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Analysis of the Heterogeneous Vectorial Network
Model of Collective Motion

Jalil Hasanyan, Lorenzo Zino, Agnieszka Truszkowska, Alessandro Rizzo, Senior Member, IEEE, and Maurizio
Porfiri, Fellow, IEEE

Abstract—We analyze the vectorial network model, a stochastic
protocol that describes collective motion of groups of agents,
randomly mixing in a planar space. Motivated by biological and
technical applications, we focus on a heterogeneous form of the
model, where agents have different propensities to interact with
others. By linearizing the dynamics about a synchronous state
and leveraging an eigenvalue perturbation argument, we establish
a closed-form expression for the mean-square convergence rate
to the synchronous state in the absence of additive noise. These
closed-form findings are extended to study the effect of added
noise on the agents’ coordination, captured by the polarization of
the group. Our results reveal that heterogeneity has a detrimental
effect on both the convergence rate and the polarization, which
is nonlinearly moderated by the average number of connections
in the group. Numerical simulations are provided to support our
theoretical findings.

Index Terms—Stochastic systems; Stability of linear systems;
Time-varying systems

I. INTRODUCTION

COLLECTIVE motion is a widely studied phenomenon
across biology, physics, and engineering [1]–[3]. The

emergence of collective motion is often observed in animal
groups, such as bird flocks, fish schools, and sheep herds.
Social animals have been shown to use locally controlled
interactions for decision-making that ultimately regulate their
coordination [1]. To capture these dynamics and better under-
stand the emergence of coordination, the physics community
has established a wide range of mathematical models of
collective motion for groups of particles [2]. In the engineering
community, the observations of spontaneous coordination of
biological systems and the mathematical models developed by
physicists have inspired the design and analysis of decentral-
ized control schemes for teams of autonomous robots [3].

The vectorial network model (VNM), originally proposed
by [4], [5], has emerged as a valuable paradigm to describe
collective motion, for its mathematical tractability and ability
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to reproduce important features of more complex models.
In the VNM, each agent is characterized by its orientation
on a planar space. Agents interact through a stochastically
switching network, through which they dynamically update
their orientation to synchronize with their neighbors. Such a
dynamic updating is affected by intrinsic noise. The VNM
has been initially proposed as a proxy of the classical Vicsek
model for self-propelled systems [6], whose complexity re-
stricted its analysis to numerical simulations [7]–[10] or case-
specific theoretical results [11]–[15]. In the limit of rapidly
moving particles, the VNM can capture several features of the
richer Vicsek model [4], [5], [16].

The first analyses of the VNM were performed in the
thermodynamic limit of large-scale systems, through extensive
numerical simulations [4] and semi-analytical approaches [5].
These studies demonstrated the existence of a continuous
order-disorder phase transition, similar to the Vicsek model
in the case of rapidly moving particles that randomly mix at
every time step [6]. For small values of added noise, the agents
are successful in coordinating their motion. The extent of such
a coordination smoothly decreases as the noise increases, until
reaching completely disordered states when the level of noise
is above a critical value. Further insight into the nature of the
phase transition and its dependence on system parameters can
be found in [16], where a mean-field theory of the VNM is
developed and analytically investigated.

In [17], the VNM is analyzed without relying on the thermo-
dynamic limit, via a linearization process that allows the VNM
to be studied through the lens of consensus protocols [18], [19]
— specifically, stochastic protocols on switching topologies
[20] and with additive noise [21]. This linear analysis begot
an array of closed-form results for homogeneous groups of
agents, that is, where agents are indistinguishable in their
ability to form connections with other group members. These
results helped elucidate the effect of the population size,
the number of connections of each agent, and noise on the
coordination of the VNM. Further studies on the linearized
VNM have shed light on various aspects of the collective dy-
namics, such as the effect of leader-follower interactions [22]
and of specific choices of the noise inspired by biological
applications [23].

All these analyses are based on the assumption that all the
agents interact with the same number of individuals. Such
an assumption is not reflective on many real-world complex
systems. For instance, heterogeneity between the members of
a group is a typical feature of animal groups [24] and com-
plex coordination schemes between autonomous robots often
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involve the cooperation of different models or generations of
robots [25]. Heterogeneity, indeed, has been shown to play a
key, nontrivial role in many coordination processes. On the
one hand, heterogeneous distribution of network connectivity
hinders network synchronization in small-world networks [26]
and convergence of stochastic consensus protocols [27]. On
the other hand, the emergence of ordered states in complex
networks may be favored by heterogeneous coupling [28]
and heterogeneity may facilitate convergence of stochastic
consensus protocols in the presence of leader-follower inter-
actions [29]. To the best of our knowledge, there is still a gap
in the theoretical understanding of the role of heterogeneity
in the VNM. Filling this gap is expected to bring insight into
collective motion of more complex models, thereby informing
the design of coordination strategies for engineering systems
and the understanding of real-world complex systems.

To this end, we examine the VNM in the general case
where each agent is characterized by a different propensity
to form time-varying, stochastic connections with other group
members. Similar to [17], we rely on a linearization of the
VNM about a synchronous state, and we present a toolbox of
analytical results that capture the effect of heterogeneity on
the asymptotic behavior of the VNM. First, through stochas-
tic stability theory and eigenvalue perturbation methods, we
establish closed-form results for the asymptotic convergence
factor, which determines the convergence rate in the absence
of noise. Our findings suggest that convergence to synchronous
states is hindered by the heterogeneity of the agents’ attitude
to interact with others, at least for moderate levels of het-
erogeneity. In agreement with our intuition, this detrimental
effect is moderated by the number of connections, where
synchronization in denser networks is more robust to the effect
of heterogeneity. Second, we study the polarization of the
system [4], which is a global observable that quantifies the
level of coordination between the agents. Following [17] and
leveraging a perturbation argument, we derive a closed-form
approximation for the polarization, which is exact in the small
noise limit. Such an expression corroborates our previous
finding, confirming that heterogeneity is detrimental for the
emergence of ordered states, not only by slowing down the
convergence, but also by decreasing the level of coordination
of the system. Monte Carlo numerical simulations are provided
to validate our analytical findings.

II. PROBLEM STATEMENT

A. Notation

The set of real numbers and nonnegative integers are
represented by R and Z+, respectively. Given a vector x,
we denote its transpose by x>. The N -dimensional all-1 (or
0) vector is denoted as 1 (or 0), and the N -dimensional
identity matrix by I . The Euclidean norm of a vector is
indicated by || · ||, the vectorization of a matrix by vec(·), the
argument of a complex number by Angle{·}, the expectation
and the variance of a random variable by E[·] and var[·] ,
respectively. Matrix operations denoted by ⊗ and � are the
Kronecker product and the Hadamard division, respectively.
The spectral radius of a matrix is indicated by ρ(·). We use

Landau’s symbol O(xk) for a generic function f(·) such that
lim supx→0 ||f(x)/xk|| <∞.

B. Heterogeneous VNM

We consider a system of N agents. Agent i ∈ {1, . . . , N}
is associated with the two-dimensional, unit-length vector
vi = eιθi with ι being the imaginary unit. With reference
to the Vicsek model [6], the vector represents the heading
direction of the particle. Each vector vi updates its orientation
θi according to a discrete-time process, as a consequence of
interactions with other vectors. Agents are heterogeneous in
their attitude to interact with others. Specifically, each agent
i is characterized by a constant ai ∈ Z+ that measures
the number of interactions that agent i establishes at each
time-step. These constants are gathered in the interaction
vector a. Similar to [27], we express the interaction vector
as a = K1 + σh, where

K :=
1

N

N∑
i=1

ai and σ :=

√√√√ 1

N

N∑
i=1

(ai −K)2 , (1)

are the average number of interactions and its standard de-
viation, respectively. Vector h ∈ RN (which is uniquely
determined by vector a, being hi = (ai−K)/σ) captures the
deviations from the average number of connections and is such
that 1>h = 0, and ||h|| =

√
N . In the original formulation

of the VNM [4], [5], agents have homogeneous propensities
of interaction, that is, for ai = K, for i = 1, . . . , N.

At each time-step k ∈ Z+, agent i connects with ai agents,
chosen at random, independent of one another. Such a stochas-
tic mechanism induces a switching topology — a growingly
popular research topic for the study of coordination and control
of networks [20]. At each time step k, agent i establishes ai
connections with neighbors denoted by {i1(k), . . . , iai(k)}.
These interactions contribute an average appraisal of the group
orientation for agent i, given by

Ui(k) =
1

ai

ai∑
p=1

vip(k)(k) . (2)

This vector is used as input to update the orientation of agent
i according the the following stochastic dynamics:

θi(k + 1) = Angle{Ui(k)}+ ηζi(k) , (3)

where the constant η ∈ [0, 1] is the noise intensity and ζi(k)
is a sequence of independent and identically distributed (i.i.d.)
random variables drawn from a uniform distribution in [−π, π].

III. PRELIMINARIES

A. Linearization of the VNM

We begin our analysis by linearizing Eq. (3) with respect to
the orientation around a synchronous state, θ0, where θi(k) =
θ0 + xi(k). We obtain

x(k + 1) = W (k)x(k) + ηζi(k) , (4)

where x(k) = [x1(k) · · · xn(k)]> ∈ RN is the state vector,
ζ(k) = [ζ1(k) · · · ζn(k)]> ∈ RN is the additive noise, and
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W (k) ∈ RN×N is the state matrix. Matrices W (k)’s are
a sequence of i.i.d. random variables with common random
variable W . The matrix W is defined row-wise as follows.
Row i of W is the sum of ai i.i.d. vectors Vi1, . . . , Viai , with
all entries equal to 0, except one entry equal to 1

ai
, selected

uniformly at random. That is,

W =



ai∑
p=1

V >1p

...
ai∑
p=1

V >Np


. (5)

It is easy to check that: i) E[Wij ] = 1
N , for all i, j ∈

{1, . . . , N}, and ii) W is row-stochastic, that is, W1 = 1.

B. Asymptotic behavior

The linearized heterogeneous VNM is studied through the
disagreement dynamics of Eq. (4), that is, ξ(k) = x(k) −
x̄(k)1, where x̄(k) = 1

N 1>x(k) is the average state. The
evolution of the disagreement dynamics is given by

ξ(k + 1) = RW (k)ξ(k) + ηRζi(k) , (6)

where R = I − 1
N 11> projects RN onto the subspace

orthogonal to 1.
Based on previous work [17], [30], [31], we study the

evolution of the disagreement dynamics in a mean-square
sense. Specifically, we examine the time evolution of the
autocorrelation matrix Ξ(k) = E[ξ(k)ξ(k)>]. Recalling that
ζ and W are i.i.d. random variables, that E[ζ] = 0, and that
E[ζζ>] = π2

3 I , we compute

vec (Ξ(k + 1)) =

= Gkvec (ξ(0)ξ(0)>) + η2
( k−1∑
i=0

Gi
)
R⊗Rvec (E[ζζ>])

= Gkvec (ξ(0)ξ(0)>) + η2
π2

3

( k−1∑
i=0

Gi
)

vec (R) ,

(7)
with

G = R⊗RE[W ⊗W ] . (8)

From Eq. (7), we observe that the time evolution of the
autocorrelation is fully determined by matrix G. In the absence
of noise (that is, η = 0), the mean-square asymptotic behavior
of Eq. (6) is determined by the spectral radius of G, which is
called asymptotic convergence factor r [32], [33]. If r < 1,
then the autocorrelation in Eq. (7) converges to a finite value
as k →∞, yielding

vec (Ξ∞) = η2(I ⊗ I −G)−1vec (R) . (9)

The trace of Ξ∞ is called the mean-square deviation and it
corresponds to the limit of E[||ξ(k)||2], which is equal to

δ∞ = η2vec (R)(I ⊗ I −G)−1vec (R) . (10)

C. Order parameter

The coordination of the agents is quantified by means of a
global observable called polarization [4], [5], which is defined
as

Pol := lim
k→∞

E

[
1

N

∣∣∣∣ N∑
i=1

exp (ιθi(k))

∣∣∣∣
]
. (11)

Specifically, Pol = 0 indicates a completely disordered
state, while Pol = 1 indicates full alignment of the agents’
orientations.

We use the mean-square steady state deviation to approx-
imate the polarization for small levels of noise η � 1,
following the analysis of the homogeneous VNM in [17]. To
this end, we introduce a linear approximation of the heading,
θi(k) = θ0 + xi(k), for i = 1, . . . , N, and expand up to the
second order to find

Pol ≈ 1− 1

2N
δ∞. (12)

IV. MAIN RESULTS

Here, we analyze the linarized heterogeneous VNM, es-
tablishing closed-form expressions for the spectral radius
ρ(G) and the mean-square deviation δ∞, which determine the
convergence rate and the degree of coordination, respectively.
We begin by deriving the closed-form expression of matrix G
in Eq. (8) as a function of the interaction vector a. Our result
is summarized in the following proposition.

Proposition 1. The matrix G in Eq. (8) associated with the
linearized heterogeneous VNM in Eq. (4) with interaction
vector a is equal to

G = R⊗RE[W ⊗W ] =
1

N
vec (Rdiag (1� a)R)vec (R)>.

(13)

Proof. We use a counting argument, similar to [17]. Due to the
structure of the Kronecker product, the matrix E[W ⊗W ] has
a block structure and its entries are in the form E[WijWst],
for i, j, s, t = 1, . . . , N . Using Eq. (5), we observe that these
entries can have three different expressions, depending on their
indexes: i) for i = s and j = t,

E[W 2
ij ] = E

( ai∑
p=1

(Vip)j

)2
 = var

[
ai∑
p=1

(Vip)j

]

+E

[
ai∑
p=1

(Vip)j

]2
=
N − 1

N2ai
+

1

N2
=
N + ai − 1

N2ai
;

ii) for i = s and j 6= t, we compute

E[WijWit] =

ai∑
p=1

ai∑
q=1

E [(Vip)j(Viq)t]

=

ai∑
p=1

ai∑
q=1,q 6=p

E[(Vip)j ]E[(Viq)t] =
ai − 1

N2ai
;

and, iii) for i 6= s, we use the independence between the rows
of W to conclude

E[WijWst] = E[Wij ]E[Wst] =
1

N2
.
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Thus, we find

E[W ⊗W ] =
1

N
vec (diag (1� a))vec (R)>

+
1

N2
11> ⊗ 11>.

Finally, the premultiplication by R⊗R yields Eq. (13).

A. Convergence rate in the absence of noise

The nontrivial structure of matrix G for the heterogeneous
VNM in Eq. (13) hinders the direct computation of its spectral
radius. To overcome this issue, we pursue a perturbation argu-
ment with respect to σ. Using the expression ai = K + σhi,
we write the matrix G in Eq. (13) as

G = G0 + σG1 + σ2G2 +O(σ3) (14)

where

G0 =
1

KN
vec (R)vec (R)>, (15a)

G1 = − 1

K2N
vec (Rdiag (h)R)vec (R)>, and (15b)

G2 =
1

K3N
vec (Rdiag (h2)R)vec (R)>, (15c)

where h2 is meant entry-wise. For σ = 0, the VNM reduces
to the homogeneous scenario with G = G0 studied in [17], in
which all agents establish K interactions at each time-step.
The simple structure of G0 (which is a symmetric rank-1
matrix) allows to fully determine its spectrum, as summarized
in the following.

Lemma 1. The spectral radius of G0 is ρ0 = N−1
KN , with

associated unit-length eigenvector u0 = 1√
N−1vec (R). All

the other eigenvalues are zero, that is, λ2 = · · · = λN2 = 0.

This implies that the rate of convergence in the homo-
geneous VNMs improves monotonically as the number of
interactions K grows. To elucidate the effect of heterogeneity,
we recall a classical result on second-order perturbation theory
of simple eigenvalues, which is used to derive our second-
order approximation of the spectral radius ρ(G).

Proposition 2 ( [34], Chapter 6). Given a matrix G in
the form Eq. (14), if the spectral radius ρ0 = ρ(G0) is a
simple eigenvalue of G0, then the spectral radius of G can be
expressed as

ρ(G) = ρ0 + σρ1 + σ2ρ2 +O(σ3). (16)

The perturbation terms are equal to

ρ1 = u>0 G1u0 and ρ2 = u>0 G1u1 + u>0 G2u0, (17)

with u0 = 1√
N−1vec (R) and

u1 =
N2∑
i=2

v>i G1u0
ρ0 − λi

vi, (18)

where λ2, . . . , λN2 are the N2 − 1 eigenvalues of matrix G0

different from ρ0, and v2, . . . , vN2 are their corresponding
unit-norm eigenvectors.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

σ

∆r

(a) K = 4

0 0.2 0.4 0.6 0.8 1
0

0.001

0.002

σ

∆r

(b) K = 8

Figure 1: Variation of the spectral radius of G with respect
to the one for the homogeneous VNM, ∆r = ρ(G)− ρ0, for
different levels of heterogeneity σ. The blue solid curves are
the analytical predictions, computed according to the second-
order perturbation in Eq. (17); the red circles are Monte Carlo
numerical estimation of the spectral radius of Eq. (8) over 100
independent realizations of the vector h, generated randomly
such that 1>h = 0 and ||h|| =

√
N . In both panels N = 10;

in (a) K = 4, in (b) K = 8.

Theorem 1. The spectral radius of the matrix G in Eq. (13)
of a VNM with interaction vector a is equal to

ρ(G) =
N − 1

KN
+ σ2N − 1

K3N
+O(σ3). (19)

Proof. We observe that the following equalities hold: i)
vec (R)>G1 = 0, and ii) vec (R)>vec (Rdiag (h2)R) =
N − 1. From i), we conclude that the first-order perturbation
ρ1 = u>0 G1u0 = 0, and the first summand of ρ2 in Eq. (17)
u>0 G1u1 = 0. Using ii), we compute the second summand in
the expression of ρ2 in Eq. (17), which yields the claim.

Remark 1. For σ = 0, the expression in Eq. (19) reduces
to ρ(G) = N−1

KN , as observed in [17]. In the presence of
heterogeneity, the asymptotic convergence factor increases,
hindering mean-square convergence. Specifically, we find that
the increase in the spectral radius of G caused by hetero-
geneity is proportional to the square of the standard deviation
of the interaction vector σ, while it decreases as the average
number of interactions increases, being inversely proportional
to the cube of K.

The comparison between our analytical approximation and
numerical computations of the spectral radius is illustrated in
Fig. 1. Our numerical results support the theoretical findings
in Theorem 1, suggesting that the second-order approximation
derived in Eq. (19) provides an accurate estimate of the
spectral radius of the matrix G up to moderate levels of
heterogeneity σ. The accuracy of the approximation seems to
increase with the average number of interactions K.

B. Coordination in the presence of noise

Here, we put forward a similar perturbation argument on the
matrix G to derive a second-order approximation of the mean-
square deviation δ∞ in Eq. (10), which allows to approximate
the polarization as in Eq. (12). The results of our analysis are
summarized in the following theorem.
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Theorem 2. The mean-square deviation δ∞ in Eq. (10) of the
heterogeneous VNM with interaction vector a in Eq. (12) is
equal to

δ∞ =η2
π2

3

KN(N − 1)

N(K − 1) + 1

+ σ2η2
π2

3

N(N − 1)2

K
(
N(K − 1) + 1

)2 +O(σ3).
(20)

Proof. We write the term (I⊗I−G)−1 in Eq. (10) as a power
series and we expand G using Eq. (14), obtaining

(I ⊗ I −G)−1 = I ⊗ I +
∞∑
n=1

Gn

= I ⊗ I +
∞∑
n=1

Gn0 + σ
∞∑
n=1

n−1∑
`=0

G`0G1G
n−`−1
0

+σ2
∞∑
n=1

n−1∑
`=0

G`0G2G
n−`−1
0

+σ2
∞∑
n=2

n−2∑
`=0

n−`−2∑
m=0

G`0G1G
m
0 G1G

n−`−m−2
0 +O(σ3).

(21)
From the expressions of G0, G1, and G2 in Eq. (15), we
observe that G0G1 = G1G0 = G2

1 = 00>. Hence, the third
and the fifth terms in Eq. (21) are equal to 0. We substitute
the remaining terms of Eq. (21) into Eq. (10), obtaining three
contributions to the expression of δ∞, up to the O(σ3) term.
Specifically, we have two zeroth-order terms and one second-
order term in σ, coming from the first, second, and fourth
summands in Eq. (21), respectively. The first two terms yield
the mean-square deviations for an homogeneous VNM with K
interactions, which is equal to η2 π

2

3
KN(N−1)
N(K−1)+1 , as computed

in [17]. Finally, we compute

η2
π2

3
vec (R)>

(
σ2
∞∑
n=1

n−1∑
`=0

G`0G2G
n−`−1
0

)
vec (R)

= η2
π2

3
σ2
∞∑
n=1

n−1∑
`=0

(
N − 1

NK

)n−1
vec (R)>G2vec (R)

= η2
π2

3
σ2
∞∑
n=1

n

(
N − 1

NK

)n−1
(N − 1)2

NK3

= η2
π2

3

(N − 1)2

NK3
σ2 1

(1− N−1
NK )2

= η2
π2

3
σ2 N(N − 1)2

K(N(K − 1) + 1)2
.

Remark 2. From Eq. (20), one can compute an approximation
of the polarization in Eq. (12) that is valid for small added
noise. For σ = 0, this expression reduces to the one computed
by [17] for the homogeneous VNM; for σ > 0, the polarization
decreases, such that the presence of heterogeneity hinders
coordination.

We compare the closed-form expression for the polarization
based on Eq. (12) and Eq. (20), with Monte Carlo estimations
of Eq. (11), computed by numerically simulating the nonlinear

0.2 0.4 0.6 0.8 1

−0.001

−0.0005

0

σ

∆Pol
(a) η = 0.1

0.2 0.4 0.6 0.8 1

−0.01

−0.005

0
0 σ

∆Pol
(b) η = 0.3

Figure 2: Variation of the polarization with respect to the
homogeneous VNM, ∆Pol = Pol −Pol 0, where Pol 0 is the
polarization of the homogeneous VNM, for different levels
of heterogeneity σ. The blue solid curves are the analytical
predictions of Pol based on Eq. (12) and Eq. (20), the red
circles are Monte Carlo estimations of Pol from Eq. (11) over
100 independent runs of the nonlinear VNM. Parameters are
N = 80, K = 3, with (a) η = 0.1 and (b) η = 0.3. The
interaction vectors a are constructed for given values of σ
such that 1>h = 0, ||h|| =

√
N .

VNM. Simulations are conducted for N = 80 agents, initial-
ized at θi(0) = 0, for i = 1, . . . , N . For each simulation,
the model is run for 5, 000 time-steps and the polarization is
computed by averaging the quantity in Eq. (11) over the last
4, 000 steps.

In Fig. 2, we investigate the effect of heterogeneity on the
polarization by comparing the difference with respect to the
heterogeneous VNM. Besides confirming our intuition that
heterogeneity hampers coordination, our results suggest that
the second-order approximation is accurate for moderate levels
of heterogeneity, that is, up to σ ≈ 0.5.

In Fig. 3, we compare the numerical estimation of the
polarization from the simulations and the closed-form approx-
imation, for different levels of the heterogeneity σ, noise η,
and average number of interactions K. Our results suggest
that the closed-form solution is able to accurately capture
the coordination of the heterogeneous VNM up to moderate
values of η ≈ 0.5, after which the nonlinear model reaches
the completely-discorded state that cannot be predicted by a
linear model. The heterogeneity has a secondary role on the
extent of the coordination, due to the fact that dependence of
the mean-square deviation Eq. (20) with σ2 is moderated by
K(K − 1)2 for N � 1.

V. CONCLUSIONS

In this work, we investigated the effect of heterogeneity
on the vectorial network model, a stochastic protocol that is
used to examine collective motion of groups of agents. By
linearizing the dynamics about a synchronous state and lever-
aging techniques from stochastic consensus and eigenvalue
perturbation theories, we established closed-form results for
the asymptotic behavior of the model. First, we computed a
second-order approximation for the asymptotic convergence
factor, which governs the mean-square convergence of the
model in the absence of noise. Second, we derived an ex-
pression for the polarization of the system, which measures
the level of coordination between the agents.
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Figure 3: Polarization for different values of noise η. We consider N = 80 agents with three different levels of heterogeneity:
σ = 0 (green), σ = 0.5 (blue), and σ = 1 (red) and three different average number of interactions (a) K = 3, (b) K = 5, and
(c) K = 8. The solid curves are analytical predictions and circles are Monte Carlo estimations over 100 independent runs of
the nonlinear VNM. The interaction vectors a are constructed for given values of σ such that 1>h = 0, ||h|| =

√
N .

Our results support the intuition that heterogeneity has a
detrimental effect on coordination, whereby both the conver-
gence rate and the polarization are reduced as heterogeneity
increases. However, the extent of this effect is nonlinearly
moderated by the average number of connections made by
the agents. From a biological point of view, the robustness
of the system to heterogeneity might be a gateway for the
emergence of differences in the individual traits of the group
that have been shown to beget advantages to life in groups
[24]. In linking the predictions of the vectorial network model
to more complex models of collective motion, future efforts
should explore the role of state-dependent stochastic dynamics.
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