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BMO SPACES ON WEIGHTED HOMOGENEOUS TREES

LAURA ARDITTI, ANITA TABACCO, AND MARIA VALLARINO

Abstract. We consider an infinite homogeneous tree V endowed with the usual metric d defined
on graphs and a weighted measure µ. The metric measure space pV, d, µq is nondoubling and of
exponential growth, hence the classical theory of Hardy and BMO spaces does not apply in this
setting. We introduce a space BMOpµq on pV, d, µq and investigate some of its properties. We prove
in particular that BMOpµq can be identified with the dual of a Hardy space H1

pµq introduced in
a previous work and we investigate the sharp maximal function related with BMOpµq.

Dedicated to Guido Weiss on the occasion of his 90th birthday

1. Introduction

The classical space of functions of bounded mean oscillation BMO was introduced in the Eu-
clidean setting by John and Nirenberg [11]. It is defined as the set of locally integrable functions f
such that

sup
B

1

|B|

ż

B
|f ´ fB| dx ă 8 , (1)

where the supremum is taken over all Euclidean balls and fB denotes the average of f on B. A
celebrated result of Fefferman and Stein [7] identifies BMO with the dual of the classical Hardy
space H1.

Various extensions of such theory have been considered in the literature. The first extension was
developed on spaces of homogeneous type in the sense of Coifman and Weiss [5, 6, 15, 16]. These
are metric measure spaces pX, d, µq where the doubling condition is satisfied, i.e., there exists a
constant C such that

µ
`

Bpx, 2rq
˘

ď C µ
`

Bpx, rq
˘

@x P X , @r ą 0, (2)

where Bpx, rq denotes the ball centred at x of radius r in the metric d. In this setting functions
in BMOpµq satisfy the analogue of condition (1), where metric balls are involved. Subsequently
extensions of the theory of Hardy and BMO spaces have been considered in the literature on
various metric measure spaces which do not satisfy the doubling condition (2). Due to the lack of
the doubling condition, it is less clear which is a suitable condition to define a BMO space which
enjoys all the properties of the classical one, and in particular it is not clear which subsets of the
space can be chosen to replace balls in condition (1).

The literature on this subject is huge and we shall only cite here some contributions. In particular,
various results on this subject have been obtained on nondoubling Riemannian manifolds [3, 14, 17]
and on Lie groups of exponential growth [13, 18]. A few results have been obtained in the discrete
setting of infinite graphs [4, 9].

Key words and phrases. Hardy spaces; BMO spaces; homogeneous trees; nondoubling measure; sharp maximal
function.
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1



2 L. ARDITTI, A. TABACCO, AND M. VALLARINO

The goal of the present paper is to develop a theory for a BMO space on a homogeneous tree
V endowed with the usual metric d defined on a graph and a weighted measure µ (see Section 2
for the details), such that pV, d, µq is a nondoubling space. Such weighted homogeneous trees were
first studied by Hebisch and Steger [10], who developed a Calderón–Zygmund theory on them. In
particular, they proved that there exists a family of appropriate sets in V, which are called Calderón–
Zygmund sets, which replace the family of balls in the classical Calderón–Zygmund theory. In [1]
we introduced an atomic Hardy space H1pµq on pV, d, µq, where atoms are functions supported in
Calderón–Zygmund sets, with vanishing integral and satisfying a certain size condition.

We shall define here a space of functions of bounded mean oscillation BMOpµq adapted to this
setting, for which the oscillation in the analogue of condition (1) is measured on Calderón–Zygmund
sets. Then we show that BMOpµq can be identified with the dual of the Hardy space H1pµq. More
precisely, we introduce a family of spaces BMOqpµq, with q P r1,8q, for which the integrability
condition (1) is expressed in terms of an Lq-norm, and show that all such spaces coincide. As a
consequence, we find the real interpolation spaces between Lrpµq and BMOpµq, for r P r1,8q.
It would be interesting to find the complex interpolation space between Lrpµq and BMOpµq, as
well. To work in this direction, we introduce and study the sharp maximal function associated with
Calderón–Zygmund sets, and show that the Lp-norm of a function is controlled by the Lp-norm of
a variant of its sharp maximal function (see Theorem 20).

The paper is organized as follows. In Section 2 we introduce weighted homogeneous trees, we
recall the definition of Calderón–Zygmund sets and study some of their geometric properties. In
Section 3 we recall the definition of the Hardy space H1pµq, we define the space BMOpµq and prove
the duality between these two spaces. As a consequence, we deduce a real interpolation result and
a boundedness result for integral operators whose kernel satisfy a suitable Hörmander condition.
The last section is devoted to some inequalities involving the sharp maximal function defined in
terms of Calderón–Zygmund sets.

Positive constants are denoted by C; these may differ from one line to another, and may depend
on any quantifiers written, implicitly or explicitly, before the relevant formula.

2. Weighted homogeneous trees and Calderón–Zygmund sets

In this section we first introduce the infinite homogeneous tree and we define a distance and a
measure on it.

Definition 1. An infinite homogeneous tree of order m`1 is a graph T “ pV, Eq, where V denotes
the set of vertices and E denotes the set of edges, with the following properties:

(i) T is connected and acyclic;
(ii) each vertex has exactly m` 1 neighbours.

On V we define the distance dpx, yq between two vertices x and y as the length of the shortest
path between x and y. We also fix a doubly-infinite geodesic g in T , that is a connected subset
g Ă V such that

(i) for each element v P g there are exactly two neighbours of v in g;
(ii) for every couple pu, vq of elements in g, the shortest path joining u and v is contained in g.

We define a mapping N : g Ñ Z such that

|Npxq ´Npyq| “ dpx, yq @x, y P g . (3)
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This corresponds to the choice of an origin o P g (the only vertex for which Npoq “ 0) and an
orientation for g; in this way we obtain a numeration of the vertices in g. We define the level
function ` : V Ñ Z as

`pxq “ Npx1q ´ dpx, x1q ,

where x1 is the only vertex in g such that dpx, x1q “ mintdpx, zq : z P gu. For x, y P V we say that
y lies above x if

`pxq “ `pyq ´ dpx, yq.

In this case we also say that x lies below y.
Let µ be the measure on V such that for each function f : V Ñ C

ż

V
f dµ “

ÿ

xPV
fpxqm`pxq. (4)

Then µ is a weighted counting measure such that the weight of a vertex depends only on its level,
and the weight associated to a certain level is given by q times the weight of the level immediately
underneath. In particular, it can be proved [1] that for every x0 P V and r ą 0 the measure of the

ball centred at x0 of radius r is µ
`

Bpx0, rq
˘

“ m`px0q m
r`1`mr´2
m´1 . Hence, the metric measure space

pV, d, µq is of exponential growth and nondoubling.
To develop a Calderón–Zygmund theory on this nondoubling setting, it is useful to introduce

suitable subsets of V, called trapezoids. These sets were first defined in [10]. We shall recall below
their definition and their properties.

Definition 2. We call trapezoid a set of vertices S Ă V for which there exist xS P V and a, b P R`
such that

S “ tx P V : x lies below xS , a ď `pxSq ´ `pxq ă bu . (5)

In the following we will refer to xS as the root node of the trapezoid. Among all trapezoids we
are mostly interested in those where a and b are related by particular conditions, as specified in
the following definitions.

Definition 3. A trapezoid R Ă V is an admissible trapezoid if and only if one of the following
occurs:

(i) R “ txRu with xR P V, that is R consists of a single vertex;
(ii) DxR P V, DhpRq P N` such that

R “ tx P V : x lies below xR , hpRq ď `pxRq ´ `pxq ă 2hpRqu .

R is called degenerate in case (i) and non-degenerate in case (ii).

We set hpRq “ 1 in the degenerate case. In both cases, hpRq can be interpreted as the height of
the admissible trapezoid, which coincides with the number of levels spanned by R. We call width
of the admissible trapezoid R the quantity wpRq “ m`pxRq. We have that

µpRq “ hpRqm`pxRq “ hpRqwpRq. (6)

We now introduce the family of Calderón–Zygmund sets. They are trapezoids, even if not of
admissible type (except for the degenerate case); they consist of suitable enlargements of admissible
trapezoids, constructed according to the following definition.
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Definition 4. Given a non-degenerate admissible trapezoid R, the envelope of R is the set

R̃ “

"

x P V : x lies below xR ,
hpRq

2
ď `pxRq ´ `pxq ă 4hpRq

*

; (7)

we set hpR̃q “ hpRq. The envelope of a non-degenerate admissible trapezoid is also called a non-
degenerate Calderón–Zygmund set. Given a degenerate admissible trapezoid R, the envelope of R
is the set R̃ “ R. We denote by R the family of all the Calderón–Zygmund sets.

We refer the reader to [1] for the properties of such sets, in particular see [1, Propositions 2, 4]
for the proof of the following result.

Proposition 5. Let R be an admissible trapezoid and R̃ its envelope. Then

(i) µpR̃q ď 4µpRq ;

(ii) for all z P R̃, we have R̃ Ă Bpz, 8hpR̃qq .

For any Calderón–Zygmund set R̃ we define an enlargement of it, whose measure is comparable
with its measure. This can be thought as a substitute for the doubling condition in this setting.

Definition 6. Given a Calderón–Zygmund set R̃, we define the set

R̃˚ “
!

x P V : dpx, R̃q ă hpR̃q{4
)

. (8)

It is easy to see that there exists a positive constant C such that for every Calderón–Zygmund
set R̃

µpR̃˚q ď CµpR̃q . (9)

In the following proposition we construct a covering of V made by an increasing family of
Calderón–Zygmund sets.

Proposition 7. There exists a family of Calderón–Zygmund sets tQ̃nu
8
n“0 such that Q̃n Ă Q̃n`1

and
Ť

n Q̃n “ V.

Proof. Consider the family tQ̃nu
8
n“0 where

‚ Q̃0 is the Calderón–Zygmund set with root node x0 “ o and height h0 “ 1 (where o denotes
the only vertex in the doubly-infinite geodesic g such that `poq “ 0);

‚ @n ě 1, Q̃n is the Calderón–Zygmund set with root node xn that is the father node of xn´1,
i.e. it is the only neighbour of xn´1 that lies above xn´1, and height hn “ hn´1 ` 1 (then
we have hn “ n` 1).

We first show that Q̃n Ă Q̃n`1. Let x P Q̃n. By definition x lies below xn, then by construction x
also lies below xn`1. Moreover, `pxn`1q ´ `pxq “ `pxnq ` 1´ `pxq and we have that

`pxn`1q ´ `pxq ă 4hn ` 1 ă 4hn`1 , `pxn`1q ´ `pxq ě
hn
2
` 1 ě

hn`1

2
.

So we conclude that x P Q̃n`1.
To show that

Ť

n Q̃n “ V, consider x P V. Denote by k the smallest index such that x lies below
xk (and so x lies below xj , @j ě k) and set `pxkq ´ `pxq “ d. We seek for an index j ě k such that

x P Q̃j , that is
j ` 1

2
“
hj
2
ď `pxjq ´ `pxq ă 4hj “ 4pj ` 1q .
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Observe that `pxjq ´ `pxq “ `pxjq ´ `pxkq ` `pxkq ´ `pxq “ j ´ k ` d, so that

j ` 1

2
ď j ´ k ` d ă 4pj ` 1q ðñ

#

j ą d´k´4
3

j ě 1` 2pk ´ dq

Thus it is sufficient to take j ě max
 

k, 1` d´k´4
3 , 1` 2pk ´ dq

(

. �

For every p P p1,8q and for every n P N, let Xp
n be the space Lp0pQ̃nq of all functions in Lppµq

which are supported in the set Q̃n introduced in Proposition 7 and have vanishing integral. The
space pXp

n, } ¨ }Lpq is a Banach space. We denote by Xp the space Lpc,0pµq of all functions in Lppµq
with compact support and vanishing integral, interpreted as the strict inductive limit of the spaces
Xp
n (see [2, II, p. 33] for the definition of the strict inductive limit topology). This space will be a

key ingredient of next section. In particular, we shall use the following fact.

Proposition 8. Let p P p1,8q. For every function F : V Ñ C, the functional defined by

`pgq “

ż

Fg dµ “

ż

pF ` cqg dµ @g P Xp, c P C, (10)

lies in the dual of Xp.On the other hand, for every functional ` in the dual of Xp there exists
F : V Ñ C such that (10) holds.

Proof. On one hand, let F : V Ñ C and consider the linear functional ` : Xp Ñ C defined by
`pgq “

ş

Fg dµ. Then for every n P N by Hölder’s inequality we have
ˇ

ˇ

ˇ

ż

Fg dµ
ˇ

ˇ

ˇ
ď }F }LqpQ̃nq

}g}LppQ̃nq
@g P Xp

n ,

where q “ p1. Hence, ` is continuous on every Xp
n and continuous on Xp.

Suppose now that ` is a continuous linear functional on Xp. Then, for every n P N, ` P pXp
nq
˚,

hence it can be extended to a bounded linear functional on LppQ̃nq and there exists a function

Fn P L
qpQ̃nq such that

`pgq “

ż

pFn ` cqg dµ @g P Xp
n, c P C .

Notice that we used the fact that g has vanishing integral in the formula above. For every n P N we
choose the constant cn such that

ş

Q̃1
pFn ` cnqdµ “ 0. This implies that the restriction of Fn ` cn

on Q̃j coincide with Fj ` cj for every j ă n. Hence for every x P V we can define

F pxq “ Fnpxq ` cn ,

where n is any integer such that x P Q̃n. Then

`pgq “

ż

pF ` cq g dµ @g P Xp, c P C ,

as required. �

3. Hardy and BMO spaces

In this section we first recall the definition of atomic Hardy spaces given in [1].

Definition 9. A function a is a p1, pq-atom, for p P p1,8s, if it satisfies the following properties:

(i) a is supported in a Calderón–Zygmund set R̃;
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(ii) }a}Lp ď µpR̃q1{p´1 ;

(iii)
ş

V a dµ “ 0 .

Definition 10. The Hardy space H1,ppµq is the space of all functions g in L1pµq such that g “
ř

jPN λj aj, where aj are p1, pq-atoms and λj are complex numbers such that
ř

jPN |λj | ă 8. We

denote by }g}H1,p the infimum of
ř

jPN |λj | over all decompositions g “
ř

jPN λj aj, where aj are

p1, pq-atoms.

The space H1,ppµq endowed with the norm } ¨ }H1,p is a Banach space.
For every p P p1,8s we also introduce the spaces

H1,p
fin pµq “

!

g P L1pµq : g “
N
ÿ

j“1

λj aj , aj p1, pq ´ atoms, λj P C, N P N
)

.

Proposition 11. For any p P p1,8q, the following hold:

(i) H1,ppµq “ H1,8pµq and there exists a constant Cp such that

}g}H1,p ď }g}H1,8 ď Cp}g}H1,p ;

(ii) for every L P pH1pµqq˚, }L}pH1,pq˚ ď Cp}L}pH1q˚;

(iii) H1,8
fin pµq Ă H1,p

fin pµq;

(iv) for every Calderón–Zygmund set R̃, Lp0pR̃q Ă H1,8
fin pµq.

Proof. Property (i) follows from [1, Proposition 5]. Take now L P pH1pµqq˚ and g P H1pµq. Then

|Lpgq| ď }L}pH1q˚}g}H1,8 ď Cp}L}pH1q˚}g}H1,p ,

so that (ii) follows.
Property (iii) holds since every p1,8q-atom is a p1, pq-atom.

To prove (iv) let R̃ be a Calderón–Zygmund set and g P Lp0pR̃q be a function in Lppµq supported

in R̃, with vanishing integral. Then }g}L8 “ maxxPR̃ |gpxq| ă 8. Hence, µpR̃q´1}g}´1
L8g is a

p1,8q-atom. This proves (iv). �

In the sequel we shall denote byH1pµq the spaceH1,8pµq endowed with the norm }¨}H1 “ }¨}H1,8 .

We now introduce the space of functions of bounded mean oscillation. For every locally integrable
function f and every Calderón–Zygmund set R̃ we denote by fR̃ the average of f on R̃, i.e.,

fR̃ “
1

µpR̃q

ş

R̃ f dµ.

Definition 12. Let q P r1,8q. The space BMOqpµq is the space of all functions in Lqlocpµq such
that

sup
R̃PR

´ 1

µpR̃q

ż

R̃
|f ´ fR̃|

q dµ
¯1{q

ă 8 .

The space BMOqpµq is the quotient of BMOqpµq by constant functions. It is a Banach space
endowed with the norm

}f}BMOq “ sup
!´ 1

µpR̃q

ż

R̃
|f ´ fR̃|

q dµ
¯1{q

: R̃ P R
)

.

We now prove the duality result between BMO1pµq and H1pµq and then show, as a consequence,
that all BMOqpµq spaces coincide with BMO1pµq, for q P p1,8q.
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Theorem 13. The following hold:

(i) for every function f in BMO1pµq there exists a bounded linear functional Lf on H1pµq
such that

Lf pgq “

ż

V
f g dµ @g P H1,8

fin pµq , (11)

and there exists A ą 0 such that }Lf }pH1q˚ ď A }f}BMO1;

(ii) for every bounded linear functional L on H1pµq there exists a unique function f P BMO1pµq
such that L “ Lf and }f}BMO1 ď C2 }L}pH1q˚, where C2 is the constant which appears in
Proposition 11(i).

Proof. We first prove (i) in the case when f P L8pµq. Let g be a function in H1pµq and choose an
atomic decomposition g “

ř

j λjaj such that aj are p1,8q-atoms supported in Calderón–Zygmund

sets R̃j . Since f P L8pµq we have
ż

f g dµ “
ÿ

j

λj

ż

f aj dµ . (12)

For every j
ˇ

ˇ

ˇ

ż

f aj dµ
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

R̃j

pf ´ fR̃j
q aj dµ

ˇ

ˇ

ˇ

ď

ż

R̃j

|f ´ fR̃j
| |aj | dµ

ď µpR̃jq
´1

ż

R̃j

|f ´ fR̃j
| dµ

ď }f}BMO1 .

By (12) we deduce that
ˇ

ˇ

ˇ

ż

f g dµ
ˇ

ˇ

ˇ
ď

ÿ

j

|λj |}f}BMO1 .

Taking the infimum over all atomic decompositions of g we get
ˇ

ˇ

ˇ

ż

f g dµ
ˇ

ˇ

ˇ
ď }g}H1}f}BMO1 . (13)

Let now f P BMO1pµq be real-valued and define for every k P N the function fk : V Ñ R by

fkpxq “

#

fpxq if |fpxq| ď k

k fpxq
|fpxq| if |fpxq| ą k.

Then }fk}L8 ď k and }fk}BMO1 ď C}f}BMO1 . Moreover |fk´f | tends monotonically to zero when

k tends to 8. Let g P H1,8
fin pµq. By (13) we deduce that
ˇ

ˇ

ˇ

ż

fk g dµ
ˇ

ˇ

ˇ
ď }g}H1}fk}BMO1 ď C }g}H1}f}BMO1 .

Since fkg tends to fg everywhere, g is compactly supported and f is integrable on the support of
g, by the dominated convergence theorem

ˇ

ˇ

ˇ

ż

f g dµ
ˇ

ˇ

ˇ
“ lim

kÑ8

ˇ

ˇ

ˇ

ż

fk g dµ
ˇ

ˇ

ˇ
ď C }g}H1}f}BMO1 @g P H1,8

fin pµq . (14)
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Since H1,8
fin pµq is dense in H1pµq, it follows that the functional Lf extends to a bounded functional

on H1pµq and there exists a positive constant A such that }Lf }pH1q˚ ď A}f}BMO1 .
If f P BMO1pµq is complex-valued, then we apply (14) to Re f and Im f and prove (i).

We now prove (ii). Let tQ̃nu be the sequence of Calderón–Zygmund sets constructed in Proposi-
tion 7 and, for any n P N, let X2

n and X2 be the spaces introduced at the end of Section 2. Observe

that H1,2
fin pµq and X2 agree as vector spaces. For any g P X2

n the function µpQ̃nq
´1{2}g}´1

L2 g is a

(1,2)-atom, so that g is in H1,2pµq and }g}H1,2 ď µpQ̃nq
1{2}g}L2 . Hence X2 Ă H1,2pµq and the

inclusion is continuous.
Let L be in pH1pµqq˚ “ pH1,2pµqq˚. Hence L lies in the dual of X2. Then by Proposition 8 there

exists a function f : V Ñ C such that

Lpgq “

ż

f g dµ @g P X2 .

We now show that f P BMO2pµq. Take a Calderón–Zygmund set R̃. For any g P X2 supported in

R̃ the function µpR̃q´1{2}g}´1
L2 g is a (1,2)-atom. We then have

ˇ

ˇ

ˇ

ż

fg dµ
ˇ

ˇ

ˇ
“ |Lpgq| ď }L}pH1,2q˚}g}L2µpR̃q1{2 .

This implies that f ´ fR̃ is a function in L2
0pR̃q which represents the restriction of the bounded

linear functional L on L2
0pR̃q. Hence

}f ´ fR̃}L2pR̃q ď }L}pL2
0pR̃qq

˚ ď µpR̃q1{2}L}pH1,2q˚ .

It follows that
1

µpR̃q

ż

R̃
|f ´ fR̃| dµ ď }L}pH1,2q˚ ď C2}L}pH1q˚ ,

so that f P BMO1pµq and }f}BMO1 ď C2}L}pH1q˚ . �

Corollary 14. For every q in p1,8q the space BMOqpµq coincides with BMO1pµq and

}f}BMO1 ď }f}BMOq ď ACp}f}BMO1 @f P BMOqpµq ,

where p “ q1, Cp is the constant which appears in Proposition 11(i) and A is the constant which
appears in Theorem 13(i).

Proof. It follows from Hölder’s inequality that

}f}BMO1 ď }f}BMOq @f P BMOqpµq .

Take now f P BMO1pµq and let Lf be the functional on H1pµq such that

Lf pgq “

ż

f g dµ @g P H1,8
fin pµq .

Let q P p1,8q and p “ q1.

Let tQ̃nu be the sequence of Calderón–Zygmund sets constructed in Proposition 7. For any

n P N, let Xp
n and Xp be the spaces introduced in Section 2. Observe that H1,p

fin pµq and Xp agree

as vector spaces. For any g P Xp
n the function µpQ̃nq

´1`1{p}g}´1
Lp g is a p1, pq-atom, so that g is in

H1,ppµq and }g}H1,p ď µpQ̃nq
1´1{p}g}Lp . Hence Xp Ă H1,ppµq and the inclusion is continuous.
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Hence Lf lies in the dual of Xp. Then by Proposition 8 there exists a function F : V Ñ C such
that

Lf pgq “

ż

F g dµ @g P Xp .

We now show that F P BMOqpµq. Take a Calderón–Zygmund set R̃. For any g P Xp supported in

R̃ the function µpR̃q´1`1{p}g}´1
Lp g is a p1, pq-atom. We then have

ˇ

ˇ

ˇ

ż

F g dµ
ˇ

ˇ

ˇ
“ |Lpgq| ď }Lf }pH1,pq˚}g}Lp µpR̃q1´1{p .

This implies that F ´ FR̃ is a function in Lq0pR̃q which represents the restriction of the bounded

linear functional Lf on Lp0pR̃q. Hence

}F ´ FR̃}LqpR̃q ď }Lf }pLp
0pR̃qq

˚ ď µpR̃q1{q}Lf }pH1,pq˚ .

It follows that
´ 1

µpR̃q

ż

R̃
|F ´ FR̃|

q dµ
¯1{q

ď }Lf }pH1,pq˚ ď Cp}Lf }pH1q˚ ď ACp}f}BMO1 ,

so that }F }BMOq ď ACp}f}BMO1 , where Cp is the constant which appears in Proposition 11(i).

Take any Calderón–Zygmund set R̃. Since by Proposition 11(iii) Lp0pR̃q Ă H1,8
fin pµq, we have that

Lf pgq “

ż

fg dµ “

ż

F g dµ @g P Lp0pR̃q .

Hence there exists a positive constant cR̃ such that f “ F ´ cR̃ on R̃, so that
´ 1

µpR̃q

ż

R̃
|f ´ fR̃|

q dµ
¯1{q

“

´ 1

µpR̃q

ż

R̃
|F ´ FR̃|

q dµ
¯1{q

.

In conclusion, f P BMOqpµq and }f}BMOq “ }F }BMOq ď ACp}f}BMO1 .
�

In the sequel we shall denote by BMOpµq the space BMO1pµq endowed with the norm }¨}BMO “

} ¨ }BMO1 .

As a consequence of the duality result, by [1, Theorem 2], arguing exactly as in [18, Section 5]
we can deduce the following real interpolation results involving Hardy and BMO spaces.

Corollary 15. Suppose that 1 ď r1 ă r ă 8, 1
r “

1´θ
r1

, θ P p0, 1q. Then

rLr1pµq, BMOpµqsθ,q “ Lrpµq .

Moreover, if 1
r “ 1´ θ, with θ P p0, 1q, then

rH1pµq, BMOpµqsθ,r “ Lrpµq .

As a consequence of the duality result and of [1, Theorem 3] we deduce that integral operators
whose kernels satisfy a suitable integral Hörmander condition are bounded from L8pµq to BMOpµq.

Corollary 16. Let T be a linear operator which is bounded on L2pµq and admits a locally integrable
kernel K off the diagonal that satisfies the condition

sup
R̃

sup
y, zPR̃

ż

pR̃˚qc
|Kpy, xq ´Kpz, xq| dµpxq ă 8 ,
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where the supremum is taken over all Calderón-Zygmund sets R̃ and R̃˚ is defined as in Definition 6.
Then T extends to a bounded operator from L8pµq to BMOpµq.

4. The sharp maximal function

In this section we introduce the sharp maximal function associated with the family of Calderón–
Zygmund sets and investigate some of its properties. This sharp maximal function is related with
the definition of the BMO-space and might be useful to study interpolation properties of such
space.

Definition 17. Let q P r1,8q. For every function f in Lqlocpµq its sharp maximal function f 7,q is
defined by

f 7,qpxq “ sup
R̃PR,xPR̃

´ 1

µpR̃q

ż

R̃
|f ´ fR̃|

q dµ
¯1{q

@x P V .

Notice that }f 7,q}L8 “ }f}BMOq for every function f P BMOpµq.

Proposition 18. Let q P r1,8q and f, g P BMOpµq. The following hold:

(i)

1

2
f 7,qpxq ď sup

R̃PR,xPR̃
inf
cPC

´ 1

µpR̃q

ż

R̃
|f ´ c|q dµ

¯1{q
ď f 7,qpxq @x P V ;

(ii) for every x P V, |f |7,qpxq ď 2f 7,qpxq. Then |f | P BMOpµq and

} |f | }BMOq ď 2}f}BMOq ;

(iii) pf ` gq7,qpxq ď f 7,qpxq ` g7,qpxq for every x P V;
(iv) there exists a positive constant C such that if f and g have real values, then for every x P V,

rmaxpf, gqs7,qpxq ď C
`

|f |7,qpxq ` |g|7,qpxq
˘

, rminpf, gqs7,qpxq ď C
`

|f |7,qpxq ` |g|7,qpxq
˘

.

Proof. We first prove (i). Given x P V and R̃ P R which contains x for every ε ą 0 we choose a
constant cR̃ such that

´ 1

µpR̃q

ż

R̃
|f ´ cR̃|

q dµ
¯1{q

ď inf
cPC

´ 1

µpR̃q

ż

R̃
|f ´ c|q dµ

¯1{q
` ε

Then, by applying Hölder’s inequality, we obtain

´ 1

µpR̃q

ż

R̃
|f ´ fR̃|

q dµ
¯1{q

ď
1

µpR̃q1{q
}f ´ cR̃}LqpR̃q `

1

µpR̃q1{q
}fR̃ ´ cR̃}LqpR̃q

ď 2 inf
cPC

´ 1

µpR̃q

ż

R̃
|f ´ c|q dµ

¯1{q
` 2ε .

Since ε ą 0 is arbitrary and taking the supremum over all sets R̃ P R we obtain the first inequality
in (i); the second one is immediate.
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Let us now prove (ii). For every R̃ P R, we have

|f |7,qpxq ď 2 sup
R̃PR,xPR̃

inf
cPC

´ 1

µpR̃q

ż

R̃

ˇ

ˇ|f | ´ c
ˇ

ˇ

q
dµ

¯1{q

ď 2 sup
R̃PR,xPR̃

´ 1

µpR̃q

ż

R̃

ˇ

ˇ|f | ´ |fR̃|
ˇ

ˇ

q
dµ

¯1{q

ď 2 sup
R̃PR,xPR̃

´ 1

µpR̃q

ż

R̃
|f ´ fR̃|

q dµ
¯1{q

“ 2f 7,qpxq .

Property (iii) is an immediate consequence of the definition of the sharp maximal function.
Property (iv) follows from (ii) and the fact that

maxpf, gq “
f ` g ` |f ´ g|

2
and minpf, gq “

f ` g ´ |f ´ g|

2
.

�

Notice that, as a consequence of Proposition 18 (iv), the set of real valued functions in BMOpµq
is a lattice.

In the following result, we explain how the duality of H1pµq with BMOpµq can be quantitatively
expressed in terms of the sharp maximal function.

Proposition 19. Let q P p1,8q. There exists a positive constant C such that for every f P L8pµq
and g P H1pµq X Lqpµq

ˇ

ˇ

ˇ

ż

f g dµ
ˇ

ˇ

ˇ
ď C

ż

f 7,q
1

pMp|g|qqq1{q dµ ,

where

Mp|g|qqpxq “ sup
xPR

1

µpRq

ż

R
|g|q dµ @x P V ,

where the supremum is taken over all admissible trapezoids that contain x.

Proof. Take g P H1pµq X Lqpµq. For every j P Z arguing as in [1, Lemma 1] we can construct a

family of disjoint trapezoids Rjk, a function gj and functions bjk such that

‚
Ť

k R
j
k Ă Ωj “ tx P V : Mp|g|qq ą 2jqu Ă

Ť

k R̃
j
k;

‚ g “ gj `
ř

k b
j
k “ gj ` bj ;

‚ |gj | ď C2j ;

‚ bjk is supported in R̃jk, has vanishing integral and }bjk}Lq ď C2jµpR̃jkq
1{q.

These facts implies that gj tends to 0 uniformly when j Ñ ´8 and }bj}H1 ď C2jp1´qq}g}qLq , hence

bj tends to 0 in H1pµq when j Ñ `8. Thus

g “ lim
NÑ`8

N
ÿ

j“´8

pgj`1 ´ gjq “ lim
NÑ`8

N
ÿ

j“´8

pbj ´ bj`1q . (15)

Notice that we can write bjk “ λjka
j
k, where λjk “ C2jµpR̃jkq and ajk is a p1, qq-atom supported in R̃jk.

Take now f P L8pµq. We have
ˇ

ˇ

ˇ

ż

f ajk dµ
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ż

rf´f
R̃j

k
s ajk dµ

ˇ

ˇ

ˇ
ď }ajk}Lq}f´f

R̃j
k
}
Lq1 pR̃j

kq
ď µpR̃jkq

´1`1{q}f´f
R̃j

k
}
Lq1 pR̃j

kq
ď f 7,q

1

pxq ,



12 L. ARDITTI, A. TABACCO, AND M. VALLARINO

for every x P R̃jk. Hence
ˇ

ˇ

ˇ

ż

f ajk dµ
ˇ

ˇ

ˇ
ď

1

µpRjkq

ż

Rj
k

f 7,q
1

dµ .

Using (15) and Proposition 5, it follows that
ˇ

ˇ

ˇ

ż

f g dµ
ˇ

ˇ

ˇ
ď

ÿ

j,k

λjk

ˇ

ˇ

ˇ

ż

f ajk dµ
ˇ

ˇ

ˇ
`
ÿ

j,`

λj`1
`

ˇ

ˇ

ˇ

ż

f aj`1
` dµ

ˇ

ˇ

ˇ

ď C
ÿ

j,k

2jµpR̃jkq
1

µpRjkq

ż

Rj
k

f 7,q
1

dµ` C
ÿ

j,`

2j`1µpR̃j`1
` q

1

µpRj`1
` q

ż

Rj`1
`

f 7,q
1

dµ

ď C
ÿ

j

ż

Ť

k R
j
k

2j f 7,q
1

dµ` C
ÿ

j

ż

Ť

`R
j`1
`

2j`1 f 7,q
1

dµ

ď C
ÿ

j

ż

Ωj

2j f 7,q
1

dµ` C
ÿ

j

ż

Ωj`1

2j`1 f 7,q
1

dµ

ď C

ż

V
f 7,q

1

pxq
ÿ

2jăpM |g|qq1{qpxq

2j dµpxq ` C

ż

V
f 7,q

1

pxq
ÿ

2j`1ăpM |g|qq1{qpxq

2j`1 dµpxq

ď C

ż

V
f 7,q

1

pxqpM |g|qq1{qpxqdµpxq ,

as required. �

The following theorem can be thought as a weak version of the classical Lp-inequality involving
the sharp maximal function in the Euclidean setting (see [15, Theorem 2, §2, Ch. IV]).

Theorem 20. Let p P p1,8q and p0 P p1, pq. There exists a positive constant C such that

}f}Lp ď C }f 7,p0}Lp @f P Lp0pµq . (16)

Proof. Given f P Lp0pµq real-valued we define for every k P N

fkpxq “

#

fpxq if |fpxq| ď k

k fpxq
|fpxq| if |fpxq| ą k.

Then fk converges to f in Lp0pµq when k Ñ `8, fk P L
8pµq and by Proposition 18 (iv)

f 7,p0k ď C f 7,p0 . (17)

Denote by q and q0 the conjugate exponents of p and p0, respectively. Take a function g P Lqpµq X
Lq0pµq with }g}Lq ď 1. For every k P N define

g̃k “ gχQ̃k
and Ik “

ż

g̃k dµ ,

where Q̃k are the sets introduced in Proposition 7. We then define

gk “ g̃k ´ Ik µpQ̃2kq
´1χQ̃

2k
“ g̃k ´ rk .

The function gk is in Lqpµq, it has vanishing integral and is supported in Q̃2k ; hence gk lies in
H1pµq. Moreover, gk tends to g pointwise for k Ñ `8 and |gk| ď |g| ` r, where r “

ř

k |rk|. We
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have that

}rk}Lq ď µpQ̃kq
1{q1µpQ̃2kq

´1`1{q “

´ qkpk ` 1q

q2kp2k ` 1q

¯1{q1

,

and then r P Lqpµq. Hence gk tends to g also in Lqpµq for k Ñ `8.
By applying Proposition 19 to fk and gk and Hölder’s inequality we get

ˇ

ˇ

ˇ

ż

fk gk dµ
ˇ

ˇ

ˇ
ď

ż

f 7,p0k pMp|gk|
q0qq1{q0 dµ ď }f 7,p0k }Lp }pMp|gk|

q0qq1{q0}Lq .

Taking the limit for k Ñ `8 on the left-hand side and by applying (17) and the boundedness of

the Hardy–Littlewood maximal function on Lq{q0pµq (see [1]) we deduce that
ˇ

ˇ

ˇ

ż

f g dµ
ˇ

ˇ

ˇ
ď C }f 7,p0}Lp }gk}Lq ď C }f 7,p0}Lp }g}Lq ď C }f 7,p0}Lp . (18)

Since the previous inequality holds for every g P Lqpµq X Lq0pµq with }g}Lq ď 1 with constants
independent of g, we deduce that }f}Lp ď C }f 7,p0}Lp .

The case when f is complex-valued follows by applying 18 to Re f and Im f and arguing as
above. �

Remark 21. Proposition 19 and Theorem 20 are inspired by similar results involving the sharp
maximal function in the Euclidean setting (see [15, §2, Ch. IV]). More precisely, Proposition 19
differs from [15, Formula (16) Ch. IV] because we require an extra integrability condition on the
function g P H1pµq and the maximal function involved here is a variant of the Hardy–Littlewood
maximal function. This is due to the fact that a maximal characterization of the Hardy space H1pµq
is not available in our setting.

The inequality (16) is a weak version of the inequality

}f}Lp ď C }f 7,1}Lp ,

which is still unknown in the setting of the present paper. The proof of such inequality would prob-
ably require a distributional inequality involving both the Hardy–Littlewood and the sharp maximal
functions (or a dyadic version of them) that is still work in progress.
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