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A FAMILY OF HARDY TYPE SPACES

ON NONDOUBLING MANIFOLDS

ALESSIO MARTINI, STEFANO MEDA, AND MARIA VALLARINO

Abstract. We introduce a decreasing one-parameter family Xγ(M), γ > 0,
of Banach subspaces of the Hardy–Goldberg space h1(M) on certain nondou-
bling Riemannian manifolds with bounded geometry and we investigate their
properties. In particular, we prove that X1/2(M) agrees with the space of all
functions in h1(M) whose Riesz transform is in L1(M), and we obtain the
surprising result that this space does not admit an atomic decomposition.

1. Introduction

In their seminal paper [FS] C. Fefferman and E.M. Stein defined the classical
Hardy space H1(Rn) as follows:

H1(Rn) := {f ∈ L1(Rn) :
∣∣∇(−∆)−1/2f

∣∣ ∈ L1(Rn)}; (1.1)

here ∇ and ∆ denote the Euclidean gradient and Laplacian, respectively. Follow-
ing up earlier work of D.L. Burkholder, R.F. Gundy and M.L. Silverstein [BGS],
Fefferman and Stein obtained several characterisations of H1(Rn) in terms of var-
ious maximal operators and square functions, thereby starting the real variable
theory of Hardy spaces. Their analysis was complemented by R.R. Coifman [Coi],
who showed that H1(R) admits an atomic decomposition. This result was later
extended to higher dimensions by R. Latter [La].

It is natural to speculate whether an analogue of the results of Fefferman–Stein,
Coifman and Latter holds in different settings. In other words, one may ask what
is the most appropriate way to define Hardy spaces in settings other than Rn and
whether different definitions lead to the same spaces. In this paper we will consider
this problem on a class of nondoubling Riemannian manifolds.

There is a huge literature concerning this question on manifolds or on even more
abstract sorts of spaces and it is virtually impossible to give an account of the main
results in the field. Thus, without any pretence of exhaustiveness, we mention just
a few contributions, which we consider the most relevant to our discussion. It is fair
to say that most of the results in the literature are concerned with settings where
the relevant metric and measure satisfy the doubling condition; while these works
do not directly apply to the manifolds considered here, they nevertheless play a
paradigmatic role in the development of the subject and it would be impossible to
leave them out of our discussion.

In the context of spaces of homogeneous type, Coifman and G. Weiss [CW] de-
fined an atomic Hardy space which generalises the Euclidean one. Various maximal
function characterisations of such Hardy space have been obtained by a number of
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authors under additional assumptions on the underlying metric (see, e.g., [U1, YZ1]
and references therein); however, a characterisation in terms of singular integrals,
similar to the Euclidean one via Riesz transforms, remains in general a deceptive
problem. A complete characterisation of the Coifman–Weiss Hardy space in terms
of maximal functions and Riesz transforms was carried over by G. Folland and Stein
[FS] and by M. Christ and D. Geller [CG] in the case of stratified groups, following
a deep result of A. Uchiyama [U2]. Further results in this direction were obtained
by J. Dziubański and K. Jotsaroop [DJ] in Rn, but with the Grushin operator play-
ing the role of the Euclidean Laplacian, and by Dziubański and J. Zienkiewicz (see
[DZ1, DZ2] and the references therein) for Schrödinger operators with nonnegative
potentials satisfying certain additional assumptions.

Within the class of Riemannian manifolds with doubling Riemannian measure,
a consequence of works of various authors [AMR, HLMMY, DKKP] (see also the
references therein) is that, under mild geometric conditions, the Hardy spaces de-
fined in terms of the heat maximal operator and the Poisson maximal operator
agree, and coincide with an atomic Hardy space defined in terms of appropriate
atoms (these are atoms naturally associated to the Laplace–Beltrami operator and
may differ considerably from those defined by Coifman and Weiss). Furthermore,
in this setting it is known that the Riesz–Hardy space contains the atomic space,
but, to the best of our knowledge, the question whether this inclusion is proper is
still open.

In this paper we consider Riemannian manifolds M with positive injectivity ra-
dius, Ricci tensor bounded from below and spectral gap. Notice that M , equipped
with the Riemannian distance, is not a space of homogeneous type in the sense
of Coifman and Weiss, for the doubling condition fails for large balls. The corre-
sponding theory of atomic Hardy type spaces has been developed only quite recently
[Io, CMM1, T, MMV3], and it differs remarkably from that of H1(Rn). A related
nondoubling setting where interesting results concerning aspects of this programme
have been developed has been considered in [V, MOV].

The final outcome of our research, which will be described in detail in the present
paper and in other forthcoming papers, is that different definitions of Hardy spaces
(atomic, via Riesz transform, via maximal operators) on certain manifolds with ex-
ponential volume growth may very well lead to different spaces. Related interesting
partial results are [A, Corollary 6.3] and [Lo].

Our work is inspired by a series of papers [MMV2, MMV3], by the Ph.D. thesis
[Vo] and by the recent work [CM] on graphs. Specifically, in [MMV2] the Au-
thors introduced a sequence Xk(M) of strictly decreasing Banach spaces, which
are isometric copies of the Hardy type space H1(M), introduced by A. Carbonaro,
G. Mauceri and Meda in [CMM1]. This space differs from the classical Hardy space
of Coifman–Weiss [CW].

Volpi [Vo] modified this construction by letting the Hardy–Goldberg type space
h1(M), introduced by M. Taylor in [T] and further generalised by Meda and
Volpi [MVo], play the role of the space H1(M) of Carbonaro, Mauceri and Meda.
The resulting sequence of spaces is named Xk(M), instead of Xk(M). Of course
Xk(M) ⊇ Xk(M), for h1(M) properly contains H1(M). It may be worth recall-
ing that h1(M) is the analogue on M of the classical space h1(Rn) introduced by
D. Goldberg in [Go] and further investigated on specific measure metric spaces in
various papers, including [HMY, YZ1, YZ2, BDL] (see also the references therein).

In this paper we take a step further, and consider a one-parameter family of
spaces Xγ(M), where γ is a positive real number, which agree with those intro-
duced in [Vo] when γ is a positive integer. Specifically, the space Xγ(M) is just
U γ

[
h1(M)

]
, where U = L (I + L )−1 and L is the (positive) Laplace–Beltrami
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operator on M . It is not hard to see that U is injective on L1(M), hence so is U γ .
The space Xγ(M) is endowed with the norm that makes U γ an isometry between
h1(M) and Xγ(M), i.e.,

∥∥f
∥∥
Xγ(M)

:=
∥∥U −γf

∥∥
h1(M)

.

The idea of considering noninteger values of γ is taken from [CM], where an
analogue of Xγ(M) is defined on certain graphs with exponential volume growth.
However, the case of Riemannian manifolds we consider here requires substantial
refinements of the theory developed in [CM].

The spaces Xγ(M) play a central role in our analysis of Hardy type spaces. We
prove that Xγ(M) is a decreasing family of Banach spaces, each of which interpo-
lates with L2(M). We also show that the imaginary powers of the Laplace–Beltrami
operator L are bounded from Xγ(M) to h1(M) for all γ > 0, thus providing an end-
point counterpart to their Lp boundedness for p ∈ (1,∞); notice that the imaginary
powers of L may not be bounded from h1(M) to L1(M) [MMV4].

We also prove that Xγ(M) does not admit an atomic decomposition when γ is
not an integer, at least in the case of symmetric spaces of the noncompact type
and real rank one. More precisely, we show that the space of compactly supported
elements of Xγ(M) is not dense in Xγ(M).

The extension to noninteger values of the parameter γ is a posteriori motivated
by one of our main results, which states that

X1/2(M) = {f ∈ h1(M) : |Rf | ∈ L1(M)}. (1.2)

Here R denotes the Riesz transform ∇L −1/2 on M , and ∇ is the Riemannian
gradient. Notice that we do not prove here that the Riesz–Hardy space H1

R(M),
defined by

H1
R(M) := {f ∈ L1(M) : |Rf | ∈ L1(M)}, (1.3)

agrees with X1/2(M). The proof of this equivalence requires (1.2) together with
more sophisticated real variable methods, and will be given in [MVe]. In conjunction
with the results of the present paper, this equivalence implies the perhaps surprising
result that H1

R(M) does not admit in general an atomic decomposition.
The relations between the spaces Xγ(M) for different values of γ > 0 and the

Hardy spaces H1
H (M) and H1

P(M) defined in terms of the heat and the Poisson
maximal operators will be discussed in detail in [MaMV], yielding another possibly
surprising result: the spaces H1

R(M), H1
H (M) and H1

P(M) may all differ in this
context.

We shall use the “variable constant convention”, and denote by C, possibly with
sub- or superscripts, a constant that may vary from place to place and may depend
on any factor quantified (implicitly or explicitly) before its occurrence, but not on
factors quantified afterwards.

2. Background on Hardy type spaces

Let M denote a connected, complete n-dimensional Riemannian manifold of
infinite volume with Riemannian measure µ. Denote by L the positive Laplace–
Beltrami operator on M , by b the bottom of the L2(M) spectrum of L , and set
β = lim supr→∞

[
logµ

(
Br(o)

)]
/(2r), where o is any reference point ofM and Br(o)

denotes the ball centred at o of radius r. By a result of Brooks, b ≤ β2 [Br].
We denote by B the family of all geodesic balls on M . For each B in B we

denote by cB and rB the centre and the radius of B respectively. Furthermore, for
each positive number λ, we denote by λB the ball with centre cB and radius λ rB .
For each scale parameter s in R+, we denote by Bs the family of all balls B in B
such that rB ≤ s.
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In this paper we make the following assumptions on the geometry of the

manifold:

(i) the injectivity radius of M is positive;
(ii) the Ricci tensor is bounded from below;
(iii) M has spectral gap, to wit b > 0.

We emphasize the fact that some of the results in this paper hold under less stringent
assumptions. For instance, Theorem 3.1 below requires that M satisfies the local
doubling condition and supports a local scaled L2-Poincaré inequality, which are
implied by (ii) above, but they do not require (i) and (iii). We believe that it is not
worth keeping track of the minimal assumptions under which each of the results
below holds, and assume throughout that M satisfies (i)–(iii) above.

It is well known that for manifolds satisfying (i)–(iii) above the following prop-
erties hold:

(a) there are positive constants α and C such that

µ(B) ≤ C rαB e2β rB ∀B ∈ B \ B1, (2.1)

where β is the constant defined at the beginning of this section;
(b) (see [MMV3, Remark 2.3]) there exists a positive constant C such that

C−1 rnB ≤ µ(B) ≤ C rnB ∀B ∈ B1; (2.2)

(c) as a consequence of (a) and (b) the measure µ is locally doubling, i.e., for
every s > 0 there exists a constant Ds such that

µ(2B) ≤ Ds µ(B) ∀B ∈ Bs;

(d) M possesses a local scaled L2-Poincaré inequality, i.e., for each R < ∞
there exists a constant C, depending on R, such that∫

B

∣∣f − fB
∣∣2 dµ ≤ C r2B

∫
B

∣∣∇f
∣∣2 dµ , (2.3)

for all balls B in BR;
(e) the heat semigroup {Ht} is ultracontractive, in the sense that Ht := e−tL

maps L1(M) into L2(M) and satisfies the following estimate [Gr, Section
7.5]: ∣∣∣∣∣∣Ht

∣∣∣∣∣∣
1;2

≤ Ce−bt t−n/4 (1 + t)
n
4 ∀t ∈ R+;

it follows by interpolation that, for every p ∈ (1, 2],
∣∣∣∣∣∣Ht

∣∣∣∣∣∣
1;p

≤ C[e−bt t−n/4 (1 + t)
n
4 ]2/p

′ ∀t ∈ R+, (2.4)

and in particular

lim
t→∞

∥∥Htf
∥∥
Lp = 0 ∀f ∈ L1(M); (2.5)

(f) the Cheeger isoperimetric constant of M is positive [CMM1, Theorem 9.5],
and consequently the following Sobolev type inequality holds:

∥∥f
∥∥
L1 ≤ C

∥∥|∇f |
∥∥
L1 (2.6)

for all f ∈ C∞
c (M) [Ch, Theorem V.2.1].

Next, we introduce the local Hardy space h1(M).

Definition 2.1. Suppose that p is in (1,∞] and let p′ be the index conjugate to p.
A standard p-atom is a function a in L1(M) supported in a ball B in B1 satisfying
the following conditions:

(i) size condition: ‖a‖Lp ≤ µ(B)−1/p′

;

(ii) cancellation condition:

∫
B

a dµ = 0.
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A global p-atom is a function a in L1(M) supported in a ball B of radius exactly

equal to 1 satisfying the size condition above (but possibly not the cancellation
condition). Standard and global p-atoms will be referred to simply as p-atoms.

Definition 2.2. The local atomic Hardy space h1,p(M) is the space of all func-
tions f in L1(M) that admit a decomposition of the form

f =

∞∑

j=1

λj aj , (2.7)

where the aj ’s are p-atoms and
∑∞

j=1 |λj | < ∞. The norm ‖f‖h1,p of f is the

infimum of
∑∞

j=1 |λj | over all decompositions (2.7) of f .

This space was introduced in even greater generality by Volpi [Vo], who extended
previous work of Goldberg [Go] and Taylor [T], and then further generalised in
[MVo]. Goldberg treated the Euclidean case, while Taylor worked on Riemannian
manifolds with strongly bounded geometry and considered only ∞-atoms (more
precisely, ions); Volpi worked in a much more abstract setting, which covers the
case where M is a Riemannian manifold with Ricci curvature bounded from below
(see also [MVo] for more on this). In particular, Volpi proved that h1,p(M) is
independent of p; henceforth, the space h1,2(M) will be denoted simply by h1(M),
and 2-atoms in h1(M) will also be called h1(M)-atoms.

The choice of 1 as a “scale parameter” for the radii of balls in Definition 2.1 is
completely arbitrary, and replacing it with any other positive number would lead
to the definition of the the same space h1(M), with equivalent norms. Indeed, a
slight modification of [MVo, Lemma 2] shows that, for all p ∈ (1,∞], there exists a
constant C such that, for every function f in Lp(M) supported in a ball B ∈ B\B1,
the function f is in h1(M) and

‖f‖h1 ≤ Cµ(B)1/p
′ ‖f‖Lp . (2.8)

An important feature of h1(M) lies in its interpolation properties with Lp spaces.
In particular, for every θ in (0, 1), the complex interpolation space

(
h1(M), L2(M)

)
[θ]

is L2/(2−θ)(M) (see [MVo, Theorem 5]).
We shall repeatedly use the following proposition, whose proof is a slight modi-

fication of [MVo, Theorem 6].

Proposition 2.3. If T is an h1(M)-valued linear operator defined on h1(M)-atoms

such that

sup{‖Ta‖h1 : a h1(M)-atom} <∞ ,

then T admits a unique bounded extension from h1(M) to h1(M).

The definition of the space h1(M) is similar to that of the atomic Hardy space
H1(M), introduced by Carbonaro, Mauceri and Meda [CMM1, CMM2], the only
difference being that atoms in H1(M) are just standard atoms in h1(M), and there
are no global atoms. As a consequence, functions in H1(M) have vanishing integral,
a property not enjoyed by all the functions in h1(M). Thus, trivially, H1(M) is
properly and continuously contained in h1(M).

We now introduce the space bmo(M). Suppose that q is in [1,∞). For each
locally integrable function g define the local sharp maximal function g♯,q by

g♯,q(x) = sup
B∈B1(x)

( 1

µ(B)

∫
B

|g − gB|q dµ
)1/q

∀x ∈M,

where gB denotes the average of f over B and B1(x) denotes the family of all balls
in B1 centred at the point x. Define the modified local sharp maximal function
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N q(g) by

N q(g)(x) := g♯,q(x) +
[ 1

µ(B1(x))

∫
B1(x)

|g|q dµ
]1/q

∀x ∈M .

Denote by bmoq(M) the space of all locally integrable functions g such that N q(g)
is in L∞(M), endowed with the norm

‖g‖bmoq = ‖N q(g)‖L∞ .

In [MVo] it is proved that the space bmoq(M) does not depend on the parameter
q, as long as q is in [1,∞). Henceforth, we shall denote this space by bmo(M),
endowed with the norm bmo2. Moreover, the space bmo(M) may be identified
with the dual of h1(M) (see [MVo, Theorem 2]). More precisely, for every function
g ∈ bmo(M), the linear functional Fg, defined on every h1(M)-atom a by

Fg(a) =

∫
M

a g dµ, (2.9)

extends to a bounded linear functional on h1(M). Conversely, for every functional
F ∈ (h1(M))′ there exists a function g ∈ bmo(M) such that F = Fg. Moreover,
there exists a positive constant C such that

C−1‖g‖bmo ≤ ‖F‖(h1)′ ≤ C ‖g‖bmo . (2.10)

3. The heat semigroup and the operator U on h1(M)

The theory of Hardy type spaces that we shall describe in Section 4 requires the
boundedness on h1(M) of various functions of the Laplace–Beltrami operator L ,
including the heat semigroup and the operator U defined below. These will be
established in Subsections 3.1 and 3.2, respectively.

3.1. The heat semigroup on h1(M). It is well known that
{
Ht

}
is a Markovian

semigroup. In particular, it is contractive on L1(M), hence from h1(M) to L1(M),
for h1(M) is continuously imbedded in L1(M) with norm ≤ 1. In this section
we discuss the boundedness of the heat semigroup {Ht} on the local Hardy space
h1(M).

A well known result obtained independently by Grigor’yan and Saloff-Coste [SC,
Theorem 5.5.1] says that the conjunction of the local doubling condition and the
local Poincaré inequality is equivalent to a local Harnack inequality for positive
solutions to the heat equation. In particular, for all R > 0 there exists a constant
C such that for all balls B = B(cB , rB), with rB < R, and for any smooth positive
solution u of (∂t + L )u = 0 in the cylinder Q :=

(
s − r2B , s

)
× B, the following

inequality holds:

sup
Q−

u ≤ C inf
Q+

u, (3.1)

where Q− :=
(
s− 3r2B

4
, s− r2B

2

)
×B(cB, rB/2) and Q+ :=

(
s− r2B

4
, s
)
×B(cB , rB/2).

For ω in [0, π], we denote by Sω the half line (0,∞) if ω = 0, and the sector{
z ∈ C : z 6= 0, and

∣∣arg z
∣∣ < ω

}
if ω > 0. Recall that, given a number ω in [0, π),

an operator A on a Banach space Y is sectorial of angle ω if

(i) the spectrum of A is contained in the closed sector Sω;
(ii) the following resolvent estimate holds:

sup
λ∈C\Sω′

∣∣∣∣∣∣λ (λ−A)−1
∣∣∣∣∣∣

Y
<∞ ∀ω′ ∈ (ω, π).
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Observe that condition (ii) above may be reformulated as follows:

sup
λ∈Sω′

∣∣∣∣∣∣λ (λ+A)−1
∣∣∣∣∣∣

Y
<∞ ∀ω′ ∈ [0, π − ω). (3.2)

The theory of Hardy type spaces that we shall develop in Section 4 hinges on the
uniform boundedness of the heat semigroup on h1(M). This fact, together with
some related estimates, will be proved in the next theorem. A result similar to
Theorem 3.1 (i) below, but in a different setting, may be found in [DW].

Theorem 3.1. The following hold:

(i) {Ht} is a uniformly bounded C0 semigroup on h1(M);
(ii) L is a sectorial operator of angle π/2 on h1(M);
(iii) supλ>0

∣∣∣∣∣∣λ (λ+ L )−1
∣∣∣∣∣∣
h1 <∞ and supλ>0

∣∣∣∣∣∣L (λ+ L )−1
∣∣∣∣∣∣
h1 <∞.

Proof. First we prove (i). We shall preliminarily show that

sup
t>0

sup
∣∣〈Hta, g〉

∣∣ <∞, (3.3)

where the inner supremum is taken over all h1(M)-atoms a and all bmo(M)-
functions g with

∥∥g
∥∥
bmo

≤ 1. In light of (2.10) and Proposition 2.3, estimate

(3.3) implies the uniform boundedness of {Ht} on h1(M).
To prove (3.3), let a be an h1(M)-atom supported in a ball B = B(cB, rB), with

rB ≤ 1. Denote by M a 1-discretisation of M and, for each z in M, denote by
Bz the ball with centre z and radius 1. It is a well known fact (see, for instance,
[MVo]) that the cover {Bz : z ∈ M} has the finite overlapping property. Denote
by {ψz : z ∈ M} a partition of unity subordinate to that cover. Clearly, at least
formally,

∣∣〈Hta, g〉
∣∣ ≤

∑

z∈M

∫
Bz

ψz(x)
∣∣Hta(x)

∣∣ ∣∣g(x)
∣∣ dµ(x) ≤

∑

z∈M

∥∥Hta
∥∥
L2(Bz)

∥∥g
∥∥
L2(Bz)

.

We have used the Cauchy–Schwarz inequality in the last inequality above. Notice
that

∥∥g
∥∥
L2(Bz)

= µ(Bz)
1/2

[ 1

µ(Bz)

∫
Bz

|g|2 dµ
]1/2

≤ µ(Bz)
1/2

∥∥g
∥∥
bmo

.

Furthermore, if ht denotes the heat kernel, then

∥∥Hta
∥∥
L2(Bz)

=
[ ∫

Bz

dµ(x)
∣∣∣
∫
B

ht(x, y) a(y) dµ(y)
∣∣∣
2]1/2

≤
[ ∫

Bz

dµ(x)

∫
B

ht(x, y)
2
∥∥a

∥∥2
L2(B)

dµ(y)
]1/2

≤
[ ∫

Bz

dµ(x)
1

µ(B)

∫
B

ht(x, y)
2 dµ(y)

]1/2
;

we have used Schwarz’s inequality in the first inequality and the size condition on
a in the second. Clearly for each x in M

1

µ(B)

∫
B

ht(x, y)
2 dµ(y) ≤ sup

y∈B
ht(x, y)

2 ≤ C inf
y∈B

ht+r2B
(x, y)2 ≤ C ht+r2B

(x, cB)
2;

we have used Harnack’s inequality in the second inequality above. Thus,

∥∥Hta
∥∥
L2(Bz)

≤ C
[ ∫

Bz

ht+r2B
(x, cB)

2 dµ(x)
]1/2

,

which, by Harnack’s inequality, is dominated by C µ(Bz)
1/2 ht+r2B+1(z, cB). By

combining the preceding estimates with the finite overlapping property of the family
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of balls {Bz : z ∈ M}, we see that

∣∣〈Hta, g〉
∣∣ ≤ C

∥∥g
∥∥
bmo

∑

z∈M

µ(Bz)ht+r2B+1(z, cB)

≤ C
∥∥g

∥∥
bmo

∑

z∈M

∫
Bz

ht+r2B+2(x, cB) dµ(x)

≤ C
∥∥g

∥∥
bmo

∫
M

ht+r2B+2(x, cB) dµ(x)

= C
∥∥g

∥∥
bmo

,

as required. The equality above follows from the Markovianity of the heat semi-
group.

In order to conclude the proof of (i), it remains to show that {Ht} is strongly
continuous on h1(M). Notice that it suffices to prove that

∥∥Hta− a
∥∥
h1 → 0 as

t→ 0+ for every h1(M)-atom a. Indeed, suppose that this holds, and assume that

f =
∑

j

cj aj . Then

Ht

( ∞∑

j=1

cj aj

)
−

∞∑

j=1

cj aj =

∞∑

j=1

cj
(
Htaj − aj

)
,

because we already know that {Ht} is bounded on h1(M). Hence

∥∥Htf − f
∥∥
h1 ≤

∞∑

j=1

∣∣cj
∣∣ ∥∥Htaj − aj

∥∥
h1 → 0

as t→ 0+ by the Lebesgue dominated convergence theorem (we have already proved
that {Ht} is uniformly bounded, so that

∥∥Htaj − aj
∥∥
h1 ≤ 1 + supt>0

∣∣∣∣∣∣Ht

∣∣∣∣∣∣
h1).

Now we show that, if a is an h1(M)-atom, then
∥∥Hta− a

∥∥
h1 → 0. Without

loss of generality, we may assume that the support of a is contained in a ball B
centred at o with radius R ≤ 1. Let D =

√
L − b, and observe that, by the spectral

theorem, s 7→ cos(sD)a is an L2-valued continuous function on R, and that it takes
value a at 0. At least on L2(M),

Hta = e−bt

∫∞
−∞

hRt (s) cos(sD)a ds,

where hRt (s) = (4πt)−1/2 e−s2/(4t) is the one-dimensional Euclidean heat kernel.

Write 1 = ω0 +

∞∑

k=1

ωk, where suppω0 ⊆ [−1, 1], and suppωk ⊆ [−k − 1,−k] ∪

[k, k + 1]. We are led to consider the integrals

Ikt := e−bt

∫∞

−∞

hRt (s)ωk(s) cos(sD)a ds ,

where k is a nonnnegative integer.
Consider first the case where k > 0. Clearly

∥∥cos(sD)a
∥∥
L2 ≤

∥∥a
∥∥
L2 ≤ µ(B)−1/2,

and moreover supp(cos(sD)a) ⊆ Bk+2(o) by finite propagation speed; hence, by
(2.8) and (2.1), we conclude that

∥∥cos(sD)a
∥∥
h1 ≤ C

µ
(
Bk+2(o)

)1/2

µ(B)1/2
≤ C kν eβk ∀s : k ≤ |s| < k + 1,
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where ν is an appropriate nonnegative number. Remember that a is fixed in this
argument, so that we do not care about the factor µ(B)−1/2. Therefore

∥∥Ikt
∥∥
h1 ≤ C kν eβk

∫k+1

k

hRt (s) ds ≤ C t−1/2 kν eβk−k2/(4t).

It is straightforward to check that t−1/2 kν eβk−k2/(4t) ≤ e−c/t−ck2

for some suitable
constant c and all t small enough, uniformly in k. Thus,

∥∥∥
∞∑

k=1

Ikt

∥∥∥
h1

≤ C

∞∑

k=1

e−c/t−ck2

which tends to 0 as t→ 0+.
Thus, it remains to estimate

∥∥I0t − a
∥∥
h1 . Notice that t 7→ I0t −a is an L2-valued

continuous function on R. First, we show that I0t − a is weakly convergent to 0 in
L2(M). Indeed, (a, ψ)L2(M) =

〈
(cos(·D)a, ψ)L2(M), δ0

〉
R
, where 〈·, ·〉

R
denotes the

pairing between measures and continuous functions on R. Thus, if m denotes the
Lebesgue measure on R,

(
I0t − a, ψ

)
L2(M)

= e−bt

∫∞
−∞

hRt (s)ω0(s)
(
cos(sD)a, ψ)L2 ds− (a, ψ)L2

=
〈(

cos(·D)a, ψ
)
L2 , e

−bt hRt ω0 dm − δ0
〉
R
,

which tends to 0 as t → 0+, because the measure e−bt hRt ω0 dm − δ0 is weakly
convergent to 0. Furthermore,

∥∥I0t
∥∥
L2 ≤ e−bt

∫∞
−∞

hRt (s)ω0(s)
∥∥cos(sD)a

∥∥
L2(M)

ds ≤
∥∥a

∥∥
L2 ,

so that lim supt→0+

∥∥I0t
∥∥
L2 ≤

∥∥a
∥∥
L2 . By a well known result [B, Proposition 3.32],

I0t → a strongly in L2(M).
Note that the support of I0t is contained in B2(o). Hence, by (2.8),

∥∥I0t − a
∥∥
h1 ≤ C µ

(
B2(o)

)1/2 ∥∥I0t − a
∥∥
L2 → 0

as t → 0+, as required to conclude the proof of the strong continuity of {Ht} on
h1(M).

As explained in [Haa, Section 2.1.1, p. 24], (ii) is an immediate consequence of
(i) and the Hille–Yosida theorem.

The first statement in (iii) follows directly from the sectoriality of L proved in
(ii). To prove the last statement in (iii) observe that, by spectral theory,

L (λ+ L )−1 = I − λ (λ + L )−1,

at least on L2(M). The required estimate follows from this and the first statement.
�

Remark 3.2. It is worth pointing out that the heat semigroup is not uniformly
bounded on H1(D), where D denotes the hyperbolic disk. Indeed, arguing as in
[Ce, Section 2.7], one can show that there exists a positive constant c such that

∣∣∣∣∣∣Ht

∣∣∣∣∣∣
H1(D)

≥ c (1 + t) ∀t ∈ R+.

We omit the proof, because the result above is not essential for the theory of Hardy
type spaces developed in this paper and the details are somewhat long and intricate.
This motivates the introduction of the spaces Xγ(M) in Section 4 and explains why
we do not base our analysis on the spaces Xk(M) introduced in [MMV2].
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3.2. The operator U on h1(M). A central role in what follows will be played by
the family

{
Uσ := L (σ + L )−1: σ > 0

}
of (spectrally defined) operators.

Clearly Uσ is bounded on L2(M), by the spectral theorem. A straightforward
consequence of the fact that L generates the contraction semigroup {Ht} on Lp(M)
for every p in [1,∞] is that Uσ extends to a bounded operator on Lp(M) for all
such values of p. Furthermore, for each λ > 0 the operator Uσ is an isomorphism
of Lp(M), 1 < p ≤ 2 (because b > 0, hence the bottom of the Lp(M) spectrum
of L is positive), and it is injective on L1(M) [MMV2, Proposition 2.4]. We shall
often write U instead of U1.

The sectoriality of L on h1(M) given by Theorem 3.1 implies the following
properties of the operators Uσ and their fractional powers.

Proposition 3.3. Assume that σ > 0.

(i) Uσ is an injective bounded sectorial operator of angle π/2 on h1(M).
(ii) U γ

σ is injective and bounded on h1(M) for all γ ∈ C with Re γ > 0.

Proof. First we prove (i). Since Uσ is injective on L1(M) it is also injective on
h1(M). By Theorem 3.1 (ii), L is a sectorial operator of angle π/2 on h1(M). By
[Haa, Proposition 2.1.1 (f)] so is Uσ, and moreover the boundedness of Uσ follows
from Theorem 3.1 (iii).

Property (ii) immediately follows from (i) and [Haa, Proposition 3.1.1]. �

Remark 3.4. The condition Re γ > 0 in Proposition 3.3 (ii) cannot be relaxed in
general, for the operators U iu

σ , for u real and σ > 0, may be unbounded from h1(M)
to L1(M) — and, a fortiori, on h1(M). Indeed, suppose for instance that M is a
complex symmetric space of the noncompact type. We argue by contradiction. If
U iu

σ were bounded from h1(M) to L1(M) for some u 6= 0, then so would be the

operator L iu, because L iu = U iu
σ

(
σ+L

)iu
and

(
σ+L

)iu
is bounded on h1(M)

[MVo, Theorem 7]. However, it is known [MMV4] that L iu does not map H1(M)
to L1(M). Since H1(M) is contained in h1(M), L iu does not map h1(M) to L1(M)
either.

An important consequence of sectoriality of an operator A on a Banach space
is the boundedness of certain holomorphic functions of A. More precisely, suppose
that 0 < θ ≤ π. We denote by H∞

0 (Sθ) the space of all bounded holomorphic
functions on the sector Sθ for which there exist positive constants C and s such
that

∣∣f(z)
∣∣ ≤ C

|z|s
1 + |z|2s . ∀z ∈ Sθ;

H∞
0 (Sθ) is called the Riesz–Dunford class on Sθ. The extended Riesz–Dunford class

E (Sθ) is the Banach algebra generated by H∞
0 (Sθ), the constant functions and the

function z 7→ (1 + z)−1. For more on these classes of functions, see [Haa, pp. 27–
29]. Recall that if A is a sectorial operator of angle ω on a Banach space Y and f
belongs to the extended Riesz–Dunford class E (Sθ) for some θ > ω, then f(A) is
bounded on Y [Haa, Theorem 2.3.3].

The functional calculus for sectorial operators is used in the proof of the following
proposition, which contains additional information on the operators Uσ.

Proposition 3.5. Assume that σ1, σ2, γ > 0.

(i) U γ
σ1

[
h1(M)

]
= U γ

σ2

[
h1(M)

]
.

(ii) There exists a constant C such that

C−1
∥∥U −γ

σ1
f
∥∥
h1 ≤

∥∥U −γ
σ2

f
∥∥
h1 ≤ C

∥∥U −γ
σ1

f
∥∥
h1

for every f in U γ
[
h1(M)

]
.
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Proof. It is easily checked that the function ϕ defined by

ϕ(z) =

(
z + σ1
z + σ2

)γ

belongs to the class E (Sθ) for all θ ∈ (0, π). Since

U −γ
σ1

U γ
σ2

= (σ1 + L )γ(σ2 + L )−γ = ϕ(L )

on L2(M), and L is sectorial of angle π/2 on h1(M) by Theorem 3.1 (ii), we
conclude by [Haa, Theorem 2.3.3] and Proposition 2.3 that U −γ

σ1
U γ

σ2
extends to

a bounded operator on h1(M). Similarly one shows that U −γ
σ2

U γ
σ1

extends to a

bounded operator on h1(M). Consequently the identities
(
U −γ

σ2
U γ

σ1

) (
U −γ

σ1
U γ

σ2

)
= J =

(
U −γ

σ1
U γ

σ2

) (
U −γ

σ2
U γ

σ1

)
, (3.4)

U γ
σ2

= U γ
σ1

(
U −γ

σ1
U γ

σ2

)
, U γ

σ1
= U γ

σ2

(
U −γ

σ2
U γ

σ1

)
, (3.5)

initially valid on L2(M), extend by density and boundedness to h1(M). From
(3.4) we deduce that the extensions of U −γ

σ2
U γ

σ1
and U −γ

σ1
U γ

σ2
are isomorphisms of

h1(M), and from this and (3.5) it follows that Uσ1

[
h1(M)

]
= Uσ2

[
h1(M)

]
. This

proves (i).
From (3.5) we also deduce that, for all f ∈ U γ

[
h1(M)

]
,

U −γ
σ1

f =
(
U −γ

σ1
U γ

σ2

)
U −γ

σ2
f, U −γ

σ2
f =

(
U −γ

σ2
U γ

σ1

)
U −γ

σ1
f,

and the h1(M)-boundedness of U −γ
σ1

U γ
σ2

and U −γ
σ2

U γ
σ1

gives (ii). �

4. A one-parameter family of Hardy type spaces

4.1. Definition and properties of Xγ(M). By Proposition 3.3 (ii), the operator
U γ is bounded and injective on h1(M) for all γ > 0. Thus, the following definition
makes sense.

Definition 4.1. Suppose that γ > 0. We denote by Xγ(M) the space U γ
[
h1(M)

]
,

endowed with the norm that makes U γ an isometry, i.e., set
∥∥f

∥∥
Xγ :=

∥∥U −γf
∥∥
h1 ∀f ∈ U γ

[
h1(M)

]
.

The following proposition gives some equivalent characterisations of the spaces
Xγ(M), showing in particular that replacing U with Uσ for some σ > 0 in the
above definition would determine the same spaces (up to equivalence of norms).

Proposition 4.2. Let γ, σ > 0. For a function f on M , the following are equiva-

lent:

(i) f is in Xγ(M);
(ii) f is in U γ

σ

[
h1(M)];

(iii) both f and L −γf are in h1(M).

Moreover there exists a positive constant C independent of f such that

C−1
∥∥f

∥∥
Xγ ≤

∥∥U −γ
σ f

∥∥
h1 ≤ C

∥∥f
∥∥
Xγ , (4.1)

C−1
∥∥f

∥∥
Xγ ≤

∥∥f
∥∥
h1 +

∥∥L −γf
∥∥
h1 ≤ C

∥∥f
∥∥
Xγ . (4.2)

Proof. The equivalence of (i) and (ii) and the inequalities (4.1) are immediate con-
sequences of Proposition 3.5. It remains to prove the equivalence of (i) and (iii), as
well as the inequalities (4.2).

Assume first that both f and L −γf belong to h1(M). Observe that, at least
formally,

U −γf = ϕ(L )
(
I + L −γ

)
f, (4.3)
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where ϕ is given by

ϕ(z) =
(1 + z)γ

1 + zγ
.

Now, f and L −γf are in h1(M) by assumption, whence so is
(
I +L −γ

)
f . On the

other hand, it is straightforward to check that ϕ belongs to the class E (Sθ) for any
θ ∈ (π/2, π). Since L is a sectorial operator of angle π/2 on h1(M) by Theorem
3.1 (ii), we deduce that ϕ(L ) is bounded on h1(M). Hence from (4.3) we conclude
that U −γf is in h1(M) and

∥∥f
∥∥
Xγ =

∥∥U −γf
∥∥
h1 ≤ C

( ∥∥f
∥∥
h1 +

∥∥L −γf
∥∥
h1

)
.

Conversely, suppose that U −γf is in h1(M). Observe that f = U γU −γf .
Since U −γf is in h1(M) by assumption, and U γ is bounded on h1(M) by Propo-
sition 3.3 (ii), f is in h1(M), and

∥∥f
∥∥
h1 ≤ C

∥∥U −γf
∥∥
h1 =

∥∥f
∥∥
Xγ .

Furthermore, L −γf = (I + L )−γU −γf , and (I + L )−γ is bounded on h1(M)
by Theorem 3.1 (iii). Then L −γf is in h1(M) and

∥∥L −γf
∥∥
h1 ≤ C

∥∥U −γf
∥∥
h1 =

∥∥f
∥∥
Xγ ,

as required. �

The operators U γ commute with any other operator in the functional calculus
of L , including resolvents and the heat semigroup. Hence, from Definition 4.1 and
Theorem 3.1 one immediately obtains the following result.

Corollary 4.3. The following hold:

(i) the heat semigroup is uniformly bounded on Xγ(M) for every γ > 0;
(ii) L is a sectorial operator of angle π/2 on Xγ(M);
(iii) sup

λ>0

∣∣∣∣∣∣λ (λ+ L )−1
∣∣∣∣∣∣
Xγ <∞, equivalently sup

λ>0

∣∣∣∣∣∣L (λ+ L )−1
∣∣∣∣∣∣
Xγ <∞.

A few other relevant properties of the spaces Xγ(M) are stated below. One
shoud compare parts (iii) and (iv) of Proposition 4.4 with the discussion in Remark
3.4. In light of the interpolation property in part (v), the Xγ-h1 boundedness
of the imaginary powers of L expressed in part (iv) can be seen as an endpoint
counterpart to their Lp-boundedness for p ∈ (1,∞).

Proposition 4.4. The following hold:

(i) if Re z > 0, then U z is bounded on Xγ(M) for every γ > 0;
(ii) {Xγ(M) : γ > 0} is a decreasing family of Banach spaces;

(iii) if γ > 0 and u is real, then U iu is bounded from Xγ(M) to h1(M);
(iv) if γ > 0 and u is real, then L iu is bounded from Xγ(M) to h1(M);
(v)

(
Xγ(M), L2(M)

)
[θ]

= Lpθ(M), whenever θ ∈ (0, 1) and pθ = 2/(1− θ).

Proof. Observe that U z is bounded on Xγ(M) if and only if
[
U γ

]−1
U zU γ = U z

is bounded on h1(M). Thus (i) is an immediate consequence of Proposition 3.3 (ii).
Next we prove (ii). By Proposition 3.3 (ii) and the definition of Xγ(M), it is clear

that h1(M) ⊇ Xγ(M) for any γ > 0, with continuous inclusion. So, if γ2 > γ1 > 0,
then

Xγ2(M) = U γ2
[
h1(M)

]
= U γ2−γ1U γ1

[
h1(M)

]
= U γ2−γ1

[
Xγ1(M)

]
⊆ Xγ1(M),

the last containment above being a consequence of the boundedness of U γ2−γ1 on
Xγ1(M) proved in (i).

Notice that (iii) is equivalent to the boundedness of U γ+iu on h1(M), so (iii) is
another consequence of 3.3 (ii).
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To prove (iv), notice that, by Proposition 4.2, L iu is bounded from Xγ(M) to
h1(M) if and only if L iu U γ

σ is bounded on h1(M) for some σ > 0. Note that, by
spectral theory,

L iu U γ
σ = U γ+iu

σ

(
σ + L

)iu
;

the operator U γ+iu
σ is bounded on h1(M) by (iii), and

(
σ + L

)iu
is bounded on

h1(M) because its symbol satisfies a Mihlin–Hörmander condition of any order on
the strip {z ∈ C : | Im z| < β} provided σ > β2 − b [MVo, Theorem 7], and (iv) is
proved.

Finally, as already mentioned, U is an isomorphism of Lp(M) for all p ∈ (1, 2],
hence so is U γ , while Xγ(M) = U γ

[
h1(M)

]
, for all γ > 0. The interpolation

property (v) for Xγ(M) is therefore an immediate consequence of the corresponding
property for h1(M) proved in [MVo, Theorem 5]. �

We shall show that {Xγ(M) : γ > 0} is actually a strictly decreasing family of
Banach spaces. To do so, we need to discuss an atomic decomposition of the spaces
Xγ(M).

4.2. Atomic decomposition when γ is an integer. In the case where γ is
an integer, Xγ(M) was defined in [Vo], where also some of its properties were in-
vestigated. In particular, it was shown there that these spaces admit an atomic
decomposition that we now describe, which is a variant of the atomic decompo-
sition for the spaces Xk(M) proved in [MMV3]. An atom A in Xk(M) will be a
standard atom in h1(M) satisfying an additional infinite dimensional cancellation
condition, expressed as orthogonality of A to the space of k-harmonic functions in
a neighbourhood of the support of A.

Definition 4.5. Suppose that k is a positive integer and that B is a ball in M .
We say that a function V in L2(M) is k-harmonic on B if L kV is zero (in the
sense of distributions) in a neighbourhood of B. We shall denote by P k

B the space of

k-harmonic functions on B. Moreover, let Qk
B denote the space of k-quasi-harmonic

functions on B, i.e., the subspace of L2(M) consisting of all the functions V such
that L kV is constant (in the sense of distributions) in a neighbourhood of B.

Remark 4.6. By elliptic regularity, P k
B coincides with the space of the functions V

in L2(M) that are smooth in a neighbourhood of B and such that L kV is zero
therein. A similar remark applies to Qk

B.

A direct consequence of the definition of P k
B and Qk

B is the following chain of
inclusions:

P 1
B ⊆ Q1

B ⊆ P 2
B ⊆ Q2

B ⊆ · · · ;
correspondingly

(P 1
B)

⊥ ⊇ (Q1
B)

⊥ ⊇ (P 2
B)

⊥ ⊇ (Q2
B)

⊥ ⊇ · · · ,
where (P k

B)
⊥ and (Qk

B)
⊥ denote the orthogonal complements of P k

B and Qk
B is

L2(M).
For each ball B in M , let us denote by L2(B) the space of all L2(M) functions

supported in B. The following result is the counterpart for the spaces P k
B of [MMV3,

Proposition 3.3], where the case of Qk
B is treated; the proof is analogous and is

omitted.

Proposition 4.7. Suppose that k is a positive integer, and that B is a ball in M .

(i) (P k
B)

⊥ =
{
F ∈ L2(M) : L −kF ∈ L2(B)

}
.

(ii) L −k
(
(P k

B)
⊥) is contained in L2(B) ∩ Dom(L k). Furthermore, functions

in (P k
B)

⊥ have support contained in B.
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(iii) U −k
(
(P k

B)
⊥) is contained in L2(B).

Definition 4.8. Suppose that k is a positive integer. A standard Xk-atom associ-
ated to the ball B of radius ≤ 1 is a function A in L2(M), supported in B, such
that

(i) A is in (Qk
B)

⊥;

(ii) ‖A‖L2 ≤ µ(B)−1/2.

A global Xk-atom associated to the ball B of radius 1 is a function A in L2(M),
supported in B, such that

(i) A is in (P k
B)

⊥;

(ii) ‖A‖L2 ≤ µ(B)−1/2.

An Xk-atom is either a standard Xk-atom or a global Xk-atom.

Remark 4.9. An Xk-atom (standard or global) is also a standard h1-atom: indeed,
in either case the cancellation condition (i) implies that the integral of A vanishes,
since χ2B is in P k

B and in Qk
B.

Remark 4.10. The set of Xk-atoms is a bounded subset of Xk(M). Indeed, in the
case of a global Xk-atom A, from Proposition 4.7 and (2.8) it follows immediately
that

‖U −kA‖h1 ≤ C
∣∣∣∣∣∣U −k

∣∣∣∣∣∣
L2 ;

the fact that the same estimate also holds for a standard Xk-atom A can be shown
as in [MMV3, Remark 3.5].

Definition 4.11. Suppose that k is a positive integer. The space Xk
at(M) is the

space of all functions F in h1(M) that admit a decomposition of the form F =∑
j λj Aj , where {λj} is a sequence in ℓ1 and {Aj} is a sequence of Xk-atoms. We

endow Xk
at(M) with the norm

‖F‖Xk
at
= inf

{∑

j

|λj | : F =
∑

j

λj Aj , Aj Xk-atoms
}
.

From Remark 4.10 it is clear that Xk
at(M) ⊆ Xk(M), with continuous embedding.

One can show that equality holds under a suitable geometric hypothesis on M .

Definition 4.12. We say thatM has Cℓ bounded geometry if the injectivity radius
is positive and the following hold:

(a) if ℓ = 0, then the Ricci tensor is bounded from below;
(b) if ℓ is positive, then the covariant derivatives ∇jRic of the Ricci tensor are

uniformly bounded on M for all j ∈ {0, . . . , ℓ}.
The aforementioned atomic decomposition of Xk(M) is the content of the fol-

lowing theorem. We omit the proof, which follows the lines of the proof of [MMV3,
Theorem 4.3].

Theorem 4.13. Suppose that k is a positive integer and that M has C2k−2 bounded

geometry. Then Xk(M) and Xk
at(M) agree as vector spaces and there exists a con-

stant C such that

C−1 ‖F‖Xk
at
≤ ‖F‖Xk ≤ C ‖F‖Xk

at
∀F ∈ Xk(M). (4.4)

Notice that when k = 1 the geometric hypothesis of Theorem 4.13 is already
contained in our geometric assumptions on the manifold M (see Section 2), so the
atomic characterization of X1(M) holds without additional assumptions.

As a consequence of the atomic characterization of the space X1(M) we can prove
a result involving all Xγ(M) spaces. Denote by H ∞(M) the space of all bounded
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harmonic functions on M , thought of as a subspace of bmo(M), and consider the
annihilator of H ∞(M) in h1(M), defined by

H ∞(M)⊥ :=
{
f ∈ h1(M) : 〈f,H〉 = 0 for all H in H ∞(M)

}
,

where 〈·, ·〉 denotes the duality between h1(M) and bmo(M) (see (2.9)).

Proposition 4.14. The following hold:

(i) for every γ > 0 the space Xγ(M) is contained in H ∞(M)⊥ ;

(ii) {Xγ(M) : γ > 0} is a strictly decreasing family of Banach spaces.

Proof. We first show that X1(M) ⊆ H ∞(M)⊥. By Theorem 4.13, every function
f in X1(M) admits a representation of the form

∑
j cj Aj , where the Aj ’s are X1-

atoms. Each of these is annihilated by all bounded harmonic functions, so that, by
(2.9),

〈f,H〉 =
∑

j

cj

∫
M

Aj H dµ = 0 ∀H ∈ H ∞(M).

Taking closures in h1(M), we then obtain that X1(M)
h1(M) ⊆ H ∞(M)⊥. Now,

the sectoriality of U implies [Haa, Proposition 3.1.1 (d)] that X1(M)
h1(M)

=

Xγ(M)
h1(M)

, and we can conclude that Xγ(M)
h1(M) ⊆ H ∞(M)⊥. This proves

(i).
We now prove (ii). Let γ2 > γ1 > 0. In view of Proposition 4.4 it remains

to show that the containment Xγ2(M) ⊆ Xγ1(M) is proper. We argue by con-
tradiction. Suppose that Xγ2(M) = Xγ1(M). Since U is an injective sectorial

operator on h1(M) (see Proposition 3.3),
(
U γ1

)−1
=

(
U −1

)γ1
= U −γ1 [Haa,

Propositions 3.1.1 (e) and 3.2.1 (a)]. Furthermore, U −γ1U γ2 ⊆ U γ2−γ1 [Haa,
Proposition 3.2.1 (b)]. Since Xγ2(M) = Xγ1(M), the operator U −γ1U γ2 is surjec-
tive on h1(M), so U γ2−γ1 is also surjective on h1(M). By [Haa, Proposition 3.1.1
(d)], U γ2−γ1 is bounded and injective on h1(M), whence U γ2−γ1 is an isomor-
phism of h1(M). Therefore 0 is in the resolvent set of U γ2−γ1 . However, 0 is in the
h1-spectrum of U (U cannot be surjective, because, by (i), U h1(M) = X1(M) is
contained in the annihilator of constant functions), and this contradicts the spectral
mapping theorem [Haa, Proposition 3.1.1 (j)]. �

4.3. Lack of atomic decomposition when γ is not an integer. In this sub-
section we restrict our analysis to symmetric spaces of the noncompact type X of
real rank one, and show that, if γ is not a positive integer, then Xγ(X) does not
admit an atomic decomposition. A similar result holds for the analogue of Xγ(X)
on homogeneous trees (see [CM, Theorem 5.8] for details). For the notation and the
main properties of noncompact symmetric spaces and for spherical analysis thereon
we refer the reader to [H1, H2].

We recall here that X is a quotient G/K, where G is a noncompact semisimple
Lie group of finite centre and real rank one and K is a maximal compact subgroup
of G. Given a Cartan decomposition g = p⊕ k of the Lie algebra of G, we denote by
a a maximal abelian subspace of p and by a∗

C
the complexification of its dual. The

real rank one assumption means that dim a = 1 and implies that the Weyl group is
{1,−1}. IfM denotes the centralizer of a in K, we denote by B the quotient K/M .

For every compactly supported function f on X, its Helgason–Fourier transform f̃
is a function on a∗

C
× B defined as in [H2, p. 223]. The Paley–Wiener theorem on

noncompact symmetric spaces will be a key ingredient in the proof of the following
result.

Theorem 4.15. Suppose that X is a symmetric space of the noncompact type and

real rank one, that k is a positive integer, and that γ is in (k − 1, k).
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(i) If f is a function in Xγ(X) with compact support, then f belongs to Xk(X).
(ii) If f is a function in L2(X) ∩ Xγ(X) with compact support contained in the

ball B1(o), then f is a multiple of an Xk-atom.

(iii) Xk(X) is not dense in Xγ(X).

Proof. We prove the result in the case where k = 1. The proof for k ≥ 2 is similar
and is omitted.

We first prove (i). We show that if γ is in (0, 1), and f is a function in Xγ(X)
with compact support, then f belongs to X1(X). Suppose that the support of f is

contained in the ball BR(o) for some R > 0. Then, by the Paley–Wiener theorem
for the Helgason–Fourier transform [H2, Corollary 5.9, p. 281] and the fact that f

is in L1(X), f̃(·, b) extends to an entire function of exponential type R uniformly in
b and there exist constants C and N such that

∣∣f̃(λ, b)
∣∣ ≤ C (1 + |λ|)N e|Imλ|R ∀λ ∈ a∗C ∀b ∈ B. (4.5)

Furthermore, f̃ is smooth on a∗
C
×B and satisfies the following symmetry condition:∫

B

e(−iλ+ρ)(A(x,b)) f̃(−λ, b) db =
∫
B

e(iλ+ρ)(A(x,b)) f̃(λ, b) db (4.6)

for every x in X and every λ in a∗
C
; here ρ ∈ a∗ denotes as usual half the sum of the

positive restricted roots, while A : X×B → a is defined as in [H2, p. 223].
Since f is in Xγ(M), by Proposition 4.2 there exists a function g in h1(X) such

that

f = L γg.

Since g is in L1(X), its Helgason–Fourier transform g̃(·, b) is a continuous function
on a∗ + i[−1, 1]ρ for almost all b in B [H3, SS], and

f̃(λ, b) = Q(λ)γ g̃(λ, b) , (4.7)

where Q is the quadratic form on a∗
C
× a∗

C
defined by

Q(λ) = 〈λ, λ〉+ 〈ρ, ρ〉
(see [H2, Lemma 1.4, p. 225] and [CGM, Section 1]). Note that Q vanishes at the

points of ±iρ; hence from (4.7) we deduce that f̃(±iρ, b) = 0 for almost all b in B,

and actually this holds for all b in B because f̃ is smooth on a∗
C
× B. Since f̃(·, b)

is entire, its zeros must have at least order 1. Moreover 1/Q is a meromorphic

function in a∗
C
with simple poles at ±iρ. Therefore λ 7→ Q(λ)−1 f̃(λ, b) is an entire

function for every b in B. Since Q(−λ) = Q(λ) for all λ in a∗
C
, from the symmetry

condition (4.6) we deduce that∫
B

e(−iλ+ρ)A(x,b)Q(−λ)−1f̃(−λ, b) db =
∫
B

e(iλ+ρ)A(x,b)Q(λ)−1 f̃(λ, b) db.

Furthermore, (λ, b) 7→ Q(λ)−1 f̃(λ, b) is clearly smooth on a∗
C
×B, and satisfies the

estimate (4.5) (possibly with a different constant C). Again by the Paley–Wiener
theorem for the Helgason–Fourier transform, there exists a distribution h on X

supported in BR(o) such that

h̃(λ, b) = Q(λ)−1 f̃(λ, b) ,

that is, h = L −1f . By assumption f ∈ Xγ(X) ⊆ h1(X) ⊆ L1(X). Hence, by
[CGM, Theorem 4.7], L −1f is a function in Lp(X) for every p ∈

(
1, n/(n − 2)

)
.

Since L −1 f is supported in BR(o), by (2.8) we deduce that L −1f ∈ h1(X). By
Proposition 4.2 we conclude that f belongs to X1(X).

We now prove (ii). Suppose that f ∈ L2(X) ∩Xγ(X) and has support contained
in the ball B = B1(o). Then f is integrable, so from the proof of (i) it follows that
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L −1f is supported in B, and moreover L −1f is in L2(M) because L −1 is L2-
bounded. From Proposition 4.7 (i) we deduce that f is in (P 1

B)
⊥, and consequently

f is a multiple of a global X1-atom.

Finally we prove (iii), i.e., we show that X1(X) is not dense in Xγ(X). Consider

X1(X)
Xγ(X)

, i.e., the closure of X1(X) in Xγ(X). Since U −γ is an isometry between
Xγ(X) and h1(X), the topology of Xγ(X) is transported by U −γ to that of h1(X),

and U −γ
(
X1(X)

Xγ(X))
= U −γX1(X)

h1(X)
. Clearly U −γX1(X) = X1−γ(X) and we

obtain that

U −γ
(
X1(X)

Xγ(X))
= X1−γ(X)

h1(X)
.

However, Proposition 4.4 (vi) ensures that X1−γ(X) is properly contained in H ∞(X)⊥,

so that X1−γ(X)
h1(X) ⊆ H ∞(X)⊥, which we already know to be a proper closed

subspace of h1(X). Thus, X1(X)
Xγ(X) ⊆ U γH ∞(X)⊥ ( U γh1(X) = Xγ(X). �

5. Modified Riesz–Hardy space

In this section, we consider the modified Riesz–Hardy space H̃1
R(M), defined by

H̃1
R(M) :=

{
f ∈ h1(M) : |Rf | ∈ L1(M)

}
,

where R denotes the “geometric” Riesz transform ∇L −1/2. Clearly H̃1
R(M) ⊆

H1
R(M), where H1

R(M) is the Riesz–Hardy space defined in (1.3). The main result

of this section is the characterisation of H̃1
R(M) as the space X1/2(M) introduced

in the previous section.

An important ingredient in the proof of this characterisation of H̃1
R(M) is the

following boundedness result.

Proposition 5.1. The operator (σ+L )−1/2 is bounded from L1(M) to h1(M) for
all σ > β2 − b.

In the proof of this proposition we shall apply the following lemma, which is
a slight variant of [MMV1, Lemma 2.4] and [MMV2, Lemma 5.1]. Let Jν(t) =
t−νJν(t) , where Jν denotes the standard Bessel function of the first kind and order
ν, and let O denote the differential operator t∂t on the real line.

Lemma 5.2. For every positive integer N there exists a polynomial PN of degree

N without constant term such that∫+∞

−∞

f(t) cos(tv) dt =

∫+∞

−∞

PN (O)f(t)JN−1/2(tv) dt ,

for all compactly supported functions f such that Oℓf ∈ L1(R) for every ℓ =
0, . . . , N .

Proof of Proposition 5.1. Suppose that g is in L1(M). Observe that we can write
g =

∑
j gj, where each gj is supported in a ball of radius 1 and ‖g‖L1 =

∑
j ‖gj‖L1 .

It suffices to prove that (σ+L )−1/2gj is in h1(M), and that there exists a constant
C, independent of g and j, such that

∥∥(σ + L )−1/2gj
∥∥
h1 ≤ C

∥∥gj
∥∥
L1 .

For the sake of convenience, in the rest of this proof we suppress the index j
and write h instead of gj . We assume that the support of h is contained in the ball
B1(o).
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We argue as in the proof of [MMV3, Lemma 4.2]. Denote by ω an even function
in C∞

c (R) which is supported in [−3/4, 3/4], is equal to 1 in [−1/4, 1/4], and satisfies
∑

j∈Z

ω(t− j) = 1 ∀t ∈ R.

Define ω0 := ω, and, for each j in {1, 2, 3, . . .},
ωj(t) := ω(t− j) + ω(t+ j) ∀t ∈ R. (5.1)

Observe that the support of ωj is contained in the set of all t in R such that

j − 3/4 ≤ |t| ≤ j + 3/4. Set m(λ) = (c2 + λ2)−1/2, where c :=
√
σ + b > β. Recall

that
m̂(t) = K0(c|t|) ∀t ∈ R, (5.2)

where Kν denotes the modified Bessel function of the third kind and order ν (see,
for instance, [Le, p. 108]).

As in the proof of Theorem 3.1, let D =
√

L − b. By the spectral theorem, we
write (σ + L )−1/2 = m(D) =

∑∞
j=0 Tj(D) , where

Tj(λ) =

∫∞
−∞

(ωj m̂)(t) cos(tλ) dt ∀λ ∈ R. (5.3)

An induction argument, based on formulae [Le, (5.7.9), p. 110] and [Le, (5.7.12),
p. 111], and the estimates [Le, formulae (5.7.12) and (5.11.9)] show that, for all
ℓ ∈ N, the function OℓK0 is in L1(R+), and, for all ℓ ≥ 1, OℓK0 is bounded;
moreover, for all ε ∈ (0, 1) and ℓ ∈ N, there exists a positive constant C such that

|OℓK0(t)| ≤ C e−εt ∀t ≥ 1/4 . (5.4)

In view of (5.2), it is straightforward to check that Oℓ(ωj m̂) is in L1(R) for all
nonnegative integers ℓ and j, and that Oℓ(ωj m̂) is bounded whenever ℓ + j ≥ 1.
By Lemma 5.2, for every positive integer N , for all j ≥ 0 and λ ∈ R

Tj(λ) =

∫+∞

−∞

PN (O)(ωj m̂)(t)JN−1/2(tλ) dt , (5.5)

where PN is a polynomial of degree N without constant term.
By (5.4), for all N there exist positive constants C and c′ ∈ (β, c) such that, for

j = 1, 2, 3, . . . , ∣∣PN (O)(ωj m̂)(t)
∣∣ ≤ C e−c′|t| (5.6)

on the support of ωj . By the asymptotics of JN−1/2 [Le, formula (5.11.6)],

sup
s>0

|(1 + s)N JN−1/2(s)| <∞.

Let kJN−1/2(tD) denote the Schwartz kernel of the operator JN−1/2(tD). If we

choose N > (n + 2)/2, we may apply [MMV1, Proposition 2.2 (i)] and conclude
that ∥∥JN−1/2(tD)h

∥∥
L2 ≤

∥∥h
∥∥
L1 sup

y∈M

∥∥kJN−1/2(tD)(·, y)
∥∥
L2

≤ C
∥∥h

∥∥
L1 |t|−n/2

(
1 + |t|

)n/2 (5.7)

for every t ∈ R \ {0}. Take j ≥ 1 and observe that the support of PN (O)(ωj m̂) is
contained in {t ∈ R : j − 3/4 ≤ |t| ≤ j + 3/4}. Hence

∥∥Tj(D)h
∥∥
L2 ≤

∫∞
−∞

∣∣PN (O)(ωj m̂)(t)
∣∣ ∥∥JN−1/2(tD)h

∥∥
L2 dt

≤ C
∥∥h

∥∥
L1

∫ j+3/4

j−3/4

∣∣PN (O)(ωj m̂)(t)
∣∣ ∣∣t

∣∣−n/2 (
1 + |t|

)n/2
dt (5.8)

≤ C e−c′j
∥∥h

∥∥
L1 ∀j ∈ {1, 2, . . .}.
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In the last inequality we have used (5.7) and (5.6). By (5.5) and finite propagation
speed, Tj(D)h is a function in L2(M) with support contained in Bj+1(o); so, by
(2.8), ∥∥Tj(D)h

∥∥
h1 ≤ C

∥∥h
∥∥
L1 e−c′j jα/2 eβj ,

for every j ∈ {1, 2, . . .}. Hence
∥∥∥

∞∑

j=1

Tj(D)h
∥∥∥
h1

≤ C
∥∥h

∥∥
L1

∞∑

j=1

jα/2 e(β−c′)j ≤ C
∥∥h

∥∥
L1 ,

because c′ > β.
It remains to estimate T0(D). Observe that, for all t ∈ R\{0}, since JN−1/2(t ·)

is entire of exponential type |t|, by finite propagation speed kJN−1/2(tD)(·, y) is sup-
ported in B|t|(y). Hence, by Hölder’s inequality and [MMV1, Proposition 2.2 (i)],
for every t ∈ [−1, 1] \ {0} and p ∈ [1, 2],

∥∥JN−1/2(tD)h
∥∥
Lp ≤

∥∥h
∥∥
L1 sup

y∈M

∥∥kJN−1/2(tD)(·, y)
∥∥
Lp

≤ C
∥∥h

∥∥
L1 |t|n(1/p−1/2) sup

y∈M

∥∥kJN−1/2(tD)(·, y)
∥∥
L2

≤ C
∥∥h

∥∥
L1 |t|−n/p′

.

Therefore, we see that, if p′ > n, then

∥∥T0(D)h
∥∥
Lp ≤

∫∞
−∞

∣∣PN (O)(ω0 m̂)(t)
∣∣ ∥∥JN−1/2(tD)h

∥∥
Lp dt

≤ C
∥∥h

∥∥
L1

∫ 1

−1

∣∣PN (O)(ω0 m̂)(t)
∣∣ ∣∣t

∣∣−n/p′

dt

≤ C
∥∥h

∥∥
L1 ;

observe that PN (O)(ω0 m̂) is bounded since PN has no constant term. Again by
finite propagation speed, T0(D)h is supported in B2(o), so from (2.8) we deduce
that ∥∥T0(D)h

∥∥
h1 ≤ C

∥∥h
∥∥
L1 ,

as required to conclude the proof. �

Theorem 5.3. The modified Riesz–Hardy space H̃1
R(M) agrees with X1/2(M).

Proof. First we prove that X1/2(M) ⊆ H̃1
R(M). Suppose that f is in X1/2(M), and

let σ > 0. Then, by Proposition 4.2, there exists g in h1(M) such that U
1/2
σ g = f ,

and therefore ∣∣Rf
∣∣ =

∣∣∇(σ + L )−1/2g
∣∣.

It is well known that the local Riesz transform ∇(σ + L )−1/2 maps h1(M) to
L1(M), provided σ is large enough [MVo, Theorem 8], hence

∣∣Rf
∣∣ belongs to

L1(M). Furthermore, f itself belongs to h1(M), because X1/2(M) ⊆ h1(M). Thus,

f is in H̃1
R(M), as required.

Next we prove that H̃1
R(M) ⊆ X1/2(M). Suppose that f is in H̃1

R(M). Then f

is in h1(M) and
∣∣Rf

∣∣ is in L1(M). By the inequality (2.6), L −1/2f is in L1(M).

Choose σ > β2−b. Notice that
√
σ + z√
z

= ϕ(z)+

√
σ√
z
, where the function ϕ belongs

to the class E (Sθ) for all θ in (0, π). Since L generates a contraction semigroup
on L1(M), L is a sectorial operator of angle π/2 on L1(M), and therefore ϕ(L ) is
bounded on L1(M) [Haa, Theorem 2.3.3]. We already know that L −1/2f belongs

to L1(M), whence U
−1/2
σ f = ϕ(L )f +

√
σL −1/2f is in L1(M).
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Now, set g = U
−1/2
σ f . Then L −1/2f = (σ +L )−1/2g, which belongs to h1(M)

by Proposition 5.1. Since f belongs to h1(M) by assumption, we conclude that
f ∈ h1(M) by Proposition 4.2. �
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