possible variants we refer the reader 
to [9].

3.2.2. Serial T0

ST0, first introduced in [8], performs approximations only in the 
high-temporal-correlation regions of a signal, by means of a smoothing 
approach. The underlying principle of this encoding is that highly-

correlated data provide little information, but in most cases compose 
most of the signal (see Fig. 2). Therefore, the idea is to transmit similar 
consecutive samples with the minimum possible energy consumption, 
which corresponds to using a 0-TC pattern, while sending all other 
words on the bus unaltered. Formally, ST0 builds codewords as follows:

𝐵(𝑡) =

{
0-TC pattern if ‖𝑏[𝑡] − 𝑏[𝑡′]‖ ≤ 𝑇ℎ
𝑏[𝑡] otherwise

(5)

where 𝑇ℎ represents a tunable maximum error threshold and 𝑡′ is the 
index of the last sample that was directly sent on the bus (without ap-

proximations). The 0-TC pattern is simply a 𝑛-bit sequence of logic-1s; 
the reader is referred to [10] for a detailed analysis of this encoding.

ST0 decoding is implemented as follows:

𝑏̂[𝑡] =

{
𝑏[𝑡′] if 𝐵[𝑡] = 0-TC pattern

𝐵[𝑡] otherwise
(6)
4

The received codeword is simply copied to the output, except for the 
0-TC pattern. In that case, the decoder assumes as output the value 
of the last valid word (non 0-TC) received. Evidently, ST0 implements 
smoothing, i.e. repeats the previous sample rather than transmitting a 
new one, whenever the difference between the two is smaller than 𝑇ℎ.

3.2.3. Axserbus

Axserbus, introduced in [11] takes on the idea of ST0 and extends 
it to build a more flexible encoding, supporting a 2-level smoothing. 
Indeed, this solution uses two smoothing thresholds: 𝑇ℎ,0 and 𝑇ℎ,𝑚 >
𝑇ℎ,0. Furthermore, the encoder also takes into account the residual error 
from previous transmissions, in order to avoid error accumulation, thus 
replacing 𝑏[𝑡] − 𝑏[𝑡′] in (5) with Δ = (𝑏[𝑡] − 𝑏[𝑡′]) + (𝑏[𝑡] − 𝑏̂[𝑡]), where 𝑏̂[𝑡]
is the decoded word at step 𝑡.

When Δ < 𝑇ℎ,0, the encoding simply uses the same scheme of (5), 
i.e. a 0-TC pattern is transmitted, which is interpreted by the decoder 
as “repeat the previous sample”. In contrast, when 𝑇ℎ,0 < Δ <= 𝑇ℎ,𝑚, a 
1-TC pattern is used. Specifically, Δ values between 𝑇ℎ,0 and 𝑇ℎ,𝑚 are 
first approximated in “bins” as:

Δ′ = 2⌊log2 ‖Δ‖⌋ + 2⌊log2⌊‖Δ∕2‖⌋⌋ (7)

i.e. each word between 2𝑟 and 2𝑟+1 is approximated as the median of the 
range. Then, Δ′ is encoded as a run of 𝑙−𝑟 1s followed by 𝑟 0s, or the op-

posite if Δ is negative. For example, Δ′ = 3, which corresponds to 𝑟 = 2
is encoded as 11111100 for 8 bit samples. Finally, if Δ > 𝑇ℎ,𝑚, the word is 
transmitted as-is, as long as it naturally generates a 𝑇𝐶 ≥ 2. Otherwise, 
one or two LSBs are flipped, in order to avoid that the decoder “con-

fuses” a normal 1-TC word with one of the special patterns described 
above. Rather than completely eliminating differences or transmitting 
accurately (as done by ST0), the 2-level scheme of Axserbus allows a 
more gradual smoothing, in which intermediate differences are still ap-

proximated but not eliminated. More details on this solution can be 
found in [11].

4. Impact of approximations on machine learning tasks

The synergy between approximate computing and machine learning 
is well-studied in the literature, especially for deep neural networks. 
However, the great majority of papers only study the effects of adding 
approximations in the processing phase of a ML model, i.e. in the compu-

tations performed while running a classification [2, 3]. One of the most 
common approximations of this kind consists of the quantization [20, 
21, 22, 23, 24] or binarization [25, 26] of model parameters and inter-

mediate data. The elimination of low-significance connections in deep 
neural networks (so-called pruning) is another popular form of ML ap-

proximation [27, 28, 29].

Approximations of ML model inputs have also been studied, al-

though less extensively [18, 19]. However, the types of alterations 
considered in those works are very different from those added by ac-

tual smart sensors. For instance, the work in [18] tests the impact of 
four image alterations, i.e. blurring, Gaussian noise addition, contrast 
reduction and JPEG compression, on the classification accuracy of a 
Convolutional Neural Network (CNN) for computer vision applications. 
In [19], the same type of ML model is tested against a variety of im-

age alterations including shot and impulse noise, pixelation, and many 
others. These works do not relate the transformations tested to a spe-

cific approximation performed by a smart sensor, and indeed, this is 
not always possible. While the effect of rounding can be approximated 
by adding uniform noise on LSBs [8], smoothing approximations like 
those performed by ST0 and Axserbus cannot be easily modeled by a 
noise distribution, nor by a standard spatial filter. Moreover, modern 
compression algorithms are also not representative of the approxima-

tions introduced during data acquisition. Indeed, the former typically 
analyze an image globally before “approximating it” in order to reduce 
storage size. In contrast, alterations added by energy-efficient smart sen-

sors are based on simple local algorithms that consider one or a few 



D. Jahier Pagliari and M. Poncino Heliyon 6 (2020) e05750
nearby pixel values in order to keep the energy cost for analysis as low 
as possible [7, 8, 9, 10, 11]. As anticipated in Section 2.3, these local 
alterations introduce peculiar types of distortion in the data, which are 
not easily modeled with standard signal processing techniques.

The recent work of [35] considers, among other types of noise and 
failure-induced errors, the impact of rounding approximations intro-

duced by reducing the A/D conversion precision on the accuracy of 
several machine learning models. However, the authors do not com-

pare the latter with smoothing approximations, and focus on a single 
activity recognition use case.

Other works have studied the effect of label noise, i.e. incorrect la-

beling of training data, on the accuracy of deep learning models [39]. 
Again, this is a very different target from ours, since label noise affects 
training (while we focus on the inference phase) and is produced by 
human errors, not by a data acquisition approximation.

Finally, a vast literature has studied adversarial alterations of the in-

put of a ML model, in order to force a misclassification [40, 41, 42]. 
While these types of alterations are very important for ML security 
and intellectual property protection, being specifically tailored to in-

duce errors in the model, they are clearly not representatives of the 
approximations introduced by smart sensors.

In summary, despite the large number of previous works that have 
studied the relation between approximation and ML accuracy, to the 
best of our knowledge, ours is the first to explicitly compare the effect of 
simple rounding and smoothing approximations introduced by energy-

efficient smart sensors.

5. Experimental results

5.1. Setup

We tested the impact of ADE, ST0 and Axserbus on two different 
ML tasks: image classification and activity recognition based on iner-

tial sensors. Notice that, although ADE, ST0 and Axserbus have already 
been compared in [11], those experiments were based on generic image 
quality metrics (e.g. the Peak Signal-to-Noise-Ratio - PSNR). The effect 
of these three encodings on ML classification accuracy has never been 
assessed.

The two target tasks have been selected due to their relevance in sev-

eral edge ML applications [2, 3] and to their different characteristics. 
Indeed, image classification is a high-data-rate application, in which a 
smart sensor (i.e. camera) has to sample and transmit large amounts 
of data (in the order of kilobytes or megabytes per image) at high-

frequency, hence incurring a large power consumption in off-chip buses 
(see Equation (1)) [10]. At the same time, this type of task typically re-

quires a complex deep learning model to achieve high accuracy, with 
a consequent high consumption in the processing part of the system. 
In contrast, inertial sensors data are smaller in size, but can be reli-

ably classified using much simpler classic ML models such as k-Nearest 
Neighbors (k-NN) and Support Vector Machines (SVM), with a much 
lower computational burden. In both cases, off-chip buses can be rele-

vant contributors to the total energy of the system.

For image classification, we tested the three approximate encodings 
against two state-of-the-art Convolutional Neural Networks (CNNs), 
i.e. MobileNetV2 [43] and InceptionV3 [44]. MobilenetV2 is specifi-

cally tailored at executing inference on mobile and embedded devices, 
thanks to the use of depthwise separable convolutions and other model 
optimizations to reduce complexity, whereas InceptionV3 is signifi-

cantly more complex (≈ 6x larger weights size) but also significantly 
more accurate. These two CNNs allow us to assess whether a larger 
model is indeed more resilient to input noise. For both networks, we 
used the implementations made available by the Keras deep learn-

ing framework [45], which are provided pre-trained on the ImageNet 
dataset [46]. All tests have been performed on the original ImageNet 
validation set, which contains 50000 images, assuming a 24-bit RGB 
representation for image pixels.
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Table 2. Experiments summary.

Dataset Classifier

ImageNet [46] MobileNetV2

InceptionV3

UniMiB SHAR [47] k-NN with 𝑘 = 1
SVM with RBF

1D-CNN

For activity recognition, we used the UniMiB SHAR dataset [47], 
which contains around 11000 3-axis accelerometer patterns grouped in 
17 classes of activity. We have split the dataset randomly using 70% of 
patterns for model training and the remaining 30% for validation. Data 
are provided as floats, which we have converted to 16-bit fixed-point, 
to simulate the typical data format of a commercial accelerometer [48]. 
To classify these data, we built 3 simple classifiers similar to those used 
in [47]. Specifically, we used a k-NN with 𝑘 = 1, a SVM with Radial 
Basis Function (RBF) kernel, and a simple 1-dimensional CNN with two 
convolutional layers (3x3 kernels, 64 channels, Rectified Linear Unit -
ReLU activation) followed by a max pooling layer with pool size = 2
and by two dense layers with an hidden size of 100. With this second 
set of experiments, we can therefore assess weather a deep learning 
model (the 1-D CNN) is more resilient to smart sensor approximations 
compared to a much less computationally intensive k-NN or SVM. A 
summary of our experiments is shown in Table 2.

We used a Python library to simulate the encoding of all data with 
the three bus encodings. We repeated the simulated transmission mul-

tiple times, varying the parameters of each encoding that control the 
amount of approximation, i.e. 𝑙 for ADE, 𝑇ℎ for ST0 and 𝑇ℎ,0 and 𝑇ℎ,𝑚
for Axserbus. We then ran the ML classification on the decoded data and 
compared the results with those obtained on not approximated data. 
Since Axserbus has two free parameters, we performed a grid-search on 
both and then extracted the Pareto-optimal combinations.

5.2. Image classification results

Results for the image classification task are reported in Figs. 3 and 
4. Both sets of plots report the accuracy of ML classification on the y 
axis. Both Top-1 and Top-5 accuracy are reported, since both metrics are 
commonly used in this domain.1 On the x axis, Fig. 3 shows the average 
error magnitude on each decoded word (i.e. pixel) whereas Fig. 4 shows 
the actual energy saving on the serial bus, based on the model of (1). 
Both measures are reported in percentage. The leftmost points of all 
curves correspond to no approximation, so the corresponding accuracy 
is the nominal one obtained on the unaltered ImageNet validation set.

The two sets of plots show two different aspects of the comparison. 
Fig. 3 shows the impact of a generic average rounding or smoothing error 
on the accuracy of the two CNNs. This dependency is roughly indepen-

dent of where the approximation is performed and therefore helps in 
comparing the two generic approximation strategies. In contrast, the 
energy results in Fig. 4 are specific to serial bus approximations, and 
strongly depend on the implementation details of ADE, ST0 and Axser-

bus.

These results offer very interesting insights on the two types of 
approximations. In fact, Fig. 3 shows that rounding is almost always 
superior to smoothing in the accuracy versus decoding error space, es-

pecially for aggressive approximations, i.e. a superior ML accuracy is 
obtained for a given average error. This is a surprising result, which 
goes against the intuition of previous work, described in Section 2, 
that approximating only high-temporal-correlation regions would af-

fect less the features extracted by ML classifiers. In contrast, it appears 

1 When computing the Top-1 accuracy, a classification is considered correct 
only if the class label deemed as most probable by the CNN corresponds to the 
ground truth. In contrast, for the Top-5 accuracy, the correct label should be 
among the 5 most probable ones according to the network.
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Fig. 3. Accuracy versus average bus encoding error for image classification.

Fig. 4. Accuracy versus bus energy saving for image classification.

Fig. 5. Accuracy versus bus encoding error for activity recognition.
that rounding, which acts like a uniform noise applied to all input pix-

els, and is roughly equivalent to input quantization, is better tolerated 
by the two CNNs compared to the data-dependent approximations intro-

duced by smoothing methods. This can be motivated by the well-known 
high resilience of CNNs to quantization.

On the accuracy versus energy plane of Fig. 4, results are different. 
ADE still outperforms ST0 but is almost invariably worse than Axser-

bus. This difference, however, boils down to the clever implementation 
details of Axserbus [11] and not to the underlying nature of the per-

formed approximations. Moreover, the quantitative difference between 
the two is in most cases quite small (e.g. Fig. 4d), which makes ADE 
still an interesting alternative for approximate serial transmission from 
a smart camera sensor, especially considering that the silicon area and 
power consumption of the encoding and decoding hardware in Axser-

bus is almost 10x larger than that of ADE for the same technology node 
(see the results in [11] and [9] for a comparison).

Looking at the two figures together also stimulates interesting obser-

vations. In fact, ST0 and Axserbus, both based on smoothing, are almost 
identical in terms of accuracy versus average error, but the latter is def-

initely superior when considering actual bus energy. Combining this 
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with the superior results of ADE for the same average error, shows that 
there is probably still a lot of space to design clever serial bus encodings 
based on rounding, which could even outperform Axserbus in terms of 
accuracy versus energy. We believe that this is one of the most impor-

tant conclusions of our study.

Interestingly, Fig. 3 also shows that larger models are indeed more 
resilient to approximations. For example, looking at the Axserbus curve, 
a 2% average error on transmitted pixels causes a > 5% drop in Top-1 
accuracy for MobileNet, whereas the same pixel-level error on Inception 
only causes a ≈ 2.5% drop. However, these results should be weighted 
considering that Inception requires a much larger processing energy to 
perform a classification. Therefore, the additional resilience to errors in 
smart sensors is “paid” on the processing side.

Analyzing the results from the point of view of serial transmission 
energy, we can see that regardless of the metric and CNN model con-

sidered, very large savings are possible with a negligible impact on 
accuracy. With Axserbus, for instance, 68%, 83%, 76% and 77% energy 
reductions are achieved with less than 1% accuracy drop on MobileNet 
Top-1 and Top-5, and Inception Top-1 and Top-5 respectively.
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Fig. 6. Accuracy versus bus energy saving for activity recognition.
5.3. Activity recognition results

Figs. 5 and 6 show analogous results of Figs. 3 and 4 but for the 
activity recognition application. In this case, we only report results rel-

ative to the Top-1 accuracy, since the dataset only includes 17 classes. 
For such a small number of classes, the Top-5 accuracy, although valid 
in principle, is not a very informative metric, as even a random classi-

fier put the correct class in the top-5 list ≈ 30% of the times.

All observations done in Section 5.2 remain valid also for this second 
application, despite the different nature of the serially transmitted data 
and of the ML classifiers used. This confirms that those observations are 
not linked to the specific use case of image classification, but remain 
valid for different categories of sensor data.

The savings achieved for a given accuracy drop are even higher in 
this case, due to the simpler classification task. With Axserbus, bus en-

ergy is reduced by 87%, 87% and 84% with a < 1% accuracy drop on the 
CNN, k-NN and SVM respectively. Also, the difference between Axser-

bus and ADE is smaller on this stask, with the latter achieving 82%, 
88% and 75% in the same conditions.

Finally, a last important observation is that classic ML classifiers 
(k-NN and SVM) show both a similar accuracy in absence of data al-

terations and a similar resilience to approximations compared to the 
CNN. This shows that, at least for a simple task like human activ-

ity recognition based on accelerometer data, even a simple classifier 
like a SVM, which requires significantly less processing to perform a 
classification, can still be used in conjunction with aggressive data ac-

quisition approximations. This result is apparently in contrast with the 
one obtained in [35], where the authors found that deep-learning mod-

els significantly outperformed classic ML approaches in presence of A/D 
quantization. However, this is probably due to the different model size 
and dataset considered. In fact, the authors of [35] used a 5-layer dense 
neural network with a total of approximately 3M parameters, whereas 
our smaller CNN only includes ≈0.5 M weights. As detailed in the im-

age classification section, a larger model size is likely to yield a higher 
error resilience, but may result in a too high computational complex-

ity for a simple activity recognition task. Similarly, the dataset used in 
our experiments includes a smaller number of features (i.e. only the 3 
accelerometer axes readings versus a total of 45 readings in [35]). The 
higher amount of redundancy in the input data is likely to give the deep 
learning model of [35] more opportunities to cope with the reduced 
precision, following a well known trade-off of Approximate Comput-

ing [16]. Overall, we argue that our results analyze the error resilience 
of human activity recognition based on inertial data and ML models 
from a different perspective compared to [35]. In particular, we focus 
specifically on a use case that could be implemented in a low-power 
edge device (e.g. a wearable), which can only collect a limited quantity 
of data and must use simple ML models for classification.

6. Conclusions

We have presented an analysis of the impact of the two most com-

mon types of smart sensor approximations on the accuracy of two differ-
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ent ML tasks. Our experiments have shown that, contrarily to intuition, 
the category which we denoted as rounding affects less the performance 
of ML classifiers compared to smoothing. In the specific case of energy-

efficient approximate serial data transmission, however, the availability 
of advanced encoding techniques based on smoothing makes the two 
categories comparable, with Axserbus [11] achieving the best results. 
Nonetheless, the rounding-based ADE [9] still achieves comparable en-

ergy savings for a given accuracy level on most experiments, which 
make it an interesting alternative to consider by system designers, es-

pecially given that it permits a smaller and more efficient hardware 
implementation of encoding and decoding.

Finally, we have also shown that, for simple tasks like activity recog-

nition, classic solutions like SVM and k-NN offer similar resilience to 
data acquisition approximations compared to a CNN. In contrast, for 
complex image classification tasks, very large deep learning models like 
Inception are indeed more resilient to data alterations, although this ad-

vantage comes at the cost of an increased processing energy.

Motivated by these findings, our future work will focus on the devel-

opment of more advanced rounding-based approximations, not limited 
only to the serial transmission of data, but extended to the entire sens-

ing chain, in order to fully exploit the resilience of ML models to this 
type of approximation. Moreover, we also plan on extending our exper-

iments to other use cases, such as bio-signals processing.
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