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Finite Time Distributions of Stochastically Modeled Chemical Systems with
Absolute Concentration Robustness∗

David F. Anderson† , Daniele Cappelletti‡ , and Thomas G. Kurtz†

Abstract. Recent research in both the experimental and mathematical communities has focused on biochemical
interaction systems that satisfy an “absolute concentration robustness” (ACR) property. The ACR
property was first discovered experimentally when, in a number of different systems, the concentra-
tions of key system components at equilibrium were observed to be robust to the total concentration
levels of the system. Follow-up mathematical work focused on deterministic models of biochemical
systems and demonstrated how chemical reaction network theory can be utilized to explain this ro-
bustness. Later mathematical work focused on the behavior of this same class of reaction networks,
though under the assumption that the dynamics were stochastic. Under the stochastic assumption,
it was proven that the system will undergo an extinction event with a probability of one so long as
the system is conservative, showing starkly different long-time behavior than in the deterministic
setting. Here we consider a general class of stochastic models that intersects with the class of ACR
systems studied previously. We consider a specific system scaling over compact time intervals and
prove that in a limit of this scaling the distribution of the abundances of the ACR species converges
to a certain product-form Poisson distribution whose mean is the ACR value of the determinis-
tic model. This result is in agreement with recent conjectures pertaining to the behavior of ACR
networks endowed with stochastic kinetics, and helps to resolve the conflicting theoretical results
pertaining to deterministic and stochastic models in this setting.

Key words. reaction networks, absolute concentration robustness, continuous time Markov chain, limiting be-
havior
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1. Introduction. Biochemical reaction networks are often quite complex and computa-
tionally intractable. It is therefore important to develop mathematical techniques that relate
simple graphical features of the reaction network, which are easy to check, to the quali-
tative dynamics of the underlying mathematical model. This approach dates back to at
least [13, 14, 16], where certain graphical characteristics of networks were shown to ensure
uniqueness and local asymptotic stability of the steady states for deterministically modeled
complex-balanced systems.
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1310 D. F. ANDERSON, D. CAPPELLETTI, AND T. G. KURTZ

In this context of relating graphical and dynamical features of models, Shinar and Feinberg
provided graphical conditions that imply certain species satisfy an absolute concentration
robustness (ACR) property for the associated deterministically modeled system [25]. A species
is said to possess ACR if for a fixed choice of system parameters its concentration is the same
at any positive equilibrium point of the deterministically modeled system. Such a feature has
been observed experimentally in several important biochemical reaction networks, including
signal transduction cascades and gene regulatory networks [1, 8, 10, 15, 24, 25]. The ACR
property provides useful information on the system dynamics since it indicates a predictable
fixed response regardless of changes in the environment. Follow-up research pertaining to
deterministically modeled systems with ACR species can be found in [19].

Stochastically modeled systems satisfying essentially the same graphical conditions as
those detailed in [25] were considered by Anderson, Enciso, and Johnston in [4]. There it
was shown that ACR systems in a particular family, if stochastically modeled, undergo an
extinction event with a probability of one, so long as the system is conservative (i.e. there
is a positive linear combination of the species that is invariant to occurrences of reactions).
Such a result can be considered an example of a discrepancy between the limiting behavior
of a deterministic system and the limiting behavior of the corresponding stochastic system,
with one modeling choice predicting a form of long-term stability and the other predicting
long-term instability. However, in [4] it is pointed out that the extinction event is typically a
rare event on reasonable timeframes and that useful information pertaining to the behavior of
stochastically modeled ACR systems could be had by better understanding the dynamics of
the system on compact time intervals or via the quasi-stationary distribution. It is conjectured
in [4] that the distribution of the ACR species will be approximately Poisson in either case.
Both a simple example pertaining to a model of protein interactions and a numerical analysis
of the two-component EnvZ/OmpR signaling system in Escherichia coli provide evidence in
favor of the conjecture [4].

In this paper we provide an asymptotic result for the stochastic models of a class of reac-
tion systems that overlaps with ACR reaction systems. In particular, we consider a multiscale
setting in which the abundances of a subset of the ACR species are of order O(1), while
the abundances of other species are of order O(N). We then scale the rate constants in a
particular way and let N go to infinity. Under this limit, we prove that on compact time
intervals the ACR species whose abundance is of order O(1) behave in the way conjectured
in [4]. Namely, the distribution of their abundances is well approximated by a product-form
Poisson distribution whose parameter is given by the ACR equilibrium value of the associ-
ated deterministically modeled system. Thus, the results presented here link the qualitative
behaviors of the deterministic and stochastic models. Furthermore, the result fully explains
the outcome of the numerical analysis of the EnvZ/OmpR signaling system performed in [4].

One key observation we utilize in our proofs, and the basis of our Assumption 3.3, is that
a certain subreaction network consisting of only the O(1) species is often weakly reversible
and of deficiency zero. This fact, together with the results of [3], allows us to characterize the
marginal distribution of the ACR species as approximately Poisson. We then show that the
approximation becomes precise in the limit as N →∞.

We end this section with two instructive examples that demonstrate our main results.
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FINITE TIME DISTRIBUTIONS OF ACR SPECIES 1311

Example 1.1. Consider the deterministically modeled system with reaction network

(1) A+B
κ1−−→ 2B, B

κ2−−→ A,

and mass action kinetics (see (7) and (8)). The species A exhibits ACR since at each positive
equilibrium the concentration of A is κ2/κ1, regardless of the concentration of the species B
[4, 25].

Now consider a sequence {XN}N∈N of continuous time Markov chain models for (1), in
which the counts of species A and B at time t are given by XN

1 (t) and XN
2 (t), respectively.

We suppose the initial conditions are such that XN
1 (0) is a bounded sequence and N−1XN

2 (0)
converges to a positive real number, as N →∞. This choice of initial conditions corresponds
to an experiment where the abundance of the molecules of B is increased, while the magnitude
of the count of A is maintened. Our goal will be to understand the limiting behavior of XN

1

for N going to infinity.
For the sake of intuition, note that a subreaction network for A is

A
κ1X2

N−−−−⇀↽−−−−
κ2X2

N
0,

which views XN
2 as simply modulating the speed of the two reactions. Since it is well known

that in the case of the above reaction network with XN
2 fixed, XN

1 will have a stationary
distribution that is Poisson with parameter κ2/κ1 [3]; it is intuitively clear that for finite t,
XN

1 (t) should be approximately Poisson if XN
2 is large and fluctuates only a little.

The above argument will be made precise. Let J be a random variable having a Poisson
distribution with parameter κ2/κ1. Corollary 4.4 will allow us to conclude that for any function
g : N → R with at most polynomial growth rate, the distribution of g(XN

1 (t)) converges on
average to the distribution of g(J) for N going to infinity. Specifically, for any real positive
T , we have

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
g
(
XN

1 (s)
)− E[g(J)]

)
ds

∣∣∣∣ −−−−→N→∞
0

in probability. Further, if g is bounded, then for any δ > 0

(2) sup
t∈[δ,T ]

∣∣∣E[g (XN
1 (t)
) ]− E[g(J)]

∣∣∣ −−−−→
N→∞

0.

An immediate consequence of (2) is that XN
1 (t) converges in distribution to J , which has a

Poisson distribution with mean given by the ACR value κ2/κ1. This consequence follows from
choosing as g an indicator function. See Example 4.5 for more details.

Example 1.2. Our results are also applicable to models that do not utilize mass action
kinetics. Consider the stochastic reaction system

A+ 2B −→ 3B, B
κ1−−⇀↽−−
κ2

C
κ3−→ A,(3)
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1312 D. F. ANDERSON, D. CAPPELLETTI, AND T. G. KURTZ

where the rate of the reaction A+ 2B → 3B is given by

(4) λ(x) = κ0
x1x2(x2 − 1)

1 + x2
,

and where κ0 ∈ R>0. The rate (4) corresponds to an inhibitory effect of the molecules of B
on the production of B itself. If we consider a sequence of such models in which the counts
of B and C go to infinity, then the limiting behavior of the model (3)–(4) coincides with the
limiting behavior of the process associated with the reaction network

A+B
κ0−→ 2B, B

κ1−−⇀↽−−
κ2

C
κ3−→ A,(5)

endowed with mass-action kinetics. Due to [25], the reaction system (5) exhibits ACR in the
species A, when deterministically modeled. Let q ∈ R>0 be the ACR value for species A. Due
to the connection between the models (3)–(4) and (5), we anticipate the value q will play a
role in the limiting behavior of species A of (3)–(4).

We therefore denote by {XN}N∈N a sequence of stochastic processes modeled according
to (3)–(4), with XN

1 (t), XN
2 (t), and XN

3 (t) being the counts at time t for the species A, B,
and C, respectively. We suppose that XN

1 (0) is a bounded sequence and N−1(XN
2 (0),XN

3 (0))
converges to a point in R

2
>0, as N → ∞. Our aim is to understand the limiting behavior of

XN
1 as N goes to infinity.
Let J be a Poisson distribution with parameter q, the ACR value for species A when (5)

is modeled deterministically. By Corollary 4.6, there exists a function g∗ : R>0 → R>0 with
g∗(s)→ E[g(J)], as s→∞, such that for any positive real T

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
g
(
XN

1 (s)
)− g∗(s))ds∣∣∣∣ −−−−→N→∞

0

in probability. Moreover, and as in Example 1.1, we have that XN
1 (t) converges in distribution

to a Poisson random variable whose mean is related to the ACR value. See Example 4.7 for
more details.

2. Necessary background and notation. We denote the natural numbers including 0 by
N, that is N = {0, 1, 2, . . . }. For any real vector v, we denote its ith entry by vi. We will write
v > 0 if every entry of v is strictly positive. We denote by [v] the vector of the floor functions
of the entries of v; that is, [v]i = �vi�. For any real vector α of the same size as v, and for
N > 0, we denote by Nαv the vector satisfying

(Nαv)i = Nαivi.

We will denote by ‖v‖ the euclidean norm of the vector, by ‖v‖1 its L1-norm, and by ‖v‖∞
its L∞-norm, that is

‖v‖ =
√∑

i

v2i , ‖v‖1 =
∑
i

|vi|, and ‖v‖∞ = max
i
|vi|.
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FINITE TIME DISTRIBUTIONS OF ACR SPECIES 1313

For two vectors v and w of the same dimension, we write v < w, v ≤ w, v > w, or v ≥ w if
the inequality holds componentwise. Furthermore, for any set A we will indicate by |A| its
cardinality and by �A its indicator function. Finally, for a, b ∈ R, we denote a∧ b = min{a, b}
and a ∨ b = max{a, b}.

We say that a function g : Rn → R has at most polynomial growth rate if there exists a
multivariate polynomial p : Rn → R such that

lim sup
‖x‖→∞

g(x)

p(x)
= 0.

Here we give some basic definitions from chemical reaction network theory; see, for exam-
ple, [11, 13] for a more detailed introduction.

A reaction network is a triple G = (X , C,R). X is a finite nonempty ordered set of
symbols, referred to as species, and C is a finite nonempty ordered set of linear combinations
of species with nonnegative integer coefficients, referred to as complexes. Any species Si ∈ X
can be identified with the vector ei ∈ R

|X |, whose ith entry is 1 and whose other entries
are zero. Therefore, any complex y ∈ C will be identified with a vector in R

|X | that is a
linear combination of the vectors ei. Finally, R is a nonempty ordered subset of C × C, whose
elements are called reactions, such that for any y ∈ C, (y, y) /∈ R. Following the common
notation, we will denote any element (yr, y

′
r) ∈ R by yr → y′r ∈ R, in which case we then

call yr the source complex and y′r the product complex of that reaction. It is possible that a
complex y ∈ C is the source (product) complex of different reactions, and that it is both the
source complex of one reaction and the product complex of another reaction. It is commonly
required that every species S ∈ X appears in at least one complex, and that every complex
y ∈ C appears as an element in at least one reaction. It is possible to associate a directed
graph with G, where the set of nodes is the set of complexes C and the arrows are given by
the reactions yr → y′r ∈ R. If the graph is such that for any directed path from y to y′ there
exists a directed path from y′ to y, then G is weakly reversible. For the rth reaction, yr → y′r,
we denote by ξr = y′r − yr the corresponding reaction vector. We write Si ∈ ξr (Si ∈ yr) if
ξri �= 0 (yri �= 0). For any species S ∈ X , let
(6) RS = {yr → y′r ∈ R : S ∈ ξr},
the set of reactions that change the amount of species S.

With each reaction yr → y′r ∈ R, we can associate a function λr : R
|X |
≥0 → R≥0. The

set consisting of these functions K = {λr}yr→y′r∈R is referred to as the kinetics, and the
functions λr are called rate functions, or intensity functions, or propensity functions. The pair
S = (G,K) is a reaction system, which can be stochastically or deterministically modeled, as
explained below.

In a stochastically modeled reaction system S = (G,K), the counts of molecules of the
different chemical species are considered, and the counts at time t form a vector X(t) ∈ N

|X |.
The evolution in time of the vector X(t) follows a continuous time Markov chain, where in
each state x ∈ N

|X | the obtainable states are {x+ξr} and transition rates are given by {λr(x)},
with yr → y′r varying in R. If at time t∗ the reaction yr → y′r occurs, then we have

X(t∗) = X(t∗−) + ξr,
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1314 D. F. ANDERSON, D. CAPPELLETTI, AND T. G. KURTZ

where X(t∗−) denotes the previous state. To stick with the physical meaning of the reactions,
we require that the kinetics is such that for any reaction yr → y′r ∈ R we have λyr→y′r(x) > 0
only if x ≥ yr. This condition prevents the number of molecules present from becoming
negative. Moreover, in this setting, we are only interested in the values of λyr→y′r(x), when

x ∈ N
|X |, therefore the domain of the rate function can be restricted to N

|X |. Following the
terminology utilized in [5, 6, 12, 20], we can write

X(t) = X(0) +
∑

yr→y′r∈R
Yr

(∫ t

0
λr(X(s))ds

)
ξr,

where the Yr are independently and identically distributed (i.i.d.) unit rate Poisson processes.
For any two states x, z ∈ N

|X |, we say that a state z is obtainable from x if there exists a
sequence of reactions (yri → y′ri)

m
i=1 such that

z = x+
m∑
i=1

ξri with λyri→y′ri

⎛⎝x+
i−1∑
j=1

ξrj

⎞⎠ > 0

for all i ∈ {1, . . . ,m}. We further say that (G,K) is irreducible if for any two states x, z ∈ N
|X |,

z is obtainable from x and x is obtainable from z. See [22] for more on irreducible reaction
networks and for sufficient conditions implying irreducibility. A popular choice of kinetics for
stochastic reaction systems is given by stochastic mass action kinetics, defined by

λr(x) = κr
x!

(x− yr)!�{x≥yr},

where κr ∈ R>0 are called rate constants and for any vector v ∈ N
m, v! is defined by v! =∏m

i=1 vi!, with the convention 0! = 1. This kinetics is related to the assumption that the
system is well stirred, so the propensity of each reaction is proportional to the number of
possible sets of molecules that can give rise to an occurrence of the reaction. A stochastic
reaction system endowed with stochastic mass action kinetics is referred to as a stochastic
mass action system, and will be denoted S = (G, κ). Note that the property of irreducibility
of a mass action system does not depend on the particular choice of rate constants: indeed,
in mass action systems a rate λr(x) is strictly positive if and only if x ≥ yr.

In a deterministically modeled reaction system S = (G,K), the concentrations of the
different chemical species are considered, and the concentrations at time t form a vector

z(t) ∈ R
|X |
≥0 . The evolution in time of the vector z(t) obeys the ordinary differential equation

(ODE)

(7) z′(t) =
∑

yr→y′r∈R
ξrλr(z(t)).

As in the stochastic case, we put a restriction on the kinetics and require that for any yr →
y′r ∈ R we have λyr→y′r(x) > 0 only if xi > 0 whenever Si ∈ yr. This condition means that
a reaction cannot take place if some necessary chemical species is missing, and it guarantees
that the vector z(t) will remain nonnegative. Deterministic mass action kinetics is given by

(8) λr(x) = κrx
yr ,
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FINITE TIME DISTRIBUTIONS OF ACR SPECIES 1315

where κr ∈ R>0 are called rate constants and for any two vectors v,w ∈ N
m, vw is defined by

vw =
∏m
i=1 v

wi
i with the convention 00 = 1. Thus, the rate of each reaction is proportional to

the products of the concentrations of the species appearing in the source complex, according
to multiplicity. As in the stochastic case, this kinetics is chosen for well-stirred systems. A
deterministic reaction system with deterministic mass action kinetics is termed a deterministic
mass action system, and will be denoted by S = (G, κ).

A fruitful notion in chemical reaction network theory, and one that will play a role in the
present work, is that of a complex balanced equilibrium, which is a positive equilibrium point
c of a deterministic mass action system satisfying∑

yr→y′r∈R
yr=y

κrc
yr =

∑
yr→y′r∈R
y′r=y

κrc
yr for each y ∈ C,

where the sum on the left, respectively, right, is over those reactions for which y is the source,
respectively, product, complex. We say that a deterministic mass action system is complex
balanced if there exists at least one positive equilibrium point, and if every positive equilibrium
point is a complex balanced equilibrium.

We extend the definition of complex balanced to the stochastic setting by saying that
a stochastic mass action system (G, κ) is complex balanced if the deterministic mass action
system (G, κ) is complex balanced. We may therefore refer to complex balanced mass action
systems without specifying whether they are stochastically or deterministically modeled. In
the same fashion, whenever we refer to an equilibrium point of a reaction system, we implicitly
assume it is an equilibrium point for the deterministically modeled system. It is interesting
to point out that complex balanced stochastic mass action systems can be fully characterized
by properties of their stationary distributions [9].

It is worth noting that under the assumptions detailed above for both deterministic and
stochastic reaction systems, the evolution of the amounts of species present is restricted to

X(t) ∈ (X(0)+span{ξr}yr→y′r∈R)∩N|X | and z(t) ∈ (z(0)+span{ξr}yr→y′r∈R)∩R
|X |
≥0 , regardless

of the choice of kinetics K. The sets (v + span{ξr}yr→y′r∈R) with v ∈ R
|X | are called the

stoichiometric compatibility classes of G, and the sets(
v + span{ξr}yr→y′r∈R

) ∩ R
|X |
≥0 and

(
v + span{ξr}yr→y′r∈R

) ∩ R
|X |
>0

are called the nonnegative stoichiometric compatibility classes and positive stoichiometric com-
patibility classes of G. Any vector T ∈ R

|X | that is orthogonal to the stoichiometric compati-
bility classes of G is a conservation law for G, and if there exists a positive conservation law
for G, then G is called conservative.

Let s = dim
(
span{ξr}yr→y′r∈R

)
. We define the deficiency of G as δ = |C| − 	 − s, where

	 is the number of connected components of the directed graph associated with G. We end
this section by stating some classical results that can be found in [13, 14, 16], which connect
graphical and dynamical features of the deterministic mass action systems and will be of use
to us.

Theorem 2.1. If a deterministic mass action system S = (G, κ) possesses a complex bal-
anced equilibrium, then S is complex balanced and G is weakly reversible. Moreover, there
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exists exactly one complex balanced equilibrium in every positive stoichiometric compatibility
class, and it is locally asymptotically stable relative to its positive stoichiometric compatibility
class.

Theorem 2.2. If G is weakly reversible and has deficiency 0, then for any choice of rate
constants the deterministic mass action system S = (G, κ) is complex balanced.

3. The multiscale setting, assumptions, and main results. We begin by motivating the
scaling presented below. Our goal is to study the behavior of the distribution of ACR species
in the limit as total abundances go to infinity. As the equilibrium value of the ACR species
is independent of total abundances, we will assume a partition in the set of species: some of
them will be allowed to take arbitrarily large abundances in their initial conditions, while the
initial conditions for the others will be bounded.

Formally, denote by KN a sequence of stochastic kinetics for G, with N ∈ N>0, and let
XN (t) be the sequence of stochastic processes associated with the system (G,KN ). Assume
that there exists a vector α ∈ {0, 1}|X | such that

lim
N→∞

N−αXN (0) = X0 > 0.(9)

The condition (9) implies a partition of the set of species X into two sets, the discrete species
(denoted by Xd) and the continuous species (denoted by Xc):

• Si ∈ Xd if αi = 0, in which case XN
i (0) = O(1);

• Si ∈ Xc if αi = 1, in which case XN
i (0) = O(N).

Let
πd : R

|X | → R
|Xd| and πc : R

|X | → R
|Xc|

be the projections onto the discrete and continuous species, respectively, and define

XN
disc(t) = πd(X

N (t)) and XN
cont(t) = πc(X

N (t)).

For convenience, we will sometimes consider the rate functions as functions from N
|Xd|×N

|Xc|,
and write λr(v,w), where v and w denote the amounts of the discrete and continuous species,
respectively. For any reaction yr → y′r ∈ R, define

βr = max
Si∈yr

αi.

Note that βr ∈ {0, 1}. We assume that

(10) lim
N→∞

N−βrλNr (v, [Nw]) = λr(v,w)

uniformly on the compact sets of N|Xd|×R
|Xc|
≥0 , where the functions λr are nonzero and locally

Lipschitz, with domain N
|Xd| × R

|Xc|
≥0 . We denote by K the kinetics given by the limiting

functions λr. The above setting is a particular case of the one studied in [7, 17, 23].

Remark 3.1. If the kinetics KN are stochastic mass action kinetics for all N ∈ N>0, then
by (10) the sequence

N−βrλNr (v, [Nw]) = N−βrκNr
v!

(v − πd(yr))!
[Nw]!

([Nw]− πc(yr))!
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converges to a positive number for some (v,w) ∈ N
|Xd| × R

|Xc|
≥0 . Since the sequence

N−‖πc(yr)‖1 [Nw]!

([Nw] − πc(yr))!
converges to wyr , for any r we have

(11) lim
N→∞

N−βr+‖πc(yr)‖1κNr = κr

for some positive constant κr.

3.1. Assumptions. While the assumptions we detail in this section are technical in na-
ture, they essentially ensure three very natural conditions. Assumption 3.2 ensures that each
discrete species is produced and consumed at a high rate. Assumptions 3.4 and 3.6 ensure
that the processes do not explode in finite time. Finally, Assumption 3.3 requires that the
reduced system obtained by the deletion of the high abundance species is complex balanced.

Assumption 3.2. For any S ∈ Xd, there exists at least one reaction yr → y′r ∈ RS such
that βr = 1 (i.e., the species S is fast consumed or produced; recall RS defined in (6)).

In order to motivate and explain the above assumption we consider sequences of processes
satisfying the network structures of Examples 1.1 and 1.2.

Consider first the network of Example 1.1 with rate constants κ1 and κ2, and suppose
that the total initial abundance of the system (i.e., the sum of the abundances of species
A and B) is large, and that the system is near the known ACR equilibrium, in which case
X1(0) ≈ q = κ2/κ1. Specifically, we suppose that XN

1 (0) + XN
2 (0) = N for some large

N ∈ N and that XN
1 (0) = O(1) in N , in which case XN

2 (0) = N − XN
1 (0) = O(N). We

will be interested in letting N → ∞. In this setting, A is a discrete species, α1 = 0, and
B is a continuous one, α2 = 1. Moreover, for each reaction yr → y′r we have βr = 1, and
Assumption 3.2 is fulfilled. Furthermore, the limiting rate functions defined in (10) are given
by

λA+B→2B(x) = lim
N→∞

N−1λNA+B→2B([N
αx]) = lim

N→∞
N−1κ1x1�Nx2� = κ1x1x2,

λB→A(x) = lim
N→∞

N−1λNB→A([N
αx]) = lim

N→∞
N−1κ2�Nx2� = κ2x2.

Turning to Example 1.2 we suppose the conserved quantity satisfies

XN
1 (0) +XN

2 (0) +XN
3 (0) = N,

where N is large, and that XN (0) is not far from the equilibrium qN , which satisfies

qN1 =
κ0κ1κ3
κ2 + κ3

· q
N
2 + 1

qN2 − 1
, qN3 =

κ1
κ2 + κ3

qN2 , and qN1 + qN2 + qN3 = N.

Therefore, for N large, XN
1 (0) will be near the value q = κ0κ1κ3

κ2+κ3
, while XN

2 (0) and XN
3 (0)

go to infinity as N → ∞. In this context, A is a discrete species, α1 = 0, and B and C are
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continuous species, α2 = α3 = 1. Furthermore, βr = 1 for each r, and Assumption 3.2 holds.
In this case, the limiting rate functions defined in (10) are given by

λA+2B→3B(x) = lim
N→∞

N−1κ0
x1Nx2(Nx2 − 1)

1 +Nx2
= κ0x1x2

and, similarly,

λB→C(x) = κ1x2, λC→B(x) = κ2x3, and λC→A(x) = κ3x3.

Returning to the general setting, let R̃ be the set of reactions whose source complex
contains a continuous species, i.e.,

(12) R̃ = {y → y′ ∈ R : πc(y) �= 0}.
Due to (10), the reactions in R̃ have much higher rates than the other reactions, when N is
large. Therefore, they give the major contribution to the dynamics of the stochastic system,
and we focus on them.

We define two reduced systems, one being a projection onto the discrete species space and
the other being the projection onto the continuous species space of the dynamics induced by
the reactions in R̃. We begin by considering the projection onto the discrete species. Define

πd(C) = {πd(y) : y ∈ C},
R̃d = {πd(y)→ πd(y

′) : y → y′ ∈ R̃ and πd(y) �= πd(y
′)},

and let Gd = (Xd, πd(C), R̃d) be the reaction network associated with the discrete species. For
example, for both Examples 1.1 and 1.2, the network associated with the discrete species is

A −−⇀↽−− 0,

which has a Poisson stationary distribution. Let zk → z′k ∈ R̃d. For any vector w ∈ R
|Xc|
≥0 we

define the function λwd,k : R
|Xd| → R≥0 via

λwd,k(v) =
∑

yr→y′r∈ ˜Rd,k

λr(v,w),(13)

where R̃d,k = {yr → y′r ∈ R̃ : πd(yr) = zk and πd(y
′
r) = z′k}. Let Kwd be the kinetics defined

by (13), and define S w
d = (Gd,Kwd ). Note that the functions λr in (13) are the limit rate

functions in (10). The sum in (13) is needed, as the cardinality of R̃d,k is not necessarily 1.
Consider for example the following modification of Example 1.1:

A+B
κ1−−→ 2B

κ3−−⇀↽−−
κ4

A+ 2B, B
κ2−−→ A.

The reactions 2B → A + 2B and B → A collapse to the same reaction in R̃d, and the same
happens to A + 2B → 2B and A + B → 2B. In this case, if w denotes the concentration of
the species B, the system S w

d is given by

A
κ1w+κ4w2−−−−−−−⇀↽−−−−−−−
κ2w+κ3w2

0.

We make a key structural assumption on our models.
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Assumption 3.3. For any yr → y′r ∈ R̃,

λr(v,w) = κr(w)
v!

(v − πd(yr))!
for some functions κr such that κr(w) > 0 whenever w > 0. It follows that for any w > 0 the
system S w

d is endowed with stochastic mass action kinetics. Further, we assume that for any
w > 0 the system is complex balanced. We also require that Gd endowed with mass action
kinetics is irreducible.

For the systems in Examples 1.1 and 1.2, S w
d is given, respectively, by the stochastic mass

action systems

A
κ1w−−−⇀↽−−−
κ2w

0 and A
κ0w1−−−⇀↽−−−
κ3w2

0,(14)

where in the first system w represents the amount of species B and in the second system w1

and w2 represent the amounts of species B and C, respectively. In both cases, Assumption 3.3
holds, due to Theorem 2.2.

Thanks to Assumption 3.3 and Theorem 2.1, we know that for any positive w there is pre-
cisely one complex balanced equilibrium of the system S w

d , when deterministically modeled,
which we denote by qwd . For example, for the first system in (14) associated with Example 1.1
we have qwd = κ2/κ1, whereas for the second system in (14) associated with Example 1.2 we
have qwd = κ3w2/κ0w1.

Assumption 3.3 is the last structural assumption we require for our main results. Now we
impose some conditions ensuring that the systems are “well behaved.” Specifically, we want
that the magnitude of the counts of each species is maintained constant in a compact interval
of time. In particular, we want to rule out the possibility of a blowup or of a zeroing of the
concentrations of the continuous species, and we want the counts of the discrete species to be
bounded, in some sense.

We start by considering the projection onto the continuous species. Let

πc(C) = {πc(y) : y ∈ C},
R̃c = {πc(y)→ πc(y

′) : y → y′ ∈ R̃ and πc(y) �= πc(y
′)},

and define Gc = (Xc, πc(C), R̃c). We now define the kinetics for the network Gc. For any
yr → y′r ∈ R̃, define

(15) λ̃r(v,w) = κr(w)v
πd(yr),

where the κr(w) are as in Assumption 3.3. Note we are assuming that the intensities λ̃r(v,w)
take the form of deterministic mass action kinetics and not stochastic mass action. For any
zk → z′k ∈ R̃c, we then define the function λc,k : R

|Xd| → R≥0 via

(16) λc,k(w) =
∑

yr→y′r∈ ˜Rc,k

�{w>0}λ̃r(qwd , w),
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1320 D. F. ANDERSON, D. CAPPELLETTI, AND T. G. KURTZ

where R̃c,k = {yr → y′r ∈ R̃ : πc(yr) = zk and πc(y
′
r) = z′k}. Let Kc denote the kinetics

defined by the above rate functions, and define Sc = (Gc,Kc). Finally, fix a finite time T > 0

and a point X0 ∈ R
|X |
>0 .

Assumption 3.4. Assume that the deterministic solution z(t) of the system Sc, with initial
condition πc(X0), exists for any t ∈ [0, T ]. Moreover, assume that for all t ∈ [0, T ] we have
z(t) > 0.

Remark 3.5. A slightly more general scenario than that given by Assumption 3.4 could
be considered. Specifically, we could allow z(t) to be equal to zero for some t ∈ [0, T ]. In
fact, for our purposes it is enough that (i) the deterministic solution z(t) exists and (ii) that
the reaction rates λr are of the form described in Assumption 3.3 and (iii) S w

d is complex
balanced for any w in a neighborhood of {z(t)}t∈[0,T ] (relative to the nonnegative orthant).
For Corollary 3.10 to hold, we will further need to assume that for w varying in such a
neighborhood, the quantities κr(w) introduced in Assumption 3.3 are bounded from below by
a positive constant.

Consider Example 1.1. In this case, for any w ∈ R>0 we have qwd = κ2/κ1, and the system
Sc is given by

(17) 0
κ2←−− B κ2−−→ 2B.

Hence, in this case the deterministic solution z(t) is constantly equal to πc(X0).
Consider now Example 1.2. Here, for any w ∈ R

2
>0, q

w
d is given by κ3w2/κ0w1. Therefore,

the system Sc is

2B −→ 3B, B
κ1−−⇀↽−−
κ2

C
κ3−→ 0

with λ2B→3B(w) = κ3w2. When deterministically modeled, the dynamics of the system is
equivalent to that of the deterministic mass action system

(18) B
κ1−−−−⇀↽−−−−

κ2+κ3
C

and it can be easily shown that Assumption 3.4 holds, since πc(X0) > 0.

Assumption 3.6. There exists a locally bounded function ψ : R
|Xd|
≥0 → R≥1 satisfying

(i) lim‖v‖→∞ ψ(v) =∞,

(ii) supN∈N>0
supt∈[0,T ]E[ψ(XN

disc(s))] <∞,
such that for any reaction yr → y′r ∈ R and any compact set Γ ⊂ R

|Xc|
≥0

(iii) supw∈Γ supv∈R|Xd|
>0

λr(v,w)
ψ(v) <∞.

Remark 3.7. For any reaction yr → y′r ∈ R and any N ∈ N assume that λr has at most
polynomial growth rate in v. Let p : R|Xd| → R be a polynomial satisfying

max
yr→y′r∈R

lim sup
‖v‖→∞

λr(v,w)

p(v)
= 0 for any w ∈ R

|Xc|
≥0 ,D

ow
nl

oa
de

d 
09

/2
5/

19
 to

 1
29

.1
32

.2
29

.3
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINITE TIME DISTRIBUTIONS OF ACR SPECIES 1321

and let d be the degree of p. Then, a candidate for ψ is

ψ(v) = 1 +
∑
Si∈Xd

vdi .

With this choice, ψ automatically satisfies (i) and (iii).

We now state and prove the theorem which provides the backbone for our results in the
setting of ACR.

Theorem 3.8. If Assumptions 3.2 to 3.4 and 3.6 hold, then

sup
t∈[0,T ]

∣∣N−1XN
cont(t)− z(t)

∣∣ −−−−→
N→∞

0

in probability, where z is defined as in Assumption 3.4.
Moreover, if Pois(q) denotes a product-form Poisson distribution with parameter q, then

for any continuous function g : R
|Xd|
≥0 → R satisfying

(19) lim sup
‖v‖→∞

|g(v)|
ψ(v)

= 0

we have

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
g
(
XN

disc(s)
)− E[g(Jz(s))]

)
ds

∣∣∣∣ −−−−→N→∞
0

in probability and for each δ ∈ (0, T )

(20) sup
t∈[δ,T ]

∣∣∣E[g(XN
disc(t))] − E[g(Jz(t))]

∣∣∣ −−−−→
N→∞

0,

where Jz(s) ∼ Pois(q
z(s)
d ).

Remark 3.9. If Assumption 3.3 is not satisfied, but we know that for any w ∈ R
|Xc|
>0 the

stochastic system S w
d possesses a unique stationary distribution μw with

Eμw [λr(v,w)] =
∑
v∈NXd

λr(v,w)μ
w(v) <∞ for every yr → y′r ∈ R,

then Theorem 3.8 still holds, provided that every occurrence of λr(q
w
d , w) is replaced by

Eμw [λr(v,w)]. The proof of Theorem 3.8, with small changes, also covers this generalization.
In regard to this broader setting, see also the results in [17, 23].

Proof. For the sake of simplicity, throughout the proof we will write t instead of t ∧ T ,
but it is always implicitly assumed that t ∈ [0, T ].

We follow the arguments of [17, 23], which rely on the techniques developed in [21]. We
will first prove the theorem under the assumption that

(21) sup
N
P

(
sup
t∈[0,T ]

N−1‖XN
cont(t)‖∞ > M

)
= 0
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for a certain constant M satisfying

sup
t∈[0,T ]

‖z(t)‖∞ < M.

The above assumption holds when a positive linear combination of the species is conserved, or
if we study the process up to the time when the concentration of a continuous species exceeds
a given threshold. We will then drop the assumption (21).

Define the occupation measures ΓN on R
|Xd| × [0, T ] by

ΓN (D × [a, b]) =

∫ b

a
�D(X

N
disc(s))ds.

Note that

(22) dΓN (v, s) = dγNs (v)ds,

where γNs = δXN
disc(s)

, with δx denoting the usual Dirac measure on R
|Xd|. By part (ii) in

Assumption 3.6, we have that for any ε > 0 there exists a constant Mε > 0 such that

sup
N∈N>0

sup
s∈[0,T ]

P
(
ψ(XN

disc(s)) < Mε

)
> 1− ε.

It follows that

E
[
ΓN (ψ−1([0,Mε])× [0, T ])

] ≥ (1− ε)T.
By part (i) in Assumption 3.6, we have that ψ−1([0,Mε]) is compact, and [21, Lemma 1.3] im-
plies that the sequence of randommeasures ΓN is relatively compact (see also [18, Lemma 2.9]).
Let Γ be a weak limit point.

Consider the generator LN for the process N−αXN (t), defined by

LNf(x) =
∑

yr→y′r∈R
λNr (N

αx)
(
f
(
x+N−α(y′ − y))− f(x)) for Nαx ∈ N

|X |.

From the generator LN we can obtain two generators, one related to the limiting behavior of
the concentrations of the continuous species (whose changes take place at the time scale t)
and the other one related to the discrete species (whose changes take place at the time scale
N−1t). For any function h ∈ C2

c (R
|Xc|) and x ∈ N

|Xd| × R
|Xc|, define

Lch(x)

= lim
N→∞

LN (h ◦ πc)(N−α[Nαx])

=
∑

yr→y′r∈R
lim
N→∞

λNr ([N
αx])
(
h
(
πc(N

−α[Nαx]) +N−1πc(y
′ − y)

)
− h
(
πc(N

−α[Nαx])
))

=
∑

yr→y′r∈ ˜R
λr(x)πc(y

′ − y) · ∇h(πc(x)),
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where we made use of Assumption 3.2 to compute the limit, and · denotes the scalar product.
Note that Lch ∈ C1

c (R
|X |) and that LN (h ◦ πc)(N−α[Nαx]) converges uniformly to Lch(x) on

x (which follows from the fact that h has compact support). Lc can be interpreted as the
generator of the limiting behavior of the concentrations of the continuous species.

On the other hand, for any function g ∈ Cc(N|Xd|) and x ∈ N
|Xd| × R

|Xc|, define

Ldg(x) = lim
N→∞

N−1LN (g ◦ πd)(N−α[Nαx])

=
∑

yr→y′r∈R
lim
N→∞

N−1λNr ([N
αx])
(
g
(
πd(x) + πd(y

′ − y)
)
− g
(
πd(x)

))
=

∑
yr→y′r∈ ˜R

λr(x)
(
g
(
πd(x) + πd(y

′ − y)
)
− g
(
πd(x)

))
.

The convergence is uniform in x. Ld can be interpreted as the generator of the limiting

behavior of the discrete species on the timescale N−1t. For any w ∈ R
|Xc|
≥0 we can define the

operator Lwd by

Lwd g(v) = Ldg(v,w) ∀v ∈ N
|Xd|,

which corresponds to the generator of the system S w
d .

For any h ∈ C2
c (R

|Xc|), the process

(23) MN
h (t) = h(N−1XN

cont(t)) − h(N−1XN
cont(0)) −

∫ t

0
LN (h ◦ πc)(N−αXN (s))ds

is a martingale. Let

δNh (t) =

∫ t

0

(
Lch− LN (h ◦ πc)

)
(N−αXN (s))ds.

By the uniform convergence of LN (h ◦ πc)(N−α[Nαx]) to Lch(x) with respect to x, we have
that

(24) lim
N→∞

E

[
sup
t∈[0,T ]

|δNh (t)|
]
= 0.

Moreover, (ii) and (iii) in Assumption 3.6, together with (21), imply that

(25) sup
N
E

[∫ T

0
|Lch(N−αXN (s))|ds

]
<∞.

Since (23) is a martingale, tightness of the processes XN
cont stopped at T follows from (21),

(24), and (25), and by [12, Theorems 3.9.1 and 3.9.4].1

1To be specific, the processes to which we apply [12, Theorem 3.9.4] are Zn(t) = Lch(N
−αXN (t)) and

Yn(t) = MN
h (t) +

∫ t

0
Zn(s)ds, where Zn, Yn is the notation utilized in [12]. This notation is now dropped

throughout the remainder of this paper.
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1324 D. F. ANDERSON, D. CAPPELLETTI, AND T. G. KURTZ

Let (W,Γ) be a weak limit of (XN
cont(· ∧ T ),ΓN ). By the same arguments as in the proof

of [21, Theorem 2.1], we have that

Mh(t) = h(W (t)) − h(W (0)) −
∫
R
|Xd|×[0,t]

Lch(v,W (s))dΓ(v, s)

is a martingale. On the other hand, for any g ∈ C2
c (R

|Xd|), the process

M̂N
g (t) = N−1

[
g(XN

disc(t))− g(XN
disc(0)) −

∫ t

0
LN (g ◦ πd)(N−αXN (s))ds

]
is also a martingale. Since the function g is bounded and by using uniform convergence of
N−1LN (g ◦ πd) to Ldg, we have that a weak limit point for M̂N

g is given by

M̂g(t) = −
∫
R
|Xd|×[0,t]

Ldg(v,W (s))dΓ(v, s),

which is therefore a martingale. By (22) we have

(26) dΓ(v, s) = dγs(v)ds

for a family of measures γs. Therefore, M̂g(t) is continuous and for any t1 < t2∫
R
|Xd|×[t1,t2]

|Ldg(v,W (s))| dΓ(v, s) ≤ (t2 − t1) sup
x∈RX

|Ldg(x)| ,

which implies that M̂g(t) has finite variation paths. This in turn implies that M̂g(t) is con-

stantly equal to M̂g(0) = 0 for any t ∈ [0, T ] with probability one. Therefore, almost surely,
for almost every s ∈ [0, T ] ∫

R
|Xd|

L
W (s)
d g(v)dγs(v) = 0,

where γs is as in (26). Since C2
c (R

|X |) is separable, we have that, for almost every s ∈ [0, T ],∫
R
|Xd|

L
W (s)
d g(v)dγs(v) = 0 ∀g ∈ C2

c (R
|Xd|).

Thus, for almost every s such that W (s) > 0 with probability one, the measure γs is equal to

the unique stationary distribution of the system S
W (s)
d . Due to Assumption 3.3 and by [3,

Theorem 4.1], it corresponds to the product-form Poisson distribution Pois(q
W (s)
d ). Therefore

we can write
γs = �{W (s)>0}Pois(q

W (s)
d ) + (1− �{W (s)>0})γs.

The weak limit process W (t) is a solution to the martingale problem

Mh(t) = h(W (t)) − h(W (0))−
∫ t

0

∫
R
|Xd|

Lch(v,W (s))dγs(v)ds

= h(W (t)) − h(W (0))−
∑

yr→y′r∈ ˜R

∫ t

0
�{W (s)>0}λr(q

W (s)
d ,W (s))πc(y

′ − y) · ∇h(W (s))ds

−
∫ t

0
(1− �{W (s)>0})

∫
R
|Xd|

Lch(v,W (s))dγs(v)ds,
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where in the last equality we used that if V is a product-form Poisson random variable with
mean q, then for any nonnegative integer vector y of the same dimension of V

E

[
V !

(V − y)!
]
= qy.

This, in turn, implies that E [λr(V,w)] = λ̃r(q, w), where λ̃r are as defined in (15). By
Assumption 3.4, W (t) is uniquely determined by the solution to

W (0) = πc(X0),

W (t) =W (0) +
∑

yr→y′r∈ ˜R

∫ t

0
�{W (s)>0}λ̃r(q

W (s)
d ,W (s))πc(y

′ − y)ds

+

∫ t

0
(1− �{W (s)>0})

∫
R
|Xd|

Lcid(v,W (s))dγs(v)ds

=W (0) +
∑

yr→y′r∈ ˜R

∫ t

0
λ̃r(q

W (s)
d ,W (s))πc(y

′ − y)ds,

which is given by z(t). The first part of the theorem is therefore proved. The second part
follows from [18, Lemma 2.9].

To prove that the first two parts of the theorem hold without assuming (21), fix two
positive constants M and δ with the property

sup
t∈[0,T ]

‖z(t)‖∞ < M − δ,

and consider the stopping time

τN = inf{t ∈ [0, T ] : N−1‖XN
cont(t)‖∞ > M}.

Note that N−1Xcont(τ
N ) is also uniformly bounded in N , as

N−1‖XN
cont(τ

N )‖∞ ≤M +max
r
{‖ξr‖∞} =M ′.

Therefore, (21) holds up to time τN with the constant M ′, which means that for any ε there
exists Nε such that for any N > Nε

P

(
sup

t∈[0,τN ]

‖N−1XN
cont(t)− z(t)‖ > δ

)
< ε.

Since {τN < T} ⊂ {‖N−1XN
cont(τ

N )− z(τN )‖ > δ} ⊂ {supt∈[0,τN ] ‖N−1XN
cont(t)− z(t)‖ > δ},

it follows that for N large enough P (τN < T ) < ε. We conclude our argument by the
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1326 D. F. ANDERSON, D. CAPPELLETTI, AND T. G. KURTZ

arbitrariness of ε, since for N large enough

P

(
sup
t∈[0,T ]

‖N−1XN
cont(t)− z(t)‖ > η

)

≤ P
(

sup
t∈[0,τN ]

‖N−1XN
cont(t)− z(t)‖ > η

)
+ ε,

P

(
sup
t∈[0,T ]

∫ t

0

(
g(XN

disc(s))− E[g(Jz(s))]
)
ds > η

)

≤ P
(

sup
t∈[0,τN ]

∫ t

0

(
g(XN

disc(s))− E[g(Jz(s))]
)
ds > η

)
+ ε.

To show the last part of the theorem, namely (20), consider a converging sequence {tN}
in [δ, T ] with limit t. Fix a positive real number r0 and for any r ≤ r0 and any N > r0/δ
define

Y N
r0 (r) = XN

disc

(
tN +

r − r0
N

)
.

By Assumption 3.6(ii), the sequence Y N
r0 (0) is relatively compact. Let Yr0(r) be a process

with generator L
z(t)
d and such that Yr0(0) is the weak limit point of a subsequence Y Nm

r0 (0).
By using again Assumption 3.6(ii) and the weak convergence of N−1XN

cont(s) to z(s), for any
function g : NXd �→ R≥0 that satisfies (19) we have

lim
m→∞E

[
g
(
XNm

disc (tNm)
)]

= lim
m→∞E

[
g
(
Y Nm
r0 (r0)

)]
= lim

m→∞E
[
g
(
Y Nm
r0 (0)

)]
+ lim
m→∞

∫ r0

0
Nm

−1E

[
LNm(g ◦ πd)

(
Y Nm
r0 (r),XNm

cont

(
tNm +

r − r0
Nm

))]
dr

= E [g (Yr0(0))] +

∫ r0

0
E
[
L
z(t)
d g(Yr0(r))

]
dr.

Note that the left-hand side of the above equation does not depend on r0. Moreover, Assump-
tion 3.6(ii) implies that the limit E [g (Yr0(0))] is bounded from above, independently of r0.
Therefore, we can consider a weakly convergent sequence g

(
Yrn0 (0)

)
with rn0 →∞ as n→∞.

Letting g(Y (0)) denote the weak limit, we have

lim
m→∞E

[
g
(
XNm

disc (tNm)
)]

= E [g(Y (0))] +

∫ ∞

0
E
[
L
z(t)
d g(Y (r))

]
dr.

Since Lz(t) is the generator of a stochastic process with stationary distribution Pois(q
z(t)
d ), we

must have
lim
m→∞E

[
g
(
XNm

disc (tNm)
)]

= E
[
g(Jz(t)q )

]
.
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Moreover, since the limit does not depend either on the particular subsequence Nm or on the
converging sequence tN , we conclude

sup
t∈[δ,T ]

∣∣∣E[g(XN
disc(t))]− E[g(Jz(t))]

∣∣∣ −−−−→
N→∞

0,

which is (20).

In some cases Assumption 3.6 can be difficult to check, even if it seems natural for the
analyzed system. For this reason, we state here a corollary of Theorem 3.8 concerning a
particular case for which Assumption 3.6 is automatically satisfied.

Corollary 3.10. Assume Assumptions 3.2 to 3.4 hold. Assume also that

(27) N−βrλNr (v, [Nw]) ≤ ĥr(w)vπd(yr) for any yr → y′r ∈ R

for some continuous positive functions ĥr : R
|Xc| → R, and that

(28) N−βrλNr (v, [Nw]) ≥ hr(w)wπc(yr)vπd(yr) for any yr → y′r ∈ R̃

for some continuous positive functions hr : R
|Xc| → R. Furthermore, assume that in the

support of any complex y ∈ C at most one discrete species appears, and its stoichiometric

coefficient is 1. Then, for any continuous function g : R
|Xd|
≥0 → R with at most polynomial

growth rate we have

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
g(XN

disc(s))− E[g(Jz(s))]
)
ds

∣∣∣∣ −−−−→N→∞
0

in probability, where Jw ∼ Pois(qwd ) and z(t) is as in Assumption 3.4. Moreover, for any

continuous bounded function ϕ : R
|Xd|
≥0 → R and any δ ∈ (0, T ), we have

sup
t∈[δ,T ]

∣∣∣E[ϕ(XN
disc(t))]− E[ϕ(Jz(t))]

∣∣∣ −−−−→
N→∞

0.

Remark 3.11. Assume that KN is mass action kinetics and at most one discrete species
appears in the support of any complex y ∈ C. If the rate constants are rescaled according to
(11), then(27) and (28) are automatically satisfied. Indeed,

N−βrλNr (v, [Nw]) =
(
κr + ε1N

) (
wπc(yr) + ε2N (w)

)
vπd(yr)

for some sequence ε1N converging to zero, and some function ε2N (w) converging to zero uni-
formly on w. In this regard, see Remark 3.1.

Proof. By Assumption 3.4, we can choose two positive constants m < M such that

(29) inf
Si∈Xc,t∈[0,T ]

zi(t) > m and sup
Si∈Xc,t∈[0,T ]

zi(t) < M.
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For any N ∈ N>0, consider the function πN : R|X | → R
|X | defined by

(πN (x))i =

{
(Nm ∨ xi) ∧NM if Si ∈ Xc,
xi otherwise.

Consider the modified family of kinetics KN defined by

λ
N
r (x) = λNr

(
πN (x)

)
for x ∈ N

|X |.

We have
lim
N→∞

N−βrλNr ([N
αx]) = λr(x) = λr

(
π1(x)

)
,

where the limit is uniform on compact sets. Furthermore, λr is locally Lipschitz. Let K be the
kinetics defined by the functions λr. Our first aim is to prove that for a suitable choice of ψ,
Assumption 3.6 holds for the modified kinetics. We then apply Theorem 3.8 to the reaction

systems (G,KN ). Let XN
(t) denote the stochastic process associated with (G,KN ). Define

σN (t) =
∑
Si∈Xd

X
N
i (t) =

∑
Si∈Xd

XN
i (t) and Δr =

∑
Si∈Xd

ξri.

Since the complexes y are nonnegative vectors, we have

Δr =
∑
Si∈Xd

(y′ri − yri) = ‖πd(y′r)‖1 − ‖πd(yr)‖1.

By hypothesis, for any complex y ∈ C we have ‖πd(y)‖1 ≤ 1, which implies that −1 ≤ Δr ≤ 1
for any yr → y′r ∈ R. Moreover, we have

(30)
Δr = 1 =⇒ ‖πd(yr)‖1 = 0,

Δr = −1 =⇒ ‖πd(yr)‖1 = 1.

Furthermore,

σN (t) = σN (0) +
∑

yr→y′r∈R
ΔrYr

(∫ t

0
λ
N
r

(
X
N
(s)
)
ds

)

= σN (0) +
∑

yr→y′r∈R
Δr=1

Yr

(∫ t

0
λ
N
r

(
X
N
(s)
)
ds

)
−

∑
yr→y′r∈R
Δr=−1

Yr

(∫ t

0
λ
N
r

(
X
N
(s)
)
ds

)
.(31)

Define

M∗ = max
yr→y′r∈R

max
m≤w≤M

ĥr(w) and m∗ = min
yr→y′r∈R

min
m≤w≤M

hr(w)w
πc(yr),

which are both positive constants. By (30) and (27), whenever Δr = 1 we have

λ
N
r (v,Nw) ≤ NM∗.
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On the other hand, by (28), if yr → y′r ∈ R̃ and Δr = −1 then

λ
N
r (v,Nw) ≥ Nβrm∗vi for some Si ∈ Xd.

By Assumption 3.2, all the species in Xd are either produced or consumed by a reaction in
R̃d. Moreover, by Assumption 3.3 the system S w

d is complex balanced, which implies that it
is weakly reversible by Theorem 2.1. Therefore, all the species in Xd are both produced and
consumed by some reaction in R̃d. In particular, for any Si ∈ Xd we can choose a reaction
yr(i) → y′r(i) ∈ R̃ such that ξr(i)i = −1. We have that

∑
yr→y′r∈R
Δr=−1

Yr

(∫ t

0
λ
N
r

(
X
N
(s)
)
ds

)
≥
∑
Si∈Xd

Yr(i)

(∫ t

0
Nm∗XN

i (s)ds

)
.

Then, from (31) it follows that

σN (t) ≤ σN (0) +
∑

yr→y′r∈R
Yr

(∫ t

0
NM∗ds

)
−
∑
Si∈Xd

Yr(i)

(∫ t

0
Nm∗XN

i (s)ds

)
,

which implies that σN (t) is stochastically bounded by

B(t) = σN (0) + Y ′
(
|R| ·M∗t

)
− Y ′′

(∫ t

0
m∗B(s)ds

)
,

where Y ′ and Y ′′ are two i.i.d. unit-rate Poisson processes. That is, for all u ≥ 0

P

(
sup
t∈[0,T ]

σN (t) ≥ u
)
≤ P

(
sup
t∈[0,T ]

B(Nt) ≥ u
)
.

It follows that

sup
t∈[0,T ]

E[σN (t)n] ≤ sup
t∈[0,T ]

E[B(Nt)n].

Then, for any n ∈ N

(32) sup
t∈[0,T ]
N∈N>0

E[σN (t)n] ≤ sup
t∈[0,∞)

E[B(t)n] <∞.

The last inequality is due to ergodic properties of the birth-death process B(t). For any n > 1,

we define ψn : R
|Xd|
≥0 → R≥1 via

ψn(v) = 1 +
∑
Si∈Xd

vni .

Due to (27), λNr has at most polynomial growth rate in v for any reaction yr → y′r ∈ R and
any N ∈ N. By (10), the condition (27) also implies that the rate functions λr have at most
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polynomial growth rate. By Remark 3.7, if n is large enough, ψn satisfies (i) and (iii) in
Assumption 3.6. Moreover,

E
[
ψn(X

N
disc(s))ds

]
≤ E [σN (s)nds] ,

hence, due to (32), part (ii) in Assumption 3.6 is verified, as well. Assumptions 3.2 to 3.4
also hold for the systems with modified rates. Moreover, due to (29), the solution of the
deterministic system (Gc,Kc) coincides with z, the solution of the deterministic system Sc.
Therefore, Assumption 3.4 is satisfied as well and we can apply Theorem 3.8 to the modified

reaction systems (Gc,KN ). We have

(33) sup
t∈[0,T ]

∣∣∣N−1X
N
cont(t)− z(t)

∣∣∣ −−−−→
N→∞

0

in probability. Since by definition any function g : R
|Xd|
≥0 → R with at most polynomial growth

rate satisfies

lim sup
‖v‖→∞

|g(v)|
ψn(v)

= 0

for n large enough, we have

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
g(X

N
disc(s))− E[g(Jz(s))]

)
ds

∣∣∣∣ −−−−→N→∞
0

in probability. Moreover, for any continuous bounded function ϕ : R
|Xd|
≥0 → R and any δ ∈

(0, T ) we have

sup
t∈[δ,T ]

∣∣∣E[ϕ(X
N
disc(t))] − E[ϕ(Jz(t))]

∣∣∣ −−−−→
N→∞

0.

The proof is completed by noting that if the path of X
N
disc is different from the path of XN

disc,
then we have

inf
Si∈Xc,t∈[0,T ]

N−1X
N
i (t) ≤ m or sup

Si∈Xc,t∈[0,T ]
N−1Xi(t) ≥M.

However, by (29) and (33), we have

P

(
inf

Si∈Xc,t∈[0,T ]
N−1X

N
i (t) ≤ m or sup

Si∈Xc,t∈[0,T ]
N−1Xi(t) ≥M

)
−−−−→
N→∞

0.

4. ACR setting. We turn to the ACR setting and start with the formal definition of ACR.

Definition 4.1. Let S = (G,K) be a reaction system. We say that a species Si possesses
ACR in S if for any two positive equilibria q, q′ of the deterministically modeled system S ,
we have qi = q′i. In this case, the species Si is called an ACR species and, if a positive
equilibrium q exists, qi is called an ACR value. If a system S possesses a nonempty set of
ACR species, we call it an ACR system.
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Consider a reaction system S that has no equilibria or a unique equilibrium. According
to Definition 4.1, all the species of S are ACR species, however, in these cases the ACR
property is not particularly meaningful.

Definition 4.2. We say that a system S is a nondegenerate ACR system if it is an ACR
system and possesses at least two positive equilibria. If an ACR system exhibits less than two
positive equilibria, we call it a degenerate ACR system.

We will focus on nondegenerate ACR systems. Note that in such systems not all species
can be ACR species.

In nondegenerate ACR systems, the ACR species maintain their steady-state concentration
regardless of the total amount of molecules present in the system. Our goal is to study the
behavior of the system when the abundances of species that do not exhibit ACR tend to
infinity. It is therefore natural to use the setting developed in section 3 and let the ACR
species, or at least a chosen subset of them, be discrete species. We further assume that the
rate functions are rescaled consistently with the hypotheses of section 3, such that (10) holds
uniformly on compact sets.

In order to study the limiting behavior of ACR systems, we first introduce the system
S̃ = (X , C, R̃, K̃), where the set of reactions R̃ is as defined in (12), namely,

R̃ = {y → y′ ∈ R : πc(y) �= 0}.

Furthermore, the kinetics K̃ is given by the functions λ̃r defined in (15). For convenience, we
repeat here the definition: for any yr → y′r ∈ R̃

λ̃r(v,w) = κr(w)v
πd(yr),

where the κr(w) are as in Assumption 3.3. We now state some corollaries of Theorem 3.8,
assuming the next assumption is satisfied.

Assumption 4.3. We assume that S̃ is a nondegenerate ACR system, and that at least one
of the ACR species is a discrete species.

Consider Example 1.1. The system S̃ coincides with the system introduced in the example
itself, namely, (1), and it is a nondegenerate ACR system. On the other hand, in Example 1.2

the system S̃ is given by

A+ 2B −→ 3B, B
κ1−−⇀↽−−
κ2

C
κ3−→ A

with λA+2B→3B(x) = κ0x1x2. Therefore, the dynamics of S̃ , if deterministically modeled,
coincide with that of the mass action system

A+B
κ0−→ 2B, B

κ1−−⇀↽−−
κ2

C
κ3−→ A,(34)

which is a nondegenerate ACR system with equilibria determined by the equations

x1 =
κ1κ3

κ0(κ2 + κ3)
and x2 =

κ2 + κ3
κ1

x3.
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When Assumption 4.3 is fulfilled, denote by XACR the set of discrete ACR species. Let
πACR : R|Xd| → R

|XACR| be the projection onto the species of XACR, and let XACR(t) =
πACR(Xd(t)). Finally, let q be the vector of the ACR values for the species in XACR, and
let

(35) J ∼ Pois(q).

Corollary 4.4. Suppose that Assumptions 3.2 to 3.4 and 4.3 hold. Moreover, assume that
(27) and (28) hold, and that in the support of any complex y ∈ C at most one discrete species
appears, and appears with stoichiometric coefficient 1. Let πc(X0) be a positive equilibrium

point for Sc, and let J be as in (35). Then, for any continuous function ĝ : R
|XACR|
≥0 → R with

at most polynomial growth rate we have

(36) sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
ĝ(XN

ACR(s))− E[ĝ(J)]
)
ds

∣∣∣∣ −−−−→N→∞
0

in probability. Moreover, for any continuous bounded function ϕ̂ : R
|XACR|
≥0 → R and any

δ ∈ (0, T ), we have
sup
t∈[δ,T ]

∣∣E[ϕ̂(XN
ACR(t))]− E[ϕ̂(J)]

∣∣ −−−−→
N→∞

0.

The corollary is expressed in standard probabilistic terms, however, its meaning might be
more intuitively clear with a particular choice of functions ĝ and ϕ̂. For example, if ĝ is taken
to be the translated projection xi − qi, we obtain

sup
t∈[0,T ]

∫ t

0

(
XN

ACR(s)− q
)
ds −−−−→

N→∞
0

in probability, where the integral is to be interpreted componentwise. The latter means that
on average the counts of the discrete ACR species are well approximated by their ACR value.
Moreover, if we let ϕ̂ be the indicator function �A for a set A ⊆ N

|XACR|, we have

sup
t∈[δ,T ]

∣∣P (XN
ACR(t) ∈ A

)− P (J ∈ A)∣∣ −−−−→
N→∞

0.

Proof. Since πc(X0) is an equilibrium point for Sc, we have z(t) = πc(X0) for any t ∈
[0, T ]. Moreover, by definition qwd is the complex balancing equilibrium point of the system

S w
d . By the definition of K̃, (qπc(X0)

d , πc(X0)) is a positive equilibrium point for S̃ . Hence,

πACR(q
πc(X0)
d ) = q and the result follows from Corollary 3.10, applied to the functions g =

ĝ ◦ πACR and ϕ = ϕ̂ ◦ πACR.

Example 4.5. Consider the reaction network in (1). Sc is given by (17), for which any
nonnegative real point is an equilibrium point. We choose a sequence of starting points such
that XN

1 (0) is bounded and N−1XN
2 (0) tends to a positive real number. Therefore, the

hypotheses of Corollary 4.4 are fulfilled for any positive T . In this case there is only one ACR
species, namely, A, and it is the only discrete species. Hence, as N → ∞ the distribution of
the counts of species A tends to a Poisson distribution with mean given by the ACR value
q = κ2/κ1. The convergence is both on average and at fixed time points, in the sense of
Corollary 4.4.
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Corollary 4.6. Suppose that Assumptions 3.2 to 3.4 and 4.3 hold. Moreover, assume that
(27) and (28) hold, and that in the support of any complex y ∈ C at most one discrete species
appears, and appears with stoichiometric coefficient 1. Assume that πc(X0) is in the basin of

attraction of an equilibrium point of Sc. Then, for any continuous function ĝ : R
|XACR|
≥0 → R

with at most polynomial growth rate, E[ĝ(Jz(s))] tends to E[ĝ(J)] for s → ∞, where J is as
in (35). Moreover,

(37) sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
ĝ
(
XN

ACR(s)
)− E[ĝ(Jz(s))]

)
ds

∣∣∣∣ −−−−→N→∞
0

in probability, where Jw ∼ Pois(qwd ) and z(t) is as in Assumption 3.4. Finally, for any

continuous bounded function ϕ̂ : R
|XACR|
≥0 → R and any δ ∈ (0, T ), we have

sup
t∈[δ,T ]

∣∣∣E [ϕ̂ (XN
ACR(t)

)]− E[ϕ̂(Jz(t))]
∣∣∣ −−−−→
N→∞

0.

The result implies that E[Jz(s)] = q
z(s)
d tends to q for s→∞, where J is as in (35). Moreover,

(38) sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
XN

ACR(s)− qz(s)d

)
ds

∣∣∣∣ −−−−→N→∞
0

in probability. That is, the discrete ACR species are well approximated on average by their
ACR value, after a certain time. Finally, for a set A ⊆ N

|XACR|

sup
t∈[δ,T ]

∣∣∣P (XN
ACR(t) ∈ A

)− P (Jz(t) ∈ A)∣∣∣ −−−−→
N→∞

0

and the parameter of Jz(t), which is q
z(t)
d , tends to q.

Proof. For the sake of simplicity, throughout this proof w will denote a vector varying in

R
|Xc|
>0 , even if not explicitly stated.
First, recall that, regardless of the value w > 0, the complex balanced equilibrium qwd is the

unique solution of a system of multivariate polynomial equations, and as such, it is continuous
in the coefficients of the polynomials [27, Chapter 8]. In particular, it is a continuous function
of w > 0.

Consider a sequence of vectors (wn)n∈N ⊂ R
|Xc|
>0 converging to w∗ > 0. Therefore, the

sequence (qwn
d )n∈N converges to qw

∗
d and by Lebesgue’s dominated convergence theorem we

have that

E[ĝ(πACR(J
wn))] −−−→

n→∞ E[ĝ(πACR(J
w∗

))],

where Jw ∼ Pois(qwd ). This implies that E[ĝ(πACR(J
w))] is a continuous function of w.

Let w∗ be the equilibrium point of Sc whose basin of attraction contains πc(X0). Since

(qw
∗

d , w∗) is an equilibrium point of the system S̃ considered in Assumption 4.3, we have that
πACR(q

w∗
d ) = q. In particular, πACR(J

w∗
) ∼ J and E[ĝ(Jz(s))] tends to E[ĝ(J)] for s→∞.

The conclusion of the proof follows directly from Corollary 3.10.
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Example 4.7. Consider Example 1.2. Let XN
1 (0) be a bounded sequence, and let

N−1(XN
2 (0),XN

3 (0)) tend to a positive real vector. The continuous system Sc, when de-
terministically modeled, is equivalent to (18). Therefore the hypotheses of Corollary 4.6 are
fulfilled, since any (b, c) ∈ R

2
>0 is in the basin of attraction of

w∗ =

(
(κ2 + κ3)(b+ c)

κ1 + κ2 + κ3
,

κ1(b+ c)

κ1 + κ2 + κ3

)
.

Let q be the ACR value for A in the system (34). Therefore, after some time the counts of
A are approximately distributed, both on average and at any fixed time point, as a Poisson
random variable with mean q, in the sense of Corollary 4.6.

We conclude this section with two examples that do not fit in our theory. However, the
examples are still tractable with the techniques we presented.

Example 4.8. Consider the stochastic mass action system

2A+B
κ1−→ 3B, B

κ2−→ A.

Due to [25], we know that A possesses ACR and the system is a nondegenerate ACR system.
The discrete system S w

d is given by

2A
κ1w−−→ 0

κ2w−−→ A.

Therefore, the discrete system is not weakly reversible and by Theorem 2.1 it cannot be
complex balanced. It follows that Assumption 3.3 does not hold, and by [9] we know that
the S w

d , stochastically modeled, cannot exhibit a Poisson stationary distribution. However,
a stationary distribution μw can be shown to exist by standard methods. By following the
proofs of the results in this paper, we can still argue that, if XN (0) = (a, bN) and Jw ∼ μw,
for any continuous function g : R≥0 → R with at most polynomial growth rate we have

(39) sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
g
(
XN

1 (s)
)− E[g(Jz(s))]

)
ds

∣∣∣∣ −−−−→N→∞
0

in probability. Moreover, for any continuous bounded function ϕ : R≥0 → R and any δ ∈ (0, T ),
we have

sup
t∈[δ,T ]

∣∣∣E [ϕ (XN
1 (t)
)]− E[ϕ(Jz(t))]

∣∣∣ −−−−→
N→∞

0.

In this regard, see also Remark 3.9, where this situation is discussed.
Unfortunately, there are not many methods available that explicitly calculate stationary

distributions for noncomplex balanced systems. Thus, most examples not fulfilling Assump-
tion 3.3 are analytically intractable. However, for some calculations of stationary distributions
for noncomplex balanced systems, see [2].

Example 4.9. The results in this section rely on Corollary 3.10, whose assumptions are
easy to check. However, here we show how the same conclusions can be derived directly from
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Theorem 3.8, provided that Assumption 3.6 can be checked for the process or for a convenient
modification thereof. Consider the deterministic mass action system given by

A+B
κ1−−→ 2A+ C

κ2−−→ A+D
κ3←−− B κ4←−− A+ C,

B
κ5←−− D κ5−−→ C

(40)

with the constraint that κ1/κ2 = κ3/κ4. The species A is the only ACR species, and its ACR
value is

q =

√
κ3κ4
κ1κ2

=
κ4
κ2
,

where the last equality derives from κ1/κ2 = κ3/κ4. If we let A be the discrete species and B,
C, and D be the continuous species, then Assumption 3.2 is fulfilled. In this case, the system
S̃ coincides with the above mass action system (40), and Assumption 4.3 is also satisfied. Let
w = (w1, w2, w3) denote the concentrations of the species B, C, and D, respectively. Then,
the system S w

d is given by the stochastic mass action system

0
κ3w1−−−⇀↽−−−
κ4w2

A
κ1w1−−−⇀↽−−−
κ2w2

2A,

which is complex balanced for any positive w due to the assumption κ1/κ2 = κ3/κ4. The
system S w

d is also irreducible. Therefore, Assumption 3.3 is fulfilled and the complex balanced
equilibrium is given by

qwd =
κ1w1

κ2w2
.

The system Sc is given by

B −−⇀↽−− C −−⇀↽−−
κ5

D
κ5−−⇀↽−−
κ3

B,

where

λB→C(w) = λC→D(w) =
κ21w

2
1

κ2w2
and λC→B(w) =

κ1κ4w1

κ2
.

For simplicity, we choose our initial condition equal to an equilibrium of (40)

XN (0) =

(
κ4
κ2
, N,

κ1
κ4
N,

κ3
κ5
N

)
.

In this case, we have that z(t) is constantly equal to z(0) = (1, κ1/κ4, κ3/κ5) and Assump-
tion 3.4 is clearly satisfied.

Following the proof of Corollary 3.10, we can modify the kinetics of the original system
by

λ
N
r (x) = λNr

(
πN (x)

)
for x ∈ N

|X |.

We can derive the same conclusions as in Corollary 3.10 by noting that S w
d defines a birth-

death process whose moments are all uniformly bounded in time, and a uniform bound can
be found also by letting w vary in a compact set. Therefore, the counts of the ACR species A
are well approximated by a Poisson random variable with mean the ACR value κ4/κ2. The
approximation is both on average and at finite time intervals, in the sense of Corollary 4.4.
If, on the other hand, πc(X

N (0)) does not converge to an equilibrium point of Sc, then we
can still control the behavior of the species A in the sense of Corollary 4.6.
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5. EnvZ/OmpR signaling system. As another application of our results, we consider the
two-component EnvZ/OmpR osmoregulatory signaling system in Escherichia coli, using the
model proposed in [26] and considered in [4, 25]. The model corresponds to the following mass
action system, where [D] and [T ] are constants describing the concentration of some slowly
interacting chemical species:

XD
κ1−−−⇀↽−−−
κ2[D]

X
κ3[T]−−−⇀↽−−−
κ4

XT
κ5−−→ Xp,

Xp + Y
κ6−−⇀↽−−
κ7

XpY
κ8−−→ X + Yp,

XD + Yp
κ9−−⇀↽−−
κ10

XDYp
κ11−−→ XD + Y,

where X = EnvZ, Y = OmpR,Xp = EnvZ-P, Yp = OmpR-P,D = ADP, and T = ATP. The
abundances of both ADP and ATP are assumed to be large enough that their consumption
in the first chain of reactions only negligibly changes their concentration. The first chain
of reactions describes the phosphorylization of EnvZ, the second chain corresponds to the
transfer of the phosphate group from EnvZ to OmpR, and finally the third chain describes
the dephosphorylization of OmpR.

Due to [4, 25], it is known that the species Yp exhibits ACR. Moreover, Yp is the only
ACR species. For simplicity, instead of ordering the species, here we will denote by zS the
concentration of the species S. At equilibrium

zYp =
κ1κ3κ5(κ10 + κ11)[T ]

κ2(κ4 + κ5)κ9κ11[D]
= q,

zXT =
κ3[T ]

κ4 + κ5
zX =

κ1
κ4 + κ5

zXD =
κ8
κ5
zXpY =

κ11
κ5

zXDYp ,

zXpzY =
κ7
κ6
zXpY +

κ11
κ6

zXDYp .

There are two quantities that are conserved at any time point, namely,

c1 = zY (t) + zYp(t) + zXpY (t) + zXDYp(t),

c2 = zXp(t) + zXT (t) + zX(t) + zXD(t) + zXpY (t) + zXDYp(t)

for some positive constants c1, c2 depending on the initial conditions. If the amounts c1 and
c2 are increased, then the equilibrium concentrations of all the species not exhibiting ACR are
increased as well, except for Xp and Y , the equilibrium concentration of one of which could
remain small.

Consider now the above reaction system in the stochastic setting. We want to know what
happens if we increase the initial counts of the species such that the conserved amounts are
equally increased and the initial condition is in a neighborhood of an equilibrium point of the
system. Therefore, we uniformly increase the counts of the species not exhibiting ACR, and
we choose to keep Xp or Y small. We consider a sequence of processes XN indexed by N ∈ N,
which are associated with the above reaction system. We assume that XN (0) is such that the
entries relative to Yp and Y , denoted by XN

Yp
(0) and XN

Y (0), respectively, are bounded by a
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constant B, and that all the other entries, if rescaled by N , converge to some positive number.
In this setting, the discrete species are Y and Yp, we have βr = 1 for any reaction yr → y′r of
the system, and Assumption 3.2 is fulfilled. For any positive vector w of continuous species
concentrations, the system S w

d is given by

(41) 0
κ7 wXpY+κ11 wXDYp−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−

κ6 wXp
Y, 0

κ8 wXpY + κ10 wXDYp−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−
κ9 wXD

Yp,

and Assumption 3.3 holds thanks to Theorem 2.2. It is not difficult to check that the mass
action system (41) is irreducible, since every state of possible counts of Y and Yp is accessible
from any other state. The complex balanced equilibrium qwd is given by

qwd =

(
κ7wXpY + κ11wXDYp

κ6wXp

,
κ8wXpY + κ10wXDYp

κ9wXD

)
,

where the first entry refers to Y and the second one to Yp. The system Sc is given by

XD
κ1−−−⇀↽−−−
κ2[D]

X
κ3[T]−−−⇀↽−−−
κ4

XT
κ5−−→ Xp,

Xp −−⇀↽−−
κ7

XpY
κ8−−→ X,

XD −−⇀↽−−
κ10

XDYp
κ11−−→ XD

with

λXp→XpY (w) = κ7wXpY + κ11wXDYp ,

λXD→XDYp(w) = κ8wXpY + κ10wXDYp .

The equilibria of the system are the positive vectors w∗ that satisfy

w∗
XT =

κ3[T ]

κ4 + κ5
w∗
X =

κ1
κ4 + κ5

w∗
XD =

κ8
κ5
w∗
XpY =

κ11
κ5

w∗
XDYp .

If πc(X
N (0)) is such a vector w∗, or belongs to its basin of attraction, then Assumption 3.4

holds. Assumption 4.3 also holds, since the system S̃ corresponds to the original EnvZ/OmpR
signaling system, and the unique ACR species Yp is discrete. By making use of the fact that
the original system is mass action kinetics and by Remark 3.11, it is easy to see that the
remaining assumptions of Corollary 4.4 (if πc(X

N (0)) is an equilibrium w∗) or of Corollary 4.6
(if πc(X

N (0)) is in the basin of attraction of an equilibrium w∗) are fulfilled, and the results
can be applied. Therefore, XN

Yp
(t) can be approximated by a Poisson random variable J

with mean q, both on average and at any fixed time point, in the sense of Corollary 4.4 or
Corollary 4.6. The results are in accordance with the simulations in [4].

Alternatively, we could have applied the results of this paper to the signaling network by
considering Yp as the only discrete species, therefore increasing the initial counts of all other
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species, and by letting XN be the process associated with

XD
κ1−−−⇀↽−−−
κ2[D]

X
κ3[T]−−−⇀↽−−−
κ4

XT
κ5−−→ Xp,

Xp + Y
κ6/N−−−⇀↽−−−
κ7

XpY
κ8−−→ X + Yp,

XD + Yp
κ9−−⇀↽−−
κ10

XDYp
κ11−−→ XD + Y,

where κ6 has been rescaled. With this choice of rescaling, due to Remark 3.1, we have that
βr = 1 for any reaction yr → y′r of the system. Our results can be used to draw the same
conclusion as before in this different setting.
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