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Abstract

In recent years, the analysis of the community response in case of disas-
trous events has become a research topic of paramount relevance due to the
increasing number of calamities like flooding, hurricanes, and earthquakes.
In particular, the possibility to use computer simulations to model and study
the behavior of thousands of people during an emergency evacuation can pro-
vide valuable information to support many processes involved in emergency
management. To this end, this work presents IdealCity, a hybrid model for
evacuation simulation that couples the representation of the built environ-
ment and the transportation network with an agent-based simulation of the
urban population. IdealCity can estimate the buildings’ damages and de-
bris generated by a seismic event along with their effects on the other model
layers (the agents and the roads). Besides that, the simulation takes into
consideration as well the emergency response system by modeling shelters,
hospitals, and ambulances (each of which has a specific behavior within the
environment). The model has been implemented and tested in a challenging
test-bed that considers about 900,000 individuals, four different seismic sce-
narios, and three different times of the day. Results show that IdealCity can
be used not only for predicting the population response but also for allowing
decision-makers to estimate and intervene on critical response parameters,
thus improving the inherent community resilience.

Keywords: Large scale simulations, Agent-based models, Human behavior,
Seismic evacuation
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1. Introduction

In recent decades, the world’s population has witnessed and experienced
major natural disasters like hurricanes, floods, earthquakes, or landslides
that caused irreversible and uncontrollable damages. Large urban areas can
amplify their effect due to population density and the interconnections be-
tween different infrastructures (such as buildings, transport and distribution
networks). In these specific scenarios, the possibility to simulate and study
the response of the population in the emergency evacuation can help opti-
mize evacuation plans (Liu et al. [1], Wang et al. [2]), shorten the average
evacuation time (Mikulik et al. [3], Meng and Jia [4]) and improve medical
care by reducing both the number of people exposed to threats and their ex-
posure time, thus leading to a decrease in injuries and victims. Furthermore,
crowd evacuation modeling can offer decision-makers significant insights on
the traffic flow and the configuration of resources (such as evacuation vehicles
and relief facilities) required in case of large-scale disasters.

The interest in developing effective evacuation modeling (EM) approaches
started in the 1980s after the nuclear disasters of Three Mile Island and Cher-
nobyl, which showed that many emergency authorities were unprepared to
tackle these events (Urbanik et al. [5], Sheffi et al. [6], Johnson Jr and Zeigler
[7]). Then, EM received a subsequent boost from the need to develop pre-
paredness studies for several natural hazards as hurricanes, tropical storms,
and wildfires (Hobeika and Jamei [8], Pal et al. [9]).

Researchers presented several approaches to model the characteristics and
behavior of a real crowd at different levels of granularity. The flow-based
methods treat the crowd as a whole and define its behavior in terms of the
continuous flow of evacuees from an origin to potential destinations along a
graph of predefined possible routes. These approaches allow modeling large-
size crowds but involve the adoption of constant physical, demographic, and
perceptual attributes for the whole crowd. Cellular-automata (CA) models
support the representation of each person as a single element. However,
they fail to replicate the real and complex crowd behaviors in emergency
evacuation processes due to the homogeneous nature of the matrix cells used
to discretize the space.

On the contrary, agent-based models (ABM) represent the individual evac-
uees as agents, i.e. entities capable of making free movements and taking
autonomous decisions based on (i) the data gathered by sensing the environ-
ment around them and (ii) the set of rules assigned to each type of agent
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[10]. Therefore, ABMs allow fine-grained modeling of the crowd in terms of
parameters like age, gender, role, and health conditions. Furthermore, they
can model as well the real-world interactions between multiple persons, thus
providing a more realistic representation of the evacuation process (Batty
[11]).

It is worth noticing a certain overlap between CA and ABM approaches.
CA models are usually preferred when the simulation space is represented
in the form of a grid, e.g. Geographic Information System (GIS), or when
model states and state transition probabilities are known and stable. On
the contrary, ABMs are superior when the model basis is a behavioral unit,
such as an individual, and the simulation process consists of interactions
over time among different types of agents (Clarke [12]). In these situations,
ABMs can model complex and different behaviours for each agent (e.g., see
the belief–desire–intention architectures of Cimellaro et al. [13], Bordini et al.
[14]), as well as their fine-grained interactions with other agents and the
environment.

In the literature, when dealing with extensive scenarios such as districts
or whole cities, ABM-based EM investigations have been extensively applied
to assess community resilience and preparedness for natural disasters like
tsunamis and flooding. For instance, [15] deals with the innovative concept
of “rapid resilience” to tsunamis by modifying the urban morphology of the
Chilean city of Talcahuano. Solis and Gazmuri [16] developed and validated
an ABM simulation to quantify the tsunami response of the Iquique city’s
population under different evacuation policies. The evacuation model of Mas
et al. [17] integrates a numerical simulation of a tsunami with a casualty
estimation, leveraging a multi-agent programming language and GIS data as
spatial input. Simulations carried out on the Arahama village (Japan) were
assessed through comparison with the recorded outcomes of a real event.

In the context of earthquake EM, most of the works in the literature
focuses on the restricted scenario of building evacuation. For instance, Li
et al. [18] used an ABM to simulate classroom evacuation in a real event.
The ABM parameters were tuned using real-life video data, and the results
emphasized how a trained leader can positively affect the evacuation process
helping the crowd maintain calm and order. The paper by Xiao et al. [19]
simulates the resident evacuation from a building in a real event (the Ludian
earthquake in 2014) with the aim of identifying variations to the layout of
the inner walls that could reduce the safety escape time. Video footage of
the Wenchuan 2018 earthquake in China have been collected by Yang et al.
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[20] to analyze differences between real-life escape and simulations. In an
attempt to increase the realism in evacuation modelling and show the effect
of social attachment on the number of victims, Bañgate et al. [21] developed
a multi-agent model of human behavior during a seismic crisis that is based
on social attachment theory.

Less studies addressed post-earthquake emergency evacuation at the ur-
ban scale. An example is the work of Na and Banerjee [22]. This model
focuses on traffic flow and takes into account different types of vehicles. How-
ever, it does not consider how the debris generated by the built environment
affects the transportation network. The first contribution in this direction
was proposed by Torrens [23], which presented a “unified” meta-system to
merge physical and human process models within the simulation. Even if
this approach includes a detailed representation of the real world, it lacks
a structural analysis following civil engineering principles that consider the
individual building response to the seismic actions. Moreover, the framework
does not consider injured agents and emergency operators and it does not
include the effects of emotions into the agent behavior.

Given the relevance of the emotional dimension for the real individuals,
several authors started including it into their models. Examples are Lujak
and Ossowski [24], which considered the influence of stress on human reac-
tions, Cimellaro et al. [13, 25], which analyzed the impact of human emotions
on the emergency evacuation process in several scenarios, and Liu et al. [26],
which proposes the inclusion of psychological factors in earthquake behaviour
simulation. Different studies focused on the analysis of specific community
reactions to earthquakes. For instance, we can find ABM models that include
behavioural patterns based on the analysis of real video captures with appli-
cations to urban scenarios of different sizes (D’Orazio et al. [27], Bernardini
et al. [28], Quagliarini et al. [29], Santos-Reyes and Gouzeva [30], Bernar-
dini et al. [31]). These works report how, in general, after the decision to
start the evacuation procedure, pedestrians are essentially attracted by safe
areas and, when moving, they try to avoid the area with rubble choosing
the path that is wider and clearer of dust and rubble. These actions are
influenced by information seeking and sharing activated by people during
and after the seismic event. The “herd behaviour” and the presence of ties
between individuals are also identified as characteristics of outdoor urban
post-earthquake evacuation. Another relevant contribution is the study of
Lu et al. [32], which experimentally analyzes how the amount of debris on the
travelled path affects the pedestrian walking velocity. Furthermore, safety
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procedures and recommended behaviours are identified as important addi-
tional contributions that can influence the behaviour and outcome of an
earthquake evacuation [31]. However, most of these works involve specific
case studies and peculiar conditions, often at the small-scale, and not easily
transferable to large urban scale simulations.

Since the disadvantage of ABMs is the increase of the computational
burden, especially when the simulation involves large crowds, several works
addressed the development of real-time applications to direct evacuation or
crowd management operations more effectively. Some of these techniques
leverage emerging technologies and informative sources to provide a timely
response in an efficient way. For instance, Yin et al. [33] developed a knowl-
edge database generated by mobile phone location data to store evacuation
plans for typical urban population distributions and accelerate the real-time
search of near-optimal evacuation plans in a real emergency. The research
works by Kunwar and Johansson [34] and Kunwar et al. [35] combined crowd-
sourced spatial databases (i.e., OpenStreetMap) and behavioral models to
achieve rapid simulations of large-scale vehicle evacuations. Finally, Li and
Zheng [36] put forward a multi-agent-based concept of dynamic calculation
and online feedback based on the Internet of Things technologies to improve
real-time evacuation strategies of urban traffic congestion.

In this paper, we present IdealCity, an agent-based approach aimed at
simulating emergency evacuation at the urban level for post-earthquake sce-
narios. This framework is based on PEOPLES (Cimellaro et al. [37], Kam-
mouh et al. [38]), a hybrid and hierarchical conceptual framework for defining
the disaster resilience of communities at various scales. IdealCity couples the
models of the transportation network and the built environment with an
ABM used to simulate in the urban environment the behavior of individuals
assuming different roles. These three elements are defined in individual but
interconnected layers that mutually influence each other. Thus, the hybrid
characteristics of IdealCity allow, on one side, the estimation of buildings’
damage and debris generation caused by the seismic event and, on the other
side, the analysis of the consequences of these damages on the other layers
of the models. In particular, agents could be killed, injured, or trapped in-
side damaged buildings. Furthermore, roads could be interrupted, limiting
the intervention of emergency operators (e.g., ambulances) and blocking the
escape routes for citizens. The proposed hybrid model also implements spe-
cific features to reproduce the human behaviour of exposed individuals. In
particular, following existing literature works, we considered the effect on
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pedestrian evacuation speed of various elements such as agent age, emotions,
health state, fatigue and the presence of debris ([39, 40, 41, 42, 32, 43]).

The developed model can be tested with different seismic scenarios to
investigate the effect of human behavior on the large scale evacuation sim-
ulation. Then, including in the model shelters, hospitals, and ambulances
(each of which can be associated with specific rules within the ABM environ-
ment), we can generate project plans for improving emergency evacuation
by studying the community response and the suitability of the involved re-
sources. We underline that the aim of our project was to develop a practical
and useful tool for evacuation planning. Therefore, the design of IdealCity
strictly involved several specialists, domain experts and stakeholders to iden-
tify the input and output variables of the model, define their values and detail
the emergency procedures involved in the simulations.

Summarizing, the main features of our work are the following. First, it
is a general framework that allows the application of its hybrid model (and
the simulation of a variety of seismic events based on established engineering
criteria) to different urban communities by simply providing the appropriate
input. Second, it takes into account the mutual interaction between differ-
ent model layers (i.e., the agents, the built environment and the generated
debris, and the road network). Third, it includes earthquake behaviours and
conditions of exposed individuals, in terms of emotion in human behavior,
different levels of agent health (obtained as results of the seismic damage
simulation), and the effect of of debris on evacuees’ walking speed. Fourth,
the simulation of the emergency response network (ambulances, hospitals,
shelters) allows decision-makers to estimate critical response parameters at
the community level and identify the need of additional resources to manage
specific events with objective performance metrics. Finally, it can manage
in near real-time large-scale simulations with a high number of individuals
(about 900,000 in our tests).

The rest of the paper is organized as follows. In Section 2, we detail the
assessment process of the aftermath of seismic events, and, in Section 3, we
describe the design of our ABM model. Then, in Section 4, we introduce the
implementation details of IdealCity and define all the parameters used in our
simulations, whose results are presented and discussed in Section 5. Finally,
we draw the conclusions in Section 6.

6



2. Building damage assessment in the IdealCity model

The ability to predict the expected damage of an earthquake in existing
structures is a critical step of paramount relevance not only for evacuation
modeling but also for seismic risk assessment, emergency response planning,
and risk mitigation. Within IdealCity, we characterize the global seismic
behavior of thousands of multi-floor buildings through a surrogate model
created by simplifying the representation of the real physical system (Do-
maneschi et al. [44], Marasco et al. [45]). Compared to a refined Finite
Element Model, this approach reduces the computational burden by limit-
ing the degrees of freedom to manage, while still predicting the structural
seismic response with a reasonable accuracy. The output of our model is the
expected per-building damage level (classified, according to [46], into five
levels as none, slight, moderate, extensive, or complete damage), the amount
and extension of generated debris, and their estimated interaction with the
transportation network.

In detail, our model is equivalent to a Single Degree Of Freedom (SDOF)
system. For each building, we define a backbone curve representative of the
global structural capacity and a hysteretic behavior to account for the shear
strength degradation due to cyclic loading. The model adopts as response
parameters the roof displacement and the base shear force.

The SDOF’s equivalent mass (meq) is representative of the building one
(m), assumed as lumped-mass system. Thus, the equivalent mass is defined
as meq = Γimφi, where Γi and φi are the modal participation factor of the
i-th mode and the correspondent natural vibration mode, respectively. The
SDOF’s stiffness is the equivalent linear elastic one, followed by post-elastic
behavior, where the Rayleigh formulation is used to evaluate the SDOF’s
equivalent damping.

We define the capacity curve of each reinforced concrete building through
a four-linear backbone curve to accurately capture the multi-faced degrading
stiffness (from the concrete cracking to the yield point) up to the perfectly
plastic response. Conversely, we characterize masonry buildings with more
regular post-elastic behavior modeling their capacity with tri-linear backbone
curves. A comprehensive description of the surrogate model including valida-
tion and calibration details can be found in (Domaneschi et al. [44], Marasco
et al. [45]).

The debris generation and extension are estimated through a machine
learning (ML) approach [47, 48, 49] that works as follows. First, we created
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a training data-set of about 200 images, collected from existing reports of
seismic evaluation missions (e.g., EERI [50]), which show the debris visibly
and measurably (see Figure 1 for an example). For each image, we com-
puted the debris extension applying photogrammetric approaches that use
the dimension of known objects as reference. The images are then associ-
ated with the normalized debris extension (i.e., the debris extension divided
by the building height) and various metadata that characterize the building.
These metadata are used by the inference engine to predict the debris exten-
sion of unseen buildings for a the given earthquake and include the following
features:

• the building materials (i.e., reinforced concrete or masonry), since they
result in different behaviors in terms of debris extension;

• building height (which influences the seismic forces and, consequently,
the damage level experienced by the building);

• number of floors (taller buildings could produce a larger amount and
extension of debris);

• year of construction (which characterizes the differences in construction
technologies, methodologies, and regulations);

• seismic magnitude (the stronger the ground motion, the higher the
damage probability);

• distance from the epicenter (buildings closer to epicenter suffer stronger
ground motions).

Concerning the classifier, we analyzed different approaches assessing their
prediction accuracy in terms of R2 and Mean Absolute Relative Distance
(MARD). R2 is the square of the sample correlation coefficient between the
predicted values and the ground truth. MARD is the average distance be-
tween each point and the regression line computed by the ML algorithm.
Therefore, the lower the MARD, the more accurate the prediction. We
trained all the classifiers by K-fold Cross-Validation, with 80% of the im-
ages in the training set, and equally dividing the remaining samples between
validation and test sets.

The results of our tests showed that Random Forests (RF) and k-Nearest
Neighbours (k-NN) are the best performers. In particular, k-NN has the
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highest MARD score (0.32). However, its low R2 (0.42) is a possible overfit-
ting indicator. On the contrary, RF achieves the best R2 (0.62) along with
a satisfactory MARD (0.56). Thus, it was selected as the classifier to use in
our model after retraining it with the whole set of train samples.

Figure 1: Sample picture from the seismic reports data-set [51]

3. The Agent-Based Model of IdealCity

IdealCity has been conceived as a general framework that allows the sim-
ulation of towns with different characteristics. In order to enable this feature,
its ABM relies on several input parameters (such as the population age and
gender distributions, the number of resources available and their capacities),
that can be tailored by the designers to customize their simulated environ-
ment.

The ABM designed for our system includes two classes of agents, namely
the individuals living in IdealCity, and the ambulances, which rescue seriously
injured persons and transport them to the hospitals. The design is then com-
pleted by entities representing the city buildings, the emergency shelters and
the hospitals (Figure 2). Buildings belong to different categories (i.e., res-
idential, industrial, and schools) and can contain a number of individuals
that vary with the time of the day. Each emergency shelter has a specific
and fixed capacity, beyond which it cannot host new individuals. The same
happens with the hospitals, except for those that can rapidly deploy a field
hospital for disaster victims. In this case, we assume that the hospital has
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infinite capacity. In our simulations, there is always at least one field hos-
pital available to guarantee that all injured individuals can eventually get
medical help. The resources available at hospitals and shelters are managed
by the control room, where the operators of the emergency team monitor
the available information, make decisions about resource management, and
communicate with the emergency response team.

The rules and behaviors implemented by our ABM individuals are the
following. We divide the population into primary groups (e.g., residential,
commercial, and industrial population, whose percentages are a parameter
of the model), and we define the indoor and outdoor distributions of each
group as a function of the time of the day according to the method defined in
Capozzo et al. [52] and HAZUS [46]. As a result of the earthquake, we ran-
domly select the health status of each indoor individual among healthy, lightly
injured (who preserve her/his walking capabilities), severely injured (who is
not able to walk independently and needs to be rescued by ambulance), or
dead according to statistical distributions associated with the damage level
of the building they are inside. Then, we place outdoor persons in random
positions along IdealCity, and their health state depends on their proximity
to the debris generated by collapsing buildings.

Figure 2: UML class diagram of our ABM model.

Age and gender of each citizen are selected randomly according to the
distributions of the population of IdealCity provided as input of the model.
The walking speed of each individual takes into account the effects of the
percentage of debris coverage on the streets, as proposed in Lu et al. [32].
In details, the initial pedestrian velocity without debris vp0 is selected ran-
domly (with a uniform distribution) in the interval between a comfortable
and a maximum gait speed. These two values are taken from the tables re-
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ported in the study of Bohannon [39] as a function of age and gender. These
random speeds aim at modeling the person’s emotional state (the higher the
emotion intensity, the higher the speed [40, 41, 42]). If the individual is
lightly injured, vp0 is eventually reduced by a variable random percentage in
the interval [40%, 80%] to simulate injuries that affect in different ways its
walking capabilities. During the simulation, the moving speed is decreased
as an effect of fatigue until it returns to the comfortable gait speed in a
variable time between ten and twenty minutes according to the agent age,
injury level, and velocity. The actual walking speed vp of the agent is then
expressed as vp = R ·vp0 , where R ∈ [0, 1] represents the reduction coefficient
computed, according to the equations proposed in [32], as a function of the
percentage of debris covering the walking path (a value computed by our
building damage assessment module). On the contrary, a seriously injured
person is unable to walk and needs to be rescued by the emergency medical
service, which is activated by the agent itself or by one of its neighbors to re-
quest an ambulance. All outdoor pedestrians are spawned at the simulation
start. On the contrary, as suggested in [53, 54], indoor persons are spawned
from buildings at linear flow rates. In details, the model generates a new
exiting individual at random intervals, defined by a Gaussian distribution
whose mean is related to the building damage level (the higher the damage,
the higher the mean).

The behavior of indoor individuals takes into account the person health
state and the damage level of the building and allows to model different
subjective responses and other constraints, such as official regulations or rec-
ommendations. Healthy individuals can decide to either remain in the close
vicinity of the building or reach the nearest emergency shelter according to
a random variable that can be parameterized as a function of the building
damage level and other simulation choices. This feature aims to provide de-
signers with different options. For example, it allows simulating persons that
take individual decisions (e.g., 30% of the healthy residents of slightly dam-
age buildings and 95% of the moderately damaged ones head to a shelter,
while the other healthy individuals remain in place) or situations where all
residents follow the official recommendation to evacuate. In all cases, indi-
viduals remaining in the close vicinity of the building are removed from the
simulation. When the person is lightly injured, it walks towards the nearest
hospital. As we already stated, seriously injured individuals wait (in place)
to be rescued by the emergency service. The behavior of outdoor persons
mirrors that of indoor ones. The only exception is represented by healthy
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individuals, which navigate to the closest emergency shelter irrespective of
the state of their homebuilding.

Concerning navigation, we assume that all individuals have a shared
knowledge of the locations of nearby hospitals and emergency shelters (in
other words, we assume that at least one person knows these pieces of in-
formation and shares them with its neighboring peers). When an individual
reaches a full target destination, it is directed by the facility personnel to the
closest destination of the same type that has yet available places (we suppose
that the facility managers are in direct contact with the control room, which
knows the overall place availability). If all shelters are full, the individual
starts walking toward the closest town exit. Since our simulation includes
at least a field hospital, all injured persons are eventually guaranteed to find
assistance.

The ambulances are initially distributed among various locations in the
city and are in a finite number. The control room is responsible for their
management and follows a first-in-first-out practice for processing assistance
requests. If an ambulance is available, it is sent to pick a seriously injured
inhabitant; otherwise, the request is queued in a waiting list. When the
ambulance reaches its target, the paramedical personnel starts loading the
patient in the vehicle. This operation requires a random variable time in
the interval [15, 20] minutes, after which the ambulance heads to the nearest
hospital with available places. If the target hospital gets full during the
travel, the ambulance receives from the control room the indication to head
towards a new target destination. At arrival, the ambulance has to wait
for a random time before it can finish unloading the patient. The waiting
time is chosen in the interval [5, 15] minutes with a logarithmic distribution
that models the effect of hospital occupancy on service time (the higher the
occupancy, the slower the service time). Loading and unloading intervals
have been defined after a discussion with medical experts. Finally, when the
hospital has accepted the patient, the ambulance becomes available and can
serve a new assistance request, if any.

Concluding, the implemented agent model considers both emergency net-
work management and pedestrian evacuation, including some of the typical
behaviours of exposed people in outdoor scenarios reported in the literature
([27, 31, 30, 32]). In our model, agents run out of the building and, after
the decision to start the evacuation procedure, they are attracted towards
safe areas (i.e., shelters and hospitals). In choosing their paths, they seek
and exchange information, and in general, they tend to aggregate during the
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evacuation portraying the typical herd effect. Furthermore, the proposed
model allows the interaction of the agents with the generated debris, repro-
ducing interruptions of evacuating paths and the reduction of the evacuation
speed where a moderate amount of debris is present. That said, we highlight
as well that our model could be improved by taking into account more re-
fined approaches (such as those already tested at smaller scales in [25, 13])
and additional evacuee behaviours (such as the tendency to perform evacu-
ation path selection according to the visible building damage and geometric
dimensions of the street, or the attraction for group ties [27]). The reason
why we did not consider these features in our work is the heavy computa-
tional burden they involve when applied to large-scale simulations, resulting
in computation resource issues and an excessive increase of the simulation
time. Therefore, we deemed preferable to tackle them as future works.

4. Experimental settings

In this section, we detail the implementation of IdealCity and define all
the parameters used in our simulations.

4.1. City model

Concerning the ecological validity of our simulations, the city model used
in the experiments reflects the characteristics (i.e., road transportation net-
work, building archetype, year of construction, height classifications, and oc-
cupation) of the town of Turin in Italy. Its urban area is about 130 km2, and
the city has more than 900.000 inhabitants. The building stock is represen-
tative of a typical Italian one, including a downtown area mainly composed
of old masonry buildings and uniform housing zones of reinforced concrete.
In the last decade, the residential zones expanded on the grounds of many
abandoned factories in the suburbs (included in our model).

The city has 16 hospitals in operation, with an overall capacity in emer-
gencies of about 6,000 places. We selected the San Giovanni Battista uni-
versity hospital as the only one capable of deploying a field hospital since (i)
it is the fourth largest public hospital in Italy, (ii) it is part of the biggest
hospital district of Turin, which includes the primary children’s hospital, the
main gynecological hospital, and the orthopedic trauma center of the city
and (iii) it is close to a large urban park (thus, it has room for deploying a
large number of tents). The official shelters identified by the National Service
of Civil Protection are 31, and they can assist more than 100,000 people.
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As for the population, the division in groups (e.g., residential, commer-
cial and industrial population) and their age and gender distributions (see
Figure 3) reflects the corresponding distributions of the city population pro-
vided by the annual census report released by the Italian National Institute
of Statistics [55].

Given the complexity of the model and the number of potentially active
agents, we made the following assumptions to simplify our simulations: resi-
dents will immediately start moving from the building when the seismic event
occurs, all individuals move by walking without using vehicles, there are no
disabled people in the buildings, and no altruistic behaviors are considered.
In the main simulations, the residents’ behaviour models a case where all
healthy agents remain in the proximity of their building when it is slightly
or not damaged and walks toward a shelter if the damage level is moderate
or higher. In Section 5.3, we will discuss how different behavioural models
affect the simulations.

Figure 3: Left: distribution per gender of the whole population of IdealCity used in the
experiments. Right: age distributions of the population per gender.

4.2. ABM: implementation details

To optimize the execution times, our ABM has been implemented in
Unity, a 3D game engine, leveraging the Entity-Component-System (ECS)
design pattern and the Unity Job System. Within the ECS paradigm, agents
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are represented by an entity, consisting of one or more components. These
components are pure data than can be added, removed, or modified by the
systems at run-time, and they are used to define one specific aspect of the
entity. As an example, a Transform component defines the current position
of the agent and the Rotation component its orientation. Empty components
can also be used to tag entities. For instance, in our implementation, the
DestinationReached component marks any agent that is about to reach its
target destination (e.g., the patient for an ambulance, the emergency shelter
for an individual). Finally, the systems are the elements responsible for
implementing specific behaviors or functionalities. Each system operates on
a subset of entities defined by specifying the components that entities must
possess or excluding entities that have specific components. For instance, we
have two different systems to check if an agent has reached its destination:
one for the ambulances and one for the pedestrians. The two systems work
on entities having a DestinationReached component (which is used as a
“tag”), but the first manages only entities with the IndividualComponent

and the second only those having an AmbulanceComponent.
The strict separation between data and behaviors in ECS allows exploit-

ing at best the multiple cores available in today’s computers thanks to the
Unity C# Job System, which is a powerful multithreading API expressly
developed for maximizing the execution performances. In this way, it is pos-
sible to speed up significantly all the complex tasks that can be executed
independently for each agent, achieving huge performance gains. As another
advantage, this data-oriented paradigm allows a better usage of memory,
which is a critical factor in our simulation, especially for managing path-
finding on a massive scale (i.e., hundreds of thousands of agents).

4.3. Seismic scenarios

In this study, we adopt four different seismic scenarios that are charac-
terized by their epicenter location (the point on the earth’s surface vertically
above the focus, or hypocenter, of an earthquake), the moment magnitude
Mw (directly related to the earthquake energy), and their acceleration time
series recorded at the epicenter. We use the Attenuation Ground Motion
Prediction Equation (Ambraseys et al. [56]) to estimate the spatial variabil-
ity of ground motion, i.e., the effect of geometrical attenuation due to the
distance between the building location and the epicenter. In our simulations,
we also assume that the frequency contents for each time series remains un-
changed at any location. Table 1 summarizes the main characteristics of
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the seismic events selected, showing, for each event, the date, the moment
magnitude Mw, the hypocentral depth, and the Peak Ground Acceleration
(PGA, which is directly related to the seismic forces).

Event Date Mw Depth [km] PGA [g]

Northridge 1994-01-17 6.7 11.3 0.84
Kobe 1995-01-17 6.8 17.6 0.82
EL Centro 1940-05-18 6.9 16.0 0.35
Hachinohe 1968-05-16 8.2 26.0 0.23

Table 1: Characteristics of the selected seismic scenarios

The events in Table 1 fall into two groups with different characteristics.
The first group includes the Northridge event (recorded at County Hospi-
tal parking lot in Sylmar, California) and the Kobe event (recorded at the
Japanese Meteorological Agency station, Japan). Both events are represen-
tative of the category of near-field earthquakes, i.e., those which occur at a
distance close to the fault (about 10 to 60 km). Near-field earthquakes are
characterized by higher acceleration and more limited frequencies compared
with far-field earthquakes. Furthermore, they may undergo progressive di-
rection effects, containing long-pulse periods of high ranges. On the contrary,
the second group covers the far-field seismic scenarios and includes the El
Centro (Imperial Valley Irrigation District substation, California) and the
Hachinohe (Hachinohe City, Japan) events.

4.4. Methodology

We run three experiments for each of the four scenarios described in the
previous section. The input of these simulations is the results of the seis-
mic aftermaths (building damages and debris generated) computed with the
methods described in Section 2. As an example, in Figure 4, we show an
overview of the Kobe scenario, where we use false colors to identify the dif-
ferent damage levels of each building. Each experiment models a seismic
event happening at a specific time of the day (namely, 2 AM, 2 PM, and
5 PM). The event time affects the indoor and outdoor distributions of the
residents of IdealCity. As a result, we have different percentages of the dead,
seriously/lightly injured, and trapped individuals according to their specific
location inside the city when the event happened (see Figure 5 for an exam-
ple). Some snapshot taken from a running simulation can be seen in Figure
7.
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Figure 4: Detail of the IdealCity plan with damage assessment.

For the quantitative assessment of the model, we recorded fine-grained
logs for each session (one block of analytic data each minute of simulated
time). These data include the average execution time and several other
pieces of information, such as the current number of active individuals (i.e.,
those moving around the city to reach their destination or waiting for rescue)
and the secured ones (i.e., those that reached their destination or decided to
remain in proximity of their houses when possible), the occupancy of shelters
and hospitals, and the number of seriously injured individuals that did not
yet receive assistance.

We highlight that, despite the use of various random variables in our
model, our approach can be considered as a deterministic one, even running
a single simulation for each of the considered scenarios. Indeed, our initial
experiments showed, among different runs, negligible statistical differences in
the main simulation outputs (e.g., a coefficient of variation lower than 2% for
the time to secure injured individuals, and for the occupation and saturation
times of shelters and hospitals).

4.5. Input and output data

To conclude this section, we provide an overview of the numerical input
data used in the model and of the outputs offered for the emergency assess-
ment, which are summarized in the block diagram in Figure 6. We recall
that IdealCity has been envisioned as a general framework and, as such, it
can simulate towns with different characteristics and various seismic events
by varying its input data and model parameters.
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Figure 5: Summary of the simulations at 2 AM for all scenarios (data are represented with
a logarithmic scale).

Figure 6: IdealCity: overview of input and output data.

The building damage assessment module receives as input the city map
(which defines the transportation network and the built environment), the
building metadata defined in Section 2 and the characteristics of the seismic
scenario (Section 4.3). This module outputs the per-building damage level,
the debris extension and the list of interrupted roads. These data are then
fed as input of the ABM module, along with the city map, the population
data (i.e., the age, gender, primary group and indoor/outdoor distributions),
the resource data (i.e., the number and capacities of shelters and hospitals
and the number of available ambulances) and the time of the day when the
seismic event happens.

Then, the framework provides two different types of outputs for the emer-
gency simulation assessment. The first is the set of detailed logs collected
during the simulation, which can be further analyzed to extract meaningful
information (as we will show in Section 5). The second is the near real-time
visualization offered by the Unity rendering engine, which offers the interac-
tive navigation of the city map and zooming features, allowing for a detailed
analysis of the simulation evolution.
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5. Results and discussion

In this section, we present the results of the assessment of IdealCity. First,
we analyze the computational load of the application (Section 5.1). Then, we
show how IdealCity can be used to study the behavior of both the population
and the emergency response network in different seismic events (Section 5.2).
Finally, we illustrate the features that IdealCity offers to decision-makers for
the design of efficient resource plans aimed at a prompt and efficient response
to emergency events (Section 5.3).

Figure 7: Snapshots of a post-earthquake scenario. Left: overview of a city district with
various individuals trying to reach their target destination (green: healthy persons; yellow:
lightly injured; red: seriously injured). Right: agents trapped since the debris (the semi-
transparent spheres) made all the exit roads from a block impassable.

5.1. Computational load

We run experiments on a Windows workstation with an Intel Xeon Gold
5122 CPU and 192 GB of RAM. The CPU has four cores (and eight threads)
running at 3.60 GHz. The amount of available RAM is a vital parameter in
our case since, when the number of active agents is very high, the allocated
memory quickly reaches tens of GB. Thus, if the size of the RAM is not suffi-
cient, such numbers could result in continuous disk swaps and, consequently,
in large performance drops.

The analysis of the behavior of the computational load during the simula-
tion can provide some interesting insights. To perform such analysis, we can
plot the ratio between the CPU time and the simulation time, where the lat-
ter is controlled by a simulation clock whose tick is generated at each update
of the main rendering cycle. In our tests, we arbitrarily created a simulation
tick at intervals of 33 ms. However, we observed that the frequency of the
simulation clock can be made smaller (up to a factor 10) without causing
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issues to the stability of the ABM. Since it is clear that the CPU time is also
a function of the number of active agents, before drawing the plot, we further
normalize the time ratio on a number of 100,000 agents (i.e., we divide it for
the ratio between the total number of agents and 100,000).

As an example, we show in Figure 8 the differences between two simula-
tions run in the same scenario (Northridge) at two different daytimes. The
first simulation (2 AM) corresponds to the case having the lowest number
of outdoor agents at the beginning of the simulation, and the latter (5 PM)
is the one with the highest number of outdoor agents. As can be seen, in
both tests, the plot stabilizes after about 45 (simulated) minutes on a value
ranging between 2.5 and 2.8 for the two cases. Thus, when the simulation
clock is set to 33 ms, our simulation can run in real-time when the number
of agents is around 40,000 and runs in near-real-time for more substantial
values (e.g., for 400,000 agents, one second of simulation requires between 10
and 11.2 CPU seconds) and improvements can be obtained increasing (up
to a factor ten) the simulation clock interval. Another thing that can be
observed is the significant spike of the time ratio at the beginning of the 5
PM simulation. This effect is due to the computational burden related to the
pathfinding routine since, at 5 PM, the initial number of outdoor agents is
three orders of magnitudes bigger than that in the 2 AM simulation. Then,
when the initial wave of path requests has been served, which happens in a
few minutes, the behavior of the two simulations becomes similar.

In Figure 8, we also plot the number of active agents managed by the two
simulations, which reaches a maximum of about 600,000 agents and then
slowly degrades due to the increased number of secured agents (i.e., those
that reached their target destination, a shelter or a hospital, or left the city).
We underline that individuals that decide to stay in proximity to their house
when it is not damaged are immediately removed from the simulation to
reduce the overall computational burden. It should also be noted that the
city of Turin can be enclosed in a circumference of about 14 km in diameter.
Therefore, crossing the city from side to side at an average walking speed
requires less than three hours. As a consequence, the average time required
by healthy or lightly injured individuals to reach their destination is relatively
small since the spatial location of resources (hospitals and shelters) tries to
guarantee uniform access times to the whole population.

We also underline that IdealCity lacks a detailed model of the vehicular
network since only the ambulances have been managed. This is a limitation
of the model. In a real scenario, people are likely to take their car for reaching

20



a secure place or for leaving the city. The consequence would be a dramatic
traffic congestion that has negative consequences for the delay of emergency
services and the increase of the travel time of the city dwellers. However,
modeling the vehicular traffic along with the other agents in the current
experimental settings (a city of 900,000 dwellers) would have resulted in
a large increase of the computational burden, thus strongly reducing the
near real-time capabilities of our simulator. It is worth underlining that the
evacuation models in the literature either model one single class of agents
(pedestrian or vehicle, e.g. [22, 28, 33, 57]) or limit the urban area to a much
smaller region (i.e. districts, squares or single blocks, e.g. [58, 57]).

Figure 8: Solid lines: ratio between the CPU time and the simulation time for the same
scenario (Northridge) and two different times of the day (2 AM and 5 PM) normalized
over 100,000 agents. Dashed lines: number of active agents. The horizontal axis represents
the simulation time in minutes.

5.2. Analysis of the population response

A possible way to analyze the population response in the emergency
evacuation is to observe the temporal evolution of some of the simulation
variables. Examples are the number of secured individuals (i.e., those that
reached their final destination) and the number of severely and lightly injured
able to reach the hospital to receive treatments. For the sake of brevity, in
Figure 9, we show the data collected from the different seismic scenarios and
the same time of the day (i.e., 2 AM, the simulations with the lowest number
of individuals in the streets when the event happens). The overall number
of dead, seriously and lightly injured, and trapped persons of these events is
included as a reference in Figure 5.
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Figure 9: Numbers of lightly injured individuals traveling to hospitals (left), severely
injured that are waiting to be rescued (center) and agents that reached a secure place
(right) for different seismic events happening at 2 AM.

These diagrams allow us to gain some interesting insights into the simula-
tions. For instance, if we observe the number of secured individuals (Figure
9, right), we can see that in about three hours and a half after the event,
most of the citizens reached a safe place. Given the average distances that
individuals have to travel to their destinations, these numbers are reasonable.
Indeed, a large part of the pedestrians reach a secure place in about half an
hour. The remaining ones continue their journey since their first destination
had no places to host them.

The number of available resources affects all emergency evacuation sce-
narios critically. As we can observe in Figure 10, in all the simulations, all
the shelters are filled in less than one hour and a half. Therefore, the remain-
ing healthy individuals have no other choice than leaving the city, which (as
stated before) requires at worse about three hours of walk. As for the lightly
injured, in all scenarios (exception made for Hachinohe, whose light injured
are less than the places available), hospital nominal capacity starts saturating
in less than one hour. Thus, wounded people start moving towards the field
hospital that eventually guarantees a place for all injured persons that can
not find assistance in other facilities. However (as can be seen in Figure 9,
left, which shows a drastic decrease of the number of injured accepted in the
hospital after about 180 minutes, reaching the field hospital requires longer
travel times with possible negative consequences on the agents’ health. We
should also observe that the time required to rescue all the severely injured
can become extremely high, reaching up to 15 hours in the Northridge event
(Figure 9, center). Such delays in assistance can lead to an increase in the
number of deaths. Summarizing, these observations highlight that the emer-
gency response resources deployed in the simulated city are quite inadequate
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for a prompt response to extreme events.

Figure 10: Occupation of Shelters (left) and Hospitals (right) for every scenario, as absolute
values and as percentages, relative to the nominal maximum capacity.

Another way to use our simulator is to compare the overall emergency
response when the same seismic event happens at different times of the day.
As an example, we show the comparison of the response simulation of the
Northridge event (i.e., the most damaging one) happening at 2 AM and 5 PM,
which are the situations with, respectively, the lowest and highest number of
outdoor agents. We recall that different indoor/outdoor distributions result
in different distributions of the overall individuals’ health levels since indoor
persons are more likely to be affected by the consequences of the earthquake.

In Figure 11, we can observe that the shelters’ saturation time and the
time required to host (almost) all the lightly injured agents are similar in
the two simulations. In both cases, the differences between the first parts
of the curves can be explained in terms of the different number of indoor
agents (which result in different number of injured persons). The healthy
street agents can immediately start looking for rescue, while indoor agents
must first exit their building, which requires a specific time. As for the
lightly injured, their number is higher at 2 AM, which explains the peak in
the graph, but the overall response of the medical and sheltering service is
similar in the two simulations. Concluding, the major takeaway from these
results (which are consistent with that of other combinations of scenario and
event time) is again that the primary variable affecting the emergency system
response is the number of available resources.

5.3. IdealCity for resource planning

The issues found in the previous sections highlight the need, in these
simulations and many other real cases, to estimate and intervene on critical
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Figure 11: Comparison between the same scenario (Northridge) at 2 AM and 5 PM. The
dashed lines represent the number of agents that safely reached a shelter. The solid lines
show the number of lightly injured people that are currently traveling to reach an hospital.

parameters such as the number of resources available. IdealCity can provide
a contribution to tackle this problem since decision-makers can use the model
to prepare resource plans aimed at guaranteeing a certain level of services
during the emergency response.

To exemplify the use of IdealCity as a resource planner, we run different
simulations on the Northridge event at 2 AM, increasing the number of avail-
able resources and then analyzing the response of the simulation variables.
In this way, we can estimate the resources required to guarantee a target
quality level of the response service.

For instance, Figure 12 shows the time needed to rescue all seriously
injured agents as a function of the number of ambulances available. The
initial value of about 15 hours for 110 ambulances can be reduced to about
two hours when 1,000 ambulances are made available. On the contrary, if we
set an arbitrary threshold as a target (e.g., 240 minutes), we can compute
the number of ambulances needed (447) to complete patient recovery within
that time.

Similar reasoning can be made on other resources. Increasing the overall
percentage capacity of shelters and hospitals, we can obtain two pieces of
information. The first is the (trivial) indication of the overall number of
persons that can be secured. The second (Figure 13) is the time to saturate
shelters and (nominal capacity of) hospitals. This value is relevant since it is
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Figure 12: Northridge event at 2 AM: time required by the ambulance service to bring all
seriously injured agents to an hospital as a function of the number of available vehicles.

clear that, by definition, an event is a disaster when it exceeds the capacity of
the emergency response system. Thus, the saturation times can be used by
the planners to define a suitable trade-off between the number of resources
deployed and the amount of time available to put in place external resources.

Figure 13: Northridge event at 2 AM: time to reach the nominal capacity of shelters (red
line) and hospitals (blue line) when their percentage capacity increases.

Another parameter of IdealCity is the behaviour of indoor individuals.
As we stated at the beginning of Section 4.5, the simulations described so
far consider a case where healthy indoor agents stay home, and those of
damaged buildings walk toward the nearest shelter (this case is referred in
the following as B0). In order to analyze how different settings affect the
experimental outcomes, we run three other simulations where indoor agents
can take different choices according to the following parameters. In simula-
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tion B1, all healthy residents follow the official recommendation to head to
a shelter. In simulation B2, irrespective of the building damage level, 50%
of the residents remain in place, the other head to a shelter. In simulation
B3, the average percentage of residents remaining close to the building varies
according to the building damage level (namely, 95%, 75%, 50%, 25% and
5% for, respectively, not damaged and slightly, moderately, extensively and
completely damaged buildings). We choose as scenario the Hachinohe event
at 2 AM since it is of average severity (and, thus, it results on balanced
percentages of buildings affected by the different damage levels) and 2 AM
is the time of the day with the highest amount of indoor agents.

The results of these simulations are summarized in Figure 14, where we
show the time to reach the nominal shelter capacity in the four simulations
described. We recall that the changes in the behaviour of the healthy indoor
individuals do not affect hospitals, which have to manage the same amount
of injured in all the simulations. The results clearly show that B1 (i.e., the
simulation with the highest number of individual heading towards a shelter)
is the most critical condition since shelters saturate their capacity in a short
time (and about 20 to 30 minutes less than the other simulations). This result
would highlight the scarcity of resources if the politics of recommending all
citizen to reach a secure place were indeed applied.

Figure 14: Hachinohe event at 2 AM: effects of different behaviour policies of the healthy
indoor individuals on the time to reach the nominal capacity of shelters.

Finally, we underline that IdealCity supports resource planning at the
macro and micro levels. While it is relevant to estimate the global effect of
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the available/planned resources, we can also analyze (at a local scale) where
are the most critical locations in terms of emergency response. For instance,
in Figure 15, we marked on the IdealCity map the locations of shelters and
hospitals using a color-graded scale that is a function of the saturation time
of the corresponding facility (red: lower times, green: higher times). Such vi-
sualization allows planners to quickly identify the urban district that requires
an improvement of the resources needed to face a disaster. For instance, it
can be seen from Figure 15 that in the the worst-case scenario (Northridge
at 2 AM, i.e., the event with the most significant number of injured indi-
viduals) there are hospitals located in densely populated urban areas that
are saturated in very short times due to their reduced capacities (from 46 to
about 120 places).

Figure 15: Saturation times of the emergency facilities in the Northridge 2 AM simulation
(circles: shelters; squares: hospitals).

6. Conclusions

In this work, we have presented IdealCity, a hybrid and multilayered
model for simulating and studying the disaster resilience of communities at
various scales. The model includes the layers corresponding to the trans-
portation network, the built environment, and an agent-based model capa-
ble of simulating human behavior during evacuation. IdealCity allows the
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estimation of buildings’ damage and debris’ generation caused by the seismic
event as well as their effects on the other layers of the models. Furthermore,
it implements the emergency response network in terms of shelters, hospitals,
and ambulances.

IdealCity has been tested on a realistic urban environment and with dif-
ferent seismic scenarios. Our experimental results show that the simulations
run in near-real time with a large number of agents on a standard PC and
that their output can be used to (reliably) analyze the community response.
Furthermore, these results show as well that our model can support decision-
makers in the design and implementation of specific interventions aimed at
improving the inherent community resilience.

Our future works will focus on extending the model validation using differ-
ent real environments beyond the city of Turin and the four reference seismic
events of our simulations. Then, we plan to conjugate the emotional and
irrational part of the behavioral model of our agents with different patterns
aimed at simulating the interaction among agents (such as altruism [13], the
leader-follower phenomenon [59] and pro-social behaviours [31]) as well as
specific behaviours of exposed people (such as the path selection described
in [31]). Another feature we are planning to introduce is a complete model
of vehicular traffic, currently ignored in the proposed ABM model, which
will allow increasing the fidelity of our simulations. Finally, we plan to use
IdealCity as the core of an immersive Virtual Reality environment for train-
ing rescue and civil protection operators in complex and realistic scenarios,
without direct risks to individuals and with a reduction of training costs.
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