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Objective: To report the clinical validation of an innovative, artificial 
intelligence (AI)-powered, portable and non-invasive medical device 
called Wound Viewer. The AI medical device uses dedicated sensors 
and AI algorithms to remotely collect objective and precise clinical 
data, including three-dimensional (3D) wound measurements, tissue 
composition and wound classification through the internationally 
recognised Wound Bed Preparation (WBP) protocol; this data can 
then be shared through a secure General Data Protection Regulation 
(GDPR)- and Health Insurance Portability and Accountability Act 
(HIPAA)-compliant data transfer system. This trial aims to test the 
reliability and precision of the AI medical device and its ability to aid 
health professionals in clinically evaluating wounds as efficiently 
remotely as at the bedside.
Method: This non-randomised comparative clinical trial was 
conducted in the Clinica San Luca (Turin, Italy). Patients were divided 
into three groups: (i) patients with venous and arterial ulcers in the 
lower limbs; (ii) patients with diabetes and presenting with diabetic 
foot syndrome; and (iii) patients with pressure ulcers. Each wound 
was evaluated for area, depth, volume and WBP wound classification. 
Each patient was examined once and the results, analysed by the AI 
medical device, were compared against data obtained following visual 
evaluation by the physician and research team. The area and depth 
were compared with a Kruskal–Wallis one-way analysis of variations in 

the obtained distribution (expected p-value>0.1 for both tests). The 
WBP classification and tissue segmentation were analysed by directly 
comparing the classification obtained by the AI medical device 
against that of the testing physician.
Results: A total of 150 patients took part in the trial. The results 
demonstrated that the AI medical device’s AI algorithm could acquire 
objective clinical parameters in a completely automated manner. The 
AI medical device reached 97% accuracy against the WBP 
classification and tissue segmentation analysis compared with that 
performed in person by the physician. Moreover, data regarding the 
measurements of the wounds, as analysed through the Kruskal–
Wallis technique, showed that the data distribution proved 
comparable with the other methods of measurement previously 
clinically validated in the literature (p=0.9).
Conclusion: These findings indicate that remote wound assessment 
undertaken by physicians is as effective through the AI medical device 
as bedside examination, and that the device was able to assess 
wounds and provide a precise WBP wound classification. Furthermore, 
there was no need for manual data entry, thereby reducing the risk of 
human error while preserving high-quality clinical diagnostic data.
Declaration of interest: The project was funded by a Proof of 
Concept grant from Politecnico di Torino and the Start Cup grant from 
I3P and Regione Piemonte. The authors have no conflicts of interest.

S
kin ulcers are a chronic pathological 
condition affecting around 1–2% of the 
world’s population.1 In Europe alone, over 
four million patients are affected by this 
syndrome, costing €4 billion in national 

health treatment every year.1 Primarily found in people 
>65 years of age (>60%), skin ulcers are commonly 
associated with pre-existing chronic diseases such as 
diabetes, vascular problems, heart disease and obesity.2 
Early detection and assessment of the wound is vital; 
after four weeks there is a 30% chance of the lesion 
never healing, a 50% chance of loss of limb and a 50% 
chance of mortality in the following five years.3 

automatic wound classification ● medical device ● telemedicine ● three-dimensional wound measurement ● wound bed 
preparation score ● wound care ● wound healing ● wound measurement techniques ● wounds  

Chronic pain, reduced mobility, and psychological 
and emotional stress are just a few of the difficulties 
commonly experienced by patients with this skin 
condition.4 Furthermore, treatment of skin ulcers may 
prove lengthy, taking several months or even years for 
the wound to heal.4 In many patients, complications 
arise that require urgent surgical intervention leading 
to long periods of hospitalisation.5 

Until recently, hospitalisation and inpatient 
assistance were considered the safest and most effective 
means to providing wound treatment and to ensuring 
continuous monitoring; this, however, is costly, and so 
there has been a move toward home care assistance.4,5 
This has led to the preference for a telemedical approach 
involving remote monitoring—more suitable both from 
an economic and patient experience point of view. 
However, prompt intervention can prove difficult, and 
health professionals must be able to ensure a high 
standard of care. Patients treated in home care assistance 
facilities fall under the responsibility of numerous 
health professionals, making it vital that all clinical 
information is shared in a precise and standardised way. 
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As yet, there are few technological support tools for 
wound care professionals that have provided reliable 
morphological ulcer measurement, and none are able 
to provide automatic diagnostic information through a 
standardised wound classification scale.6,7

Such a constant, standardised monitoring protocol 
for sharing patient information would also allow health 
professionals to act more quickly. In a study by Pillon, 

it was demonstrated how telemedical methods would 
not only lower the costs of wound care treatment (by 
35%), but they would also increase the wound healing 
rate (90% instead of 75%) and patients’ quality of life.8 

According to this study, due to the use of digital patient 
records and integrated data sharing, none of the 175 
patients studied required hospitalisation.8 

Smith-Strøm et al. studied telemedical monitoring in 
the treatment of diabetic foot ulcers (DFUs) and showed 
it to be a relevant alternative to inpatient treatment,if 
there is the means to ensure precise, efficient and secure 
clinical data.9 Bolton demonstrated the cost-
effectiveness and positive outcomes of a systematic 
telemedical approach to wound management for 
various types of hard-to-heal wounds, ranging from 
pressure ulcers (PUs) to venous and arterial ulcers.10

Wound Viewer (Omnidermal, Italy), an artificial 
intelligence (AI)-powered medical device, was developed 
based on the above clinical requirements as an easy-to-
use, fast and precise tool that also permits the secure 
exchange of validated clinical data on patients between 
health professionals. It was designed for use by all 
clinical operators, ranging from the less specialised to 
the most expert in wound management. Its features, 
which include an autocalibration of its distance sensors 
and an automatic analysis of the wound bed for wound 
bed preparation (WBP) protocol classification,11 render 
the device capable of performing precise assessments 
independently from the operator. 

The device was developed following an in-depth 
study undertaken in collaboration with physicians and 
professionals with extensive experience in the treatment 
and management of wounds. All data collected by the 
system have been validated in order to deliver full 
analysis of the lesion and the patient, even if used by 
less-experienced operators, and to share the clinical 
information with specialised physicians so they can 
ensure a standard of treatment on a par with bedside 
monitoring, even in a telemedical set-up. 

Clinical overview
Quantification in wound care is a grey area in which 
many works have been published but authors have yet 
to reach a consensus. A number of parameters are 
measured. The work of Mani et al. remains one of the 
cornerstones, listing the various measurement 
possibilities.12 The pH is intended to be an indicator of 
tissue repair, considering also its role in the 
microenvironment of the wound bed.13 Transcutaneous 
oxygen and flow at the microcirculatory level are 
important, but only as indicators of possible results in 

terms of tissue vitality.12 The fact that a skin ulcer has a 
defined area and volume, although not simply 
measured, has led many authors to further investigation. 
For clinicians, the objective of measuring is to be able 
to better define the evolution of a wound, whether it is 
being repaired, blocked or worsened; Flanagan et al. 
define wound reduction parameters as repair 
indicators.14 Sheehan et al. have demonstrated that, in 
the case of diabetic ulcers, early assessment (within four 
weeks) is crucial for full recovery.15 Gorin et al. have 
analysed the reduction of wound area, width and 
length, and concluded that a linear parameter is 
independent of the geometric shape of the wound.16 
Cukjati et al. reiterate how wound area and its variations 
indicate evolution and prognostics.17 Moreover, the 
percentage change of the wound area is a clinically 
recognised prognostic measure, although the problem 
remains of how to measure it.6,7

Wound area is not the only prognostic indicator. We 
propose that a subdivision of the lesions—in terms of 
tissue type and exudate management—may be 
considered an appropriate indicator of clinical results. 
We have used the WBP score proposed by Falanga as an 
analysis parameter as it is well known and used on 
different types of wounds.11 Table 1 describes the WBP 
score as proposed by Falanga.

Prompt, accurate wound assessment using the WBP 
score is essential in clinical practice, as it is one of the 
parameters to be considered in choosing the most 
appropriate and effective treatment.18 A correct WBP 
scoring for wounds presenting eschar, and thus necrotic 
tissue, which Table 1 lists as class D, encounters a 
number of problems in normal clinical practice as 
shown by Tong.19,20 It has been demonstrated, for 
example, that any miscalculation of a lesion and 
therefore incorrect treatment within the first four weeks 
would, in 30% of cases, mean that wound not healing; 
in 50% of cases, patients would require surgical 
amputation of the limb, and there would be a 50% 
chance of death in the following five years.15 The most 
common problem wound care clinicians encounter is 
that of correctly identifying wounds about to enter the 
necrotic phase.21 This may be for a variety of reasons, 
such as the presence of a small amount of necrosis 
compared with the dimension of the entire wound bed. 
Moreover, eschar can present itself in different 

Table 1. Description of the Wound Bed Preparation score as 
presented by Falanga11

Wound bed appearance                Wound exudate

Score Granulation Fibrinous Eschar Score Description

A 100% – – 1 Fully controlled

B 50–100% + – 2 Partially controlled

C <50% + – 3 Uncontrolled

D Any + +
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compositions, both morphological and molecular, as 
described by Thomas et al.21 Although several treatments 
are available for wound debridement, for example that 
proposed by Durham et al.,22 and the composition of 
debridement is well known,23 there are still few, if any, 
ways to identify and monitor this kind of tissue in a 
standardised and accurate way.

The AI medical device algorithm has been refined on 
more than 500 hard-to-heal wound cases, with patients 
of different ethnicities and so with different skin tones. 
The device is able to perform morphological wound 
measurements automatically, segmenting the wound 
bed composition and ranking the lesion through its 
WBP score. It is connected to a secure data transfer 
system that instantly updates all health professionals 
involved in treating the patient. 

Introduction to the AI medical device
A customised AI medical device, it has been developed to 
run the proprietary AI algorithm for wound measurement 
and assessment. The device, shown as a prototype in Fig 
1a, is equipped with a custom-designed electronic board 
mounting a five-megapixel colour complementary metal 
oxide semiconductor (CMOS) camera sensor for high 
resolution pictures, 16 high precision infrared (IR) 
distance sensors and four white light-emitting diodes 
(LED)s.24 The LEDs are placed at a distance of 5cm from 
the CMOS camera eliminating shadows from any 
photographs taken by the device. Moreover, these light 
sources are set to a standard intensity, ensuring uniformly 
lit pictures which can be analysed against a standard 
colour scheme. Operators control the device through a 
special front end via a capacitive touch screen display. 
Typical use of the device in the field is represented thus: 

 ●  Point the device towards the wound, keeping it 
parallel to the surface 

 ●  The 16 IR distance sensors calibrate the focal ratio of 
the camera

 ●  Select the region of interest (ROI) of the wound by 
drawing a rough rectangle on the image on the screen

 ●  The picture is analysed by the algorithm 
 ●  All relevant information computed is shown on the 
display (wound area, depth, tissue segmentation and 
WBP score classification). 
In addition to taking high precision measurements of 

the patient’s wound, the device stores all data in a 
secure and General Data Protection Regulation (GDPR)-
compliant digital database, allowing the wound to be 
monitored as it evolves. This monitoring scheme, 
shown in Fig 1b and 1c, permits physicians to 
immediately verify how effective the chosen therapy is 
through a quantitative series of indicators.

The AI medical device algorithm applies discrete 
time-cellular nonlinear network (DT-CNN) computing 
architecture to identify the wound and provide relevant 
measurements.25–28 The clinical data acquired include 
wound area expressed in cm2, wound depth expressed 
in mm and wound granulation through the WBP 
score.11 DT-CNN is a parallel computing paradigm, 
introduced by Chua and Yang, similar to artificial neural 
networks for processing signals of any dimension.29,30 

As with any other bioinspired neuromorphic 
algorithm, the DT-CNN passes through a learning and 
an inference phase. In the learning phase, the cellular 
nonlinear network in the Wound Viewer algorithm, 
which processes a two-dimensional colour image, is 
provided with statistical information about the tissue 
forming the wound bed through colour analysis. Those 
statistics are extrapolated from the trial group by 
digitally segmenting wound areas in the images 
contained in the trial group (more than 500 wound 
pictures). The resulting statistical information takes the 
form of mapping between each of the 16,777,216 
(40962) possible 24-bit red/green/blue (RGB) colours 
and the number of times that one colour occurs in the 
wound areas contained in the trial group. 

Fig 1. Wound Viewer: on one side the capacitive touch 
screen is displayed with the user interface, while the 
other shows the digital camera, the 16 infrared sensor-
array and the four white light-emitting diodes (a). An 
example of the user interface showing the result of an 
examination (b). An example of the wound statistics 
page, designed for health professionals to monitor the 
wound’s evolution (c) 

a

b

c
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The nonlinear processing units making up DT-CNNs 
are often referred to as neurons or cells.31 Depending on 
the underlying technology, these cells may be 
implemented as arbitrary units computing 
independently, resulting in an extremely rapid parallel 
algorithm. For example, the elaboration results of the 
wounds in Fig 2a are reported in Fig 2b. The original 
images in Fig 2a were subjected to a preprocessing phase 
before being presented to the trained DT-CNN. Each 
automated part of the network used the statistical 
chromatic knowledge stored in the device. The output 
of the analysis was then computed by counting the 
number of pixels in a given proximity whose colour 
appeared often enough in the wounds from the trial 
group. The total number of pixels confirmed to be 
characteristic of a wound area is then compared against 
a threshold. If this critical value is lower than the 
weighted number of pixels accounted for then the pixel 
is reported to be part of a wound area (set to binary 
true); otherwise it is rejected (set to binary false). Finally, 
the binary mask is newly processed to find the borders 
and then overlapped onto the original image (shown in 
Fig 2b). The borders of the mask are shown in green.

The 16 IR sensors measure distances concurrently as 
the CMOS camera takes the digital photographs. These 
distance measurements are fundamental in calculating 
the depth and area of the patient’s wound. Given the 
cross disposition of the 16 IR sensors, wound depth is 
calculated as the difference between the distance 
reading given by the outermost sensors and that given 
by the central sensors. Wound area, on the other hand, 
relies solely on the average reading given by the 
outermost sensors. This distance measurement is 
converted into a coefficient through a calibration 
mapping uploaded onto the tablet during manufacture. 

Regarding wound classification, the algorithm only 
takes into account those pixels that were recognised as 
part of the wound (i.e., the elements that reside within 
the green contour in Fig 2b). Once the entire surface of 
the wound has been recognised, the highlighted 
elements are analysed by colour scheme (RGB). All 
possible pixel colour sets forming the wound were 
classified into four macro groups: red, white, black and 
yellow. The wound images in the trial group were 
ranked using WBP score and the algorithm then 
matched the colour schemes read within the area of the 
image depicting the wound. The algorithm uses this test 
phase to analyse these colour schemes and automatically 
classify them. 

The AI medical device was also designed to facilitate 
secure data exchange among health professionals. The 
device and its software have been integrated with the 
Amazon Web Service (AWS) cloud system. Where 
necessary, all data collected in a single device can be 
stored in a secure, private cloud database and sent 
automatically to all other devices held by those 
professionals who have access to a specific patient’s 
records. The database and transmission protocols were 
designed and implemented to be compliant with all 

current data regulations (GDPR for the European Union 
and Health Insurance Portability and Accountability 
Act (HIPPA) for the US). This function allows all 
physicians and clinical operators using the system to be 
immediately updated on the status of their entire 
patient base while guaranteeing a high standard of care.

Methods
Brief description of other wound  
assessment methods used in the trial
The results obtained using the AI medical device were 
compared with the results given by three other wound 
analysis and measurement methods. The devices used 
in the study were: 

 ● VISITRAK (Smith+Nephew, US) is a wound 
measurement active board formerly distributed by 
Smith and Nephew. The device, shown in Fig 3b, 
comes with a tracing pen and a set of scaled 
transparent acetate sheets. During examination, the 
operator places one of the scaled acetate sheets on the 
injured limb, entirely covering the wound and, using 
a non-toxic marker, traces the wound contours on the 
transparent sheet, which is then placed on the active 
board. Using the special pen provided, the contour is 
again traced so the board can identify the edges of the 
lesion. When the board senses that a closed surface 
has been drawn, the device calculates the wound’s 
surface. No other parameters regarding depth or 
tissue segmentation are calculated

 ●  MOWA (Health Path, Italy) is an app for Apple IOS 
mobile platforms. It is not associated with a specific 
physical device, using the camera of the mobile 
device on which the app is installed to take 
photographs and its touch screen to control the 
functions. The initial interface of the app is shown in 
Fig 3c. Firstly, the operator places a small paper token 
showing a blue circle of known, constant dimensions 
near to the wound. Then, the camera is activated and 
the wound is photographed, ensuring that the token 

Fig 2. Original images of venous and arterial lower limb ulcers from three 
different patients taken with the AI medical device during the trial (a). 
Representation of the result of the AI medical device cellular automaton 
identifying the wound’s edges (in green) (b). The edges of the wound 
coincide with the borders of the binary mask given by the discrete 
time-cellular nonlinear network (DT-CNN)

a

b
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is entirely visible in the picture. This image is 
displayed on the screen of the device on which the 
operator then manually segments the edges of the 
wound. Subsequently the device calculates the surface 
of the wound and automatically segments the tissues 
composing the wound bed into granular, fibrin and 
necrotic

 ● Aranz Silhouette (Aranz Medical, New Zealand) 
system is composed of the Star (Fig 3d), an image 
acquisition tool comprising three laser arrays, a 
digital camera and two LEDs for image light control. 
The three laser arrays each project a beam of light 
which intersect in a star-shaped form when the device 
is at the proper distance to correctly acquire the 
picture. The lasers have to intercept at the centre of 
the wound and the system uses the beams to calculate 
the depth of the wound. The system has to be 
connected to a computer, which has to be equipped 
with the specific image analysis software provided by 
Aranz, through a USB cable. Once the image is taken, 
it is sent to the connected computer and displayed to 
the operator. The operator then manually traces the 
contours of the wound on the image using the mouse 
or track pad. Once this is done, the system provides 
the surface and depth measurements of the wound. 
The operator has to manually insert all other 
parameters on the specific software installed on the 
computer and then saves the information.
As shown in Fig 3, all devices used in comparison 

with the AI medical device require manual segmentation 
of wound edges. This procedure may prove invasive for 
the patient. The AI medical device, on the other hand, 
does not require any invasive manual intervention, 
thanks to its trained AI algorithm. It is able to 
automatically recognise the wound merely by analysing 
the image taken, and then return all the parameters 
listed on the right-hand side (Fig 3a), including area, 
depth, tissue segmentation and wound classification 
against the WBP score. 

Study rationale
Skin ulcers are treated with continuous and periodic 
dressings by the specialist in charge. During a normal 
medication session, the health professional removes the 
previous bandage, visually assesses the extent of the 
wound and, depending on the circumstances, applies a 
fresh dressing. Wound evaluation requires consideration 
of three essential parameters and how they vary over 
time (compared with previous examinations). The main 
characteristics that distinguish whether a wound is 
healing or worsening are surface extension, depth and 
colour (representing tissue composition). The devices 
currently on the market are more time-consuming and 
less intuitive because there is no automatic wound 
detection and therefore the intervention of an operator 
is always required. The purpose of this clinical trial was 
therefore to verify the capability of operators in correctly 
acquiring accurate ulcer data with the AI medical device 

Fig 3. Devices, procedures and results obtained with the different systems used in the trial: Wound Viewer (a); VISITRAK 
(b); MOWA (c); Silhouette (d). The parameters calculated by each system are listed on the right for each device. WBP—
wound bed preparation 

a

Automatic wound 
recognition

1. Wound area
2. Wound depth
3. Tissue segmentation
4. WBP score

b

Manual wound 
contour tracing

1. Wound area

c

Manual wound 
contour tracing

1. Wound area
2. Tissue segmentation

d

Manual wound 
contour tracing

1. Wound area
2. Wound depth
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in comparison with the other technologies available on 
the market. Wound bed evaluation is the most important 
clinical parameter, used both as an indicator of how the 
implemented treatment evolves and as a guide for 
therapeutic decisions. The current situation is mainly 
determined by the experience of the operators, which is 
subjective and difficult to standardise. The AI medical 
device’s technology aims to overcome the subjectivity 
inherent in the system by standardising evaluation. 

Specifically, the trial aimed to verify the AI medical 
device’s ability to identify skin ulcers on a patient, 
acquire the image and simultaneously provide data on 
it (surface extension, depth and colouring), while 
testing the reliability percentage and margin of error, 
both on individual data acquisitions and statistically 
relevant samples.

Ethical approval
The clinical trial, design and the endpoints described 
below were validated by the Ethical Committee of the 
Azienda Opedaliero Universitaria San Luigi Gonzaga 
(Orbassano, Italy) on 3 October 2017 (protocol number 
OC15194). 

To be admitted to the study, all patients had to sign a 
written informed consent which was also validated by 
the Ethical Committee of the Azienda Opedaliero 
Universitaria San Luigi Gonzaga. The document 
presented to and signed by the patients included their 
explicit consent to the use of their data by the trial 
promoters, as well as all photographic images taken for 
the scientific validation of the AI medical device 
technology and for eventual scientific publications. 
Therefore, all individuals whose photographs and data 
are reported in this manuscript have given prior written 
informed consent to publish these case details.

Study design and protocol
The trial was conducted in Clinica San Luca (Torino, 
Italy) as a prospective observational, comparative, non-
randomised and monocentric study. The study entailed 
the acquisition and comparison of photographic images 
of dermal ulcers using three different methods: Wound 
Viewer and the three different systems currently used 
for dermatological wound care. The type of study was 
not randomised because the same lesions were used to 
compare the evaluation of the parameters detected 
instrumentally by operators. 

The study looked at 150 patients, divided into three 
groups based on their aetiology:

 ●  Lower limb ulcers: 50 lesions
 ●  Diabetic foot ulcers: 50 lesions
 ●  Pressure ulcers: 50 lesions.
Table 2 lists the inclusion and exclusion criteria for 

patient admission.
This analysis aimed to test the function and efficiency 

of the device for the acquisition of skin ulcer images, in 
terms of area, depth, volume and colour scale, and 
compare it with three other validated products currently 
on the market, and listed in the Methods section. The 

parameters measured and compared were: ulcer 
extension (cm2), ulcer depth (mm) and colorimetric 
scale (WBP score). Table 3 lists the primary and 
secondary endpoints of the study. 

The devices and methods listed used for comparison 
were used as ‘imperfect control’ marks—their 
measurements were used as a reference point by taking 
into account the error index declared by their respective 
manufacturers. From the operative point of view, each 
lesion was assessed simultaneously through clinical 
judgment and the different systems available. Only one 
examination was planned and no check-ups were 
organised over time. The various image acquisition 
systems acquired the parameters of each wound, as 
shown in Table 4.

The study was undertaken by two separate teams: a 
clinical assessment team comprising two physicians 
and one registered research nurse at the Clinica San 

Table 2. Inclusion and exclusion criteria for patient 
admission

Inclusion criteria Exclusion criteria

Chronic skin damage Acute skin damage

Absence of undermining Presence of undermining

Informed consent Failure to obtain informed consent

Wounds >2cm2 Wounds <2cm2

Wounds <100cm2 Wounds >100cm2

Table 3. Primary and secondary endpoints of the 
study

Primary endpoints Secondary endpoints

Evaluation of the detection 
of the area with the different 
systems. The evaluation is 
performed through the data 
provided by the various 
validated devices on the 
market 

Definition of wound bed 
colorimetry and granulation 
through wound bed preparation 
score

Depth assessment

Analysis regarding the data 
acquisition time

Table 4. Evaluation methods of the various 
parameters measured in the study

Parameter Evaluation method

WBP Score 1. MOWA  
2. Wound Viewer
3. Visual clinical evaluation

Area 1. Silhouette  
2. MOWA   
3. VISITRAK  
4. Wound Viewer

Depth 1. Silhouette  
2. Wound Viewer
3. With a scaled probe

WBP—wound bed preparation
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Luca and a data management team comprising two data 
managers and a technician at the Politecnico di Torino. 
Each patient was enrolled by the clinical assessment 
team which was responsible for verifying the inclusion 
criteria of the subjects and collecting the consent forms. 
After enrolment, the wounds were assessed the same 
day at the Clinica San Luca surgical ward, both visually 
and using the devices according to the parameters listed 
in Table 4. In addition, the clinical assessment team was 
responsible for compiling the clinical research folders 
(CRF) with the data collected through all wound 
assessment methods used, except Wound Viewer. 
During the trial, the AI medical device was programmed 
to simply collect the raw data needed to allow its 
algorithm to perform the required analyses and transfer 
it to the data management team through the AWS cloud 
system. The onboard wound assessment algorithm was 
deactivated on the AI medical device and run by the 
data management team at a later time for a double-
blind comparison of the wound assessments and to test 
the data transfer functionality of the system. Having 
received the raw data and images from the AI medical 
device, the data management team used the proprietary 
AI algorithm to perform the analyses and compile the 
corresponding CRFs. A technician participating in the 
study was responsible for solving any technical 
problems arising in the devices. A detailed workflow of 
the patient and data management is shown in Fig 4.

After officially enrolling the patients, the clinical 
assessment team assessed the wound using all the 
technological and clinical methods involved in the 
study. Unlike the other devices, the AI medical device 
was programmed to simply collect the raw images and 
data necessary to run the proprietary wound assessment 

AI algorithm and transfer it through AWS to the data 
management team (Fig 4, blue flow lines). The latter 
then ran the algorithm with the received data and 
reported the results on the CRF. The data collected 
through all other technologies and methods were 
directly reported on the CRF by the clinical assessment 
team (Fig 4, red flow line).

Statistical analysis 
The data returned by the AI medical device and the 
control devices were compared by formulating a 
distribution curve set against an equivalent curve 
(comparable to the Weibull distribution regarding area 
measurements and a Gaussian distribution regarding 
depth measurements). The mean value and variance of 
the obtained curve was used to generate an appropriate 
fitting distribution curve. Statistical goodness-of-fit was 
assessed by comparing the obtained curves and 
distribution. The Kruskal–Wallis test had an acceptance 
condition (H0 is the hypotheses on whether or not the 
distributions can be considered statistically comparable) 
set to a p-value of ≥0.1. This non-parametric test 
substitutes the one-way analysis of variance (ANOVA) 
test in the case of non-normal populations.

The colorimetric index was evaluated using the WBP 
scale. The devices’ WBP scores were compared with 
those obtained by physicians during clinical visual 
assessment. This kind of analysis aims to establish the 
sensitivity of the device and compare it with the relative 
sensitivity of other already validated systems.

Results
Wound classification for remote precision monitoring 
The first analysis undertaken compared the ability to 
identify the tissues composing the wound bed and the 
WBP score classification of the wound. This analysis was 
intended to verify the ability to correlate the colour 
segmentation of the wound bed against the correct WBP 
score and to compare its result with the one given by the 
clinical assessment team who examined the patient in 
person. To avoid reciprocal influence between the two 
classifications, the clinical assessment team was not 
privy to the results delivered by the algorithm. The raw 
images were sent automatically to the AWS platform and 
gathered by the data management team (Fig 4), who ran 
the AI medical device algorithm on the wound images 
and gathered the information in a double-blind fashion. 
The protocol was designed not only to verify the 
classification accuracy of the device, but also to prove 
that the AI medical device allows trained physicians to 
gather precise, reliable clinical information in a 
telemedical configuration, as if they were performing 
the same examination directly on the patient. 

Fig 5 shows how the WBP classifications undertaken 
by the AI medical device (Fig 5a) and MOWA (Fig 5b) 
compare with those undertaken by the clinical 
assessment team through visual analysis. The heat 
points that reside on the diagonal of each graph (from 
top left side to bottom right side) reveal the number of 

Fig 4. Workflow of the clinical trial performed at San Luca (a) and the 
Politecnico di Torino (b). CRF—clinical research folders
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cases in which the classifications matched. On the other 
hand, the heat points outside the diagonal count the 
cases where there was a mismatch in the wound 
classification. Fig 5a illustrates the confusion matrix’s 
heat map between the AI medical device’s classifications 
and the clinical assessment performed by the physician. 
From the heat map results, we found that most of the 
inferred classes perfectly match the physician’s visual 
assessment, with an accuracy of 0.97 overall. Fig 5b 
illustrates the confusion matrix’s heat map between 
MOWA classifications and the clinical assessment 
performed by the physician. Clearly, the matrix shows 
a different pattern, with a larger occurrence of 
misclassification (accuracy of 0.53 overall) and some 
additional cases that were not recognised by the device 
(N/D class).

The WBP wound classification performed by the AI 
medical device consists of analysing the tissue 
composing the wound through a combination of four 
macro-groups of colours: red, yellow, white and black. 
As an example, Fig  6 describes four cases that were 
assessed during the trial, one for each WBP class. The 
first (Fig 6a) consists of a wound which is completely 
composed of granular tissue, classified as A. In the 
second (Fig 6b) the presence of slough can be noted 
(<50%), classified as ‘B’. Fig 6c shows a wound with 
<50% slough, and in Fig 6d the wound depicted presents 
with necrosis. The last column of the picture reports the 
result of the colour analysis returned by the Wound 
Viewer algorithm.

As seen by the results in Fig 5, by the end of the trial 
around 50 wounds were classified as ‘D’ (according to 
the WBP scale), meaning that these wounds presented 
necrotic tissue, even at a low percentage. ‘D’ classified 
wounds require more attention by health professionals 
because of their highly advanced state of deterioration. 
The results of the analysis showed that the AI medical 
device was able to recognise these particular wounds 
with high precision, proving at first that the objective 
for which the device was designed was reached. Fig 7 
shows three examples of wounds examined in the trial 
to better demonstrate the correct tissue classification 
capabilities of the AI medical device. As in the rest of 
the cases, all three wounds were classified as ‘D’ 
according to the WBP score, both by the examining 
physician (unaware of the AI medical device analysis) 
and by the AI medical device, which was able to send 
accurate raw data and images of the lesions to the data 
management team through the AWS cloud system. 
According to Shultz et al., a wound is classified as ‘D’ 
when it presents eschar (necrosis), fibrinous tissue and 
any amount of granular tissue.11,32 The images shown 
in Fig 7 range from a very low amount of necrotic tissue 
detected by the AI medical device (7.3% in Fig 7a), to a 
very large amount (96.4% in Fig 7c).

Morphological measurement precision
This analysis evaluated the assessment of the wound’s 
area measurement by comparing the data obtained 

from the AI medical device with the corresponding 
measurements collected by three other wound analysis 
and measurement methods. An initial descriptive 
analysis is shown in the box plots of Fig 8 where most 
of the data for all four detectors ranges between 3cm2 
and 15cm2. However, although outliers are clearly 
present, the box plots illustrate similar distributions of 
the data collected by the four devices. 

This is also reflected in the histograms of Fig 9, which 
portray a high degree of similarity in shape and scale: 
most occurrences are very close to the origin, whereas 
the remainder rapidly decrease toward zero.

Since such behaviour is typical in Weibull 
distributions, shape and scale parameters were estimated 
and subsequently used in a Kolmogorov–Smirnov test 
to confirm that the four populations were dispersed 
according to these Weibull distributions. Table 5 shows 
the estimated parameters and the corresponding values. 
As is shown, the values are almost identical and 
therefore, in order to support the hypothesised 
similarity of distributions, a Kruskal–Wallis one-way 
ANOVA was performed. The test resulted in a p-value of 
0.9, affirming that the hypothesis by which the 
distributions portray the characteristics of the same 
population is correct.

Fig 5. Heat map showing how the wound bed preparation (WBP) score 
wound classification obtained with Wound Viewer compares with those 
obtained through visual clinical analysis (a). Heat map showing how the 
WBP score wound classification obtained with MOWA compared with 
those obtained through visual clinical analysis (b). The wound assessment 
performed in a completely automated fashion with Wound Viewer 
concurred with the classification made through visual analysis by a 
physician in 96% of cases. On the other hand, almost half of the 
assessments made with MOWA disagreed with those made by the 
physician (53% accuracy) and in some cases the system was not able to 
classify the wound at all. A—only granular tissue; B—<50% slough; 
C—>50% slough; D—necrosis present; N/D—not determined
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Table 5. Shape and scale parameters of the overlapping Weibull 
distributions of the area measurements and the p-value calculated 
through the Kruskal–Wallis one-way analysis of variance test

Wound Viewer Silhouette MOWA VISITRAK

Shape 0.9475 0.9444 0.9032 0.9316

Scale 10.2809 9.9032 10.1946 10.4722

P-value (Ks-test) 0.4361 0.6179 0.6405 0.4200
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The scatter plot in Fig 10a shows the AI medical 
devices’s measurements on the x-axis and the 
measurements of all the other devices on the y-axis. The 
data is distributed along the diagonal, indicating a 
remarkable consistency between the corresponding 

measures. However, analysing the residuals (Fig 10b–d) 
of the linear models, it is interesting to note how 
Wound Viewer, Silhouette and VISITRAK have smaller 
mean relative errors of 14%, whereas MOWA seems to 
be less reliable, with mean relative errors of 23%. These 
errors were computed by considering the three other 
wound analysis and measurement methods as imperfect 
controls; however, it should be noted that for large 
areas, MOWA’s precision appears to be remarkably 
lower, with some deviations that differ from the other 
devices’ measurements by 30%.

Moreover, to further analyse how all the other 
measurements compared with those of the AI medical 
device, the wounds were classified into 13 sizes, ranging 
from 2–2.8 cm2 to those >33.6cm2. Table 6 shows the 
mean percentage error for all of the size classes 
regarding all the systems used. Accuracy was derived by 
calculating the percentage differences of each single 
measurement taken with the AI medical device 
compared with that obtained with the other devices. 
As is shown in Table 6, the highest differences come 
through comparing the measurements obtained with 
MOWA. As mentioned above, this system presented 
less measurement ability than the rest. On the other 
hand, the comparison of the measurements performed 
with Silhouette and VISITRAK presents lower 
differences. The highest were obtained measuring 
wounds of 2–2.8cm2 (with a 10% and a 15% difference, 
respectively). In these particular cases, the results were 
accepted since an absolute difference would be 0.28cm2 

Fig 6. Four examples of wounds assessed during the trial. The first column shows the classification for each wound 
made by the clinical assessment team through visual analysis. The second column shows the automatic classification 
performed by the AI medical device algorithm. The third shows the clinical characteristics that led to their classification, 
as in Falanga et al.11 The fourth shows the result of the colour analysis performed by the AI medical device algorithm. 
WBP-wound bed preparation
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Fig 7. Three examples of wounds analysed during the trial. All three 
wounds were classified both by the physician and by the AI medical 
devicer as D (presenting eschar or necrotic tissue) at different percentages 
(as detected by the device): 7.3% (a), 37.6% (b) and 96.4% (c)
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at the most for Silhouette and 0.42cm2 for VISITRAK, 
which are both clinically irrelevant.

The final analysis addresses the problem of assessing 
the accuracy of the depth measurements of wounds. 
This study compared the data obtained from Wound 
Viewer with the corresponding measurements collected 
either manually with cotton buds by the physician or 
using Silhouette. An initial graphical descriptive analysis 
in Fig 11 shows how the three populations have quite 
similar mean values, suggesting that the three measuring 
methods are consistent with each other.

However, as shown in the histograms of Fig 12, the 
data collected manually are distributed less consistently 

Fig 8. Box plots of population distributions of the area 
measurements. Box plots showing the outliers (a); and 
box plots with the outliers removed from the analysis (b). 
WV—Wound Viewer
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Fig 9. Population distributions of area measurements. 
The representations are overlapped on a kernel 
demonstrating how the populations present a Weibull 
distribution. Population measured with Wound Viewer (a), 
with Silhouette (b), with MOWA (c) and with VISITRAK (d)
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than those collected by Wound Viewer and Silhouette. 
This may be due to inaccurate measurements using 
cotton buds or, in extreme cases in which a patient is  
in so much pain, where data collection  
becomes impossible.

Due to the irregular distribution of the manual 
measurements, it became necessary to focus only on the 
similarities between the data collected by the two 
devices. Performing a Kruskal–Wallis one-way ANOVA, 
the test resulted in a p-value of 0.3, attesting that there 
was insufficient evidence to accept the hypothesis that 
there are no differences between the two distributions. 
This is also confirmed in the scatter plots of Fig 13, 

Fig 10. Scatter plot of the wound area measurements 
taken with the AI medical device compared with the other 
devices (a). Residuals of the regression regarding the 
comparison of the area measurements obtained with 
Wound Viewer and Silhouette (b); Wound Viewer and 
MOWA (c); Wound Viewer and VISITRAK (c)
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Fig 11. Box plots of the population distributions 
regarding depth measurements. Box plots showing the 
outliers (a) and with the outliers removed from the 
analysis (b)
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which show a distribution of points along the diagonal 
and residuals distributed around the horizontal axis. 
Taking into account shallow wounds (up to 2.8cm2), 
and using Silhouette as an imperfect control, the mean 
relative error between the measurements of the two 
devices was around 10%. On the contrary, in deeper 
wounds the error margin ranged from 2–6%, 
maintaining the clinical relevance for the measurement.

Discussion
The study aimed to assess the telemedical functions and 
fully automated assessment capabilities of the 
innovative AI medical device technology through a 
comparative clinical trial. The AI medical device was 
designed and developed as a comprehensive and 
automatic tool using standardised data acquisition 
methodology to identify minimal variations in wounds 
from both a clinical and morphological point of view. 
Moreover, the telemedical capabilities of the device 
were tested to ensure the clinical completeness, 
precision and reliability of the collected data. The AI 
medical device assessment also looked at how easily 
health professionals involved in the patients’ care could 
access and share data. This state-of-the-art development 
in clinical research underlines that the correct 
evaluation of wound bed composition and correct 
measurement of the wound are two vital points in rapid 
and efficient healing management.

The AI medical devices uses an artificial intelligence 
algorithm that has been trained to identify these 
parameters through an effective analysis of images as 
well as all wound characteristics regarding the tissue, so 
it can act like an experienced physician. The WBP score 
has allowed us to reach our goals regarding wound 
classification; Falanga put this classification forward to 
give physicians a better and faster understanding of 
wound conditions to enable more prompt 
intervention.11,32 It must be noted that, in standard 
clinical practice, the identification of eschar is of vital 
importance, especially at an early stage, in order to 
avoid major clinical complications. Following the WBP 
score, with eschar present at any level of granulation, a 
wound is classified as ‘D’. The AI medical device was 
able to correctly classify the wounds according to their 
tissue. Moreover, regarding the presence of eschar, the 
device was able to identify even very small amounts, as 
shown in Fig 5, 6 and 7, in properly classifying all 
critical wounds as ‘D’. 

Table 6. Mean percentage measurement error regarding wound areas

Mean percentage area measurement error

Range 
(cm2)

0–
2.8

2.8–
5.6

5.6–
8.4

8.4–
11.2

11.2–
14

14–
16.8

16.8–
19.6

19.6–
22.4

22.4–
25.2

25.2–
28

28–
30.8

30.8–
33.6

>33.6

Silhouette 0.1 0.05 0.05 0.03 0.05 0.04 0.1 0.03 0 0.06 0.06 0.07 0

MOWA 0.3 0.18 0.1 0.14 0.29 0.48 0.12 0.04 0.06 0 0 0.06 0.11

VISITRAK 0.15 0.09 0.07 0.06 0.28 0.04 0.03 0.04 0.09 0 0.03 0.03 0.06

Fig 12. Histograms of population distributions regarding depth 
measurements. Distribution representing the measurements obtained 
through Wound Viewer (a), through Silhouette (b) and with a scaled probe 
(manual measurement) (c)
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Limitations 
The reported study was designed to include a cohort of 
patients presenting with a range of wounds considered 
to be the most comprehensive. As reported in the study 
design and protocol section of this paper, patients were 
subdivided in three main groups according to the 
typology of the wound. The group that reported lower 
limb wounds was composed of patients affected by 
wounds of different aetiologies that ranged from venous 
ulcers (approximately 40% of the cases), arterial ulcers 
(approximately 20% of the cases) and ulcers of other 
nature (the remaining approximately 40%). This 

Fig 13. Scatter plot of the depth measurements taken 
with Wound Viewer compared with those obtained with 
Silhouette (a). Residuals of the regression regarding the 
comparison of the depth measurements obtained with 
Wound Viewer and Silhouette (b)
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particular group of patients does not represent the 
entire range of possible aetiologies. The results of the 
trial state that the AI medical device system is able to 
perform correct measurements and assessments on the 
population that was enrolled for the study. Further 
work and studies are under development in order to 
perform a set of different trials directly aimed at 
particular wound aetiologies to assess the actual clinical 
benefit that derives from telemedical precise wound 
assessment in different wound classes with patients 
who will receive a periodical follow-up.

In addition, as reported in Table 2, patients presenting 
wounds with presence of undermining were not 
included in the trial due to technical limitations of the 
device. Further developments are ongoing in order to 
render the system able to detect these conditions.

Conclusion
In this study, the AI medical device proved to be a valid 
monitoring tool for the prevention of dermatological 
complications. Its capability to acquire and store precise 
information of the clinical evolution of lesions permits 
health professionals to promptly act with appropriate 
therapy based on the characteristics of the wound and 
the patient. 

Furthermore, other methods used in clinical practice 
for the morphological measurement of the wounds 
were also compared. The trial demonstrated, with 
statistical evidence, that the measurements performed 
by the AI medical device are reliable and precise, and 
less invasive than some other methods. This trial is the 
first to test and demonstrate that the AI medical device 
meets the criteria for which it was designed: 
constituting a complete, standardised and non-
invasive method for classifying dermatological lesions 
and monitoring their clinical evolution over a 
clinician-specified time. 

Telemedicine is at the forefront of integrative 
technology with the goal of improving clinical care 
while reducing costs in all medical fields, from mental 
health to nutrition. The AI medical device was designed 
to address an urgent clinical need within dermatology 
and abide by the necessary standards of quality and 
privacy. The classification and measurement 
capabilities of the AI medical device and the possibility 
to transmit this data makes the device an efficient 
telemedical tool for the remote monitoring of hard-to-
heal wounds, meeting the standards necessary to be 
socially and clinically effective. Using the device, non-
physicians can acquire remote data without 
compromising quality or clinical standards, enabling 
physicians to treat and monitor remote wound  
data efficiently. JWC
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Reflective questions

 ● Is objective wound measurement and assessment a key factor for faster 
wound healing?

 ● Will a structured telemedical system, well implemented in the standard 
hospital’s home care procedures, render the best quality of care and 
promptness of intervention possible?

 ● Is artificial intelligence the new instrument for caregivers, able to perform an 
in-depth wound assessment and provide ready-to-use information in order to 
identify the most critical cases?

The Wound Care 
Handbook Online
The essential guide to product selection

The professionals comprehensive 
guide to wound care products

www.woundcarehandbook.com

            

In association with

Downloaded from magonlinelibrary.com by 130.192.232.213 on December 16, 2020.


