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Abstract: The quantification of global snowfall by the current observing system remains challenging,
with the CloudSat 94 GHz Cloud Profiling Radar (CPR) providing the current state-of-the-art snow
climatology, especially at high latitudes. This work explores the potential of the novel Level-2
CloudSat 94 GHz Brightness Temperature Product (2B-TB94), developed in recent years by processing
the noise floor data contained in the 1B-CPR product; the focus of the study is on the characterization
of snow systems over the ice-free ocean, which has well constrained emissivity and backscattering
properties. When used in combination with the path integrated attenuation (PIA), the radiometric
mode can provide crucial information on the presence/amount of supercooled layers and on
the contribution of the ice to the total attenuation. Radiative transfer simulations show that the
location of the supercooled layers and the snow density are important factors affecting the warming
caused by supercooled emission and the cooling induced by ice scattering. Over the ice-free ocean,
the inclusion of the 2B-TB94 observations to the standard CPR observables (reflectivity profile
and PIA) is recommended, should more sophisticated attenuation corrections be implemented in
the snow CloudSat product to mitigate its well-known underestimation at large snowfall rates.
Similar approaches will also be applicable to the upcoming EarthCARE mission. The findings of this
paper are relevant for the design of future missions targeting precipitation in the polar regions.

Keywords: snowfall; CloudSat radar; radiometric mode; supercooled droplets; brightness
temperatures

1. Introduction

Snowfall is an important physical element of the Earth’s water and energy cycles, and its
continuous monitoring and quantification on a global scale is fundamental to globally quantify
water resources, and for understanding feedback mechanisms and interconnections in hydrology and
climate. High latitude regions, where observations and measurements are sparse and the processes
poorly known, are experiencing significant changes brought about by climate change, but the impact
on precipitation, as well as on snow/ice extent and properties, and related feedback mechanisms,
is not well documented and understood.

Remote sensing of snowfall remains among the most challenging tasks in global precipitation
retrieval ([1–7], and many others). As opposed to visible-infrared (VIS-IR; N.B.: a full list of acronyms is
provided in the Appendix A) sensors, used to analyse upper-level cloud structure and convective cloud
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properties, spaceborne microwave sensors have been largely used to extract quantitative information
on snowfall, thanks to their ability to penetrate clouds. Passive microwave (PMW) sensors have high
frequency channels (90–190 GHz) that are highly sensitive to the snowflakes scattering (e.g., [8,9]), and
thanks to their large swath and availability on many platforms they ensure good global coverage and
lengthy data records. However, the detection and quantification of snowfall by passive microwave
observations is challenging because it involves complex and dynamic interactions between the cloud
liquid and ice hydrometeors, atmospheric conditions, and the surface ([1,10,11].

Spaceborne radars, although not specifically designed to comprehensively characterize global
snowfall, offer a valuable source of consistent measurements to observe falling snow. Cloud-oriented
missions, such as CloudSat [12] (and EarthCARE [13] in the near future), offer high sensitivity thanks
to their W-band (94 GHz) cloud profiling radar (CPR) that enables observing the vertical distribution
of hydrometeors and to retrieve surface snowfall [14–19]. Several studies have demonstrated that
CloudSat CPR sensitivity (−28 to −30 dBZ) and orbital characteristics (sampling from 82◦N–82◦S
latitudes) allow it to be employed successfully for global snowfall research (e.g., [14,20,21]. A complete
overview of CloudSat CPR capabilities to address fundamental snowfall monitoring questions on a
global, seasonal and regional basis is provided by [19]. CloudSat has provided unprecedented data
sets for the study of clouds and global snowfall up to 82◦ of latitude (e.g., [3,22–24]), including unique
snowfall modes (e.g., cumuliform snow, [25]), that were previously unavailable from observational
means on a near-global scale. In a recent paper by [26], an extensive validation of surface snowfall rate
estimates from GPM products and from the CloudSat CPR shows that CPR snowfall rate estimates are
by far in better agreement with the ground-based radar estimates than any other algorithm.

However, some CPR limitations need to be mentioned. CPR limited swath (with a revisiting
time of 16 days for a square of 100 × 100 km2) does not provide the needed coverage for snowfall
global monitoring. At W band, reflectivities for snow tend to saturate near 20 dBZ because of
reduced backscattering efficiency of larger aggregates relative to lower frequencies and compensating
effects of hydrometeor attenuation and multiple scattering in heavier, deeper snow events (e.g., [27]).
These weaknesses are partly compensated by the Ku/Ka-band scanning Dual-frequency Precipitation
Radar (DPR) on board the Global Precipitation Measurement (GPM) mission Core Observatory [11],
but DPR lower sensitivity (and limited latitudinal coverage) does not allow to properly account for
light snowfall occurrence and quantification in global snowfall climatology [6,28].

It is important to mention other CloudSat CPR limitations for snowfall observations. First,
CPR reflectivity observations are contaminated by ground clutter, typically in the 1000 m closest
to the surface [17,23,29,30]. Since retrieving surface snowfall rate requires extrapolating the values
from such heights, large uncertainties are introduced in the presence of processes like sublimation or
aggregation, causing large reflectivity gradients near the surface. Moreover, shallow snowfall events,
often associated to cold-air outbreaks, with precipitation heights of less than 1500 m, could be partly
missed, even if they occur twice as often as deep events, and contribute approximately equally to
estimated annual accumulation [3,25,31]. Similar issues are encountered with warm boundary layer
clouds and solutions for the next generation of radars have been proposed [32]. Second, supercooled
liquid water clouds (SLWC) are ubiquitous in snowing clouds: [2] reported frequency of occurrence
exceeding > 70% over the ice-free ocean, whereas [33] found occurrences of 57% and 33% over sea
and land, respectively. Ground-based snowfall measurements at specific sites around the globe have
confirmed that supercooled liquid water (SLW) is often associated with snowfall events [34–36].

For CloudSat observations, the presence of SLWC has been identified either via the use
of synergistic observations of the CALIPSO lidar [33] or of the A-Train AMSR/E microwave
radiometer [2]. Moreover, ref. [2] showed that larger values of liquid water path (LWP) occur
in correspondence to weak snowfall (i.e., near-surface radar reflectivity between −10 and 0 dBZ
equivalent to snow-rates of 0.02 and 0.15 mmh−1) rather than to the heaviest snowfall observed.
The impact of SLWC on PMW satellite remote sensing of snowfall has been investigated using radiative
transfer simulations, as well as using coincident observations from active and passive MW sensors
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(e.g., [2,4,37–39]). These studies have shown how the presence of SLWC may significantly affect the
PMW snowfall related signature. Radiometrically, SLWCs produce a brightness temperature (TBs)
warming caused by emission that tend to compensate the TB cooling caused by snowflakes’ scattering.
Over land, the non-monotonic relationship between the TBs at frequencies greater than 89 GHz and the
snowfall intensity (due to the emission and scattering effects by SLWC and snowflakes, respectively) is
complicated by the changes in the snow-cover physical properties as it accumulates on the ground [39].
Such complexity is reduced over ocean, where it is possible to better interpret the dependencies of TBs
on SLWC and snowfall intensity.

An opportunity to understand and analyze the impact of SLWC on Cloudsat global snowfall
observations is offered by the novel Level-2 CloudSat 94 GHz Brightness Temperature Product
(2B-TB94), developed in recent years by processing the noise floor data contained in the 1B-CPR
product. The value of the CPR 94 GHz passive mode has been discussed for warm clouds [40,41];
the goal of this study is to investigate its potential for snowfall studies. The analysis is restricted to
the ice-free ocean where emissivity and backscattering properties can be better constrained. Over
land or in presence of sea-ice, the surface emissivities are difficult to model (e.g., they are affected
by the amount of accumulated snow, its structure, and its state), which makes the interpretation of
the brightness temperatures much more challenging. This is similar for the normalised radar cross
sections, which prevents the possibility of using the reduction in the surface return to estimate the
path integrated attenuation (PIA) via the surface reference technique [42].

The methodology is presented in Section 2 and demonstrated with a case study in Section 3.
The observations are interpreted in terms of radiative transfer simulations (Section 4); then a
climatology of the TB signal in conjunction with other variables like the path integrated attenuation
(PIA), the snow water path (SWP), and the integrated water vapour (IWV) is produced (Section 5).
Finally, conclusions and recommendations are drawn in Section 6.

2. Dataset and Methodology

This study exploits data from the CloudSat 94 GHz Cloud Profiling Radar (CPR) [12] and the
CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) [43]. Different products
derived from the measurements of these two instruments have been used in the analysis:

• the CloudSat 2B-TB94 for estimates of the radiometric 94 GHz Brightness Temperature derived by
processing the noise floor data contained in 1B-CPR vertical profiles [40,44];

• the DARDAR_MASK product (http://www.icare.univ-lille1.fr/projects/dardar/) which
provides a feature mask that allows identifying ice, mixed-phase and SLWC clouds
(“DARMASK_Simplified_Categorization” variable), the radar reflectivity and the lidar
backscattering resampled on a common 60 m vertical grid and horizontally averaged in the
CloudSat footprint [45];

• the CloudSat 2B-CLDCLASS for the identification of different cloud types and layers [46];
• the CloudSat 2C-PRECIP-COLUMN for the PIA and its uncertainty, the ice-free ocean flag via

the “surface_type” variable and the snow/rain discrimination [47];
• the CloudSat 2C-SNOW-PROFILE which provides estimates of vertical profiles of snowfall rate,

along with snow size distribution parameters, snow water content, and the snow echo top [16];
• the ECMWF-AUX which provides profiles of temperature, pressure, relative humidity, 10 m

winds, sea surface temperature.

Snow-precipitating events are selected around at least one pixel with snowfall rate exceeding
0.05 mm/h (as derived by 2C-SNOW-PROFILE product), by clustering together adjacent pixels of
ice-free ocean with 2-m temperature lower than 275 K. The 0.05 mm/h threshold is selected because
snowfall rate below this threshold does not contribute significantly to the total accumulation (i.e., less
than 4%).

Profiles are classified as snow-precipitating (based on the 2C-PRECIP-COLUMN Precip_flag),
and further separated as snow with and without SLWC at cloud top. The latter separation is based

http://www.icare.univ-lille1.fr/projects/dardar/
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on the presence of at least two 60 m pixels of SLWC or mixed-phase cloud (as identified by the
DARDAR_MASK product) in a 1000 m layer centered at the snow echo top. Snow-free pixels are
further classified as clear and cloudy, based on the 2C-PRECIP-COLUMN Cloud_flag. Clear and
cloudy pixels are further classified according to the presence of SLWC. The procedure is illustrated in
the flow chart presented in Figure 1.

Figure 1. Flow chart illustrating the methodology followed to: first, identify snow events; then, classify
the profiles within the event as snow-free w/ and w/o supercooled liquid water clouds (SLWC) and as
snowy w/ and w/o SLWC; finally, compute ∆TB, i.e., the TB variation in snowfall conditions compared
to the clear sky reference (see text for details). Rhomboid boxes correspond to the CloudSat satellite
products used in the analysis.

Hydrometeor PIA estimates are further refined by using pixels identified as “radar-clear” and
w/o SLW. For such profiles, it is sensible to assume that the hydrometeor PIA is zero and to use these
points as anchor points for adjusting the PIA estimates; the PIA estimates of cloudy profiles are shifted
so that they are on average zeros in the contiguous clear sky intervals.

Brightness temperatures are simulated with an Eddington radiative transfer model [48].
Ocean emissivities are computed using the TESSEM model [49] with the 10 m wind and the SST from
the ECMWF-AUX product; a salinity of 38 ppm is used. Supercooled droplets absorption properties
are derived as in [50] following the [51] model, whereas snow scattering properties are computed
following the self-similar-Rayleigh–Gans approximation with the different models proposed by [52].
Three models which span the natural variability of scattering properties are used in the following
analysis: two from the aggregation model proposed by Leinonen and Szyrmer in 2015 [53] with no
riming and moderate riming (indicated hereafter as “LS15A0.0” and “LS15A0.2”, with the ice falling
through a cloud with a supercooled liquid water path of 0.0 and 0.2 kg/m2, respectively) and one from
Hogan and Westbrook in 2014 [54] (“HW14”). The models have different mass-size relationships and
self-similar-Rayleigh–Gans structure parameters (details in [52,54]).
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A relevant quantity for understanding the effect of the hydrometeors onto the TBs is the TB
enhancement or depression with respect to the “clear sky” reference (i.e., the TB computed with the
same atmosphere and ocean conditions, without the presence of the hydrometeors), which will be
indicated hereafter as ∆TB (positive or negative for TB enhancement or depression, respectively). Note
that the “clear sky” reference values are also adjusted by small perturbation of the ocean emissivities,
so that values of ∆TB are equal to zero in correspondence to the same calibration points used for
the PIAs.

3. Case Study

The methodology is demonstrated with a case study which occurred on the 2 January 2009 in the
Gulf of Alaska (Figure 2). The profiles of CPR reflectivity (top left panel) clearly show a sequence of
cells that tend to become increasingly taller (up to more than 5 km and to temperatures colder than
−40 ◦C) when moving closer to the coast (located at approximately 59.5◦N). The cells are isolated with
gaps of clear sky, where the CALIOP backscattering profiles (Panel b) show very strong ocean surface
backscattering. These profiles can be assumed to be “cloud-free” and can be used to calibrate the PIAs
and the TBs. The 2B-CLDCLASS product (Panel c) labels these precipitating clouds mainly as stratus
(St) and stratocumulus (Sc), with the tallest structures classified as nimbostratus (Ns) clouds. Note that
shallow cumuliform snowfall is characteristic over the ice-free ocean, where it is typically triggered by
cold outbreaks [3,25].

a)

b) c)

Figure 2. Case study of 2 January 2009. (a) CPR reflectivity. (b) Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) backscattering. (c) cloud classification. NC = No cloud;
Ci = cirrus; As = Altostratus; Ac = Altocumulus; St = Stratus; Sc = Stratocumulus; Cu = Cumulus;
Ns = Nimbostratus; DC = Deep Convection. Note that no Dc, Cu, Ac and Ci are present in this scene.
Red points correspond to SLWC as identified by the RaDAR liDAR (DARDAR) mask. In all panels,
the black line corresponds to the top of the tallest cloud layer, as identified by the radar.

Regions over land and with 2 m temperature above freezing (grey shaded areas in the top
panel of Figure 2) are excluded from our analysis, because in such areas, the interpretation of the
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PIA and the TB signal is complicated by the uncertainties of the surface emissivity and of the rain
attenuation. The environment is quite dry with IWV around 5 kg/m2 (top panel in Figure 3); the
2C-SNOW-PROFILE product retrieves snowfall rates (SR) exceeding 1 mm/h in most of the cells and
reaching 3 mm/h; similarly, SWP reaches up to 5 kg/m2 in correspondence to the cell at 59◦N.

a)

b)

c)

Figure 3. For the case study shown in Figure 2: (a) integrated water vapour (IWV), surface snowfall
rate (SR) and path integrated attenuation (PIA), the snow water path (SWP); (b) CloudSat hydrometeor
path integrated attenuation (PIA) adjusted to have zero mean for the calibration intervals marked as
black dots; (c) CloudSat TBs. Shadings correspond to measurements uncertainties as reported in the
2C-SNOW-PROFILE product. Retrieval confidence range from 0 (no confidence) to 4 (high confidence).
The reflectivity profiles labelled as [1],· · · , [5], are shown in Figure 4.
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Figure 4. Profiles of reflectivities (left) and snowfall rates (right) producing maximum PIA for the event
shown in Figure 2. Each profile is labelled by a number with its position within the system identified
in Figure 2, Panel a. Retrieval confidence (RC) and retrieved surface snowfall rates with corresponding
errors computed by the 2C-SNOW-PROFILE algorithm included in the legend demonstrate the high
level of uncertainty in the retrieval.

CloudSat PIA estimates from the surface reference technique [42] and TBs are shown in Figure 3b,c.
The black dots indicate the points used as a calibration reference, where the hydrometeor PIA is
adjusted to be zero [40]; similarly, such points are used to calibrate the ocean emissivities computed
with the TESSEM model so that the clear sky TBs corresponding to the ECMWF profiles match the
CloudSat TBs. Note that such “calibration intervals” have widths widely changing depending on the
scene; they may be quite frequent in convective snow scenarios, but it can be extremely difficult to find
“calibration intervals” for several hundred kilometers in the presence of deep nimbostratus clouds.
Generally, there is a good correlation between enhanced PIAs and increased TBs. Several (5) cells have
two-way hydrometeor PIA exceeding 5 dB and are flagged by the 2C-SNOW-PROFILE product as
producing snowfall at the ground; correspondingly, TBs show strong (emission) enhancement (up
to 254 K for the cell located at 57.7◦N, i.e., a warming effect of ∆TB ≈ 47 K), for all cells but the one
reaching 5 km in depth and 20 dBZ in reflectivities located at around 59.1◦N, which shows a strong
TB depression down to 170.5 K. Since the clear sky values are around 205 K, this corresponds to
∆TB ≈−35 K. This is a sign of strong scattering, likely caused by large density ice; the retrieved SWP is
also quite exceptional (5.8 kg/m2), corresponding to the 99.987 percentile within the analysed dataset.

Five measured reflectivities and retrieved snowfall rate profiles exceeding PIAs of 6 dB and with
snow at the surface located as shown in Figure 2a and in Figure 3b, demonstrate that, in all cases,
reflectivities reach a maximum in the upper portion of the snow cloud and then decrease significantly
in the lower troposphere. The 2C-SNOW-PROFILE algorithm clearly interprets such a decrease as
sublimation, as highlighted by the snowfall rates that follow the measured reflectivity decrease in
the lower levels. PIA and TB measurements seem to suggest a different interpretation: the measured
reflectivity decrease is a result of attenuation caused by SLWC and/or by the snow itself. For the
profiles [2] and [4], the strong TB enhancement, the low values of the maximum reflectivities, and
the large drop of reflectivities from the height of maximum to the lowest clutter-free height seem to
suggest the presence of embedded SLWC (the DARDAR cloud mask does not identify SLWC at cloud
top). On the other hand, for profiles [1], [3] and [5] it is more likely that some of the attenuation could
be caused by the snow itself and that it could be partially compensated (in the reflectivity profile but
not in the PIA) by multiple scattering, as suggested by [27]; this would explain the smaller drop of
the reflectivity in the lower layers compared to the PIA signal. Overall, the retrieval is very uncertain
for these profiles, as highlighted by the low values of the retrieval confidence and the large retrieval
errors. This example suggests that the presence of SLWC and/or snow attenuation remains a critical
component in CPR snow retrievals.



Remote Sens. 2020, 12, 3285 8 of 17

4. Radiative Transfer Simulations

Simulations of TBs and PIAs are performed for different combiations of SWPs and LWPs. The deep
profile [5] is used as a reference; the snow water content profile retrieved from the 2C-SNOW-PROFILE
(modified to be constant below the maximum value reached at circa 4 km) is used as the shape of the
profile, which is then modulated to produce any given SWP. The LWP is introduced as a 250 m thick
layer. For the profile [5], the DARDAR product does not identify any SLWC at cloud top; therefore,
the SLWC is positioned as embedded in the snow layer and located at half the cloud top height
(identified by the black line in Figure 2).

To start with, we consider the effect of SLW and snow separately. The sensitivity of TBs and
two-way PIAs to SLW-LWP and SWP is shown in Figure 5. SLW is roughly producing 8 dB of two-way
attenuation for each kg/m2; the (warming) sensitivity of TB to LWP is quite large [118 K/(kg/m2)] at
LWP = 0 kg/m2, decreases to 37.8 K/(kg/m2) at LWP = 0.5 kg/m2 and tends to saturate at large values
(e.g., it is 10.5 K/(kg/m2) at LWP = 1 kg/m2). Attenuation due to snow is much more difficult to predict,
but recent works have clearly demonstrated that, for reflectivities exceeding 10 dBZ [50,55], it cannot
be neglected. Different scattering models predict two-way attenuation in a large range of values, e.g.,
ranging from 0.77 dB to 2.5 dB for each kg/m2 of SWP for the LS15A0.0 and the LS15A0.2, respectively.
The corresponding (cooling) sensitivity is −2.3 K/(kg/m2), −3.9 K/(kg/m2) and −7.1 K/(kg/m2)
at SWP = 0 kg/m2, peaking at −3.9 K/(kg/m2) −7.6 K/(kg/m2) and −12.7 K/(kg/m2) at circa
SWP = 1 kg/m2 for the LS15A0.0, HW14 and LS15A0.2 models, respectively, and then decreasing
again at larger SWPs.

Figure 5. 94 GHz TB (left) and two-way PIA (right) sensitivity for liquid cloud only (blue line) and for
snow-only for different snow scattering models (dashed lines) as a function of liquid water path (LWP)
and SWP. SWP is divided by 5 to make scales comparable. Thin lines with diamonds correspond to
results for 240 GHz.

Now we consider different combinations of LWPs and SWPs (Figure 6). There are two
counteracting effects: the cooling induced by the scattering effect of snow and the warming produced
by the SLWC emission. The snow cooling effect is critically dependent on the snow microphysics, with
fluffy aggregates (left panel, model LS15A0.0) generally being less efficient in counteracting the SLWC
warming (note the bending upwards of the TB isolines in the right panel for the LS15A0.2 model).
Furthermore, because of the larger contribution of snow attenuation, much larger PIAs are attainable
for the LS15A0.2 model. The black dots correspond to the best (SWP, LWP) pairs matching the different
TB and PIA pairs measured for the case study (see Figure 3); the larger markers correspond to the five
profiles shown in Figure 4. A Euclidean distance re-normalised by a standard deviation of 2 K and of
1 dB for the TBs and PIAs is used. Different solutions are found for different snow scattering models; for
the LS15A0.0 model, a solution for profiles [1], [3] and [5] (diamond, hexagon, triangle) is found only
for SWP > 10 kg/m2 (not shown, because deemed unrealistically large). As previously guessed, profile
[2] and [4] (square and circle) seem to be dominated by the presence of large SLWC amounts, whereas
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the other three profiles seem to require the presence of large amounts of heavily rimed particles. Note
that the SWP values retrieved for the five profiles from the 2C-SNOW-PROFILE are 1.27, 0.13, 1.33, 0.19
and 5.8 kg/m2, respectively (red symbols in Figure 6). While for profile [2], it is realistically to think of
small SWP values (the best solution for all scattering models is SWP = 0.0 kg/m2), the same conclusion
cannot be drawn for profile [4], which is characterised by a reflectivity exceeding 10 dBZ. For such a
profile, the matching method provides a (SWP,LWP) solution of (5.4,1.1) kg/m2 and (2.1,1.1) kg/m2

for model LS15A0.0 and model LS15A0.2, respectively.

Figure 6. Radiative transfer simulation showing ∆TB as indicated by the colorbar values with a
snow precipitating clouds with different SWP and LWP. The SLWC layer is embedded in the cloud.
The clear sky TB is 203.9 K. The black dots correspond to the best (SWP, LWP) pairs matching the
measurements for the case study illustrated in Figure 2, with the black large symbols corresponding to
the measurement for the different profiles shown in Figure 4 (with the same symbols), whereas the
red symbols on the x-axis represent the SWP for each profile as retrieved in the 2C-SNOW-PROFILE
algorithm. Isolines of TBs and two-way PIAs are plotted as dashed magenta and blue lines.

The impact of the position of the SLWC layer is illustrated in Figure 7, by embedding SLW layers
instead of at cloud top in the middle of the cloud system corresponding to profile [5]. Because of the
much colder temperature of the cloud, SLWC layers located at cloud top instead of embedded tend
to produce colder TBs when large LWP are present. The effect is compensated with increasing SWP,
because of the shadowing effect of the SLWC layer on the TB scattering depressions caused by the
underlying ice.

Figure 7. Impact of SLWC layer position on TB. Difference in the TB between the case of SLWC at cloud
top and embedded for the LS15A0.0 model. Isolines of TBs are plotted as dashed lines.
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5. Statistical Results and Discussion

The entire 2008 CloudSat dataset has been used to characterize snow profiles over the ice-free
ocean. The total snowfall occurrence (conditional mean snow rate) over ice-free ocean is 48%
(0.20 mm/h), while over sea ice it is 52% (0.17 mm/h): overall, snowfall over ice-free ocean represents
52% of the amount for snowfall over the ocean. Figure 8 shows the ice-free ocean global maps of
snowfall occurrence (normalised to the total snowfall occurrences over ocean, including sea ice) and of
the mean annual snowfall rate, obtained from the 2C-SNOW-PROFILE CPR product. Distinct snowfall
occurrence maxima exceeding 30% can be noted in the Northern Atlantic Ocean West of Greenland
in the Barents Sea, in the southern Bering Sea, and the Southern Hemispheric pan-oceanic region,
between 60◦S and 70◦S. CloudSat-generated snowfall rates are also partitioned between different
regions, and the highest snowfall rates exceeding 500 mm/y−1 are found in the regions previously
mentioned. A similar pattern has been found in a more extensive analysis (2006–2010) by [3]. It is
worth mentioning that this snowfall climatology is subject to the CloudSat CPR limitations previously
mentioned (attenuation, ground clutter, although limited over ocean, limited temporal and spatial
coverage, and 2C-SNOW-PROFILE algorithm assumptions).

Figure 8. CloudSat derived snowfall occurrence (in %) (top) and mean annual snowfall rate (bottom)
over ice-free ocean in 2◦ × 2◦ bins for the 2008 dataset. Snowfall occurrence is defined as the number of
snowfall events over ice-free ocean divided by the total number of observations in each grid box.

Of the snowy profiles over the ice-free ocean 67% and 28% are classified as Sc/Cu or Ns, whereas
55% (45%) have (have no) SLWC at cloud top with a preponderance of profiles without (with) SLWC
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at cloud top for Ns (Sc/Cu). Sc/Cu clouds occur predominatly at lower IWV contents whereas Ns
tend to produce higher SWP (see Figure 9).

Figure 9. Frequency histograms of the 2008 snow profiles for different integrated water path (IWV)
(left) and SWP (right) classes.

The probability distribution functions (pdfs) of PIA (Figure 10, left panel) show that PIA is
certainly not negligible (larger than 3 dB) for roughly 6% of the snowy profiles, with a slightly greater
likelihood of larger percentage for Sc/Cu clouds. The most extreme attenuation cases correspond
to profiles without SLWC at cloud top. This is related to the fact that SLWC at cloud top are usually
associated with lower SWP values [5]. Note that this does not exclude the fact that profiles with
embedded SLWC layers can actually produce large attenuation; such profiles are indeed those where
riming is expected to occur, with rimed particles generally producing much larger attenuation than
fluffy aggregates.

∆TB pdfs show a mode close to zero with a very small fraction of values smaller than 0 K: TB
depressions of more than 5 K occur in general for less than 1% of the profiles, except for Ns w/o SLW,
for which the occurrence exceeds 2.5%. Large warming (of the order of 40 K) on the other hand are not
that unusual. The −35 K ∆TB value corresponding to profile [5] in Figure 2 appears, therefore, to be
quite exceptional.

Figure 10. PIA (left) and ∆TB (right) pdfs for snowy profiles for different snow cloud types (Ns and
Sc+Cu) and with or without SLWC at cloud top. The percentage in the bracket in the legend of the two
panels represents the percentage exceeding the 3 dB threshold and −5 K threshold, respectively, as
indicated by the shaded grey regions.
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Two-dimensional (PIA,∆TBs) histograms are depicted in the left (right) panel of Figure 11 for
snow cases with SWP lower (higher) than 1 kg/m2. The latter profiles represent less than 3% of the
occurrences (see Figure 11), but correspond to the highest snow-rates where current CloudSat products
are affected by strong underestimation [26,56]. For low SWP, there is a continuous trend of increasing
∆TBs with the PIA, as expected by the dominant role played by the SLW: increasing values of LWP
produce larger and larger PIAs and higher and higher TBs till saturation is reached. Note that some of
the negative values of ∆TBs in the left panel correspond to low PIA values and are very likely caused
by errors in the determination of the “clear sky” baseline for the TBs, which represents a critical step
for any interpretation of the TBs. This requires unbiased estimates of the surface emissivities and of the
integrated water vapour. When considering values of SWP larger than 1 kg/m2, the increase of ∆TBs
with increasing PIAs is muted by the compensating effect of ice scattering which partly counterbalances
the SLWC warming (e.g., compare the median curves in the left and in the right panels).

Figure 11. Two-dimensional occurrence histogram in log10 scale (so 1,· · · ,4 mean 10,· · · 104 counts) of
snow profiles for different combinations of PIA and ∆TBs. Dashed and continuous lines correspond to
the median value for the pdf at any given PIA value for the cases without and with SLWC at cloud
top, respectively.

6. Conclusions

Accurate measurements of solid precipitation at high-latitude locations remain a critical gap in
atmospheric science studies. Spaceborne radars (currently the CloudSat CPR and the GPM-DPR)
represent the backbone of the satellite observing system [18,19], although passive microwave (PMW)
radiometry is needed to achieve better temporal and spatial coverage. Thanks to their excellent
sensitivity, W-band radars remain by far the best tool for snow detection [26]. Quantitative retrievals of
snow at W-band, however, remain highly uncertain, with attenuation correction representing a major
roadblock [56], mainly because of the uncertainty in the identification of SLWC layers.

The preliminary analysis carried out in this work highlights the potential role of the CloudSat
radiometric mode for a better characterization and quantification of snow falling over the ice-free ocean,
which has well constrained emissivity and backscattering properties. Falling snow generally cohabits
with SLWC layers, with both hydrometeors contributing to non-negligible attenuation at W-band
and above. Therefore, accurate quantitative estimates of snow at W-band (or at higher frequencies)
require one to account for such attenuation. This is paramount because such estimates are used for
calibrating PMW radiometer algorithms [4,6,26,57]. More radiative transfer simulations and synthetic
retrievals are recommended in order to asses the improvement in the snow retrieval performances
when radiometric modes are available.

The understanding of the SLWC vs. snow attenuation partitioning is not only relevant for properly
correcting W-band attenuation (and, as a result, for improving global snowfall climatology), but also
to fully understand the impact of SLWC in the presence of snowfall on the PMW spectral signature.
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Furthermore, refs. [4,58] highlighted that, at high latitudes in cold/dry conditions, the emission signal
in the snowfall-sensing high-frequency channels (>90 GHz) due to SLWC at the cloud top is clearly
evident in shallow snowfall clouds, while the interpretation of the signal due to embedded SLWC,
associated with deeper clouds, is more complex. In [5,57], an all-surface PMW snowfall retrieval
algorithm has been developed where the Cloudsat/Calipso-based SLW is used to account for the
impact of SLWC on TBs. However, only the contribution of SLW at the cloud top is considered, when
Cloudsat/Calipso-based SLW identification is more certain. In the present study, it has been evidenced
that the impact of embedded SLWC on TBs can be very significant.

The possibility of including the CPR passive mode could be very useful to improve the detection
of SLW embedded in the clouds. While the PIAs estimated from the reduction of the ocean
surface backscattering return are generally proportional to the total optical thickness, the brightness
temperatures react differently to the different hydrometeor: the SLWC optical thickness is associated
to absorption/emission (thus causing warming), while the snow optical thickness is mainly linked
to scattering (thus causing cooling). The combined information of perfectly co-located TBs and PIA
(possible if the same antenna is shared by the radar and the radiometer) should therefore help in
disentangling the two contributions. The main difficulty stems from the availability of “clear-sky”
pixels, that can provide a baseline for the TBs. This issue is particularly critical for large stratiform
systems which do not present gaps like convective systems. For such systems, the radiometric mode is
therefore expected to have a greater impact.

The interpretation of the TB is also complicated by the variability of snow scattering properties
and by the location of the SLWC, which, even with co-located lidar observations, may remain highly
uncertain. Part of these ambiguities can be mitigated by the use of radar at higher frequency in the
G-band (i.e., from 110 to 300 GHz, [59]), like recently implemented by [60]. At such frequencies, there
is an enhanced sensitivity in the PIAs both to SLWC and snow attenuation, while TBs tend to produce
much stronger cooling due to ice scattering (see thin lines with diamonds in Figure 5).

Future missions specifically targeting high latitude precipitation should therefore consider not
only a multi-frequency approach [7], but also the inclusion of radiometric modes at W-band and
above, which will be particularly useful over ice-free ocean surfaces to better constrain the liquid
and snow water paths of snow-bearing clouds. One of the main difficulties in the interpretation of
brightness temperature (and, partially, in the determination of PIAs) resides in the characterisation of
the background conditions, mainly the water vapor profiles and the state of the ocean surface (e.g.,
sea surface temperature and wind), essential for the computation of the “clear sky” baseline and for
the surface normalised backscattering cross section [41]. Therefore, it is highly recommended to fly
such missions in constellation with passive microwave sensors (e.g., like the Copernicus Imaging
Microwave Radiometer (CIMR), [61]) capable of a thorough characterization of the state of the surface
at high resolution and, potentially, in nearly coincident time. The possibility of including: (1) multiple
tones in the 183 GHz water vapour band as proposed by [62,63] should also be considered to better
constrain the tropospheric water vapor and (2) Doppler capabilities like discussed in [7] to be able to
discriminate different degrees of riming [64]. Note that such a system could indeed be very beneficial
also for the characterization of snow over land and sea-ice regions. A detailed study of the benefit of
such a mission for quantitative snow retrievals will be the topic of future research.
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Appendix A. List of Acronyms

• AMSR-E: Advanced Microwave Scanning Radiometer for EOS
• CALIOP: Cloud-Aerosol Lidar with Orthogonal Polarization
• CIMR: Copernicus Imaging Microwave Radiometer
• CPR: Cloud Profiling Radar
• Cu: Cumulus
• DARDAR: RaDAR liDAR
• DPR: Dual-frequency Precipitation Radar
• EarthCARE: Earth Clouds, Aerosols and Radiation Explorer
• ECMWF: European Centre for Medium Range Forecast
• GPM: Global Precipitation Measurements
• IR: Infrared
• IWV: Integrated Water Vapour
• LWP: Liquid Water Path
• MW: MicroWave
• Ns: Nimbostratus
• PIA: Path Integrated Attenuation
• PMW: Passive MicroWave
• Sc: Stratocumulus
• SLW: Supercooled Liquid Water
• SLWC: Supercooled Liquid Water Content
• SST: Sea Surface Temperature
• TESSEM: Tool to Estimate Sea Surface Emissivity from Microwave to sub-M
• TB: Brightness Temperature
• VIS: Visible
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