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Abstract
Worldwide urbanization calls for a deeper understanding of epidemic spreading within
urban environments. Here, we tackle this problem through an agent-based model, in
which agents move in a two-dimensional physical space and interact according to
proximity criteria. The planar space comprises several locations, which represent
bounded regions of the urban space. Based on empirical evidence, we consider
locations of different density and place them in a core-periphery structure, with higher
density in the central areas and lower density in the peripheral ones. Each agent is
assigned to a base location, which represents where their home is. Through analytical
tools and numerical techniques, we study the formation mechanism of the network of
contacts, which is characterized by the emergence of heterogeneous interaction
patterns. We put forward an extensive simulation campaign to analyze the onset and
evolution of contagious diseases spreading in the urban environment. Interestingly, we
find that, in the presence of a core-periphery structure, the diffusion of the disease is
not affected by the time agents spend inside their base location before leaving it, but it
is influenced by their motion outside their base location: a strong tendency to return to
the base location favors the spreading of the disease. A simplified one-dimensional
version of the model is examined to gain analytical insight into the spreading process
and support our numerical findings. Finally, we investigate the effectiveness of
vaccination campaigns, supporting the intuition that vaccination in central and dense
areas should be prioritized.

Keywords: Agent-based model, core-periphery structure, Epidemics, Mobility,
Temporal network

Introduction
The number of people living in urban areas has already exceeded 4 billions and it is
estimated to reach 7 billions by 2050 (Ritchie and Roser 2020). Global urbanization
poses new challenges in different sectors, ranging from transportation to energy sup-
ply, environmental degradation, and healthcare (Cohen 2006). Among these challenges,
understanding how urban environments shape the evolution of epidemic outbreaks and
designing effective containment strategies have recently drawn considerable attention
from researchers and media. Paradigmatic are the examples of recent outbreaks, such
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as the 2003 SARS (Smith 2006), 2012 MERS (de Groot et al. 2013), and the ongoing
COVID-19 (Chang et al. 2020; Chinazzi et al. 2020; Ferguson et al. 2020).
Analyzing how diseases spread within urban environments has been the topic of var-

ious experimental and theoretical studies (Eubank et al. 2004; Satterthwaite 2007; Alirol
et al. 2011; Neiderud 2015; Telle et al. 2016; Massaro et al. 2019). Experimental stud-
ies have offered a detailed analysis of urban environments (Satterthwaite 2007; Neiderud
2015), suggesting specific preventive measures for both urban residents and travelers
(Alirol et al. 2011). Theoretical studies have provided insights on how to contain out-
breaks (Eubank et al. 2004), as well on possible key drivers of contagion, such as the
role of human mobility patterns (Massaro et al. 2019) and socio-economical risk factors
(Telle et al. 2016).
Despite the importance of urban environments in the global diffusion of diseases

(Brockmann and Helbing 2013), how epidemic outbreaks unfold therein is yet to
be fully elucidated. Some attempts to mathematically describe the diffusion of dis-
eases within and among cities can be found in metapopulation models (Colizza and
Vespignani 2007; Colizza and Vespignani 2008; Liu et al. 2013). In these models, a
fixed network of spatial localities is used to model the mobility patterns between
cities, where homogeneously-mixed populations are affected by the epidemic. While
metapopulation models can be, at least partially, tackled through analytical methods
(Colizza and Vespignani 2007; Colizza and Vespignani 2008; Liu et al. 2013), con-
siderable experimental evidence challenges the assumption of homogeneously-mixed
populations, which could yield misleading estimates of the extent of epidemic outbreaks
(Pastor-Satorras et al. 2015).
On the other side of the spectrum of epidemic models, agent-based models

(Eubank et al. 2004; Degli Atti et al. 2008; Gilbert 2008) constitute a valuable framework
to offer a realistic description of how diseases diffuse within urban environments. Cur-
rently, this class of models is being leveraged to predict the diffusion of the COVID-19
(Chang et al. 2020; Ferguson et al. 2020), informing the design and implementation of
timely containment measures. However, those advantageous features are accompanied
by some drawbacks, including the need of mobility data and models, the use of massive
computational resources when the system size scales up, and the lack of analytical tech-
niques for model characterizations. A viable approach to agent-based modeling is based
on two-dimensional representations, where agents move and interact according to prox-
imity criteria (Frasca et al. 2006; Frasca et al. 2008; Zhou and Liu 2009; Buscarino et
al. 2010; Yang et al. 2012; Buscarino et al. 2014; Huang et al. 2016; Peng et al. 2019). As
a first approximation, the motion of the agents can be described according to a random
walk with sporadic long range jumps (Frasca et al. 2006). Building on this approxima-
tion, it is possible to include realistic features such as nonhomogeneous infection rates
(Buscarino et al. 2014) and heterogeneous radii of interaction (Huang et al. 2016; Peng et
al. 2019). Much work is needed, however, to fully capture and describe realistic patterns
of human mobility, which are shaped by the complex structure of urban environments
(Alessandretti et al. 2017).
Here, we contribute to the field of agent-based modeling by presenting a two-

dimensional model that is capable of reproducing a spatially inhomogeneous urban-like
environment, in which a heterogeneous population follows realistic rules of mobility.
Inspired by previous theoretical studies (Huang et al. 2016; Peng et al. 2019), we assume
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that agents have a heterogeneous radius of interaction, which accounts for variations
among individuals in their involvement in social behavior and activities.
We consider a urban-like environment composed of multiple locations, each of them

representing a well-defined region of the urban space (that is, a neighborhood of a city).
Through this spatial organization, our model is able to encapsulate two key features of
urban environments. First, it can reproduce typical core-periphery structures, where cen-
tral regions are more densely populated than peripheral ones (Makse et al. 1998; De
Nadai et al. 2016). Second, it allows to mimic the inhomogeneity in movement patterns
of humans, where people tend to spend most of their time in a few neighborhoods — for
example, experimental studies suggest that individuals spend most time either at home or
at work, while only sporadically visiting other neighborhoods (Brasche and Bischof 2005;
Schweizer et al. 2007; Matz et al. 2015).
To reproduce realistic conditions for agents’ movement patterns, we posit two differ-

ent mobility schemes, applied within and outside the agents’ base location (that is, where
their home is). While the homogeneous mixing assumption seems reasonable within the
agents’ base location, we assume that agents tend to move outside of their base location
following a gravity model and a biased random walk. Hence, agents are more likely to
explore regions close to their base location rather than remotely-located regions (Brasche
and Bischof 2005; Schweizer et al. 2007; Matz et al. 2015). From this mobility pattern,
we construct a network of contacts, whose topology is examined in this study. Through
some mathematical derivations and numerical simulations, we seek to identify analogies
between the proposed agent-based model and existing temporal network approaches,
where spatial mobility is lumped into nodal parameters (Perra et al. 2012; Zino et al. 2016;
Zino et al. 2018; Nadini et al. 2018; Nadini et al. 2020).
We adopt the proposed framework to study how urban-like environments shape the

diffusion of infectious diseases, using the illustrative epidemic models with the pos-
sibility of reinfection (susceptible–infected–susceptible, or SIS) or permanent removal
(susceptible–infected–removed, or SIR) (Keeling and Rohani 2011). Our results confirm
the intuition that agents’ density plays a critical role on the diffusion of both SIS and SIR
processes. In the limit case where the entire urban area consists of one location, agents
that move outside the location only seldom interact with other agents, thereby hindering
the contagion process.
In the more realistic scenario of a core-periphery structure with multiple locations, we

unexpectedly find that the time spent by agents in their base location does not influence
the endemic prevalence in the SIS model and the epidemic size in the SIR model, which
aremeasures of the overall fraction of population that is affected by the disease. A possible
explanation for this counterintuitive phenomenon may be found in the agents’ mobility
rules. In fact, commuting patterns that bring agents from central areas to peripheral ones
may yield a reduction in the diffusion in the central areas. Contrarily, commuting pat-
terns from peripheral to central areas lead to the opposite effects. To detail the working
principles of this unexpected result, we present a minimalistic one-dimensional version
of the model, which is amenable to a complete analytical treatment, thereby offering some
preliminary analytical insight into the role of model parameters on epidemic spreading.
We also explore the interplay between the agents’ radius of interaction and their posi-

tioning in the core-periphery structure. We find that when agents’ with larger radii are
assigned to the less dense and peripheral locations, then the endemic prevalence (in the
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SIS model) and the epidemic size (in the SIR model) strongly decrease with respect to
a random assignment. Moreover, when agents’ with larger radii are assigned to denser
(and central) locations, the fraction of population affected by the disease is not sensi-
bly increased. Hence, our results support the intuition that more central areas are the
crossroads of individuals commuting in a city and are critical for the spread of diseases.
Finally, we numerically analyze the effect of targeted vaccination strategies, which con-

sist of immunizing a portion of the population in a specific location, prior to the disease
onset. Consistent with the intuition that central locations play a key role on the spread of
epidemic diseases, we find that the best strategy is to prioritize the vaccination of agents
belonging to central urban areas.
The rest of the manuscript is organized as follows. In Table 1, we summarize the nota-

tion and the nomenclature used throughout the paper. In “Model”, we introduce the
model of agents’ mobility. In “Temporal network of contacts”, we describe and analyze
the temporal network formation mechanism. In “Epidemic processes”, we analytically
and numerically study the spread of epidemic processes and compare several vaccina-
tion strategies. In “Discussion and conclusion” sections, we discuss our main findings and
propose further research directions.

Model
We consider N ≥ 1 agents, labeled by positive integers V := {1, . . . ,N} . Agents move
in a square planar space with side length D > 0 and with periodic boundary conditions
(Frasca et al. 2006), that is, when an agent exits through one side of the square planar
space, it re-appears on the opposite side. The position of agent i ∈ V at the discrete time
t ∈ Z≥0 in a Cartesian reference frame is denoted by (xi(t), yi(t)) ∈[ 0,D]×[ 0,D].

Urban-like environment

We deploy the N agents over L locations, each of them representing a bounded portion
of the square space. The set of all locations is L = {1, . . . , L} and each location � ∈ L
occupies a convex region of the planar space�� ⊂[ 0,D]×[ 0,D] with areaA�. We assume
that all the locations aremutually disjoint andwe order them in ascending order according
to their area, that is,A1 ≤ · · · ≤ AL.We hypothesize thatAL � D2, that is, each location is
much smaller than the whole square space. Each agent is assigned a specific base location
(that is, their home) according to a map: β : V −→ L; we assume that each base location
is associated with the same number of agents, n = N/L.1 As a result, the density of agents
assigned to location �,

ρ� := n
A�

, (1)

varies with the location. Also, locations are sorted in descending order of density, that is
ρ1 ≥ · · · ≥ ρL.
For simplicity, in the numerical simulations implemented throughout this paper, the

convex regions are taken as circles with nondecreasing radii �1 ≤ · · · ≤ �L. Inspired
by empirical and theoretical studies (Witten Jr and Sander 1981; Vicsek 1992; Makse et
al. 1998; De Nadai et al. 2016), radii of the locations are extracted from a power law dis-
tribution with probability density function P(�) ∝ �−γ , with bilateral cutoffs such that
�� ∈ [�min,�max], for any � ∈ L. The upper bound guarantees that all locations fit in the

1We consider that N is a multiple of L.
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Table 1 Nomenclature of the variables and notation used in the paper

Symbol Description

V Set of all agents

L Set of all locations

N Number of agents in the system

L Number of locations in the system

n Number of agents in each location

D Side of the square planar space

T Total number of discrete time-steps in the observation window

t Index for discrete time instants

� Index for the locations in the system

i, j Indices for the agents in the system

ρ� Density of location � in the system

β(i) Function that maps agent i to its base location

�� Region of space occupied by location �

xi(t), yi(t) Position occupied by agent i in the planar space at time t

θi(t) Direction of the motion of agent i at time t

	i(t) Angle of the direction of the shortest path from xi(t), yi(t) to �β(i)


θit Angle drawn uniformly at random in [ 0, 2π) for agent i at time t

v Velocity of agents outside their base location

α Randomness in the agents’ motion toward their base location

p Probability of jumping outside the base location

Pjump(d) Probability of jumping at a distance d from the base location

qin Probability of being inside the base location

qout Probability of being outside the base location

q� Probability of being inside ��

qout,d Probability of being at a distance d from the closest location

in,out,d Probability that agents are inside, outside, and at a distance d

from their base location

P(�) Probability density function of locations’ radii

γ Exponents of the power law distribution of locations’ radii

�min,�max Lower and higher cut-off of the distribution of locations’ radii

G(σ ) Probability density function of agents’ radii of interaction

ω Exponents of the power law distribution of radii of interaction

σmin, σmax Lower and higher cut-off of the distribution of radii of interaction

ki Degree of agent i

λ Infection probability per contact

μ Recovery probability per unit time

s(t), i(t), r(t) Fraction of susceptible, infected, and recovered agents in the system

s�(t), i�(t), r�(t) Fraction of susceptible, infected, and recovered agents in ��

sout,d(t), iout,d(t), rout,d(t) Fraction of susceptible, infected, and recovered agents at distance d

from the closest location

��(t) Contagion probability in ��

�out,d(t) Contagion probability at a distance d from the closest location

〈·〉 Statistical average of the quantity “·”
E[ ·] Expected value of the quantity “·”
P[ ·] Probability of an event “·”

square, and the lower bound sets a maximum to the locations’ density. Since the radii are
power law distributed with exponent −γ , the areas of the locations are also power law
distributed with exponent −2γ and cutoffs such that A� ∈ [π�2

min,π�2
max
]
.
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Empirical studies on urban environments suggest that cities are constructed according
to a core-periphery structure, whereby locations with smaller areas and denser popula-
tion are located in their center, while locations with larger areas and sparser population
pertain to peripheral areas (Makse et al. 1998; De Nadai et al. 2016), as shown in Fig. 1a.
We implement a heuristic algorithm to generate a locations’ layout according to a core-
periphery structure and qualitatively reproduce empirical results. Figure 1b shows the
output generated by our algorithm, whose structure is qualitatively consistent with the
empirical observations reported in Fig. 1a. Details of the algorithm used to create such a
core-periphery structure are presented in Appendix A.
At the present time, the technical literature has yet to empirically study the relationship

between the agents’ radius of interaction and the density of their base location. In this
paper, we explore different scenarios aiming at offering a first theoretical understanding
of the impact of this potential relationship on the evolution of disease processes. Unless
otherwise specified, we consider that the n members of each location are randomly cho-
sen, independently of their radius of interaction.We also examine the cases in which there
is a correlation (positive or negative) between the agents’ radius of interaction and the
density in their base location: a positive correlation means that agents with larger radius
are assigned to denser (central) locations, while a negative correlation identifies the case
in which agents with larger radius are placed in the less dense (peripheral) locations.

Law of motion

Agents’ positions evolve according to a discrete-time dynamics. Hence, their positions
are updated at each discrete time-step t ∈ Z≥0. The law of motion of the generic agent
i depends on whether it is outside or inside its base location β(i) ∈ L. If agent i ∈ V is
outside its base location, that is, (xi(t), yi(t)) /∈ �β(i), it performs a biased random walk

Fig. 1 Qualitative comparison between real datasets from an experimental study (De Nadai et al. 2016), and
the output of our algorithm. a Experimental results about human digital activity density in the cities of Milan
and Rome, Italy. The highest density is registered in central areas, while lower densities are observed in
peripheral ones. b Using our algorithm, we generate L = 1, 000 circular locations distributed in rings of
decreasing densities. The first few rings contain the denser locations (darker central regions) and may parallel
the city center of a urban environment, while the outer rings are less dense and represent peripheral areas
(light gray regions). Source of a: (De Nadai et al. 2016). Parameters used to generate b: D = 1, 000, �min = 3,
�max = 30, and γ = 2.1. Details of the generative algorithm used are available in Appendix A
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toward its base location;2 on the contrary, if it is inside its base location, it can move to a
random position (within its base location), or exit according to a probabilistic mechanism.
Specifically, if the agent is not in its base location, then
{
xi (t + 1) = xi(t) + v cos θi(t) ,
yi (t + 1) = yi(t) + v sin θi(t) .

(2)

Here, v > 0 is the (constant) speed and θi(t) is an angle, determined as the sum of two
terms:

θi(t) := 	i(t) + α
θit . (3)

The first term, 	i(t), represents the angle of the direction of the shortest path from
(xi(t), yi(t)) to the region�β(i), that is, to the agent base location. This quantity is formally
defined by introducing

(x̄i(t), ȳi(t)) := arg min
(x,y)∈�β(i)

{
(xi(t) − x)2 + (yi(t) − y)2

}
, (4)

so that

	(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

arctan ȳi(t)−yi(t)
x̄i(t)−xi(t) if x̄i(t) > xi(t) ,

π + arctan ȳi(t)−yi(t)
x̄i(t)−xi(t) if x̄i(t) < xi(t) ,

+π
2 if x̄i(t) = xi(t) and ȳi(t) > yi(t) ,

−π
2 if x̄i(t) = xi(t) and ȳi(t) < yi(t) .

(5)

The second term, α
θit , is modulated by 
θit , which is a random variable that takes
values uniformly in [−π ,π ] and is extracted independently at every time t and for every
agent i, and by α ∈[ 0, 1], which is a randomness parameter that regulates how much the
agents tend to deviate from the shortest path to return to their base location, when they
are outside it. When α = 1, the agent moves completely at random, while, when α = 0, it
moves along the shortest path toward its location.
When the agent is in its base location, (xi(t), yi(t)) ∈ �β(i), the law of motion is defined

as follows. Given a parameter p ∈[ 0, 1] (constant in time and equal for all agents), with
probability 1 − p, the agent moves to a position chosen uniformly at random within its
base location, so that its position is completely uncorrelated with the previous one. Oth-
erwise, with probability p, the agent jumps outside its base location, ending in a position
of the remaining space according to a distance decay law. In particular, we assume that the
distance from the border of the base location at which an agent jumps is the realization
of a random variable exponentially distributed with exponent c > 0. The corresponding
probability density function Pjump(d) is equal to

Pjump(d) = ce−cd , (6)

for d ≥ 0. Hence, the expected distance at which an agent jumps is equal to 1/c. A sensi-
ble choice of the exponent in the law in Eq. (6) yields a typical behavior observed in many
empirical studies (Levinson and El-Geneidy 2009; Boussauw et al. 2011), whereby agents
tend to gravitate within and around their base location, while sporadically initiating jour-
neys toward further locations (Liu et al. 2014). Two salient snapshots of agents’ motion
are illustrated in Fig. 2a and c.

2The distance between a point and a set is defined as the minimum Cartesian distance between the point and a generic
point of the set.
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Fig. 2 Schematic representation of two snapshots of our model with N = 4 agents and L = 2 locations. The
entire space is delimited with solid black lines. In a and c, we illustrate the agents’ motion and the border of
the locations is represented with dashed black lines. Agents 1 and 2 are assigned to location
A := β(1) = β(2), while agents 3 and 4 are assigned to location B := β(3) = β(4). Direction and modulus of
the agents’ velocity is drawn with solid red arrows. The position where agent 1 will jump is indicated with a
dotted red arrow. The four arrows around an agent indicate that it will move in a random position inside its
own location. In b and d, we show the temporal network formation mechanism. Agents’ radii of interaction
are represented with solid circles, and undirected links are represented with solid blue lines

Temporal network of contacts
Upon the mobility model, we construct the network of contacts, which is the means
through which the disease is transmitted. In this vein, agents create undirected temporal
links based on proximity with other agents. Specifically, agent i ∈ V contacts all other
agents located within a circle of radius σi centered in its current position (xi(t), yi(t)). We
assume that agents have heterogeneously distributed radii, extracted from a power law
distribution with probability density function G(σ ) ∝ σ−ω, with suitable cutoffs so that
σ ∈ [σmin, σmax].
An undirected temporal link between two agents i and j is created when the Euclidean

distance at time t between the position of agent i, (xi(t), yi(t)), and the position of agent j,
(
xj(t), yj(t)

)
, is less than or equal to the maximum of the two radii σi and σj, that is,

√(
xi(t) − xj(t)

)2 + (
yi(t) − yj(t)

)2 ≤ max
{
σi, σj

}
. (7)

Figure 2b and d show two consecutive instances of the network formation process.
Toward modeling of epidemics in urban environments, our model allows agents inside a
location to interact with agents outside the location, see, for example, agents 2 and 3 in
Fig. 2a and b.
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The intricacy of the motion patterns and the nonsmooth process for generating the net-
work of contacts hinder the analytical tractability of the model in its general formulation.
However, for some cases it is possible to establish analytical insight on some model fea-
tures. In Appendix B, we analyze the system in the two specific cases of: i) a free space
without any location (L = 0), and ii) when the law of motion of the agents outside their
base locations is deterministic (α = 0) and the locations are uniformly distributed in
the plane. In these two cases it is possible to apply a meanfield approach in the limit of
large systems (N → ∞) to analytically study the number of connections generated by the
agents, which represent potential paths of infection throughout the population. Therein,
numerical simulations for large systems are provided to validate theoretical findings. The
general case of a core-periphery structure and stochasticity in the motion out of the loca-
tion is treated only through numerical simulations, in which we record all the interactions
and use their time-evolution over sufficiently long time-windows (T � 1, where T is
the duration of the observation) to study key topological features (average degree and
clustering coefficient).
In Fig. 3a, we consider the case without locations. Our numerical results are consistent

with analytical predictions in Appendix B, which are exact in the thermodynamic limit of
large systems N → ∞. Specifically, the expected degree of agent i is equal to

E [ki] = Nπ

D2

⎛

⎝
(

1 − σ 1−ω
i − σ 1−ω

max
σ 1−ω
min − σ 1−ω

max

)

σ 2
i +

(ω − 1)
(
σ 3−ω
max − σ 3−ω

i

)

(3 − ω)
(
σ 1−ω
min − σ 1−ω

max
)

⎞

⎠ , (8)

so that agents with a larger radius of interaction have a greater average degree. Note that
when the agent radius is close to the minimum, that is, σi ≈ σmin, Eq. (8) is dominated by
the second summand, while when the radius is close to the maximum, that is, σi ≈ σmax,
the right-hand side of Eq. (8) scales with σ 2

i . Equation 8 highlights a nontrivial relationship
between the expected degree of an agent and its radius of interaction, which is due to the
links passively received by the agent when it is located within the radii of interaction of
other agents. This relationship is different from the case of directed interactions analyzed
in Huang et al. (2016); Peng et al. (2019), where E[ ki] is proportional to σ 2

i .
In Fig. 3b, we examine the case of multiple locations uniformly distributed in the plane.

Based on the theoretical derivations in Appendix B, we obtain the following expression
for the expected number of interactions that agent i establishes in its own location in the
thermodynamic limit of large systems N → ∞:

E
[
kin,i

] = q2in
�2

β(i)
(n− 1)

⎛

⎝σ 2
i + σ 1−ω

i − σ 1−ω
max

σ 1−ω
min − σ 1−ω

max

⎛

⎝
(ω − 1)

(
σ 3−ω
max − σ 3−ω

i

)

(3 − ω)
(
σ 1−ω
i − σ 1−ω

max
) − σ 2

i

⎞

⎠

⎞

⎠ .

(9)

We observe that E
[
kin,i

]
is inversely proportional to the square of the radius of location

β(i) , that is,�2
β(i). In Fig. 3b, wemultiply the numerical estimation of each agents’ average

degree by the square of the radius of the corresponding location, to allow a graphical rep-
resentation of the comparison between numerical estimations and analytical predictions.
Numerical results in finite-size systems are in close agreement with analytical predictions
of Eq. (9), which are exact in the limit of large systems.
In order to offer insight into the influence that a core-periphery structure has on the

agents’ average degree, we analyze three different scenarios. First, we study the case in
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Fig. 3 Relationship between the agents’ average degree and radius of interaction. a Comparison between
numerical results and analytical predictions from Eq. (8), for the case without base locations. Simulation
results are generated with the following parameter set: L = 0, D = 100, 000, σmin = 5, and σmax = 500. For
each value of σi , Eq. (8) provides the expected degree, which is numerically estimated by tracking the
corresponding agent in time. b Comparison between numerical results and analytical predictions from
Eq. (9), in the case of multiple base locations, uniformly distributed in the plane. For each value of σi and
�β(i) , Eq. (9) provides the expected degree, which is numerically estimated by tracking the corresponding
agent in time. Numerical results are presented using different colors and markers, corresponding to each of
the locations (numerical findings share a common trend, which is well captured by the theory). In the
simulations, we use the following parameters: L = 10, D = 109, �min = 1, 000, �max = 10, 000, σmin = 10,
σmax = 100, p = 0.3, and α = 0. Agents are initially inside their base location and interactions are recorded
after 100 steps to allow agents to reach a steady-state configuration. Other parameter values are N = 10, 000,
v = 500, c = 4 · 10−4, ω = 2.4, γ = 2.1, and T = 5, 000

which agents are strongly tied to their base location, such that they have low probability
of jumping outside their base location (small p) and low probability of deviating from the
shortest path to return to the base location, when they are outside (small randomness α),
in Fig. 4a. Second, we examine the case in which the probability of jumping outside their
base location and the agents’ randomness in the random walk are intermediate, in Fig. 4b.
Finally, we investigate the case in which agents tend to spend most of their time outside
their base location (large p and α), in Fig. 4c.
As expected from the formulation of the model, we determine that agents with larger

radii of interaction tend to have larger average degrees. Also, agents with larger radii
of interaction are more likely to contact agents outside of their base location, thereby
leading to lower clustering coefficients C (Saramäki et al. 2007), which is a measure of
the agents’ tendency to form clusters.3 The results of our simulations are reported in
Figs. 4d–f. During the evolution of an epidemic process, agents with large radii might
act as “superspreaders (Lloyd-Smith et al. 2005),” which are known to have a key role on
the disease spreading, by creating many connections and infecting agents from different
locations.
Less expected are the relationships between agents’ radii of interaction and their base

location, and between agents’ clustering coefficients and their radii of interaction. Among
the agents with a small radius of interaction, the agents that are assigned to central loca-
tions have a larger average degree than those that are assigned to peripheral locations.
This result is independent of the time spent outside their base location (that is, indepen-
dent of p and α). Interestingly, the same argument does not apply when agents have a

3The clustering coefficient is computed by considering a network that includes all the links that are generated during the
entire observation window and counting the fraction of triadic closures (that is, whether two agents that are connected
to a third one are also linked one another).
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Fig. 4 Influence of the location radius on the agents’ average degree a-c and clustering coefficient d-f, for
three different parameter settings. Average degree and cluster coefficient are numerically estimated by
tracking every agent in the system. Darker circles represent agents assigned to more peripheral locations,
while brighter ones indicates agents belonging to more central locations. We set: a-d p = 0.1 and α = 0, b-e
p = 0.4 and α = 0.2, and c-f p = 0.8 and α = 0.4. Agents are initially inside their base location and contacts
are recorded after 100 steps to allow the agents to reach a steady-state configuration. Other parameter
values are L = 100, N = 10, 000, D = 109, �min = 100, �max = 10, 000, σmin = 1, σmax = 1, 000, v = 500,
c = 4 · 10−4, ω = 2.4, γ = 2.1, and T = 5, 000

large radius of interaction. In this situation, agents assigned to peripheral locations may
have a larger degree than agents assigned to central locations, because their high radius
of interaction allows a multitude of interactions, independent of the position of their base
location. In addition, agents assigned to central locations have a lower clustering coef-
ficient than agents assigned to peripheral locations. This is because the former group
interacts with more agents and creates less tight clusters than the latter group that is
assigned to peripheral locations.
Further, we comment that time spent outside the base location (regulated by p and α) is

inversely proportional to the dispersion of the agents’ degree. In fact, the largest disper-
sion in the agents’ degree is registered when the probability of jumping outside the base
location and the agent’s randomness are small, in Fig. 4a. Dispersion in the agents’ degree
decreases as the probability of jumping outside the base location and the agent’s random-
ness increase, in Fig. 4b and in Fig. 4c. A possible explanation for this phenomenon can
be based on the following argument. The more the agents spend time inside their base
location, the more they remain isolated from other agents in the system. On the contrary,
agents’ isolation is reduced when they spend more time outside their base location: they
are able to interact with all the agents in the system, and, as a consequence, the dispersion
in their degree decreases.

Epidemic processes
Here, we investigate the spreading of epidemics over spatially-distributed populations
that behave according to the presented agent-basedmodel. Even though the complexity of
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the mobility mechanism and the presence of a geographical structure hinders the general
mathematical treatment of the epidemics, some mathematical insight can be obtained by
studying a simplified, one-dimensional version of the model.
We start by presenting the one-dimensional simplification, discussing our main analyt-

ical results and validating them against numerical simulations. Specifically, we focus on
the impact of three salient model characteristics on epidemic processes. Namely, i) the
random exploration of the space governed by the parameter α, ii) the probability of jump-
ing outside the base location p, and iii) the presence of multiple locations. Interestingly,
when multiple locations are present, the time spent inside the base location does not play
an important role in the evolution of the contagion process.
Then, we consider the two-dimensional agent-based model and explore the effect of

the same three salient model characteristics. We determine that results are qualitatively
equivalent to those obtained in the one-dimensional case. We continue our numerical
campaign on the two-dimensional agent-based model by studying whether the disease
spreading is influenced by the presence of agents with larger radii in specific regions of
the core-periphery structure. To this end, we study the presence of agents with greater
radius of interaction in either the more central or more peripheral locations, thereby dis-
covering that central locations are important for sustaining the overall diffusion. Finally,
we analyze the outcome of vaccination strategies, finding that the highest beneficial effect
for the entire population is registered when the vaccination of agents in central locations
is prioritized.
We consider an infectious disease with the possibility of re-infection (SIS model) or

immunization (SIR model), after the contraction of the infection. In the SIS model,
agents can be either susceptible to the disease or infected (Keeling and Rohani 2011).
Two mechanisms characterize the epidemic dynamics: infection propagation and recov-
ery process. The former occurs when an infected agent contacts a susceptible one,
who may become infected with a probability λ, independently of the others. The lat-
ter consists of the spontaneous transition from the infected state to the susceptible
one and occurs with probability μ at each unit time, independently of the others. In
the SIR model, instead, individuals who recover cannot be infected again and tran-
sition from the infected state to a removed state with probability μ per unit time
(Keeling and Rohani 2011).
In the SIS model, we examine the endemic prevalence (that is, the number of active

cases in the long-term), which has typically two possible outcomes: either it quickly dies
out and tends to zero, or it fluctuates around a quantity greater than zero for a nonnegli-
gible amount of time, denoted by i∗. For the SIR model, instead, the fraction of infected
individuals in the system always goes to zero in the long-run. However, the total fraction
of individuals who have been infected may vary, depending on the model parameters. The
SIR epidemic size, denoted as r∞, is defined as the fraction of recovered individuals at the
end of the epidemic process.

One-dimensional model on a lattice

Here, we propose a one-dimensional model that provides some analytical intuitions on
the influence that the randomness α, the probability of jumping outside the base location
p, and the presence of a core-periphery structure have in the evolution of SIS and SIR epi-
demic processes. This model simplifies the two-dimensional case study by constraining
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Fig. 5 Schematic of the one-dimensional version of the agent-based model. a Scenario where only one base
location is present (in black). b Scenario where multiple base locations are present

agents to move in a discrete, infinitely long, one-dimensional lattice with periodic bound-
ary conditions (that is, a ring). The L locations occupy consecutive positions on the lattice
(labeled from 1 to L), and a fixed number of n = N/L agents belong to each one, as their
base location.
To generate a contact, agents should occupy the same position along the lattice. Agents

belong to a unique base location in the lattice, which they may leave with probability p.
We use a geometric distribution (Chung and Zhong 2001) to describe the agents’ law
of motion, that is, the probability of jumping at a distance d from the base location is
equal to

Pjump(d) = (1 − c)d−1 c , (10)

where c ∈ (0, 1) is a constant parameter that governs the decay rate, similar to Eq. (6).
Once outside their base location, agents move toward their base location by making
one step toward it, similar to the two-dimensional model with α = 0. A schematic
representation of the one-dimensional model is provided in Fig. 5.
We remark that this one-dimensional model maintains some key features of the original

two-dimensional agent-based model, that is: i) the presence of closely-spaced base loca-
tions, ii) a stochastic mechanism that governs the probability of jumping outside the base
location, and iii) a gravity law that biases the agents to jump close to the base location
according to an exponential distribution. A key feature that is not captured by this sim-
plified model is the heterogeneity in the locations’ density and agents’ radii of interaction,
which are numerically investigated in the two-dimensional model.
We start our analysis by reporting the probability that a generic agent i ∈ V is inside

location �, which is explicitly derived in Appendix C,

q� = c
L(c + p)

+ 1
L

L−�∑

x=1

cp (1 − c)x−1

2(c + p)
+ 1

L

�−1∑

x=1

cp (1 − c)x−1

2(c + p)
. (11)

Similarly, the probability that a generic agent is in a position that is not occupied by any
location and at a distance d from the closest location is computed in Appendix C as

qout,d = 1
L

L+d−1∑

x=d

cp (1 − c)x−1

2(c + p)
, (12)
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where we assume that the closest location is � = 1. By a simple change of variables, we
can write an equivalent expression when the closest location is � = L.
In the SIR and SIS processes, the disease propagates from infected agents to suscep-

tible ones occupying the same position of the one-dimensional lattice. We define as
s(t), i(t), and (for the SIR model only) r(t) the fractions of susceptible, infected, and
recovered agents at time t, respectively. For large-scale systems, we can compute the frac-
tion of susceptible, infected, and recovered agents along the lattice by using the law of
large numbers (Chung and Zhong 2001). In the thermodynamic limit of large systems
N → ∞, the fraction of susceptible, infected, and recovered agents inside location � is
s�(t) = q�s(t), i�(t) = q�i(t), and r�(t) = q�r(t), respectively. Similarly, the fraction of
susceptible, infected, and recovered agents at a distance d from the closest location is
sout,d(t) = qout,ds(t), iout,d(t) = qout,di(t), and rout,d(t) = qout,dr(t), respectively.
In the thermodynamic limit of large systems N → ∞, the evolution of the fraction of

infected agents at time t + 1 is determined by the following equation:

i(t + 1) = i(t) − μi(t) +
L∑

�=1
s�(t)��(t) + 2

∞∑

d=1
sout,d(t)�out,d(t)

= i(t) − μi(t) +
L∑

�=1
q�s(t)��(t) + 2

∞∑

d=1
qout,ds(t)�out,d(t) ,

(13)

where ��(t) is the contagion probability of an agent inside its base location � at time t,
that is

��(t) = 1 − (1 − λi�(t))q�N = 1 − (1 − λq�i(t))q�N , (14)

and �out,d(t) is the contagion probability of an agent at distance d from the closest
location at time t, that is,

�out,d(t) = 1 − (
1 − λiout,d(t)

)qout,dN = 1 − (
1 − λqout,di(t)

)qout,dN . (15)

The derivation of these expressions is reported in Appendix C. The evolution of the frac-
tion of infected agents in Eq. (13) depends on four terms: i) the fraction of infected at time
t, ii) the fraction of newly recovered, iii) the fraction of newly infected in any location, and
iv) the fraction of newly infected outside all the locations.
The evolution of the SIS model is fully determined by Eq. (13), since s(t) = 1 − i(t).

For the SIR model, instead, Eq. (13) should be coupled with the following equation, which
describes the evolution of the fraction of recovered agents,

r(t + 1) = r(t) + μi(t) , (16)

and with the conservation constraint s(t) = 1 − r(t) − i(t). The evolution of the fraction
of recovered agents only depends on the fraction of recovered at time t and the fraction
of newly recovered.
In order to gain qualitative insight into the behavior of the SIS and SIR epidemic

processes described by Eqs. (13) and (16), we compute the epidemic threshold of both
processes by studying the stability of the disease-free equilibrium in Eq. (13). We linearize
Eq. (13) and expand the expressions for the contagion probabilities in Eqs. (14) and (15)
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about the disease-free equilibrium i∗ = 0, obtaining

i(t + 1) = i(t) − μi(t) +
L∑

�=1
λq3�Ni(t) + 2

∞∑

d=1
λq3out,dNi(t) . (17)

The epidemic threshold is computed by imposing i(t + 1) ≤ i(t) in Eq. (17), obtaining
λ

μ
≤ 1

N
(

L∑

�=1
q3� + 2

∞∑
d=1

q3out,d

) .
(18)

In the case of one location, L = 1, the threshold in Eq. (18) reduces to

λ

μ
≤ 1

N
(

q31 + 2
∞∑
d=1

q3out,d

) = 4 (c + p)3
(
3 − 2c + c2

)

Nc2
(
2c
(
3 − 2c + c2

)+ p3
) , (19)

where the last equality is obtained by substituting the explicit terms for q1 and qout,d
from Eqs. (11) and (12), respectively, and computing the sum of the obtained series. From
inspection of Eq. (19), we observe that increasing the probability of jumping outside the
location, p, contributes to increasing the epidemic threshold and thus lowers the endemic
prevalence and epidemic size.
When many locations are present, that is, L → ∞, the second term at the denominator

yields a marginal contribution to the epidemic threshold in Eq. (19), so that,
λ

μ
≈ 1

N
∞∑

�=1
q3�

. (20)

We observe that the epidemic threshold is now independent from any choice of the
probability of jumping outside the location, p.
We conclude the analysis of the one-dimensional model by numerically studying the

effect of the agents’ randomness α and of the probability of jumping outside the location
p on the SIS endemic prevalence and the SIR epidemic size. These numerical simulations
extend our analytical predictions, which are limited to the case α = 0. We consider two
scenarios, one with L = 1 locations, presented in Fig. 6, and the other with L = 100 loca-
tions, illustrated in Fig. 7. Our simulations suggest that increasing the agents’ randomness
α hinders the diffusion of both SIS and SIR epidemic processes. When only one location
is present, increasing the probability of jumping outside the location (that is, shortening
the time spent inside the base location) hinders both SIS and SIR epidemic processes.
Interestingly, when multiple locations are present, increasing p does not impact the evo-
lution of the epidemic processes. Our numerics for α = 0 in Figs. 6b,d and 7b,d indicate
the potential use of the analytical expressions in Eqs. (13) and (16) for systems of finite
size, with N = 10, 000 agents.

Two-dimensional agent-based model

Impact of key parameters

We consider the two-dimensional agent-basedmodel and numerically study the influence
of the randomness α, the probability of jumping outside the base location p, and the pres-
ence of a core-periphery structure on the evolution of SIS and SIR epidemic processes.We
start our analysis by exploring the case of a space containing one location, that is, L = 1,
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Fig. 6 Influence of the agents’ randomness, α, and probability of jumping outside the location, p, on the SIS
endemic prevalence, a-b, and SIR epidemic size, c-d. Theoretical values of the SIS endemic prevalence, b, and
SIR epidemic size, d, are computed by evaluating the steady state in Eqs. (13) and (16), respectively. Curves
represent the median of 100 independent simulations; 95% confidence bands are displayed in gray. Agents
are initially inside their base location and the infection starts after 100 steps to allow the agents to reach a
steady-state configuration. The fraction of randomly chosen initial infected agents is 0.01. Other parameter
values are L = 1, N = 10, 000, D = 100, 000, r = 0.0004, c = 0.3333, λ = 0.1, and μ = 0.1

which is the base for all the agents. Agents can be either inside or outside their base loca-
tion. Their motion is constrained by the boundary of the location when they are inside it,
while it is governed by the parameters α or p when they are outside their base location.
Our results reveal that increasing either α or p reduces the impact of the epidemic

disease, both in the case of possible reinfection (SIS), as shown in Fig. 8a, and in the case of
immunization after recovery (SIR), as illustrated in Fig. 8b. Specifically, in the SIS process,
the endemic prevalence, i∗, is high when α and p are low because agents spend more
time inside the location, which is the densest region of the entire space, thus favoring
interactions between agents. On the contrary, when agents spend more time outside the
location (by increasing either α or p4), they explore a less dense region of the space and
interactions become more sporadic. As a result, the likelihood that the disease spreads is
lower. From our numerical simulations, we observe that there is a threshold for α (for α

close to ᾱ = 0.5), beyond which the disease spreading is halted. Simulations with different
values of the parameters show a similar behavior, with varying values of the threshold α.
Hence, in the SIS dynamics, the disease is not able to spread and the endemic prevalence
tends to zero, as shown in Fig. 8a; a similar behavior is observed for the SIR process.
Similar results are obtained for the one-dimensional lattice, as illustrated in Fig. 6.

4In order to allow to agents to exit from the base location, the probability to jump outside should be p > 0.
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Fig. 7 Influence of the agents’ randomness, α, and probability of jumping outside the location, p, on the SIS
endemic prevalence, a-b, and SIR epidemic size, c-d. Theoretical values of the SIS endemic prevalence, b, and
SIR epidemic size, d, are computed by evaluating the steady state in Eqs. (13) and (16), respectively. Curves
represent the median of 100 independent simulations; 95% confidence bands are displayed in gray. Agents
are initially inside their base location and the infection starts after 100 steps to allow the agents to reach a
steady-state configuration. The fraction of randomly chosen initial infected is 0.01. Other parameter values
are L = 100, N = 10, 000, D = 100, 000, r = 0.01, c = 0.3333, λ = 0.05, and μ = 0.03

Next, we consider the case in which multiple locations are present, forming a core-
periphery structure, as described in Appendix A and illustrated in Fig. 1b. Agents that
exit their base location are likely to jump inside another location and interact with other
agents occupying a different portion of the urban environment. We investigate a sce-
nario with L = 100 locations, as illustrated in Fig. 9. Our numerical results suggest
that increasing the agent’s randomness, α, still reduces the endemic prevalence (in the
SIS model) and the epidemic size (in the SIR model), i∗ and r∞, similar to the case of
a single location. Numerical results in Fig. 9a and c, however, seem to display a non-
monotonic behavior of the fraction of population affected by the disease, whereby small
values of α may favor the epidemic outbreak instead of hindering its inception. We record
the existence of a threshold for α (in our simulations, this is close to 0.5) at which a
sharp transitions takes place for both the endemic prevalence (in the SIS model) and
the epidemic size (in the SIR model). According to Eq. (3), by increasing α, agents’ ran-
domness is increased and, as a consequence, agents tend to explore a larger portion
of the urban environment and to occupy peripheral locations with a lower density of
agents. Hence, they become are less likely to interact with each other and support disease
spreading.
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Fig. 8 Influence of the agents’ randomness, α, and the probability of jumping outside the location, p, on the
endemic prevalence of the SIS model, a–b, and the epidemic size of the SIR model, c–d. Curves represent the
median of 100 independent simulations; 95% confidence bands are displayed in gray. Agents are initially
inside their base location and the infection starts after 100 steps to allow the agents to reach a steady-state
configuration. The fraction of randomly chosen initial infected is 0.01. Other parameter values are L = 1,
N = 10, 000, D = 109, �min = 100, �max = 10, 000, σmin = 1, σmax = 1, 000, v = 500, c = 4 · 10−4, ω = 2.4,
γ = 2.1, λ = 0.15, and μ = 0.1

Surprisingly, we observe that the probability of jumping outside the base location,
p, seems to have a negligible effect on the outcome of the SIS and SIR disease pro-
cesses, similar to predictions from the one-dimensional simplified version of the model
in Eq. (20) and Fig. 7. A reason for this phenomenon may be found in the follow-
ing intuition. The core-periphery structure analyzed in our work, illustrated in Fig. 1,
allows two contrasting effect to simultaneously occurs. On the one hand, agents mov-
ing outside the central areas are likely to end in peripheral ones, decreasing the agents’
density in the central regions and increasing the density in the peripheral ones. On
the other hand, agents moving outside the peripheral areas are likely to end in the
central ones, thereby increasing the density in the central regions and decreasing the
density in the peripheral ones. Overall, these two opposite effects tend to balance
each other.

Impact of the correlation between agents’ radius and locations’ density

Here, we study the impact of the correlation between the radius of interaction of agent i,
σi, and the density of its base location, ρβ(i). We compare the uncorrelated case (analyzed
earlier in Fig. 9a and c), where agents are randomly assigned to locations, with the cases
of either positive or negative correlation. In the case of positive correlation, agents with
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Fig. 9 Influence of the agents’ randomness, α, and the probability of jumping outside the location, p, on the
endemic prevalence (SIS model), a–b, and the epidemic size (SIR model), c–d. Curves represent the median
of 100 independent simulations; 95% confidence bands are displayed in gray. Agents are initially inside their
base location and the infection starts after 100 steps to allow the agents to reach a steady-state
configuration. The fraction of randomly chosen initial infected is 0.01. Other parameter values are L = 100,
N = 10, 000, D = 109, �min = 100, �max = 10, 000, σmin = 1, σmax = 1, 000, v = 500, c = 4 · 10−4, ω = 2.4,
γ = 2.1, λ = 0.15, and μ = 0.1

larger radius are assigned to denser (and central) locations. In the case of negative corre-
lation, agents with larger radius belong to the less dense (and peripheral) locations. We
consider a scenario with L = 100 locations, whose results are illustrated in Fig. 10.
Both the endemic prevalence, i∗, and the epidemic size, r∞, are marginally affected by

a positive correlation, while they strongly diminish if the radii and density of locations
are negatively correlated, as shown in Fig. 10a and b, respectively. In both the positive-
correlated and uncorrelated cases, agents with larger radii occupy the central locations,
thereby sustaining the diffusion of the disease. On the other hand, if agents with large
radii are relegated to peripheral and sparser areas, it would be more difficult for them to
create connections and fuel the diffusion process.

Vaccination strategies

Finally, we examine the effect of different vaccination strategies applied to our popula-
tion. Specifically, we consider a purely randomized strategy and two targeted vaccination
policies. In the three strategies, we assume that a fraction of the population is vaccinated
and is thus immune to the disease. In the “Random” vaccination mechanism, we vacci-
nate a fraction of the population, sampled uniformly at random. In the “Center” targeted
mechanism, we select such a fraction starting from the agents assigned to the most cen-
tral locations. In the “Peripheral” targeted mechanism, we choose such a fraction starting
from the agents assigned to the most peripheral locations.
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Fig. 10 Impact of different ways of assigning agents to their locations on the endemic prevalence (SIS
model), a, and the epidemic size (SIR model), b. The “Uncorrelated” case represents a random assignment. In
the “Pos. Correlated” case, agents with larger radii are assigned to the denser (central) locations, while, in the
“Neg. Correlated” case, agents with larger radii belong to the less dense (peripheral) locations. Curves
represent the median of 100 independent simulations; 95% confidence bands are displayed in gray. Agents
are initially inside their base location and the infection starts after 100 steps to allow the agents to reach a
steady-state configuration. The fraction of randomly chosen initial infected is 0.01. Other parameter values
are L = 100, N = 10, 000, D = 109, �min = 100, �max = 10, 000, σmin = 1, σmax = 1, 000, v = 500,
c = 4 · 10−4, ω = 2.4, γ = 2.1, λ = 0.15, and μ = 0.1

From Fig. 11, we observe that prioritizing the vaccination of agents assigned to the
most central locations has the most beneficial effect for the prevention of the diffusion
of the epidemic disease, while the worst strategy targets vaccination to peripheral areas.
As detailed in Fig. 4, agents assigned to more central base locations tend to have a larger
expected degree than agents assigned to more peripheral locations, thereby potentially
acting as “superspreaders” (Lloyd-Smith et al. 2005). Also, agents whose base locations
are in the center can easily reach all portions of the environment, thereby contacting the
majority of the agents. By focusing the vaccination on central areas, the contacts gener-
ated by these agents do not contribute to the spread, thereby significantly reducing the
contagion.

Discussion and conclusion
In this paper, we studied a class of agent-based models (Frasca et al. 2006), in which
agents move in a two-dimensional space and interact according to proximity crite-
ria. We extended such class of models by encapsulating a core-periphery structure,
typical of urban environments (Makse et al. 1998; De Nadai et al. 2016), where
central areas are more densely populated than peripheral ones. Our urban-like envi-
ronment is partitioned in several closely spaced locations, each of them represent-
ing a restricted portion of the space. When agents are inside their base location,
they take a random position within the base location at every time-step. When out-
side, they tend to move back to their base location by following a biased random
walk.
The contribution of the study is fourfold. First, we analytically and numerically stud-

ied the temporal network formation mechanism, demonstrating that heterogeneously
distributed radii of interaction in the population generate heterogeneity in the degree
distribution of the temporal network of contacts, similar to what is observed inmany real-
world systems (Barabási and Albert 1999; Albert et al. 1999; Barrat et al. 2004). The role
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Fig. 11 Effect of different vaccination strategies on the endemic prevalence (SIS model), a-b-c, and epidemic
size (SIR model), d-e-f. The vaccination coverage represents the fraction of immune agents prior to the
disease onset. In “Random”, we select the fraction of agents to vaccinate at random; in “Center”, we vaccinate
first the agents that are assigned to central base locations, while in “Peripheral”, we prioritize vaccination for
agents that belongs to the peripheral agents. We set: a-d p = 0.1 and α = 0.0, b-e p = 0.4 and α = 0.2, and
c-f p = 0.8 and α = 0.4. Curves represent the median of 100 independent simulations; 95% confidence
bands are displayed in gray. Agents are initially inside their base location and the infection starts after 100
steps to allow the agents to reach a steady-state configuration. The fraction of randomly chosen initial
infected is 0.01. Other parameter values are L = 100, N = 10, 000, D = 109, �min = 100, �max = 10, 000,
σmin = 1, σmax = 1, 000, v = 500, c = 4 · 10−4, ω = 2.4, γ = 2.1, λ = 0.15, and μ = 0.1

of the interaction radius is also evident in the study of the clustering coefficient, whereby
we found that agents’ with larger degree have a lower clustering coefficient.
Second, we investigated the role of the urban-like environment on the spread of

epidemic outbreaks. Specifically, we considered epidemic prevalence in the susceptible–
infected–susceptible (SIS) model and epidemic size in the susceptible–infected–
recovered (SIR) model. We found that both these quantities, which measure the fraction
of the system that is affected by the disease, are lowered by increasing the randomness
of the agents’ law of motion. In fact, increasing agents’ randomness improves the chance
that agents randomly explore peripheral urban areas, where less agents are present and
less contacts are thus created. A lower number of interactions hinders the contagion pro-
cess. Interestingly, we discovered that the endemic prevalence and epidemic size have
nontrivial relationships with the probability of jumping outside the base location. When
the entire urban environment is modeled as a unique location, larger probabilities of
jumping outside hinder the epidemic diffusion. In fact, inside the location the density
of agents is higher than outside it. As a consequence, interactions between agents are
rare, slowing down the disease spread. Instead, when multiple locations are arranged
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in a core-periphery structure, our numerical results suggest that epidemic prevalence
and size are independent of the probability of jumping outside the base location. A
possible explanation for this phenomenon might be that, when agents in central loca-
tions jump outside them, they are likely to end in peripheral locations, diminishing the
fraction of agents in central areas. This event is compensated by agents from periph-
eral locations that jump in central ones. Our numerical results are in agreement with
the theoretical findings in the simplified, one-dimensional, version of our agent-based
model.
Third, we found that central locations play a key role on the diffusion of epidemic dis-

eases. In particular, we studied the influence of the correlation between agents’ radius
and locations’ density. When these quantities are negatively correlated, agents with
larger radius belong to less dense (peripheral) locations, while when positively cor-
related, agents with larger radius belong to denser (central) locations. The endemic
prevalence (in the SIS model) and the epidemic size (in the SIR model) are only
marginally favored by the presence of many agents with large radius in the more central
locations (positive correlation), while the diffusion of the epidemic is hindered if cen-
tral locations are mostly assigned to agents with small radius of interaction (negative
correlation).
Finally, we studied the effect of targeted vaccination strategies. We found that the vac-

cination of agents that belong to central locations is the most beneficial approach for the
entire population, leading to the smallest epidemic prevalence. Our analysis corroborates
our previous observation that central (and more dense) locations are crucial in the dif-
fusion of disease processes. We emphasize that the proposed vaccination strategy can be
implemented with information about the system at the mesoscopic level of locations, that
is, without any information on the specific properties of single individuals (for instance,
their radius of interaction). With information at the individual level, the proposed pol-
icy may be improved by combining knowledge about locations and radii of interaction
prioritizing vaccination of central agents with large radius of interaction, which acts as
“superspreaders.”
A main limitation of our work resides in the assumption that each agent belongs

to a unique location, while the remaining urban area, occupied by other locations,
is only seldom explored. A more realistic approach could consider agents that may
be assigned to multiple locations. Our theoretical study of the one-dimensional case
provides insight into some aspects of epidemic processes in urban environments. How-
ever, a general mathematical theory is missing. We believe that our preliminary results
constitute a starting point for performing a more general theoretical analysis of the
two-dimensional model. Furthermore, variations of the proposed model can be easily
generated. For instance, the gravity law in ourmodel could be replaced by other laws, such
as, the well-established radiation law (Simini et al. 2012) or the one recently proposed in
(Schläpfer et al. 2020).
Overall, our work determines that central urban areas are critical in the diffusion of

epidemic diseases within a city, being the crossroad of most of the urban population,
and thus should be carefully included into mathematical models of epidemic outbreaks.
By vaccinating individuals in central urban areas, we can halt the overall contagion bet-
ter than randomly distributing limited vaccination supplies. Our proposed vaccination
strategy may offer practitioners and epidemiologists general guidelines for emergency
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situations, complementing other strategies (Braha and Bar-Yam 2006; Génois et al. 2015)
toward effective containment measures and herd immunity (Fine 1993) within urban
environments.

Appendix A: Algorithm to generate a core-periphery structure
From a practical point of view, packing all convex regions L� (locations) in the square
spaceD×D is a nondeterministic polynomial-time hardness (NP-hard) problem (Martello
and Vigo 1998; Demaine et al. 2010), often requiring to find approximate methods
(Formann andWagner 1991; Szabó et al. 2007; Castillo et al. 2008). In our study, we aim at
reproducing the core-periphery structure present in real urban areas, as shown in Fig. 1a,
while minimizing the space between locations. Agents that exit from their base location
occupy nearby locations, thereby interacting with agents that are assigned to different
regions of the urban area. We developed a heuristic algorithm that unfolds according to
the following steps.

1 Place the center of the denser location,
(
xc1, y

c
1
)
, in the center of the square space,

(
xc1, y

c
1
) = (D/2,D/2).

2 Initialize � ← 1, σin ← 0, and σout ← 〈σ 〉 = ∑L
�=1 σ�/L.

3 Create a circular crown centered in (D/2,D/2) with internal radius σin and
external radius σout.

4 Randomly place the center of location � + 1 in the crown and check for overlaps.

i) If location � + 1 does not overlap with other locations, then the location is
placed. Increase the index � by 1, that is, � ← � + 1. If � = L, then
terminate the algorithm. Otherwise, resume it to step 4.

ii) If an overlap occurs, then repeat the current assignment in 4. After a
number of consecutive failed attempts (we set this limit to 100), stop the
current iteration and move to step 5.

5 Set σin ← σout and σout ← σout + 〈σ 〉, and resume the algorithm to step 3.

Appendix B: Analysis of the temporal network of interactions
Here, we detail the analytical derivations of Eqs. (8) and (9). To this end, we analyze the
formation of the temporal network of interactions in the two specific cases of a free space,
without any location (L = 0); and when the law of motion of the agents outside their base
locations is deterministic (α = 0) and the locations are uniformly distributed in the plane.

B.1 Analysis of a free space without any location

We begin our analysis by considering the case of a free space, that is, L = 0, where agents
perform simple random walks with constant velocity equal to v in the plane. In this sce-
nario, Eq. (3) should be intended without the component associated with the location
	i(t) and with α = 1.
According to Eq. (7), at time t, agent i creates undirected interactions with other agents

if their Euclidean distance is less than or equal to the maximum of their radii of interac-
tion. In practice, the expected number of interactions of agent i, E [ki], is equal to the sum
of two contributions: the expected number of interactions that are generated by agent
i with agents that are in its radius of interaction, denoted as E

[
k+
i
]
, and the expected

number of interactions that are generated by other agents with i, denoted as E
[
k−
i
]
.
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When the system is in its steady state, the expected number of other agents within a
distance σi from agent i is proportional to the ratio between the area of a circle of radius σi
and the whole planar space. Hence, the expected number of interactions created by agent
i is equal to

E
[
k+
i
] = πσ 2

i
D2 (N − 1) . (21)

Further, agent i can form undirected interactions with other agents if it is located
within their radii of interaction. To avoid double counting and exclude connections that
are already counted in Eq. (21), the radius of agent j should be greater than the one of
agent i, which should be at a distance greater than σi but smaller than σj. When the sys-
tem reaches the steady state, the probability of such an event is π

(
σ 2
j − σ 2

i

)
/D2. Let

us introduce the set Ci of agents with radius of interaction greater than σi and let us
define

〈
σ 2〉

i = |Ci|−1∑
j∈Ci σ

2
j as their average square radius. The expected number of

connections formed by agent i with other agents beyond those included in Eq. (21) is

E
[
k−
i
] = 1

D2π
∑

j∈Ci

(
σ 2
j − σ 2

i

)
= π

D2 |Ci|
(〈
σ 2〉

i − σ 2
i
)
. (22)

By summing Eqs. (21) and (22), we conclude that the average number of agents that an
agent interacts with in a unit time, termed its average degree ki, is equal to

E [ki] = E
[
k+
i
]+ E

[
k−
i
] = π

D2
(
(N − 1) σ 2

i + |Ci|
(〈
σ 2〉

i − σ 2
i
))

. (23)

The computation of the quantities |Ci| and
〈
σ 2〉

i, can be performed in the limit of large
systems N → ∞, by means of the strong law of large numbers (Chung and Zhong 2001).
We start by explicitly writing the probability density function G(σ ) of the power law
distribution of the radii of interaction with cutoffs σ ∈ [σmin, σmax], as

G(σ ) =
{

ω−1
σ 1−ω
min −σ 1−ω

max
σ−ω if σ ∈ [σmin, σmax] ,

0 otherwise ,
(24)

where ω is the exponent. From the expression of G(σ ), we compute |Ci| using the strong
law of large numbers (Chung and Zhong 2001), which ensures that almost surely

lim
N→∞

|Ci|
N

=
∫ σmax

σi
G(σ )dσ = σ 1−ω

i − σ 1−ω
max

σ 1−ω
min − σ 1−ω

max
. (25)

We define the conditional probability density function

Gi(σ ) := G (σ | σ ≥ σi) = G(σ )

P [σ > σi]
= G(σ )
∫ σmax
σi

G(σ )dσ
= ω − 1

σ 1−ω
i − σ 1−ω

max
σ−ω , (26)

where the first equality holds due to scale invariance of the power law distribution, and
then explicit computation is performed using the expression of G(σ ). Using again the
strong law of large numbers (Chung and Zhong 2001) and Eq. (26), we compute

〈
σ 2〉

i as

lim
N→∞

〈
σ 2〉

i =
∫ σmax

σi
σ 2Gi(σ )dσ =

(ω − 1)
(
σ 3−ω
max − σ 3−ω

i

)

(3 − ω)
(
σ 1−ω
i − σ 1−ω

max
) , (27)

almost surely.
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Finally, by substituting Eqs. (25) and (27) in Eq. (23), the expected degree of agent i in
the limit of large systems, N → ∞, almost surely reads

E [ki] = Nπ

D2

⎛

⎝
(

1 − σ 1−ω
i − σ 1−ω

max
σ 1−ω
min − σ 1−ω

max

)

σ 2
i +

(ω − 1)
(
σ 3−ω
max − σ 3−ω

i

)

(3 − ω)
(
σ 1−ω
min − σ 1−ω

max
)

⎞

⎠ , (28)

neglecting the terms on smaller order in N.

B.2 Analysis of multiple locations uniformly distributed in the space

Now, we consider the limit case in which agents move straight toward their base location,
that is, α = 0, and we assume that locations are uniformly distributed in the planar space.
We consider the generic agent i that belongs to location �β(i). Since Aβ(i) � D2, we use

the approximation D → ∞. The probability for this agent to be in its base location, qin,
can be computed by introducing the following partition of the planar space,

C(i)
h :=

{
(x, y) ∈[ 0,D]2 : (h − 1)v < min

(ξ ,η)∈�β(i)

√
(x − ξ)2 + (y − η)2 ≤ hv

}
, (29)

for any h ∈ Z≥0. Note that C(i)
h is the region of the plane from which agent i reaches its

base location β(i) in exactly h time-steps. Consequently, when h = 0 agents are inside
their base location, that is, C(i)

0 = �β(i). Any point (x, y) of the D×D planar space can be
mapped onto this partition through the projection z(i) :[ 0,D]×[ 0,D]−→ Z≥0, defined
as

z(i)(x, y) = h ⇐⇒ (x, y) ∈ C(i)
h . (30)

Using the mapping z(i), for each agent i ∈ V , we define the stochastic process zi(t) :
Z≥0 −→ Z≥0 as zi(t) := z(i) (xi(t), yi(t)). Since α = 0, when an agent is outside its base
location, then its law of motion is purely deterministic and it moves in the direction of
the location. Therefore, if zi(t) = h �= 0, then, zi(t + 1) = h − 1. If zi(t) = 0, the agent
is inside its base location, from which it exits only through a jump, which is statistically
characterized by Eq. (6). Hence, with probability 1 − p the process zi(t) remains in state
0 at the following time-step. Else, if a jump occurs, the process zi evolves to state h with
probability equal to

qh =
∫ hv

(h−1)v
Pjump(x) dx =

∫ hv

(h−1)v
ce−cx dx = e−cv(h−1) − e−cvh . (31)

The transition probabilities of zi(t) depend only on the state h in which the process is
and on the model parameters. The process zi(t) is a Markov chain, whose structure is
illustrated in Fig. 12 and whose transition matrix is

Fig. 12 Transition graph of the Markov chain zi(t)
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M =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − p pq1 pq2 pq3 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

...
...

...
. . . . . .

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (32)

We observe that, if p > 0, then the Markov chain is ergodic and it converges to its unique
stationary distribution π , which can be computed as the left eigenvector ofM associated
with the eigenvalue 1 (Levin et al. 2006). When the system has reached its steady state,
the probability for each agent to be inside its base location, qin = π0, that is derived from
the left eigenvalue equation for M in Eq. (32) (with unitary eigenvalue), that is,

{
π0 = (1 − p)π0 + π1,
πh = πh+1 + pqhπ0 , ∀ h ∈ Z>0 .

(33)

From Eq. (33), the expression of qh in Eq. (31), and using that
∑∞

h=0 πh = 1, we derive

qin = π0 = ecv − 1
(1 + p)ecv − 1

. (34)

When the system reaches its stationary state, the number of agents in location � is equal
to the sum of two contributions. The first one consists of agents whose base location is
�� and are in that location, that is, on average, nqin. The second one is due to agents
whose base location is not ��, but are in ��. The second contribution is relatively small
since locations are placed randomly in the entire space D×D, and we discard it when the
system is large.
The steady-state density in location � can be approximated by considering only the

agents assigned to it. Hence, the expected number of connections of agent i within its
base location is approximated by

E
[
kin,i

] ≈ qin
�2

�

(
(n − 1) qinσ 2

i + ∣
∣Ci,�

∣
∣qin

(〈
σ 2〉

i,� − σ 2
i

))
, (35)

where Ci,� and
〈
σ 2〉

i,� are the set of agents with radius greater than σi in location � and their
average square radius, respectively. Assuming the distribution of the radii of interaction
to be independent of the agents’ base locations, then,

∣
∣Ci,�

∣
∣ = n−1

N Ci and
〈
σ 2〉

i,� = 〈σ 2〉i.
Under this assumption, in the limit of large systems, N → ∞, combining Eqs. (25)
and (27) into Eq. (35), we obtain

E
[
kin,i

] ≈ q2in
�2

�

(n − 1)

⎛

⎝σ 2
i + σ 1−ω

i − σ 1−ω
max

σ 1−ω
min − σ 1−ω

max

⎛

⎝
(ω − 1)

(
σ 3−ω
max − σ 3−ω

i

)

(3 − ω)
(
σ 1−ω
i − σ 1−ω

max
) − σ 2

i

⎞

⎠

⎞

⎠ .

(36)

When a core-periphery structure is present, as in Fig. 1, locations are not uniformly
distributed in space and often are close to each other. For instance, a central location � is
surrounded by other locations and interactions generated by agents whose base location is
not�� cannot be neglected. This case is discussed in the main text by means of numerical
simulations.
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Appendix C: Computation of the contagion probability in a one-dimensional
lattice
Here, we compute the contagion probability of an agent inside its base location � at time
t, ��(t), and the contagion probability of an agent at distance d from the closest location
at time t, �out,d(t). We start our analysis by computing the probability that agents are in
their base location, denoted by ψin, or in a position at a distance d from it, ψd, when the
system is at steady state. For p > 0, the system is ergodic and we can compute ψin and ψd
at steady state (Levin et al. 2006). Similar to Appendix B, from the steady-state equation
we derive the following recursive system of equations:

{
ψin = (1 − p)ψin + 2ψ1 ,
ψd = ψd+1 + p

2Pjump(d)ψin , ∀ d ∈ Z>0 ,
(37)

where the factor 2 is because there are two positions at a distance d from any location
� ∈ L, as in Fig. 5.
From Eq. (37), the expression of Pjump(d) in Eq. (10), and using that ψin + 2

∑∞
d=1 ψd =

1, we derive

ψin = c
c + p

, (38)

and

ψd = cp (1 − c)d−1

2(c + p)
. (39)

Given that each agent is randomly assigned to one of the L locations, the probability
that a generic agent i ∈ V is inside location � is equal to

q� = 1
L

ψin + 1
L

L−�∑

x=1
ψx + 1

L

�−1∑

x=1
ψx , (40)

where the first term refers to the probability that the agent is in its base location and its
base location is �, while the second and third terms correspond to the probability that the
agent belongs to another base location and it occupies location �. Similarly, we compute
the probability that agents are in a position not occupied by any location and at a distance
d from the closest location as

qout,d = 1
L

L+d−1∑

x=d
ψx , (41)

where we assume that the closest location is � = 1. Through a simple change of variables,
we can write an equivalent expression when the closest location is � = L. Substituting
expressions in Eqs. (38) and (39) in Eqs. (40) and (41) yields the two expressions reported
in the main text, that is, Eqs. (11) and (12).
We now compute the probability that an agent becomes infected at time t. We first con-

sider the probability of not being infected. In location �, such a probability is equal to
1 − λi�(t) for each contact. On average, an agent contacts q�N other agents, the prob-
ability of not being infected in location � is equal to ��(t) = (1 − λi�(t))q�N . Similarly,
the probability of not being infected at a distance d from the closest location is equal to
�out,d = (

1 − λiout,d(t)
)qout,dN . Thus, the contagion probability of an agent inside its base

location � is the complement of ��(t), that is,

��(t) = 1 − (1 − λi�(t))q�N = 1 − (1 − λq�i(t))q�N . (42)
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Likewise, the contagion probability when the agent is at a distance d from the closest
location is the complement of �out,d(t), that is,

�out,d(t) = 1 − (
1 − λiout,d(t)

)qout,dN = 1 − (
1 − λqout,di(t)

)qout,dN . (43)
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