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PRODUCT-FORM POISSON-LIKE DISTRIBUTIONS AND
COMPLEX BALANCED REACTION SYSTEMS∗

DANIELE CAPPELLETTI† AND CARSTEN WIUF†

Abstract. Stochastic reaction networks are dynamical models of biochemical reaction systems
and form a particular class of continuous-time Markov chains on Nn. Here we provide a fundamental
characterization that connects structural properties of a network to its dynamical features. Specif-
ically, we define the notion of “stochastically complex balanced systems” in terms of the network’s
stationary distribution and provide a characterization of stochastically complex balanced systems,
parallel to that established in the 1970s and 1980s for deterministic reaction networks. Additionally,
we establish that a network is stochastically complex balanced if and only if an associated deter-
ministic network is complex balanced (in the deterministic sense), thereby proving a strong link
between the theory of stochastic and deterministic networks. Further, we prove a stochastic version
of the “deficiency zero theorem” and show that any (not only complex balanced) deficiency zero
reaction network has a product-form Poisson-like stationary distribution on all irreducible compo-
nents. Finally, we provide sufficient conditions for when a product-form Poisson-like distribution
on a single (or all) component(s) implies the network is complex balanced, and we explore the pos-
sibility to characterize complex balanced systems in terms of product-form Poisson-like stationary
distributions.

Key words. biochemical reaction network, Markov process, stationary distribution, mass-action
system, ODE system, deficiency theory
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1. Introduction. Improved experimental techniques have made it possible to
measure molecular fluctuations at a small scale, creating a need for a stochastic de-
scription of molecular data [24, 12]. Typically, biochemical reaction networks are
modeled as deterministic systems of ordinary differential equations (ODEs), but these
models assume the individual species are in high concentrations and do not allow for
stochastic fluctuation. An alternative is stochastic models based on continuous-time
Markov chains [18, 19, 14, 4, 5, 12]. As an example of a stochastic reaction system,
consider

(1.1) A+B
κ1−−⇀↽−−
κ2

2C,

where κ1, κ2 are positive reaction constants. The network consists of three chemical
species A, B, and C and two reactions. Each occurrence of a reaction modifies
the species counts, for example, when the reaction A + B → 2C takes places, the
amount of A and B molecules are each decreased by one, while two molecules of
C are created. The species counts are modeled as a continuous-time Markov chain,
where the transitions are single occurrences of reactions with transition rates

λ1(x) = κ1xAxB , λ2(x) = κ2xC(xC − 1),
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412 DANIELE CAPPELLETTI AND CARSTEN WIUF

and x = (xA, xB , xC) are the species counts [4]. When modeled deterministically, the
concentrations (rather than the counts) of the species change according to an ODE
system.

In a classical paper [18], Kurtz explored the relationship between deterministic
and stochastic reaction systems, using a scaling argument—large volume limit—to
link the dynamical behavior of the two types of systems to each other. Other, mainly
recent work, also points to close connections between the two types of systems [23, 2,
3, 1, 6, 16]. In this paper we explore this relationship further.

A fundamental link between structural network properties and dynamical fea-
tures of deterministic reaction networks has been known since the 1970s and 1980s
with the work of Horn, Jackson, and Feinberg [13, 10]. Specifically, their theory con-
cerns the existence and uniqueness of equilibria in complex balanced systems, with the
“deficiency zero theorem” playing a central role in this context. Complex balanced
systems were called cyclic balanced systems by Boltzmann. They have attractive
analytical and physical properties; for example, a (pseudo)entropy might be defined
which increases along all trajectories (Boltzmann’s H-theorem) [7, 13].

A parallel theory for the stochastic regime is not available, and the very concept
of “complex balanced” does not currently have a stochastic counterpart. In this paper
we develop a theory to fill this gap. We define stochastically complex balanced systems
through properties of the stationary distribution, and we prove results for stochastic
reaction networks that are in direct correspondence with the results for deterministic
models. In particular, we prove a parallel statement of the deficiency zero theorem
and show that all deficiency zero reaction networks have product-form Poisson-like
stationary distributions, irrespective of whether they are complexed balanced or not.
In fact, in the noncomplexed balanced case, the network is complex balanced on the
boundary of the state space.

A second target of our study concerns product-form stationary distributions. Such
distributions are computationally and analytically tractable and appear in many ar-
eas of applied probability, such as queueing theory [15, 17], Petri net theory [21],
and stochastic reaction network theory [23, 20, 2]. Specifically, a complex balanced
mass-action network has a product-form Poisson-like stationary distribution on ev-
ery irreducible component [20, 2]. As an example, the stationary distribution of the
complex balanced reaction system (1.1) is

πΓ(x) = MΓ
κxA
1 κxB

2 κxC
1

xA!xB !xC !
for x ∈ Γ,

where Γ = {x ∈ N
3 : xA + xB + 2xC = θ} is an irreducible component of the state

space N
3 and MΓ is a normalizing constant.

We expand the above result on mass-action systems and give general conditions
under which the converse statement is true. In particular, we are interested in pro-
viding a structural characterization of the networks with product-form Poisson-like
stationary distributions. However, this class of networks is strictly larger than that
of complex balanced networks, and a full characterization seems hard to achieve. We
illustrate this with examples.

2. Background. We first introduce the necessary notation and background ma-
terial; see [4, 10, 9] for general references. We assume standard knowledge about
continuous-time Markov chains.

2.1. Notation. We let R, R0, and R+ be the real, the nonnegative real, and the
positive real numbers, respectively. Also let N be the natural numbers including 0.
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COMPLEX BALANCED REACTION SYSTEMS 413

For any real number a ∈ R, |a| denotes the absolute value of a. Moreover, for
any vector v ∈ R

p, we let vi be the ith component of v, ‖v‖ the Euclidean norm,
and ‖v‖∞ the infinity norm, that is, ‖v‖∞ = maxi |vi|. For two vectors v, w ∈ R

p,
we write v < w (resp., v > w) and v ≤ w (resp., v ≥ w), if the inequality holds
componentwise. Further, we define �{v≤w} to be one if v ≤ w, and zero otherwise,
and similarly for the other inequalities. If v > 0, then v is said to be positive. Finally,
supp v denotes the index set of the nonzero components. For example, if v = (0, 1, 1),
then supp v = {2, 3}.

If x ∈ R
q
0 and v ∈ N

q, we define

xv =

q∏
i=1

xvi
i and v! =

q∏
i=1

vi!

with the conventions that 0! = 1 and 00 = 1.

2.2. Reaction networks. A reaction network is a triple G = (X , C,R), where
X = {S1, S2, . . . , Sn} is a set of n species, C is a set of m complexes, and R ⊆ C × C
is a set of k reactions, such that (y, y) /∈ R for all y ∈ C. The complexes are linear
combinations of species on N, identified as vectors in R

n. A reaction (y, y′) ∈ R is
denoted by y → y′. We require that every species is part of at least one complex
and that every complex is part of at least one reaction. In this way, there are no
“superfluous” species or complexes and G is completely determined by the set of
reactions R, which we allow to be empty. In (1.1), there are n = 3 species (A,B,C),
m = 2 complexes (A+B, 2C), and k = 2 reactions.

Given a reaction network G, the reaction graph of G is the directed graph with
node set C and edge set R. We let � be the number of linkage classes (connected
components) of the reaction graph. A reaction y → y′ ∈ R is terminal if any directed
path that starts with y → y′ is contained in a closed directed path. We let R∗ be the
set of terminal reactions.

A reaction network G is weakly reversible if every reaction is terminal. The net-
work in (1.1) is weakly reversible, since both reactions are terminal.

The stoichiometric subspace of G is the linear subspace of Rn given by

S = span(y′ − y|y → y′ ∈ R).

For v ∈ R
n, the sets (v+S)∩Rn

0 are called the stoichiometric compatibility classes of
G (Figure 1A). For the network in (1.1), S = span((−1, 1, 0), (0, 1,−1)) ⊂ R

3, which
is two-dimensional.

2.3. Dynamical systems. We will consider a reaction network G either as a de-
terministic dynamical system on the continuous space Rn

0 or as a stochastic dynamical
system on the discrete space N

n.
In the deterministic case, the evolution of the species concentrations z = z(t) ∈ R

n
0

at time t is modeled as the solution to the ODE

(2.1)
dz

dt
=

∑
y→y′∈R

(y′ − y)λy→y′(z)

for some functions λy→y′ : Rn
0 → R0 and an initial condition z(0) ∈ R

n
0 . We require

that the functions λy→y′ are continuously differentiable and that λy→y′(z) > 0 if and
only if supp y ⊆ supp z. Such functions are called rate functions and constitute a
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414 DANIELE CAPPELLETTI AND CARSTEN WIUF

deterministic kinetics K for G, and the pair (G,K) is called a deterministic reaction
system. If λy→y′(z) = κy→y′zy for all reactions, then the constants κy→y′ are referred
to as rate constants and the modeling regime is referred to as deterministic mass-
action kinetics. In this case, the pair (G, κ) is called a deterministic mass-action
system, where κ ∈ R

k
+ is the vector of rate constants.

In the stochastic setting, the evolution of the species counts X(t) ∈ N
n at time

t is modeled as a continuous-time Markov chain with state space N
n. At any state

x ∈ N
n, the states that can be reached in one step are x+ y′− y for y → y′ ∈ R with

transition rates λy→y′(x). The functions λy→y′ : Nn → R0 are called rate functions,
and we require that λy→y′(x) > 0 if and only if x ≥ y. A choice of these functions
constitute a stochastic kinetics K for G, and the pair (G,K) is called a stochastic
reaction system. If the reaction y → y′ occurs at time t, then the new state is

X(t) = X(t−) + y′ − y,

where X(t−) denotes the previous state. If for any reaction y → y′ ∈ R

λy→y′(x) = κy→y′
x!

(x− y)!
�{x≥y},

then the constants κy→y′ are known as rate constants, as in the deterministic case,
and the modeling regime is referred to as stochastic mass-action kinetics. The pair
(G, κ) is, in this case, called a stochastic mass-action system.

The evolution of the stochastic as well as the deterministic reaction system is
confined to the stoichiometric compatibility classes,

z(t) ∈ (z(0) + S) ∩ R
n
0 and X(t) ∈ (X(0) + S) ∩ R

n
0 .

In fact, X(t) ∈ (X(0) + S) ∩ N
n, as X(t) takes values in N

n.
Definition 1. Let G = (X , C,R) be a reaction network.
(a) A reaction network G′ = (X ′, C′,R′) is a subnetwork of G if R′ ⊆ R. In this

case, it follows that X ′ ⊆ X and C′ ⊆ C.
(b) A system (G′,K ′), deterministic or stochastic, is a subsystem of a system

(G,K) if G′ is a subnetwork of G and the rate functions agree on the reactions
in R′.

(c) The subnetwork G∗ given by the set of terminal reactions R∗ is the terminal
network of G. We denote G∗ = (X ∗, C∗,R∗). Furthermore, the subsystem
(G∗,K∗) of (G,K) is called the terminal system of (G,K).

Definition 2. The connected components of the reaction graph of the terminal
network of G are called terminal strongly connected component of G. For any complex
y in C∗, we denote by (Gy ,Ky) the subsystem of G whose reaction graph is the terminal
strongly connected component containing y as node.

As an example, consider the mass-action system

2A
κ1−−⇀↽−−
κ2

2B
κ3←−− A

κ4−−→ 0
κ5−−⇀↽−−
κ6

C.

Here, there are two terminal strongly connected components, which are 2A � 2B and
0 � C. In particular, (G2A,K2A) is equal to (G2B ,K2B) and is given by

2A
κ1−−⇀↽−−
κ2

2B.

Finally, if (G, κ) is a mass-action system, any subsystems (G′,K ′) is a mass-action
systems as well and can be denoted by (G′, κ′).
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COMPLEX BALANCED REACTION SYSTEMS 415

3. Deterministic reaction systems. In this section we will recapitulate the
known characterization of existence and uniqueness of positive equilibria in com-
plex balanced systems and the connection between complex balanced systems and
deficiency zero reaction networks. As we will show in the subsequent section, this
characterization can be fully translated into a similar characterization for stochastic
reaction networks.

3.1. Complex balanced systems. We start with a definition.
Definition 3. A deterministic reaction system (G,K) is said to be complex

balanced if there exists a positive complex balanced equilibrium, that is, a positive
equilibrium point c ∈ R

n
+ for the system (2.1), such that

(3.1)
∑
y′∈C

λy→y′(c) =
∑
y′∈C

λy′→y(c) ∀y ∈ C.

The name “complex balanced” refers to the fact that the flow, at equilibrium,
entering into the complex y equals the flow exiting from the complex. As an example,
the mass-action system in (1.1) is complex balanced for any choice of (κ1, κ2) and
c = (κ2, κ1, κ1) is a complex balanced equilibrium. The class of complex balanced
systems is an extension of the class of detailed balanced mass-action systems [13, 10].

For mass-action systems, (3.1) becomes

(3.2)
∑
y′∈C

κy→y′cy =
∑
y′∈C

κy′→yc
y′ ∀y ∈ C,

with the convention that ky→y′ = 0 if y → y′ �∈ R.
In the case of mass-action kinetics, we extend Definition 3 to the stochastic case,

by saying that a stochastic mass-action system (G, κ) is complex balanced if the deter-
ministic mass-action system (G, κ) is complex balanced. We might therefore refer to
complex balanced mass-action systems without specifying whether they are stochas-
tically or deterministically modeled.

The next theorem is a slight generalization of a classical result [13], which provides
the backbone for the further characterization. The generalization includes a property
of nonnegative equilibria.

Theorem 4. If a deterministic reaction system (G,K) is complex balanced, then
G is weakly reversible. Moreover, if K is mass-action kinetics, then all equilibria are
complex balanced, that is, they fulfill (3.2). Moreover, there exists exactly one positive
equilibrium in each stoichiometric compatibility class, which is locally asymptotically
stable.

As we are not aware of a proof of this more general formulation, we provide one
in Appendix B.

3.2. Deficiency zero statements. The deficiency plays an important role in
the study of complex balanced systems. The deficiency of G is defined as

δ = m− �− s,

where m is the cardinality of C, � is the number of linkage classes of the reaction graph
of G, and s is the dimension of the stoichiometric subspace S [13]. The definition hides
the geometrical interpretation of the deficiency, which we now will explore.
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416 DANIELE CAPPELLETTI AND CARSTEN WIUF

Let {ey}y∈C be a basis of Rm. Further, define

dy→y′ = ey′ − ey and ξy→y′ = y′ − y

for y → y′ ∈ R. Let D = span(dy→y′ |y → y′ ∈ R). Then dimD = m− � [13].
The space D is linearly isomorphic to the stoichiometric subspace S if and only

if δ = 0. Specifically, consider the homomorphism

(3.3)
ϕ : R

m → R
n,

ey → y.

For y → y′ ∈ R, we have ϕ(dy→y′ ) = ξy→y′ , and ϕ|D : D → S is thus a surjective
homomorphism. Therefore,

(3.4) dimKerϕ|D = dimD − s = m− �− s = δ,

which implies that ϕ|D is an isomorphism if and only if δ = 0. It further follows that
the deficiency is a nonnegative number.

We state here a useful lemma on the deficiency of subnetworks.
Lemma 5. Let G be a reaction network with deficiency δ. Then, the deficiency of

any subnetwork of G is smaller than or equal to δ.
Proof. Let R′ ⊆ R and let G′ be the corresponding subnetwork with deficiency

δ′. Further, let D′ and S′ be the equivalent of D and S for G′, respectively. By (3.4)
and since D′ is a subspace of D, we have δ′ = dimKerϕ|D′ ≤ dimKerϕ|D = δ, which
concludes the proof.

We next state two classical results which elucidate the connection between com-
plex balanced systems and deficiency zero systems. A proof of the first and of the
second result can be found in [13] and in [10], respectively. The results draw a con-
nection between graphical and dynamical properties of a network. Theorem 7 is given
here in a wider formulation than in [10]. (See Appendix B for a proof.)

Theorem 6. The mass-action system (G, κ) is complex balanced for any choice
of κ if and only if G is weakly reversible and its deficiency is zero.

Theorem 7. Consider a deterministic reaction system (G,K), and assume that
the deficiency of G is zero. If x ∈ R

n
0 is an equilibrium point and y → y′ ∈ R, then

supp y ⊆ suppx only if y → y′ is terminal. Moreover, if K is mass-action kinetics
with rate constants κ and supp y ⊆ suppx, then the projection of x onto the species
space of Gy is a complex balanced equilibrium of (Gy, κy).

It follows from Theorem 7 that an equilibrium point satisfies (3.2) for the terminal
system, though it is not necessarily a positive equilibrium of (G∗, κ∗).The deficiency
zero theorem, in the following formulation, is a consequence of the three previous
theorems.

Theorem 8 (deficiency zero theorem). Consider a deterministic reaction system
(G,K) for which the deficiency is zero. Then the following statements hold:

(i) if G is not weakly reversible, then there exists no positive equilibria;
(ii) if G is weakly reversible and K is mass-action kinetics, then there exists within

each stoichiometric compatibility class a unique positive equilibrium, which is
asymptotically stable.

The original formulation is richer than the one presented here [10].
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COMPLEX BALANCED REACTION SYSTEMS 417

Fig. 1. The figure shows some features of the reaction network 2A → 2B and A+3B → 3A+B.
(A) The stoichiometric compatibility classes are of the form {(zA, zB) : zA + zB = const.}. (B)
The two irreducible components on {(xA, xB) : xA + xB = 6} are shown (black circles and square),
together with the possible transitions between the states. All states within a component are accessible
from each other. The “square” component has no active reactions; both reactions are active on the
“black circles” component. The grey states are transient states which are not in any irreducible
component.

4. Stochastic reaction systems.

4.1. Classification of states and sets. To characterize the stochastic dynam-
ics we introduce the following terminology.

Definition 9. Let G = (X , C,R) be a reaction network.
(a) A reaction y → y′ ∈ R is active on x ∈ N

n if x ≥ y.
(b) A state u ∈ N

n is accessible from a state x ∈ N
n if there is a sequence of

q ≥ 0 reactions (yj → y′j)j=1,...,q such that

(i) u = x+
∑q

j=1(y
′
j − yj),

(ii) yh → y′h is active on x+
∑h−1

j=1 (y
′
j − yj) for all 1 < h ≤ q.

Definition 10. Let G be a reaction network. A nonempty set Γ ⊆ N
n is an

irreducible component of G if for all x ∈ Γ and all u ∈ N
n, u is accessible from x if

and only if u ∈ Γ.
Definition 11. A reaction network G is essential if the state space is a union

of irreducible components. A reaction network G is almost essential if the state space
is a union of irreducible components except for a finite number of states.

An essential network is also almost essential. A weakly reversible reaction net-
work is essential [22]. Conditions for being essential can be found in [22, 11]. Any
irreducible component is contained in some stoichiometric compatibility class, and a
stoichiometric compatibility class may contain several irreducible components (Fig-
ure 1B).

4.2. Stationary distribution. The stationary distribution πΓ on an irreducible
component Γ is unique, if it exists. It is characterized by the master equation [4]:

(4.1)
∑

y→y′∈R
πΓ(x+ y − y′)λy→y′(x+ y − y′) = πΓ(x)

∑
y→y′∈R

λy→y′(x)

for all x ∈ Γ. Let X(t) denote the stochastic process associated with the system. If
X(t0) follows the law of πΓ at time t0, then the distribution of X(t) is πΓ for all future
times t ≥ t0. In this sense, the stationary distribution describes a state of equilibrium
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of the system. Moreover, if πΓ exists, then

(4.2) lim
t→∞P (X(t) ∈ A) = πΓ(A) for any A ⊆ Γ,

provided that X(0) ∈ Γ with probability one. As discussed in section 1, a connection
between mass-action complex balanced systems and their stationary distribution has
been made in [2].

Theorem 12. Let (G, κ) be a complex balanced mass-action system. Then, there
exists a unique stationary distribution on every irreducible component Γ, and it is of
the form

(4.3) πΓ(x) = M c
Γ

n∏
i=1

cxi

i

xi!
for x ∈ Γ,

where c is a positive complex balanced equilibrium of (G, κ) and M c
Γ is a normalizing

constant.

4.3. Parallel theorems for stochastic mass-action systems. In this section
we derive stochastic statements corresponding to Theorem 4-8. Some of the proofs
are deferred to Appendix B. We begin with a definition.

Definition 13. For an irreducible component Γ, the set RΓ of active reactions
on Γ consists of the reactions y → y′ ∈ R that are active on some x ∈ Γ. The sub-
network GΓ = (XΓ, CΓ,RΓ) is called the Γ-network of G, and the subsystem (GΓ,KΓ)
of (G,K) is called the Γ-system of (G,K).

The reactions that are active on Γ determine the dynamics of the stochastic system
on Γ. To study the stationary distributions, it is therefore convenient to analyze the
Γ-systems. Note that RΓ is empty if and only if Γ consists of a single state.

As an example, consider the deficiency zero network,

C � D, 2A � 2B, A→ 0.

All molecules of A and B are irreversibly consumed through A → 0 and 2B → 2A,
and thus the only active reactions on an irreducible component Γ �= {0} are C � D.
The Γ-network is therefore C � D, which differs from the terminal system C � D,
2A � 2B. The next proposition states that for a deficiency zero reaction network
RΓ ⊆ R∗ for any irreducible component Γ. Note that Proposition 14 does not hold
in general, for example,

A→ B, 2B → 2A

has RΓ = R for any Γ �= {0}, {(0, 1)}, while R∗ = ∅.
Proposition 14. Let G be a reaction network and Γ an irreducible component

such that GΓ has deficiency zero. Then, GΓ is a subnetwork of G∗. In particular, this
is true if the deficiency of G is zero.

See Appendix B for a proof. Proposition 14 can be useful because RΓ might be
difficult to find, especially if there are many complexes. On the other hand, terminal
reactions are easily identified by means of the reaction graph. The next definitions
are inspired by Definition 3.

Definition 15. Let (G,K) be a stochastic reaction system. A stationary distri-
bution πΓ on an irreducible component Γ is said to be complex balanced if

(4.4)
∑
y∈CΓ

πΓ(x− y′ + y)λy→y′(x− y′ + y) =
∑
y∈CΓ

πΓ(x)λy′→y(x) ∀y′ ∈ CΓ, x ∈ Γ.
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For a mass-action system, (4.4) becomes

∑
y∈CΓ

πΓ(x− y′ + y)κy→y′
(x− y′ + y)!

(x − y′)!
�{x≥y′} =

∑
y∈CΓ

πΓ(x)κy′→y
x!

(x− y′)!
�{x≥y′}

for any y′ ∈ CΓ and x ∈ Γ, with the convention that ky→y′ = 0 if y → y′ �∈ RΓ. In
developing the theory for complex balanced equilibria in the deterministic setting, an
important role is played by requiring positivity of the complex balanced equilibrium.
Our aim is to introduce a similar concept for the stochastic systems. In the determin-
istic setting, if a state z ∈ R

n is positive, then every rate function calculated on z is
positive. We find inspiration from this to give the next definition.

Definition 16. An irreducible component Γ is positive if GΓ = G.
Equivalently, an irreducible component Γ is positive if all reactions are active on

Γ. The next definition follows naturally by analogy with the deterministic setting.
Definition 17. A stochastic reaction system (G,K) is said to be stochastically

complex balanced if there exists a complex balanced stationary distribution on a pos-
itive irreducible component.

If Γ is positive, then CΓ = C and a complex balanced stationary distribution on
Γ satisfies (4.4) with CΓ replaced by C. Note the similarity between Definition 17
and the definition of a complex balance equilibrium (Definition 3): the positivity of Γ
plays the role of the positivity in Definition 3. Also note the close similarity between
(3.1) and (4.4).

Theorem 18. Let (G,K) be a stochastic reaction system, and let Γ be an irre-
ducible component. If there exists a complex balanced stationary distribution πΓ on
Γ, then GΓ is weakly reversible. Moreover, if K is mass-action kinetics with rate con-
stants κ, there exists a complex balanced stationary distribution πΓ on Γ if and only
if the Γ-system of (G, κ) is complex balanced. If this is the case, then πΓ has the form

(4.5) πΓ(x) = M c
Γ

∏
i : Si∈XΓ

cxi

i

xi!
for x ∈ Γ,

where c is a positive complex balanced equilibrium of (GΓ, κΓ) and M c
Γ is a normalizing

constant.
The proof is in Appendix B. It is shown in [2] that the stationary distribution

πΓ(x) is independent of the choice of complex balanced equilibrium c of the Γ-system,
provided that it is positive. We are now ready to derive stochastic versions of Theo-
rems 4, 6, 7, and 8. In addition, we will show that a stochastically complexed balanced
mass-action system is complex balanced and vice versa. Hence, we will show that the
deterministic and stochastic systems are intimately connected. The next corollary is
an analogue of Theorem 4.

Corollary 19. If a stochastic reaction system (G,K) is stochastically com-
plex balanced, then G is weakly reversible. Moreover, a mass-action system (G, κ) is
stochastically complex balanced if and only if it is complex balanced. If this is case,
then on every irreducible component Γ there exists a unique stationary distribution
πΓ. Such πΓ is a complex balanced stationary distribution, and it has the form (4.3),
where c is a positive complex balanced equilibrium of (G, κ).

Proof. If Γ is positive, then (GΓ,KΓ) = (G,K). Therefore, by Theorem 18 if
(G,K) is stochastically complex balanced, then G is weakly reversible. Moreover, if
K is mass-action kinetics with rate constants κ, it follows from Theorem 18 that
there exists a complex balanced stationary distribution on Γ if and only if (G, κ) is
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complex balanced. In this case, by Theorem 12, a stationary distribution exists on
every irreducible component, and it is of the form (4.3). By Theorem 18, it is a
complex balanced stationary distribution.

Corollary 19 might be considered a stochastic version of Theorem 4, especially if
(4.2) is taken to be equivalent to “asymptotic stability” for a deterministic equilibrium.
Part of the corollary is known [2] (see also Theorem 12), and the whole corollary might
therefore be considered as an extension of the result in [2] on mass-action systems.
In this sense, Theorem 18 provides an even more general version, which deals with
complex balanced subsystems of (G, κ).

We now state the parallel versions of Theorems 6–8 for the stochastic setting.
Corollary 20. The mass-action system (G, κ) is stochastically complex balanced

for any choice of κ if and only if G is weakly reversible and its deficiency is zero.
Proof. The result is an immediate consequence of Corollary 19 and Theo-

rem 6.
Theorem 21. Consider a stochastic reaction system (G,K), and assume the

deficiency of G is zero. Let x be a state in an irreducible component Γ and let y → y′

in R. Then, y ≤ x only if y → y′ is terminal. Moreover, if K is mass-action kinetics,
then on Γ the stationary distribution has the form

(4.6) πΓ(x) = M c
Γ

∏
i : Si∈X ∗

cxi

i

xi!
for x ∈ Γ,

where c is a positive complex balanced equilibrium for the terminal system, and M c
Γ is

a normalizing constant.
The proof is in Appendix B.
Theorem 22. Consider a stochastic reaction system (G,K), and assume that the

deficiency of G is zero. Then the following statements hold:
(i) if G is not weakly reversible, then there exist no positive irreducible compo-

nents;
(ii) if G is weakly reversible, then G is essential, and if K is mass-action ki-

netics, then there exists a unique stationary distribution on every irreducible
component.

The proof of the theorem is in Appendix B. In case (i), Theorem 21 provides the
form of the stationary distribution. Hence we have characterized the stationary dis-
tribution for any deficiency zero reaction system, irrespective of whether it is complex
balanced or not.

Example 1. Consider the two stochastic mass-action systems

A
κ1−−⇀↽−−
κ2

B, 10A
κ3−−⇀↽−−
κ4

10B and A
κ1−−⇀↽−−
κ2

B, 10A
κ3−−→ 0.

The behaviors of the two corresponding deterministic systems differ substantially,
while the behaviors of the stochastic systems are equivalent on the irreducible com-
ponents Γθ = {x ∈ N

2 : x1 + x2 = θ} with 0 ≤ θ < 10 an integer. Indeed, in both
cases the Γθ-system is

A
κ1−−⇀↽−−
κ2

B,

which is complex balanced (Theorem 6). It follows from Theorem 18 that the sta-
tionary distribution on Γθ is

πθ(x1, x2) = Mθ
κx1
2

x1!

κx2
1

x2!
for (x1, x2) ∈ Γθ
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COMPLEX BALANCED REACTION SYSTEMS 421

for a suitable normalizing constant Mθ. The stationary distributions are complex
balanced, but since Γθ is not positive in either of the two networks, we cannot conclude
that the systems are stochastically complex balanced. Indeed, they are not for some
choice of rate constants (Corollary 20).

Incidentally, note that the second network is not almost essential.

5. Product-form Poisson-like stationary distributions. The above results
draw parallels between stochastic and deterministic reaction networks. If a mass-
action system is (stochastically) complex balanced, then the stationary distribution
on every irreducible component is a product-form Poisson-like distribution. Does
the reverse statement hold true too? If the stationary distribution is a product-form
Poisson-like distribution on some or all irreducible components, does it follow that the
system is complex balanced? In the spirit of the first part of the paper we would like
to achieve a full characterization of stochastic systems with product-form Poisson-like
stationary distributions. However, even though the hypothesis of Theorem 23 below
is rather general, a full characterization seems hard to achieve.

Theorem 23. Let G be an almost essential reaction network, κ ∈ R
k
+ a vector of

rate constants, and c ∈ R
n
+ a vector with positive entries. The probability distribution

πΓ : Γ → (0, 1] defined by (4.3) is a stationary distribution for the stochastic mass-
action system (G, κ) for all irreducible components Γ ⊆ N

n of G if and only if c is a
complex balanced equilibrium for (G, κ).

Proof. By Theorem 12, if c > 0 is a complex balanced equilibrium for (G, κ), then
the stationary distribution on all irreducible components Γ ⊆ N

n is of the form (4.3).
Oppositely, assume that (4.3) is the stationary distribution on Γ for the stochas-

tic mass-action system (G, κ), for all irreducible components Γ. Since G is almost
essential, there exists a constant K such that any states x with ‖x‖ > K belongs to
an irreducible component Γ. For any x ∈ N

n, such that

(5.1) min
Si∈X

xi > max
y→y′∈R

(‖y‖∞ + ‖y′‖∞) +K,

we have that x ≥ y and x − y′ + y ≥ y for all y → y′ ∈ R. Then, since (4.3)
is a stationary distribution and since x and x + y − y′ are in the same irreducible
component for all y → y′ ∈ R, we have from (4.1)

(5.2)
∑

y→y′∈R
πΓ(x+ y − y′)κy→y′

(x+ y − y′)!
(x− y′)!

= πΓ(x)
∑

y→y′∈R
κy→y′

x!

(x− y)!

for all x ∈ Γ satisfying (5.1). Further, using (4.3), (5.2) becomes∑
y→y′∈R

x!

(x− y′)!
κy→y′cy−y′

=
∑

y→y′∈R
κy→y′

x!

(x− y)!
,

which, by rearranging terms, leads to

(5.3)
∑
y′∈C

x!

(x − y′)!

∑
y→y′∈R

κy→y′cy−y′
=

∑
y′∈C

x!

(x− y′)!

∑
y′→y∈R

κy′→y.

The equality holds for all x ∈ N
n satisfying (5.1), and therefore the polynomials on

the two sides of (5.3) are equal.
For any y′ ∈ C, let py′(x) be the polynomial

py′(x) =
x!

(x− y′)!
.
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422 DANIELE CAPPELLETTI AND CARSTEN WIUF

The monomial with maximal degree in py′ is xy′
, and these differ for all complexes

y′ ∈ C. This implies that py′ , y′ ∈ C, are linearly independent on R, and thus the
polynomials on the two sides of (5.3) are equal if and only if∑

y∈C
κy→y′cy−y′

=
∑
y∈C

κy′→y ∀y′ ∈ C.

Hence, c is a complex balanced equilibrium for (G, κ) and the proof is comple-
ted.

5.1. Relaxation of Assumptions in Theorem 23. To infer the existence of
positive complex balanced equilibria in Theorem 23, the assumptions of the theorem
could be weakened. Specifically, it is only required that (5.3) holds for a set of states
whose geometry and cardinality allow us to conclude that the polynomials on the
two sides of (5.3) are the same. For (5.3) to hold, we need x to be in a irreducible
component and we require x ≥ y and x − y′ + y ≥ y for all reactions y → y′ ∈ R,
as well as the stationary distribution evaluated in x and x− y′ + y to be of the form
(4.3). If a state x satisfies this, we call it a good state.

A more general condition than being almost essential could be chosen case by
case and depends on the monomials appearing in (5.3). For example, if the set of
complexes coincides with the set of species, then the polynomials in (5.3) are linear
and the existence of n + 1 good states in general position implies the existence of a
positive complex balanced equilibrium. In general, let d be the total degree of the
polynomials in (5.3). Then it is sufficient to have n lines in general position with more
than d+1 good states on each of them. Therefore, to conclude that a system is complex
balanced it is sufficient to check the behavior of a finite number of states, lying on a
finite number of irreducible components. However, it follows from Examples 2 and 4
that the existence of arbitrarily many good states on a few irreducible components
does not imply the existence of a positive complex balanced equilibrium in general.
Finally, in order to postulate that the mass-action system is complex balanced, it is
necessary that the vector c appearing in Theorem 23 is the same for every irreducible
component, as shown in Example 5.

The following examples are also meant to give an idea of why it is hard to obtain
a full characterization of stochastic mass-action systems with a product-form Poisson-
like stationary distribution on some irreducible component.

Example 2. Let ρ ∈ R+ and let θ ≥ 2 be an integer. Consider the stochastic
mass-action system

(5.4) A
ρ(θ−1)−−−−→ B 2B

ρ−−−−→ 2A,

where κ1 = ρ(θ − 1) and κ2 = ρ are the rate constants. The reaction network is
almost essential. It is shown in Appendix C that the stationary distribution on the
irreducible component Γθ = {x ∈ N

2 : x1 + x2 = θ} has the form (4.3) with c = (1, 1),
namely,

(5.5) πθ(x1, x2) = Mθ
1

x1!x2!
for (x1, x2) ∈ Γθ,

where Mθ is a normalizing constant. However, the mass-action system is not complex
balanced as the reaction network is not weakly reversible (Theorem 4). In particular,
by Theorem 23, not all irreducible components can have a stationary distribution of
the form (4.3) with c = (1, 1). Trivially, the absorbing states (0, 0) and (0, 1) have it.

Additionally, we should point out that there is not an equivalent system on Γ
(that is, a stochastic mass-action system with the same transition rate matrix on the
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COMPLEX BALANCED REACTION SYSTEMS 423

states of Γ as (5.4)) which is complex balanced. Consider the case θ = 1. Since
the transition from (0, 2) to (2, 0) is possible according to (5.4), any equivalent mass-
action system must contain the reaction 2B → 2A with rate constant ρ. It can be
further shown that any equivalent weakly reversible mass-action system must contain
the connected component

A+B

2B

2A .

ρ

ρ
2

ρ

This prevents the system from being complex balanced, since there is not a c ∈ R2
+

fulfilling (3.2) for the three complexes 2B, 2A, and A+B.
Example 3. Let ρ1, ρ2, ρ3 ∈ R+ and let θ ≥ 2 be an integer. Consider the

modification of Example 2 given by

A
ρ1(θ−1)+ρ2−−−−−−−−⇀↽−−−−−−−−

ρ2

B, 2B
ρ1+ρ3−−−−−−−−⇀↽−−−−−−−−
ρ3

2A,

which is weakly reversible. If we let ρ2 = 0 and ρ3 = 0, then the system reduces to
that of Example 2 by removing the two reversible reactions. It can be shown that
for any parameter choice, (5.5) is still a stationary distribution on the irreducible
component Γθ = {x ∈ N

2 : x1 + x2 = θ}. However, for some choice of parameters
the mass-action system is not complex balanced. This can be seen either by direct
computation on the system of complex balance equations (3.2) or by noting that the
deficiency of the network is 1, so there must be a choice of parameters which prevents
positive complex balanced equilibria by Theorem 6. It can be further shown that
irreducible components different from Γ do not possess a product-form Poisson-like
stationary distribution.

Example 4. Consider the stochastic mass-action system with ρ ∈ R+ and θ1, θ2
two positive integers,

A
ρθ1θ2−−−−−−−→ B, 2B

ρ(θ1+θ2−1)−−−−−−−→ 2A

3A
ρ−−−−−−−→ A+ 2B, 2A+B

ρ−−−−−−−→ 3B.

The reaction network is almost essential. For any θ ∈ N, consider the irreducible
component Γθ = {x ∈ N

2 : x1 + x2 = θ + 1}. Then πθ1 and πθ2 , defined as in (5.5),
are the (unique) stationary distributions on the irreducible components Γθ1 and Γθ2 ,
respectively. For the relevant calculations, see Appendix C. However, the mass-action
system is not complex balanced, since the reaction network is not weakly reversible
(Theorem 4).

Example 5. Theorem 23 can be also used to compute the stationary distribution
of a stochastic mass-action system which behaves as a complex balanced system on
the irreducible components. Consider the weakly reversible (and therefore essential)
stochastic mass-action system

A
κ1−−⇀↽−−
κ2

2A, A+B
κ3−−⇀↽−−
κ4

2A+B.

On every irreducible component Γθ = {x ∈ N
2 : x2 = θ}, θ ∈ N, the associated

continuous time Markov chain, which describes the evolution of the counts of A, has
the same distribution as the process associated with

A
κ1+κ3θ−−−−−⇀↽−−−−−
κ2+κ4θ

2A,
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424 DANIELE CAPPELLETTI AND CARSTEN WIUF

because the transition rates coincide. The latter system is complex balanced for any
choice of rate constants. The stationary distribution has the form (Theorem 23)

πθ(x) = Mθ
1

x!

(
κ2 + κ4θ

κ1 + κ3θ

)x
for some positive constant Mθ. The latter gives the stationary distribution of the
original system as well. However, the rate of the Poisson distribution does depend on
θ, in which case the original system cannot be complex balanced (Corollary 19). For
the same reason the example does not contradict Theorem 23.

6. Applications. There are not many means to explicitly calculate the station-
ary distribution of a stochastic mass-action system. As an example, Theorem 18 can
be used to determine the stationary distributions of mass-action systems like

C
κ1−−⇀↽−−
κ2

D, 2A
κ3−−⇀↽−−
κ4

2B, A
κ5−−→ 0.

Indeed, for any irreducible component Γ different from {0}, the Γ-system is given by

C
κ1−−⇀↽−−
κ2

D,

which is weakly reversible and has deficiency zero, and therefore it is complex bal-
anced. Hence, the stationary distribution on Γ has the form

πΓ(x) = MΓ
κx3
2

x3!

κx4
1

x4!
for x ∈ Γ,

where x3 and x4 denote the entries relative to C and D, respectively. Alternatively,
since the terminal system is given by

C
κ1−−⇀↽−−
κ2

D, 2A
κ3−−⇀↽−−
κ4

2B,

Theorem 21 can be used to compute the stationary distribution. On every irreducible
component Γ, it is given by

πΓ(x) = M̃Γ
(
√
κ4)

x1

x1!

(
√
κ3)

x2

x2!

κx3
2

x3!

κx4
1

x4!
for x ∈ Γ,

which is equivalent to the previous formula since x1 and x2 are constantly 0 on all
irreducible components.

If the system does not fulfill the conditions of Theorem 18 and neither can be
cast as a birth-death process, Theorem 23 might be useful. The following mass-action
system is considered in [1]:

A
κ1−→ 0, 0

κ2−→ 2A.

By Theorem 23, the stationary distribution cannot be Poisson. Indeed, it is given
by the distribution of Y = Y1 + 2Y2, where Y1 and Y2 are two independent Poisson
random variables with rates κ2

κ1
and κ2

2κ1
, respectively. Hence,

π(x) = e−
3κ2
2κ1

∑
i,j∈N

x=i+2j

1

i!j!

(
κ2

κ1

)i (
κ2

2κ1

)j
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In [1], the following system is also considered:

0
κ1−−⇀↽−−
κ2

A, 2A
κ3−−⇀↽−−
κ4

3A.

It has the stationary distribution

π(x) = M

x∏
i=1

θ1[(i − 1)(i− 2) + θ2]

i(i− 1)(i− 2) + θ3i
for x ∈ N,

where θ1 = κ3/κ4, θ2 = κ1/κ3, θ3 = κ2/κ4, and M = π(0) is a normalizing constant.
It is interesting that π(x) is a Poisson distribution if and only if θ2 = θ3. In fact, and
in accordance with our results, the mass-action system is complex balanced if and
only if θ2 = θ3.

7. Discussion. Corollary 20 provides a characterization of reaction networks
that are stochastically complex balanced for any choice of rate constants. It is natural
to wonder whether a stationary distribution of the form (4.3) on some irreducible
component Γ for all choices of rate constants implies something specific about the
Γ-system. If for a specific form we intend deficiency zero and weakly reversible, this
is not the case, as this is violated in Example 5. However, in Example 5 the system
might be described equivalently by means of a weakly reversible deficiency zero system
for any irreducible component. The question of whether this is always true remains
open. We provide here two more examples.

Example 6. Consider the stochastic mass-action system

2A
κ1−−→ 2B, A+ 3B

κ2−−→ 3A+B.

The underlying reaction network is considered in Figure 1. On the irreducible compo-
nent Γ = {(1, 5), (3, 3), (5, 1)}, the Markov chain associated with the system has the
same distribution as the Markov chain associated with

2A
κ1−−⇀↽−−
3κ2

2B,

since the transition rates coincide. It is interesting to note that the dynamics of
the two systems are different when they are deterministically modeled [8]. Due to
Theorem 6, the latter system is complex balanced for any choice of rate constants.
Therefore, by Theorem 23, the stationary distribution on Γ has the form (4.3) on
both systems for any choice of rate constants. The same argument does not hold, in
this case, for the other irreducible components.

Example 7. The same phenomenon as in Example 6 is observed in the stochastic
mass-action system

2A
κ1−−→ 3A+B, A+ 3B

κ2−−→ 2B.

On the irreducible component Γ = {(x1, x2) ∈ N
2 : x1 ≥ 2, x1 = x2}, the Markov

chain associated with the system has the same distribution as the Markov chain
associated with

2A
κ1−−⇀↽−−
κ2

3A+B,

since the transition rates coincide, and the latter network is weakly reversible and has
deficiency zero.
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Appendix A. Preliminary results. Here we state some preliminary results
that will be needed in Appendix B.

Lemma A.1. Let G be a reaction network. If y1 → y2 → · · · → yq is a directed
path in the reaction graph of G, and x ≥ y1, then x+ yq − y1 is accessible from x.

Proof. First, note that

x+

q−1∑
i=1

(yi+1 − yi) = x+ yq − y1.

It is sufficient to note that if x ≥ y1, then for any 1 ≤ j ≤ q − 1, we have

x+

j−1∑
i=1

(yi+1 − yi) = x+ yj − y1 ≥ yj.

This concludes the proof.
Lemma A.2. Let Γ be an irreducible component such that GΓ has deficiency zero.

Then, GΓ is weakly reversible. In particular, if G has deficiency zero, GΓ has deficiency
zero and is weakly reversible for every irreducible component Γ.

Proof. If RΓ is empty, then GΓ is weakly reversible and there is nothing to prove.
Otherwise, if RΓ is nonempty, let y1 → y′1 ∈ RΓ. By hypothesis, there exists a state
x in Γ with x ≥ y1. This means that x+ ξy1→y′

1
is accessible from x. Moreover, since

x belongs to an irreducible component Γ, we have that x is accessible from x+ ξy1→y′
1

as well, which implies that

x = x+

q∑
j=1

ξyj→y′
j

for a certain choice of ξyj→y′
j
. In particular,

∑q
j=1 ξyj→y′

j
= 0. By the hypothesis of

deficiency zero, it follows that
∑q

j=1 dyj→y′
j
= 0, because ϕ, defined in (3.3), is an

isomorphism between the spaces D and S associated with GΓ. Therefore,
q∑

j=1

(ey′
j
− eyj ) =

∑
y∈CΓ

αyey = 0

for some integers αy. Since the vectors ey are linearly independent, αy = 0 for all
y ∈ CΓ. Hence, each ey that appears in the sum must appear at least twice, once
with coefficient 1 and once with −1. Consequently, by iteratively reordering the
terms dyj→y′

j
, the reactions (yj → y′j)

q
j=1 form a union of directed closed paths in

the reaction graph of G. In particular, the reaction y1 → y′1 is contained in a closed
directed path of the reaction graph of GΓ, and since this is true for every reaction
in RΓ, GΓ is weakly reversible. We conclude the proof by Lemma 5, since if G has
deficiency zero, so does every subnetwork of G.

Lemma A.3. Let G be a weakly reversible reaction network, and let Γ be an
irreducible component. Then, for any complex y′ ∈ CΓ we have

{y ∈ C : y → y′ ∈ R} = {y ∈ CΓ : y → y′ ∈ RΓ},
{y ∈ C : y′ → y ∈ R} = {y ∈ CΓ : y′ → y ∈ RΓ}.

Proof. One inclusion is trivial, since RΓ ⊆ R. For the other inclusion, fix y′ ∈ CΓ.
Suppose that there exists x ∈ Γ with x ≥ y′. It follows that any reaction y′ → y ∈ R
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COMPLEX BALANCED REACTION SYSTEMS 427

is active on Γ and therefore is contained in RΓ. Moreover, since G is weakly reversible,
for any reaction in R of the form y → y′, there exists a directed path in the reaction
graph of G from y′ to y. Hence, by Lemma A.1, x+ y− y′ is accessible from x, which
implies that x+y−y′ is in Γ and that y → y′ is in RΓ, since x+y−y′ ≥ y. Therefore,
to conclude the proof it suffices to prove that there exists x ∈ Γ with x ≥ y′.

If it were no x ∈ Γ with x ≥ y′, then no reaction of the form y′ → y would be
in RΓ. Since y′ ∈ CΓ, there exists a reaction of the form y → y′. This means that
there is x̃ ∈ Γ, such that x̃ ≥ y. Hence, x̃+ y′ − y is in Γ with x̃+ y′ − y ≥ y′, which
concludes the proof.

Appendix B. Proofs.

B.1. Proof of Theorem 4. It is proved in [13] that if a deterministic reaction
system (G,K) is complex balanced, then G is weakly reversible. By [13], we also know
that if K is mass-action kinetics, then all positive equilibria are complex balanced,
and there exists exactly one positive equilibrium in each stoichiometric compatibility
class, which is locally asymptotically stable. Therefore, to conclude the proof we only
need to prove that in a complex balanced mass-action system (G, κ), the eventual
equilibria on the boundary of Rn are also complex balanced.

First note that any subsystem (GL, κL) of (G, κ) corresponding to a linkage classes
L of G is complex balanced. Indeed, the projection of a positive complex balanced
equilibrium of (G, κ) onto the space of the species of L satisfies (3.2) for any complex
of GL, and hence it is a positive complex balanced equilibrium of (GL, κL).

Let c be an equilibrium point on the boundary. Consider a linkage class L of G,
and assume that cS > 0 for any species S appearing in the linkage class. Then, the
projection of c onto the species of L is a positive equilibrium of (GL, κL), and therefore
complex balanced. It follows that c satisfies (3.2) for any complex of L. Oppositely,
assume that there exists a species appearing in the linkage class L, such that cS = 0.
(This can only happen on a boundary state.) Remember that by mass-action kinetics,
all the rates of reactions whose source complex contains S are zero. In particular, all
the rates of reactions degrading S are zero. Consider a complex y in L that contains
S. By weakly reversibility, there exists a reaction y′ → y in L. If y′ contains S,
then λy′→y(c) = 0. If y′ does not contain S, then the reaction y′ → y produces S.
Since the rate of all reactions degrading S is zero at c and c is an equilibrium, then
λy′→y(c) must be zero as well. By mass-action kinetics, this means that there exists
a species S′ �= S such that S′ appears in y′ and cS′ = 0. By iteratively applying the
same argument with the new species S′ and by weakly reversibility, we obtain that
λy→y′(c) = 0 for any reaction y → y′ in L. It follows that c satisfies (3.2) for any
complex in L, since the equation reduces to 0 = 0. Equation (3.2) is therefore satisfied
for any complex of G, and c is a complex balanced equilibrium. This concludes the
proof.

B.2. Proof of Theorem 7. By [10, Theorem 6.1.2], if x ∈ R
n
0 is an equilibrium

point and y → y′ ∈ R, then supp y ⊆ suppx only if y → y′ is terminal. Moreover, if
supp y ⊆ suppx, then supp ỹ ⊆ suppx for every complex ỹ of Gy = (Xy , Cy,Ry).

Now, suppose that K is mass-action kinetics with rate constants κ and that
supp y ⊆ suppx with y → y′ ∈ R (and therefore y → y′ ∈ R∗). Consider

R̃ = {ỹ → ỹ′ ∈ R : supp ỹ ⊆ suppx}.
By the first part of the statement, the reaction graph of the subnetwork G̃ = (X̃ , C̃, R̃)
is a union of terminal strongly connected components of G, and therefore G̃ is weakly
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428 DANIELE CAPPELLETTI AND CARSTEN WIUF

reversible. Moreover, by Lemma 5, the deficiency of G̃ is 0. It is not hard to see that
the canonical projection of x onto the space of the species X̃ is a positive equilibrium
point of (G̃, κ̃), and therefore complex balanced by Theorem 6. The proof is concluded
by (3.2) and by noting that, for any complex ỹ ∈ Cy,

{ỹ′ ∈ C̃ : ỹ → ỹ′ ∈ R̃} = {ỹ′ ∈ Cy : ỹ → ỹ′ ∈ Ry},
{ỹ′ ∈ C̃ : ỹ′ → ỹ ∈ R̃} = {ỹ′ ∈ Cy : ỹ′ → ỹ ∈ Ry}.

B.3. Proof of Proposition 14. If RΓ is empty, there is nothing to prove.
Suppose that this is not the case. Since GΓ has deficiency zero, by Lemma A.2, it is
weakly reversible. For any y → y′ ∈ RΓ, by definition there exists x ∈ Γ such that
x ≥ y, which in turn implies x+ y′ − y ≥ y′. Therefore, for any directed path in the
reaction graph of G that starts with y → y′ ∈ RΓ, all the reactions in the path belong
to RΓ, by definition of RΓ. Since GΓ is weakly reversible, this can only happen if
RΓ ⊆ R∗, and this proves the first part of the statement. To conclude the proof, note
that if the deficiency of G is zero, then by Lemma 5 the deficiency of GΓ is zero as
well.

B.4. Proof of Theorem 18. For the first part of the statement, consider a
continuous-time Markov chain CΓ(t) with state space Γ× C and transition rate from
(x, y) to (x + y′ − y, y′) given by λy→y′(x) if y → y′ ∈ RΓ, and zero otherwise. The
master equation for CΓ(t) is∑

y∈CΓ

π̃(x− y′ + y, y)λy→y′(x− y′ + y) =
∑
y∈CΓ

π̃(x, y′)λy′→y(x) ∀y′ ∈ C, x ∈ Γ

with the convention that λy→y′(x) = 0 if y → y′ /∈ RΓ. By Definition 15, a stationary
distribution for CΓ(t) exists and is of the form π̃(x, y) = Mπ(x) for a suitable nor-
malizing constant M . Since π(x) is positive for any x ∈ Γ (because it is a stationary
distribution on an irreducible component), then by standard Markov chain theory,
we have that for any two states (x1, y1), (x2, y2) ∈ Γ× C, if (x2, y2) is accessible from
(x1, y1), then (x1, y1) is accessible from (x2, y2). Fix y → y′ ∈ RΓ and x ∈ Γ with
x ≥ y. Then, a directed path from (x + y′ − y, y′) to (x, y) exists in the graph asso-
ciated with CΓ(t). The second components of the form y of the states in the path,
by construction, determine a directed path in the reaction graph of GΓ from y′ to y.
Hence, any reaction y → y′ ∈ RΓ is contained in a closed directed path, which means
that GΓ is weakly reversible.

Assume now that K is mass-action kinetics with rate constants κ and that c is a
positive complex balanced equilibrium of (G, κ). Then, by Theorem 12, there exists a
(unique) stationary distribution on Γ of the form (4.3). If a species Sj is not in XΓ,
then the value of xj is constant for any x ∈ Γ, and (4.5) can be obtained from (4.3)
by modifying the normalizing constant.

By Theorem 4 and Lemma A.3, we have that∑
y∈CΓ

cy−y′
κy→y′ =

∑
y∈CΓ

κy′→y ∀y′ ∈ CΓ

with κy→y′ = 0 if y → y′ /∈ RΓ. Therefore, for any y′ ∈ CΓ and x ∈ Γ,

1

(x− y′)!

∑
y∈CΓ

cx+y−y′
κy→y′�{x≥y′} =

1

(x− y′)!

∑
y∈CΓ

cxκy′→y�{x≥y′},

which leads to (4.4), since π is of the form (4.3).
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To prove the converse we first introduce a new stochastic mass-action system
(ĜΓ, κ̂Γ), which is given by the reactions of the form

y + Sy → y′ + Sy′ with y → y′ ∈ RΓ,

where Sy are fictitious species in one to one correspondence with the complexes CΓ.
The rate constant of the reaction y + Sy → y′ + Sy′ is given by κy→y′ . It is not
difficult to see that the sum of the fictitious species is conserved for any possible
trajectory. Moreover, since any directed path y1 → y2 → . . . yq in the reaction graph
of G corresponds to a directed path y1+Sy1 → y2+Sy2 → . . . yq +Syq in the reaction

graph of ĜΓ, we have that ĜΓ is weakly reversible by the first part of the proof.
Consider the set

Υ = {(x, x̂) ∈ N
n × N

m : x ∈ Γ, ‖x̂‖1 = 1}.

Every state in Υ is of the form (x, Sy) ∈ N
n+m, where x ∈ Γ and Sy is considered

as the vector in N
m with entry 1 in the position corresponding to the species Sy and

0 otherwise. Since Γ is an irreducible component of G and the sum of the fictitious
species is conserved, no state outside Υ is accessible from any state in Υ, according
to ĜΓ. Moreover, the master equation on Υ can be written as

(B.1)
∑
y∈CΓ

π̂(x− y′ + y, Sy)κy→y′
(x− y′ + y)!

(x− y′)!
�{x≥y′}

=
∑
y∈CΓ

π̂(x, Sy′)κy′→y
x!

(x− y′)!
�{x≥y′} ∀y′ ∈ C, x ∈ Γ.

If we choose π̂(x, x̂) = Mπ(x) for some positive constant M , then the master equa-
tion (B.1) is satisfied due to Definition 15. Therefore, if M is chosen as a suitable
normalizing constant, π̂(x, z) = Mπ(x) is a stationary distribution on Υ.

Consider the linear homomorphism ϕ, as defined in (3.3), for the reaction network
ĜΓ. Let | · | denote the cardinality of a set, and note that |ĈΓ| = |CΓ| = mΓ. For any
vector ey of the basis of RmΓ , we have ϕ(ey) = (y, Sy). Since the vectors (y, Sy) with

y ∈ CΓ are linear independent, ϕ is an isomorphism and the deficiency of ĜΓ is 0.
Since ĜΓ is a deficiency zero weakly reversible reaction network, it follows from

Theorem 6 that the mass-action system (ĜΓ, κ) is complex balanced. Therefore, by
Theorem 12, we have that π̂ has the form

π̂(x, x̂) = M
(c,ĉ)

Γ̂

cx

x!

ĉx̂

x̂!

for a positive complex balanced equilibrium (c, ĉ), on any irreducible component Γ̂
contained in Υ. Since π̂(x, x̂) = Mπ(x) does not depend on x̂, we have

π̂(x, x̂) = M c
Γ

cx

x!

for any (x, x̂) ∈ Υ.
Fix a complex y′ ∈ CΓ. Since GΓ is weakly reversible, there exists a reaction

y′ → y that is active on Γ. Fix x ∈ Γ such that x ≥ y′. Then for any y → y′ ∈ RΓ

we have x− y′ + y ≥ y. If we plug the formula for π̂(x, x̂) in (B.1) for our choice of x
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and y′, we obtain

∑
y∈CΓ

M c
Γ

cx−y′+y

(x− y′ + y)!
κy→y′

(x− y′ + y)!

(x− y′)!
=

∑
y∈CΓ

M c
Γ

cx

x!
κy′→y

x!

(x− y′)!
,

which leads to

∑
y∈CΓ

cy−y′
κy→y′ =

∑
y∈CΓ

κy′→y.

The proof is concluded by the fact that the above holds for any fixed y′ ∈ CΓ, which
means that c is a positive complex balanced equilibrium of (GΓ, κΓ).

B.5. Proof of Theorem 21. By Lemma A.2, GΓ is weakly reversible. Moreover,
for y → y′ ∈ RΓ, if x ≥ y, then x + y′ − y ≥ y′. This implies that for any directed
path in the reaction graph of G that starts with y → y′ ∈ RΓ, all the reactions in the
path belong to RΓ, by definition of RΓ. Since GΓ is weakly reversible, every directed
path in the reaction graph of G that starts with y → y′ ∈ RΓ is contained in a closed
directed path. This implies that RΓ ⊆ R∗ and proves the first part of the statement.

Now assume thatK is mass-action kinetics with rate constants κ. If the deficiency
of G is zero, then by Lemma 5 the deficiency of the terminal network is zero as well.
Moreover, G∗ is weakly reversible by definition and thus by Theorem 6 (G∗, κ∗) is
complex balanced for any choice of rate constants κ∗.

Let X(t) be the stochastic process associated with (G, κ). By the first part of
the statement, on Γ only terminal reactions take place and these involve a subset of
the species only. Without loss of generality, we can assume that X ∗ is constituted by
the first n∗ species of X . Therefore, Γ is of the form Γ∗ × {v} with Γ∗ ⊆ Rn∗

and
v ∈ R

n−n∗
. Moreover, we have that on Γ∗, the projectionX∗(t) = (X1(t), . . . , Xn∗(t))

is distributed as the process associated with (G∗, κ∗), for which Γ∗ is an irreducible
component. Let c be a positive complex balanced equilibrium for (G∗, κ∗). Hence,
by Theorem 12 or Corollary 19, the stationary distribution of the process X(t) =
(X∗(t), v) on Γ is of the form (4.6).

B.6. Proof of Theorem 22. For the first part, we prove that if an irreducible
component Γ is positive, then G is weakly reversible. This simply follows from
Lemma A.2: indeed, by the lemma, GΓ is weakly reversible and since Γ is positive,
GΓ = G.

To prove the second part, we have to show that a weakly reversible reaction
network is essential, and this is done in [22]. Moreover, a deficiency zero weakly
reversible mass-action system is complex balanced, and the proof is concluded by
Theorem 12 or Corollary 19.

Appendix C. Calculations for Examples 2 and 4. In Example 2, we claim
that the stationary distribution on the irreducible component Γθ = {x ∈ N

2 : x1+x2 =
θ} has the form

πθ(x1, x2) = Mθ
1

x1!x2!
for (x1, x2) ∈ Γθ.

To prove this, it is sufficient to show that πθ satisfies the master equation for every
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point (x1, x2) of Γθ. The master equation on (x1, x2) is given by

ρπθ(x1 + 1, x2 − 1)(θ − 1)(x1 + 1)�{x2≥1} + ρπθ(x1 − 2, x2 + 2)
(x2 + 2)!

x2!
�{x1≥2}

= ρπθ(x1, x2)

(
(θ − 1)x1�{x1≥1} +

(x2)!

(x2 − 2)!
�{x2≥2}

)
.

By plugging in the formula for πθ and after dividing by ρ and Mθ we obtain

1

x1!x2!
[x2(θ − 1) + x1(x1 − 1)] =

1

x1!x2!
[x1(θ − 1) + x2(x2 − 1)].

If we multiply by x1!x2! and substitute θ = x1 + x2, it follows that

x2(x1 + x2 − 1) + x1(x1 − 1) = x1(x1 + x2 − 1) + x2(x2 − 1),

that is,

x1x2 + x2
2 − x2 + x2

1 − x1 = x2
1 + x1x2 − x1 + x2

2 − x2,

which always holds true because the terms cancel each other.
In Example 4, we change the notation to Γθ = {x ∈ N

2 : x1 + x2 = θ + 1}. Then
we claim that the stationary distributions on the irreducible components Γθ1 and Γθ2

are πθ1 and πθ2 , respectively, where as before

πθ(x1, x2) = Mθ
1

x1!x2!
for (x1, x2) ∈ Γθ.

We prove that πθ1 is the stationary distribution on Γθ1 . The case with θ2 is analogous.
We prove the result by consider the master equation for πθ1 on a point (x1, x2) ∈ Γθ1 ,
which is as follows:

ρπθ1(x1 + 1, x2 − 1)θ1θ2(x1 + 1)�{x2≥1}

+ ρπθ1(x1 − 2, x2 + 2)(θ1 + θ2 − 1)
(x2 + 2)!

x2!
�{x1≥2}

+ ρπθ1(x1 + 2, x2 − 2)
(x1 + 2)!

(x1 − 1)!
�{x1≥1,x2≥2}

+ ρπθ1(x1 + 2, x2 − 2)
(x1 + 2)!(x2 − 2)!

x1!(x2 − 3)!
�{x1≥0,x2≥3}

= ρπθ1(x1, x2)θ1θ2x1�{x1≥1} + ρπθ1(x1, x2)(θ1 + θ2 − 1)
x2!

(x2 − 2)!
�{x2≥2}

+ ρπθ1(x1, x2)
x1!

(x1 − 3)!
�{x1≥3} + ρπθ1(x1, x2)

x1!x2!

(x1 − 2)!(x2 − 1)!
�{x1≥2,x2≥1}.

As we did for the previous calculations, we plug in the expression for πθ1 then divide
by Mθ1 , ρ and multiply by x1!x2!. We obtain

θ1θ2x2 + (θ1 + θ2 − 1)x1(x1 − 1) + x1x2(x2 − 1) + x2(x2 − 1)(x2 − 2)

= θ1θ2x1 + (θ1 + θ2 − 1)x2(x2 − 1) + x1(x1 − 1)(x1 − 2) + x1(x1 − 1)x2.

Finally, by substituting θ1 with x1 + x2 − 1 and by performing the calculations, we
obtain 0 = 0, which means that the above equation is satisfied.
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[9] P. Érdi and J. Tóth, Mathematical Models of Chemical Reactions: Theory and Applications
of Deterministic and Stochastic Models, Manchester University Press, Manchester, UK,
1989.

[10] M. Feinberg, Chemical reaction network structure and the stability of complex isothermal
reactors I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987),
pp. 2229–2268.

[11] A. Gupta and M. Khammash, Determining the long-term behavior of cell populations: A new
procedure for detecting ergodicity in large stochastic reaction networks, in Proceedings of
the 19th IFAC World Congress, 2014.

[12] K. L. Hey, H. Momiji, K. Featherstone, J. R. E. Davis, M. R. H. White, and D. A. Rand,
A stochastic transcriptional switch model for single cell imaging data, Biostat., to appear.

[13] F. Horn and R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal., 47 (1972),
pp. 81–116.

[14] P. J. Ingram, M. P.H. Stumpf, and J. Stark, Nonidentifiability of the source of intrinsic
noise in gene expression from single-burst data, PLoS Computational Biology, 4 (2008),
e1000192.

[15] J. R. Jackson, Networks of waiting lines, Oper. Res., 5 (1957), pp. 518–521.
[16] H.-W. Kang and T. G. Kurtz, Separation of time-scales and model reduction for stochastic

reaction networks, Ann. Appl. Probab., 23 (2013), pp. 529–583.
[17] F. P. Kelly, Reversibility and Stochastic Networks, John Wiley & Sons, New York, 1979.
[18] T. G. Kurtz, The relationship between stochastic and deterministic models for chemical reac-

tions, J. Chem. Phys., 57 (1972), pp. 2976–2978.
[19] T. G. Kurtz, Strong approximation theorems for density dependent Markov chains, Stochastic

Process. Appl., 6 (1978), pp. 223–240.
[20] J. Mairesse and H.-T. Nguyen, Deficiency zero Petri nets and product form, in Applications

and Theory of Petri Nets, Springer, New York, 2009, pp. 103–122.
[21] A. Marin, S. Balsamo, and P. G. Harrison, Analysis of stochastic Petri nets with signals,

Performance Evaluation, 69 (2012), pp. 551–572.
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