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We show that discrete distributions on the d-dimensional non-negative integer lattice 
can be approximated arbitrarily well via the marginals of stationary distributions for 
various classes of stochastic chemical reaction networks. We begin by providing a class of 
detailed balanced networks and prove that they can approximate any discrete distribution 
to any desired accuracy. However, these detailed balanced constructions rely on the 
ability to initialize a system precisely, and are therefore susceptible to perturbations in 
the initial conditions. We therefore provide another construction based on the ability 
to approximate point mass distributions and prove that this construction is capable 
of approximating arbitrary discrete distributions for any choice of initial condition. In 
particular, the developed models are ergodic, so their limit distributions are robust to a 
finite number of perturbations over time in the counts of molecules.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Chemical reaction networks (CRNs) with mass-action kinetics [1,2] model the behavior of well-mixed chemical solutions 
and have a wide range of applications in science and engineering. In particular, they are used to study the behavior of nat-
ural, industrial, and biological processes. Thus, it is important to understand their mathematical foundations. There are two 
common choices for dynamical models of CRNs, deterministic and stochastic, and the choice of model depends on the proper-
ties of the system that one wishes to study. For systems where the counts of the relevant molecules are large and reactions 
are taking place nearly continuously, the randomness inherent in the timing and types of reactions taking place average 
out, and the state variables are the real-valued concentrations of molecular species, with dynamics expressed as ordinary 
differential equations. Since the trajectory of concentrations is uniquely determined by their initial values, these models are 
referred to as deterministic. Deterministic CRN models are well-studied and much is known about their stationary behavior 
[3]; moreover, their dynamics are known to be able to simulate arbitrary electrical and digital circuits [4,5]. Furthermore, it 
has been recently proved that deterministic CRNs are capable of universal computation [6]. Of increasing importance is the 
case of solutions with small volume and discrete counts, such as the interiors of biological cells and nanoscale engineered 
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systems. In this case, the state variables are the integer counts of molecules, and dynamics are expressed as continuous-
time, discrete-space stochastic processes [1,7–9]. These models are commonly referred to as the stochastic model of CRNs, 
which we adopt in the present document.

Stochastic models of CRNs are well studied. In particular, both their stationary and finite time dynamics are of interest 
and have been analyzed [1,8–33]. Moreover, their computational properties have been explored and it has been shown that 
they can simulate Turing machines, so long as an arbitrarily small probability of error is allowed [34–36]. They are in this 
sense capable of universal computation. However, there are known limitations on the dynamics exhibited by certain classes 
of stochastic CRNs [37,38] and the full repertoire of accessible behaviors has yet to be characterized.

A particular question is: what are the possible fluctuation sizes that can be seen in molecule counts for stochastic CRNs 
in stationarity? When used to model systems in thermodynamic equilibrium with particle reservoirs, i.e., models that are 
detailed balanced and have inflows and outflows of each species, the stationary distributions of stochastic CRNs take the 
form of the product of independent Poisson distributions [39]. Hence, in these cases, the magnitude of fluctuations in 
the population of each molecule type is equal to the square root of the mean, since the mean and variance of Poisson 
distributions are equal. In the physical sciences, it is typical to encounter systems with fluctuations with size of square 
root of the mean. This was stated by Schrödinger in What is life? when talking about the inaccuracy of physical laws and 
referred to it as the 

√
n law [40]. For more general detailed balanced systems, where the topology of the network restricts 

the set of states the process can reach, the stationary distributions continue to have product-Poisson form in the reachable 
space [39]. In fact, the occurrence of a stationary distribution that is a product of Poissons is equivalent to the model being 
complex balanced, which is a generalization of the detailed balanced condition [12,13]. For other well-known CRNs, such as 
models of gene regulation [11], the variance of particle counts meets or even exceeds their mean value. In other examples, 
CRN models of low-copy-number plasmid populations in bacterial cells, where variability due to replication and partitioning 
could have a disruptive effect, produce distributions where the variance is less than the mean [41]. It has remained an 
open question whether in general there exists a bound on the variance relative to the mean for stationary distributions of 
stochastic CRNs, though some results have been shown for specific classes of models [38].

The question that we address in this paper is more general than the one posed at the beginning of the previous para-
graph: is there any limit on the shape of the stationary distributions of stochastic CRNs? We will show that every distribution 
on the non-negative integer lattice can be approximated to desired precision with the stationary distribution of some stochastic CRN. 
Note that, for example, this gives an answer to the open question posed at the end of the previous paragraph: there is no 
bound on the ratio between the variance and the mean of species at stationarity.

Remarkably, we will be able to approximate any distribution to any desired accuracy by restricting ourselves to two 
important classes of CRNs. The first class consists of detailed balanced models. These models in principle could be imple-
mented physically as equilibrium systems that do not require the use of an external power supply [42–44]. However, for 
this class a specific initial condition must be utilized for the desired result to hold. The second class consists of CRNs that 
have a unique limit distribution (i.e., the models are ergodic), negating the need for special care with the initial condi-
tions. However, physically implementing models from this class would require an external power supply, as they would 
be non-equilibrium systems [42–44]. Independence of initial conditions is a desirable feature for any model that would be 
physically implemented in a noisy environment. It is interesting to note how the networks in the intersection of the two 
classes above have limited expressive power in terms of their limit distributions, as these can only be product of Poisson 
distributions [39].

The constructions we use are mathematically motivated, and the resulting CRNs do not necessarily have correspondence 
to known physical systems. For example, we sometimes make use of reactions with arbitrarily high molecularity, such as 
17V → 16V . However, in the case of constructions utilizing detailed balanced models, we show that CRNs with a more 
physical interpretation can be considered, such as CRNs where the reactants and products of each reaction contain at most 
two molecules (see Construction 2 and Remark 5). In fact, we expect that all the conclusions of our paper, namely, that 
the classes of detailed balanced and robust CRNs are universally approximating, will hold even if restricting the classes to 
suitable binary CRNs. Intuitively, this follows from the fact that the dynamics of high molecularity reactions can be approx-
imated by the dynamics of a sequence of elementary reactions [45,46]. However, this claim awaits a rigorous proof and the 
resulting constructions may be more complex than the ones we present here. Moreover, the number of reactions and the 
number of species of the constructions we describe here both scale with the size of the support of the distribution we are 
approximating. Anticipating the question of descriptive complexity — namely, can complex distributions be approximated 
by simple CRNs? — we provide examples addressing it in Section 4. Finally, we note here that a fine tuning of the rate con-
stant parameters is sometimes required to obtain the desired result, but not necessarily for all reactions: indeed, sometimes 
the desired behavior follows from a time-scale separation which does not depend on a precise regulation of the kinetic 
parameters. We will point out when this is the case in the paper.

While our work is not the first to explore the expressive power of CRNs in terms of their limit distributions, we are 
the first to consider the expression of a target distribution robustly with respect to the initial condition. Fett, Bruck, and 
Riedel [47] considered CRNs that make a stochastic choice among a fixed set of outcomes, with probabilities determined 
as a function of the counts of some input species. These CRNs require precise initial conditions, and settle to an absorbing 
state where no further reactions are possible. In contrast, our CRN constructions are ergodic and therefore “active” for 
all time. Thus, multiple observations over time would each have a distribution close to the limit distribution, enabling 
the CRN to be used for sampling. Poole et al. [48] show that stochastic CRNs are at least as powerful as the Boltzmann 
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machine model from statistical machine learning in terms of their ability to generate and sample different probability 
distributions. Cardelli, Kwiatkowska, and Laurenti [49], like us, consider the problem of programming a CRN to approximate 
an arbitrary multidimensional distribution, but their constructions require precise initial conditions and are not detailed 
balanced. Furthermore, as is the case in [47], their CRNs are fated to a state where no reactions can take place. Plesa et al. 
[50] do not consider arbitrary distributions, but develop methods for controlling noise while preserving the mean behavior 
of the model in a certain limit.

While our results are of independent interest as a characterization of the class of distributions that can be generated 
by CRNs, they may have implications for how biological cells, or engineered cell-scale molecular machines, can perform 
information processing in small volumes. In particular, a probability distribution can be considered as a representation of 
knowledge; a CRN with parameters chosen such that it generates a specific distribution can be considered to be storing 
said knowledge. It is therefore reasonable to ask how information stored in CRN distributions can be further processed, 
manipulated, and acted upon by other CRNs, or how the knowledge can be extracted by interaction with a (proto)cell’s 
environment [48,51–53].

2. Preliminaries

2.1. Notation

Let us denote the sets of integers and reals with Z and R, and their respective sets of nonnegative and positive elements 
using the subscripts ≥ 0 and > 0. In what follows, let d ∈ Z>0. For any set K ⊆ R of real numbers, we denote by K d the 
set of vectors with d entries in K . We will often refer to the elements of Zd≥0 as states. Let u, v ∈Rd be vectors. We write 
vectors as rows v = (v(1), . . . , v(d)), where v(i) denotes the ith entry of v . For i ∈ {1, . . . , d} we define ei to be the vector 
of Zd≥0 with 1 in the ith entry and 0 otherwise, i.e. with ei(i) = 1, and ei( j) = 0, for j �= i. If u(i) ≤ v(i), for all i ∈ {1, . . . , d}, 
we write u ≤ v . We define:

1{u≥v} =
{

1 if u ≥ v

0 otherwise.

Let x ∈Zd≥0. We define the following:

ux =
d∏

i=1

u(i)x(i), and x! =
d∏

i=1

x(i)!,

with the convention that 00 = 1. Let f :Zd≥0 →R be a function. We define the infinity norm as usual:

‖ f ‖∞ = sup
x∈Zd≥0

{| f (x)|}.

If f satisfies f (x) ≥ 0, for each x ∈Zd≥0, and 
∑

x∈Zd≥0
f (x) = 1, we say f is a distribution. We call the set {x ∈Zd≥0 : f (x) > 0}

the support of f . Finally, we denote the cardinality of a set S with |S|.
2.2. Model

We are interested in the counts of molecules of different chemical species undergoing different chemical transformations. 
We use the standard model of stochastic chemical reaction networks in which the dynamics of the counts of the different 
chemical species is modeled as a continuous-time Markov chain. We begin with the definition of a reaction network, and 
then characterize the dynamics.

Definition 1. A Chemical Reaction Network (CRN) is a quadruple N = (S, C, R, κ) where S , C , R, κ are defined as follows. 
S is a finite set of species. C is a finite set of complexes, which are linear combinations of species, with nonnegative integer 
coefficients. R is a finite set of reactions, that is a finite subset of C × C with the property that for any y ∈ C we have 
(y, y) /∈ R. Usually, a reaction (y, y′) is denoted by y → y′ , and we adopt this notation. Finally, given an ordering for the 
reactions, κ is a vector in R|R|

>0 that gives every reaction a rate constant. The rate constant of reaction y → y′ will be 
denoted by κy→y′ .

Let S = {A1, . . . , A|S|} be an ordering of the species. Complexes will be regarded as vectors in Z|S|
≥0 and we use the 

following notation for a complex y:

y =
|S|∑

y(i)Ai .
i=1
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A reaction y → y′ ∈R is said to be reversible if y′ → y ∈R, and we write y � y′ ∈R for the pair of reactions. We say that 
a CRN is itself reversible if all of its reactions are reversible. We will often summarize the sets of complexes, reactions, and 
rate constants of a CRN in a reaction diagram, with reactions and their corresponding rate constants denoted in the following 
manner

|S|∑
i=1

y(i)Ai
κy→y′−−−−→

|S|∑
i=1

y′(i)Ai, for y → y′ ∈ R such that y′ → y /∈ R

|S|∑
i=1

y(i)Ai

κy→y′−−−−⇀↽−−−−
κy′→y

|S|∑
i=1

y′(i)Ai, for y � y′ ∈ R.

For example, consider the CRN with species S = {A, B, C}, complexes C = {0, A, C, 2A + B}, and reactions R =
{2A + B → C , 0 → A, A → 0}. Assume all rate constants are unity, i.e. κ = (1, 1, 1). The quadruple N = (S, C, R, κ) forms 
a CRN. Moreover, the CRN includes the reversible pair 0 → A and A → 0, so we can write the set of reactions as 
R = {2A + B → C, 0 � A}. The reaction diagram of this CRN is:

2A + B
1−→ C, 0

1−⇀↽−
1

A.

The usual stochastic mass action model of a CRN N = (S, C, R, κ) is defined as a continuous-time Markov chain (CTMC), 
denoted by X(·), where the propensity for reaction y → y′ in state x is given by:

λy→y′(x) = κy→y′
x!

(x − y)!1{x≥y}.

For example, the propensity of the reaction A + B → C at state x is λA+B→C (x) = κA+B→C x(1)x(2), where x(1) and x(2)

represent the counts of species A and B , respectively. For any pair (x, x′) ∈Z|S|
≥0 ×Z|S|

≥0 the transition rate of the CTMC from 
x to x′ is given by:

Q (x, x′) =
∑

y→y′∈R
x′−x=y′−y

λy→y′(x).

For an initial condition x0 ∈Z|S|
≥0 , we use the following notation for the probability mass function:

P (x, t | x0) = P (X(t) = x | X(0) = x0).

2.3. Key concepts

If there is a t > 0 for which P (x′, t | x) > 0 we say that x′ is reachable from x. Note that if x′ is reachable from x then it 
is possible to reach x′ from x via a finite number of reactions. The reachability class of a state x0 is the set of states that are 
reachable from x0. If there is a distribution π(· | x0) for which

π(x | x0) = lim
t→∞ P (x, t | x0), for all states x, (1)

then π(· | x0) is said to be the limit distribution of the CRN for initial condition x0. We note that limit distributions are sta-
tionary distributions for the models, i.e. distributions π such that P (·, t) = π(·) for all t ≥ 0 if X(0) is distributed according 
to π . For a subset V ⊆ S of species the marginal of π(· | x0) onto V is:

πV (v | x0) =
∑

x′∈Z|S|
≥0

(x′)V=v

π(x′ | x0), (2)

where (x′)V ∈Z|V |
≥0 is the projection of x′ onto the species in V .

Definition 2. Let U be a set of CRNs. We say that U approximates a distribution q : Zd≥0 → [0, 1] if for every ε > 0 there 
exists a CRN (S, C, R, κ) ∈ U , an initial condition x0 ∈ Z|S|

≥0 , and a subset of the species V ⊆ S , called the visible species, 
with |V| = d, such that a limit distribution π(· | x0) as in (1) exists and ‖πV (· | x0) − q‖∞ < ε. Species of S that are not 
visible may be called hidden species. If U approximates every distribution on Zm≥0 for every m ≥ 1, then we say that it is 
universally approximating.



68 D. Cappelletti et al. / Theoretical Computer Science 801 (2020) 64–95
Note that while in some cases better matches to the given distribution (i.e., lower ε) can be achieved using the same 
network structure (S, C, R) and just changing the rate constants (κ), the notion defined above is more flexible in that it 
acknowledges that achieving a better match to the distribution may require additional species and reactions, or even an 
entirely different network structure.

3. Main results

3.1. Universal approximation with detailed balanced networks

Definition 3. Let the CRN N = (S, C, R, κ) be reversible. If there exists a vector c ∈R|S|
>0 such that

κy→y′c y = κy′→yc y′
, (3)

for each reaction y → y′ ∈R, then we say that N is detailed balanced.

Remark 1. We employ one of multiple equivalent ways of defining detailed balance for CRNs. In the definition above the 
vector c is a vector of steady-state concentrations for the deterministic CRN with mass action kinetics that obeys the de-
tailed balance condition [54]. The choice of c may not be unique. In particular, detailed balanced CRNs have the remarkable 
property that if one positive vector of steady-state concentrations satisfies the detailed balanced condition (3), then all 
other positive vectors of steady-state concentrations will also satisfy (3) [24, Theorem 3.10]. If one recognizes that con-
centrations correspond to ci = e−Gi/kT , where Gi plays the role of a free energy or chemical potential associated with 
the ith species, k is Boltzmann’s constant, and T is temperature, the definition takes the form of the thermodynamic 
formula κy→y′/κy′→y = e−�G(y→y′)/kT , which relates the equilibrium constant κy→y′/κy′→y to the change in free energy

�G(y → y′) =∑|S|
i=1 Gi(y′(i) − y(i)) associated with reaction y → y′ . Detailed balanced CRNs often arise as models of 

closed systems that will reach thermal equilibrium and thus a steady-state that on average consumes no further energy; 
more generally, they arise as models of open systems that exchange material with a reservoir that is in chemical equilib-
rium [42]. Note however that, here, Gi is purely a mathematical device and need not correspond to any physical free energy. 
For example, considered alone, the classical coarse-grained model of RNA synthesis and degradation in genetic regulatory 
networks, DN A + RN A P → DN A + RN A P + RN A and RN A + RNase → RNase, despite that energy and material are con-
sumed in RNA synthesis and degradation, has stochastic behavior identical to 0 −⇀↽− RN A, which formally satisfies detailed 
balance for any choice of rate constants. 


The stationary distributions for detailed balanced CRNs are well known:

π(x | x0) = 1

Mx0

cx

x! , (4)

for each x in the reachability class of x0, where Mx0 is the corresponding normalization constant. This result appears in, for 
example, Theorem 3.2 of Chapter 7 in [39], or, more recently, as a special case of Theorem 4.1 in [13]. However, versions of 
the theorem were published as early as 1958 in [55], and 1967 in [56].

The stationary distributions of detailed balanced CRNs consist exclusively of restrictions of products of Poisson distribu-
tions. Yet, as we will show, every distribution with finite support can be expressed as the marginal of the limit distribution 
of some detailed balanced CRN. We introduce three constructions that illustrate different design trade-offs (Fig. 1).

Construction 1 (Full Indexed Network). Let d ≥ 1 and let q : Zd≥0 → [0, 1] be a distribution with finite support {v1, . . . , vm}. 
Define the CRN Full(q) = (S, C, R, κ) as follows.

• The set of species is S = {V 1, . . . , Vd, H1, . . . , Hm}. Note that there is one visible species V i for each of the dimensions 
of Zd≥0 and that there is one hidden species H j for each of the points in the support of q.

• The sets of complexes, reactions, and rate constants are given by the reaction diagram described by:

Hi +
d∑

k=1

vi(k)Vk

v j ! q(v j)−−−−−⇀↽−−−−−
vi ! q(vi)

H j +
d∑

k=1

v j(k)Vk, (5)

for i, j ∈ {1, . . . , m}, i �= j. 


States of the associated continuous-time Markov chain reside in Zd+m
≥0 , with the first d dimensions corresponding to the 

visible species V i and the final m dimensions corresponding to the hidden species H j . We will therefore write states as 
x = (v, h), where v ∈Zd and h ∈Zm .
≥0 ≥0
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Remark 2. Note that if the initial condition for Construction 1 is x0 = (v1, e1) (or, more generally, of the form (vi, ei), for 
i ∈ {1, . . . , m}), then at any future time there is precisely one Hi species that has a count of one and the others have a count 
of zero. Moreover, the CRN is designed so that if the count of Hi is 1, then the counts of the (V 1, . . . , Vd) are exactly vi . 


Lemma 1. Let d ≥ 1 and let q :Zd≥0 → [0, 1] be a distribution with finite support. Then, Full(q) is detailed balanced and, for initial 
condition x0 = (v1, e1) and set of visible species V = {V 1, . . . , Vd}, the marginal of the limit distribution satisfies πV(· | x0) = q.

Proof. Let us denote the complexes of Full(q) with:

yi = Hi +
d∑

k=1

vi(k)Vk,

for i ∈ {1, . . . , m}. Note that c = (cV , cH ) ∈Rd+m
>0 given by

cV
� = 1, � ∈ {1, . . . ,d}

cH
� = v�!q(v�), � ∈ {1, . . . ,m} (6)

satisfies κyi→y j c
yi = vi ! v j ! q(vi)q(v j) = κy j→yi c

y j for all i, j ∈ {1, . . . , m}. Hence, Full(q) is detailed balanced. The reacha-
bility class of initial condition x0 = (v1, e1) is {(vi, ei) | 1 ≤ i ≤ m}. Hence, for initial condition x0, the limit distribution (4)
satisfies:

π((vi, ei) | x0) = 1

Mx0

c(vi ,ei)

(vi, ei)! = 1

Mx0

cH
i

vi ! = q(vi)

Mx0

.

Notice that, since q is normalized, we have:

Mx0 =
m∑

i=1

q(vi) = 1.

Therefore, for the set of visible species V = {V 1, . . . , Vd}, the marginal of the distribution satisfies:

πV (vi | x0) = π((vi, ei) | x0) = q(vi), (7)

for all i ∈ {1, . . . , m}, and it is 0 otherwise. �
Notice that if we modify the stoichiometry of the reactions in Construction 1, while preserving the net change of 

molecules of each reaction, the reachability class for the initial condition x0 = (v1, e1) is the same as before. Also, we 
can scale the rate constants of reversible pairs of reactions by the same factor without affecting the limit distribution. For 
example, if a state vi in the support of q has exactly one more molecule of Vk than another state v j in the support of q, 
we may use the reactions

Hi + Vk

q(v j)−−−−−−⇀↽−−−−−−
vi(k) q(vi)

H j,

for that pair of states, instead of (5). With this choice of rate constants Lemma 1 remains true.
Let d ≥ 1 and consider the set Zd≥0 of states. We say that two states x, x′ ∈Zd≥0 are adjacent if there exists i ∈ {1, . . . , d}

such that |x(i) − x′(i)| = 1, and x( j) = x′( j) otherwise. Let U ⊆ Zd≥0 be a set of states. If U induces a (possibly infinite) 
connected graph through the edge relation {(x, y) : x and y are adjacent}, then we say that U is a cluster. Then, if the 
support of a distribution is finite and also a cluster we can modify Construction 1 to use reactions that have at most two 
molecules in the reactants and similarly for the products, i.e. using only bimolecular reactions.

Construction 2 (Bimolecular Indexed Network). Let d ≥ 1 and let q : Zd≥0 → [0, 1] be a distribution with finite support 
{v1, . . . , vm}. Suppose that the support is a finite cluster. Define the CRN Bimol(q) = (S, C, R, κ) as follows.

• The set of species is the same as in Construction 1, i.e. S = {V 1, . . . , Vd, H1, . . . , Hm}.
• The sets of complexes, reactions, and rate constants are given by the reaction diagram described by:

Hi + Vk

q(v j)−−−−−−⇀↽−−−−−−
vi(k) q(vi)

H j,

for i, j ∈ {1, . . . , m}, and k ∈ {1, . . . , d} such that vi(k) = v j(k) +1, and the components of vi and v j are otherwise equal. 
That is, when vi − v j = ek . 
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Fig. 1. Example of detailed balanced constructions. On the left we have a two-dimensional distribution with a finite cluster as support. For the Full Indexed 
Network every pair of elements of the support, indicated by a green edge connecting the pair, is assigned a reaction. For example, if v1 = (5, 3) and 
v2 = (13, 5), we have the reversible reaction pair H1 + 5V 1 + 3V 2 � H2 + 13V 1 + 5V 2. For the Bimolecular and Spanning Tree Indexed Networks we 
only consider reactions between adjacent states, indicated by green edges as well. For example, we assign to the pair v1 = (5, 3), v2 = (5, 4) the reversible 
reaction pair H1 � H2 + V 2. While the Bimolecular Indexed Network includes one reaction for every adjacent pair of elements of the support, the Spanning 
Tree Indexed Network includes only as many adjacent pairs as necessary to leave the support connected. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Remark 3. By an argument similar to the proof of Lemma 1, Bimol(q) is detailed balanced with detailed balanced equilib-
rium c from (6). Moreover, for initial condition x0 = (v1, e1) and set of visible species V = {V 1, . . . , Vd}, the marginal of the 
limit distribution satisfies πV (· | x0) = q. 


We can further simplify Construction 2 by removing reactions but preserving the connectivity of the cluster. If we remove 
edges of a cluster until no edge can be removed without splitting it into two disconnected graphs, the graph that results is 
a spanning tree.

Let U ⊆ Zd≥0 be a cluster, and let G = (U , E) with E ⊆ U × U be a (possibly infinite) simple graph whose edges only 
connect adjacent states. If G is connected and it fails to be so when any edge from E is removed, we say that G is a cluster 
spanning tree.

Construction 3 (Spanning Tree Indexed Network). Let d ≥ 1 and let q :Zd≥0 → [0, 1] be a distribution with finite support U =
{v1, . . . , vm}. Suppose that U is a finite cluster. Let E ⊆ U × U be a cluster spanning tree. Define the CRN SpanTree(q, E) =
(S, C, R, κ) as follows.

• The set of species is S = {V 1, . . . , Vd, H1, . . . , Hm}.
• The sets of complexes, reactions, and rate constants are given by the reaction diagram described by:

Hi + Vk

q(v j)−−−−−−⇀↽−−−−−−
vi(k) q(vi)

H j,

for i, j ∈ {1, . . . , m}, and k ∈ {1, . . . , d} such that (vi, v j) ∈ E , and vi(k) = v j(k) + 1. Notice that E consists of only edges 
between adjacent states so we must have that vi(�) = v j(�) for � �= k since vi − v j = ek . 


Remark 4. Notice that, similar to Construction 2, SpanTree(q, E) is detailed balanced with detailed balanced equilibrium 
c from (6). Also, for initial condition x0 = (v1, e1) and set of visible species V = {V 1, . . . , Vd}, the marginal of the limit 
distribution satisfies πV (· | x0) = q. 


In Construction 1 the number of reactions is equal to m(m − 1) = O(m2), i.e. it is quadratic in the size of the support 
of q. By comparison, the number of reactions in Construction 2 is O(dm) since every point of the support has at most 2d
adjacent states. Finally, the number of reactions in Construction 3 is equal to 2(m − 1) =O(m), i.e. it is linear in the size of 
the support of q.

Lemma 2. Let d ≥ 1, let q :Zd≥0 → [0, 1] be a distribution, and let ε > 0. Then, there exists a distribution q′ :Zd≥0 → [0, 1] with finite 
support that satisfies ‖q − q′‖∞ < ε.

Proof. Consider an ordering of the states {x1, x2, . . .} = Zd≥0, that satisfies q(xi) ≥ q(x j), whenever i ≤ j. Since we have ∑∞
i=1 q(xi) = 1, there is an m for which 

∑m
i=1 q(xi) > 1 − ε. Let q′ :Zd≥0 → [0, 1] be the distribution given by:

q′(xi) =

⎧⎪⎨
⎪⎩

q(xi), i ∈ {1, . . . ,m − 1}∑∞
j=m q(x j), i = m

0, i ∈ {m + 1, . . .}
(8)
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Finally, notice that q′ satisfies:

‖q − q′‖∞ = |q′(xm) − q(xm)| =
∞∑

i=m+1

q(xi) < ε,

as desired. �
Theorem 3. The set of all detailed balanced CRNs is universally approximating.

Proof. For d ≥ 1, let q :Zd≥0 → [0, 1] be a distribution, and let ε > 0. By Lemma 2 we know that there exists a distribution 
q′ : Zd≥0 → [0, 1] with finite support that satisfies ‖q − q′‖ < ε. Consider the CRN Full(q′) as given in Construction 1. 
We know from Lemma 1 that for V = {V 1, . . . , Vd} the marginal of the limit distribution for initial condition x0 = (v1, e1)

satisfies πV (· | x0) = q′ . Therefore, since q and ε were arbitrary, the set of Full Indexed Network CRNs is universally approx-
imating. �
Remark 5. The proof of the theorem above can be carried out using Constructions 2 or 3 instead of 1. If the support of a 
distribution is not a cluster one may connect the disconnected components using a finite number of edges and distribute a 
sufficiently small amount of probability throughout the states along the edges that were added. 


In order for any of the above constructions to produce the appropriate limit distribution it is necessary to provide them 
with the right initial condition. Suppose instead that we wish to have a CRN whose limit distribution is independent of 
initial conditions. In particular, the process would be able to reach the support of its limit distribution from any state. 
Moreover, if the CRN satisfies detailed balance, then every state is reachable from every state due to reactions being re-
versible, a limit distribution exists [57], it is a product of Poisson distributions [39], and the marginalization onto any subset 
of species is also a product of Poisson distributions. Therefore, such a model could not be universally approximating if it 
satisfies detailed balance, and a new construction is needed if one wishes to dispose of the dependence on initial conditions.

3.2. Universal approximation with robust networks

We shift our attention to CRNs that have a unique limit distribution. In particular, for these CRNs, the limit distribution 
is independent of initial conditions and is robust to an arbitrary single perturbation in the counts of species at any time.

Definition 4. Let N = (S, C, R, κ) be a CRN. We say that N is robust if the limit distribution π(· | x0) does not depend 
upon x0. If N is robust, then we denote the limit distribution as π(·) and omit the initial condition.

Remark 6. Notice that our definition of robustness corresponds to the definition of an ergodic stochastic processes in the 
probability theory literature. 


Unlike in the detailed balanced case considered in the previous section, we do not have a general form for the limit dis-
tribution of robust CRNs. Instead, we will provide a construction of a robust CRN that can approximate a given “point mass 
distribution”. We will then “embed” this point mass construction in a larger robust CRN that is capable of approximating an 
arbitrary distribution.

Let x ∈ Zd≥0. A point mass distribution centered at x, denoted by δx , is a distribution δx : Zd≥0 → [0, 1] that satisfies 
δx(x) = 1, and, consequently, δx(x′) = 0 if x′ �= x.

Construction 4 (Point mass network). Let d ≥ 1, x ∈ Zd≥0, and ε > 0. Define the CRN PointMass(x, ε) = (S, C, R, κ) as 
follows.

• The set of species is S = {V 1, . . . , Vd}.
• The sets of complexes, reactions, and rate constants are given by the reaction diagram described by:

0
1−→ V i for i ∈ {1, . . . ,d} if x(i) �= 0,

(x(i) + 1)V i
2d/ε−−−→ x(i)V i for i ∈ {1, . . . ,d},

2V i
1−→ 0 for i ∈ {1, . . . ,d} if x(i) = 0. 


Note that for every i ∈ {1, . . . , d}, exactly one of the two reactions 0 → V i or 2V i → 0 is present in Construction 4.
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Lemma 4. Let d ≥ 1, x ∈ Zd≥0 , and ε > 0. Then, PointMass(x, ε) is robust, with the unique limit distribution π satisfying 
‖π − δx‖∞ < ε.

Proof. Notice that PointMass(x, ε) consists of d decoupled subnetworks, each of which controls the counts of some 
V i independently of all the others. We will therefore focus on one such subnetwork and later generalize. Let πi be the 
stationary distribution of the subnetwork that keeps track of the counts of V i . If x(i) = 0, then the subnetwork is

V i
2d/ε−−−→ 0, 2V i

1−→ 0,

and

πi(0 | m) = πi(0) = 1 (9)

for all m ≥ 0 and the result is shown.
Otherwise, we have x(i) > 0 and the subnetwork is a birth-death process when restricted to the closed set 

ϒ = {m ∈Z : m ≥ x(i)}. Note that the set ϒ is almost surely reached from any initial condition because of the 
reaction 0 → V i . Within ϒ, the CTMC for the subnetwork has the transition rates (propensities) shown below, which satisfy 
detailed balance within ϒ:

x(i) x(i) + 1 x(i) + 2 · · · x(i) + n · · ·

1 1

2d
ε

(x(i)+1)!
0!

2d
ε

(x(i)+2)!
1!

1

2d
ε

(x(i)+n)!
(n−1)!

Hence, we can compute the unique limit distribution explicitly: for any m, n ≥ 0

πi(n + x(i) | m) = πi(n + x(i)) = 1

Mi

⎛
⎝εn(2d)−n

n∏
j=1

( j − 1)!
(x(i) + j)!

⎞
⎠ , (10)

with

Mi =
∞∑

n=0

εn(2d)−n
n∏

j=1

( j − 1)!
(x(i) + j)! , (11)

and πi(n′ | m) = 0, for n′ ≤ x(i) − 1.
Since the subnetworks behave independently, the joint limit probability will simply be the product of the marginal limit 

probabilities: for any x′, x0 ∈Z≥0

π(x′ | x0) = π(x′) =
d∏

i=1

πi(x′(i) | x0(i)) =
d∏

i=1

πi(x′(i)). (12)

We will now show that ‖π − δx‖∞ < ε. Since ‖p − q‖∞ ≤ 2 for any probability distributions p, q, we can assume that 
ε < 2 ≤ 2d. Note that |π(x) − δx(x)| = 1 − π(x), and for all x′ �= x, |π(x′) − δx(x′)| = π(x′). Also, notice that:

1 − π(x) =
∑
x′ �=x

π(x′) =
∑
x′ �=x

|π(x′)|,

so

‖π − δx‖∞ = 1 − π(x). (13)

Utilizing equation (10) in the case n = 0 and (12), we deduce that π(x) = 1/M , where

M =
∏

1≤i≤d
x(i) �=0

Mi .

From (11) we have

Mi ≤
∞∑

εn(2d)−n = 1

1 − ε/(2d)
,

n=0
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which implies

M ≤ 1

(1 − ε/(2d))d
.

Recall that, in general, for variables a and b we have

ad − bd = (a − b)(ad−1 + ad−2b + . . . + bd−1)

so for a = 1 and b = 1 − ε/(2d) we have

1 −
(

1 − ε

2d

)d = ε

2d

d−1∑
�=0

(
1 − ε

2d

)�
<

ε

2
,

where the inequality is satisfied because 0 < (1 − ε/(2d))� < 1 if ε < 2d, and there are d terms in the sum. Therefore, the 
following is true:

1 − π(x) = 1 − 1

M
≤ 1 −

(
1 − ε

2d

)d
< ε,

which, when combined with (13), concludes the proof. �
Remark 7. Lemma 4 holds true (with an almost identical proof) if Construction 4 is replaced with

0
1−→ V i for i ∈ {1, . . . ,d},

(x(i) + 1)V i
2d/ε−−−→ x(i)V i for i ∈ {1, . . . ,d},

where a distinction between null and positive entries of x is not made. However, if such a distinction is made, as in Con-
struction 4, then the approximation of the target limit distribution is more accurate (since the marginal limit distributions 
of the null entries of x are exactly the point mass distribution at 0). Moreover, the reactions of type 2V i → 0 utilized when 
x(i) = 0 provide a faster convergence to the limit distribution, which will be essential to obtain the main result of this 
paper, which is Theorem 5 (which in turn implies Theorem 6). More details on how the convergence rate is used to prove 
the result are given in the Appendix. 


Construction 5 (Point Mass Mixing Network). Let d ≥ 1 and q : Zd≥0 → [0, 1] be a distribution with finite support 
{v1, v2, . . . , vm}. Let δ > 0. Define the CRN PointMassMix(q, δ) = (S, C, R, κ) as follows.

• The set of species is S = {V 1, . . . , Vd, H1, . . . , Hm}. In this case, each of the hidden species H1, . . . , Hm will serve as a 
catalyst for a network that generates a point mass distribution centered at the corresponding element of the support

• The sets of complexes, reactions, and rate constants are given by the reaction diagram described by:

0
δ2q(vi)−−−−−⇀↽−−−−

δ
Hi, for i ∈ {1, . . . ,m},

Hi
1−→ Hi + V j, for i ∈ {1, . . . ,m}, if vi( j) �= 0,

Hi + (vi( j) + 1)V j
2d/δ−−−→ Hi + vi( j)V j, for i ∈ {1, . . . ,m}, j ∈ {1, . . . ,d},

Hi + 2V j
1−→ Hi for i ∈ {1, . . . ,m}, if vi( j) = 0. 


Remark 8. If δ is small enough, creation of catalyst species is much slower than destruction, and the probability that there 
is more than one catalyst species at any time can be made arbitrarily small. Furthermore, once a catalyst species is present, 
if the destruction rate δ is slow enough, the number of catalysts will remain unchanged long enough for the corresponding 
Point Mass Network to approach its limit distribution. 


Theorem 5. Let d ≥ 1 and let q : Zd≥0 → [0, 1] be a distribution with finite support. Then, (i) for every δ > 0 the CRN 
PointMassMix(q, δ) is robust, and (ii) for any ε > 0 there exists δ > 0 such that, for the set of visible species V = {V 1, . . . , Vd}, the 
marginal of the unique limit distribution of PointMassMix(q, δ) satisfies ‖πV − q‖∞ < ε.

The proof of Theorem 5 is given in Appendix A.6. Distributions generated by two Point Mass Networks and a Point Mass 
Mixing Network are illustrated in Fig. 2.
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Fig. 2. Examples of robust constructions. In the first panel we see the limit distribution of Construction 4 for a 1-dimensional point mass distribution cen-
tered at x = 7. Similarly, the second panel shows the limit distribution for Construction 4, this time approximating a 2-dimensional point mass distribution 
centered at x = (3, 2). The third panel shows an arbitrary 2-dimensional probability distribution. Each pixel in the picture has an associated Point Mass 
Network as prescribed by Construction 5.

Remark 9. As will be clear in the proof of Theorem 5, the result is based on the fact that the reactions of the form 0 → Hi
are much slower than the reactions of the form Hi → 0, which in turn need to occur on a slower time scale than the 
reactions changing the visible species. Hence, while the ratios of the propensities of the reactions 0 → Hi need careful 
tuning, the rate constants of other reactions do not need precise regulation. In particular, some rate constants only need to 
be of different orders of magnitude for the result to hold. This is a desired property, as rate parameters may be difficult to 
specify with precision in practice. 


We state and prove here an immediate important consequence of Theorem 5.

Theorem 6. The set of all robust CRNs is universally approximating.

Proof. Let d ≥ 1, q : Zd≥0 → [0, 1] be a distribution, and let ε > 0. By Lemma 2 we know that there exists a distribution 
q′ :Zd≥0 → [0, 1] with finite support that satisfies ‖q − q′‖∞ < ε. Consider the CRN PointMassMix(q′, ε − ‖q − q′‖∞). By 
Theorem 5 we have that for the set of visible species V = {V 1, . . . , Vd}:

‖πV − q′‖∞ < ε − ‖q − q′‖∞.

Finally, by the triangle inequality we have

‖πV − q‖∞ ≤ ‖πV − q′‖∞ + ‖q − q′‖∞ < ε. �
4. More general constructions

In this section we explore generalizations of the constructions used in the previous sections. Theorem 5 states that 
by following Construction 5 we can design robust CRNs whose limit distribution approximates a given distribution, with 
any given accuracy and for any chosen distribution. Hence, the aim of generalizing Constructions 4 and 5 does not reside 
in exploring a larger set of distributions to approximate, but rather in comparing different CRNs with similar stationary 
distributions. As an example, let q be the Poisson distribution with mean κ . Using the construction provided above, we can 
design a robust CRN whose limit distribution is arbitrarily close to q, by truncating q to a finite support ϒ as in Lemma 2, 
and by using Construction 5 to approximate the truncated q. Note that Construction 5 gives a CRN with |ϒ| + 1 species, 
4|ϒ| reactions, and with high values of the molecularity (i.e. maxy∈C ‖y‖1) and of the logarithm of the rate constants, 
| logκy→y′ |, to obtain its high accuracy. However, the distribution q can be obtained exactly as the limit distribution of the 
robust CRN

0
κ−⇀↽−
1

V .

Similarly, the marginal stationary distribution q of V is known for the CRN

2H1
κ1−→ H1, H1

κ2−−⇀↽− H2, H2
κ4−→ H2 + V , V

κ5−→ 0,

κ3
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and it is associated with a confluent hypergeometric equation [58–60], provided that the initial amount of molecules of 
the species H1, H2 is non-zero. The CRN is not robust but it could be made so by adding the reaction 0 → H1 with a 
low reaction rate, so as to not perturb the stationary distribution too much. Using Construction 5 to approximate q would 
require more species and more reactions. Hence, natural questions in terms of complexity arise: given a distribution q and 
a parameter ε > 0, what is the minimal size of a robust CRN (in terms of number of species, number of reactions, and 
magnitude of the rate constants) whose limit distribution π satisfies ‖π − q‖∞ < ε?

We begin by formulating a generalization of Construction 4. The generalization, detailed in Construction 6 below, allows 
us to design robust CRNs whose limit distributions are arbitrarily close to the uniform distributions on d-dimensional 
intervals (see Proposition 7). The molecularity and the logarithm of the rate constants are similar to those of Construction 5, 
but the number of species utilized is only d, and the number of reactions is 2d.

Definition 5. Let d ≥ 1 and let a, b ∈ Zd≥0 be such that a ≤ b. We say that a probability distribution q on Zd≥0 is uniform
over

[a,b] .= [a(1),b(1)] × [a(2),b(2)] × · · · × [a(d),b(d)]
if for all x ∈Zd≥0

q(x) =

⎧⎪⎪⎨
⎪⎪⎩

d∏
i=1

1

b(i) − a(i) + 1
if a ≤ x ≤ b

0 otherwise.

Remark 10. Note that the point mass distribution at x is a particular case of the uniform distribution, as it can be regarded 
as the uniform distribution over [x, x]. 


Construction 6 (Uniform Distribution Network). Let d ≥ 1 and let a, b ∈Zd≥0 be such that a ≤ b. Let δ > 0 and define the CRN 
MultiDimUnif(a, b, δ) = (S, C, R, κδ) as follows.

• The set of species is S = {V 1, . . . , Vd}.
• The sets of complexes, reactions, and rate constants are given by the reaction diagram described by:

0
1−→ V i for i ∈ {1, . . . ,d} if b(i) �= 0,

(b(i) + 1)V i
2d/δ−−−→ a(i)V i for i ∈ {1, . . . ,d},

2V i
1−→ 0 for i ∈ {1, . . . ,d} if b(i) = 0. 


Remark 11. Note that PointMass(x, δ) can be regarded as a particular case of Construction 6. In particular,
PointMass(x, δ) = MultiDimUnif(x, x, δ) for all x ∈Zd≥0 and any δ > 0. 


Proposition 7. Let d ≥ 1 and let a, b ∈ Zd≥0 be such that a ≤ b. Then, for any choice of δ > 0 the CRN MultiDimUnif(a, b, δ) is 
robust. Moreover, if we denote by πδ its limit distribution and by q the uniform distribution over [a, b], we have

lim
δ→0

‖πδ − q‖∞
δ

≤ 1.

A proof of the proposition is given in Section A.3 in the Appendix, together with a sharper estimate on the distance 
between πδ and q.

Remark 12. As will be clear in the proof of Proposition 7, its validity does not depend on a fine tuning of the rate constants 
of the model, which as already observed in Remark 9 may be difficult to obtain in practice. Instead, the result is based 
on a time scale separation between the reactions creating and degrading V i in Construction 6: as long as the reactions 
creating V i are slower than those degrading it (when enough molecules are present), a uniform distribution over [a, b]
can be successfully approximated. The estimates found in Section A.3, however, may differ for different choices of rate
constants. 


The second, and probably more important, generalization we deal with in this section is the following. In Construction 5
we combine different robust CRNs whose limit distributions are close to point mass distributions to obtain a new robust 
CRN whose limit distribution is close to a mixture of point mass distributions. In general, given a finite number of robust 
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CRNs with limit distributions πi , we want to be able to design a new robust CRN that combines them, and whose limit dis-
tribution is arbitrarily close to the mixture of the distributions πi . This can be accomplished under some general conditions, 
and the precise result is stated in Theorem 8. The assumptions of Theorem 8 have a slightly more technical nature than 
those of Theorem 5, which is a particular case. Note that by the known theory on detailed balanced CRNs, Lemma 4, and 
Proposition 7, it follows that robust CRNs whose limit distributions are arbitrarily close to a mixture of Poisson distributions, 
point mass distributions, and uniform distributions are readily available, and involve less species and reactions than those 
of Construction 5. The precise statement of the result is given in Theorem 9.

Before stating Theorem 8, we introduce a new construction (which is a generalization of Construction 5) and necessary 
concepts from the theory of stochastic processes.

Construction 7 (Mixing Network). Let F = {N1, . . . , Nm} be a finite ordered set of m CRNs with the same set of species 
{V 1, . . . , Vd}. We denote by Ri the set of reactions of Ni , and for each reaction y → y′ ∈ Ri we denote by κ i

y→y′ the cor-

responding rate constant. Let ζ ∈Rm
>0 be such that 

∑m
i=1 ζ(i) = 1, and let δ > 0. Define the CRN Mix(F , ζ, δ) = (S, C, R, κ)

as follows.

• The set of species is S = {V 1, . . . , Vd, H1, . . . , Hm}
• The sets of complexes, reactions, and rate constants are given by the reaction diagram described by:

0
δ2ζ(i)−−−−⇀↽−−−

δ
Hi, for i ∈ {1, . . . ,m},

Hi + y
κ i

y→y′−−−−→ Hi + y′, for i ∈ {1, . . . ,m}, y → y′ ∈ Ri . 


Definition 6. Consider a robust CRN with d species, and let ε > 0. We define the mixing time at level ε to be the quantity

τ ε = inf

⎧⎨
⎩t ≥ 0 : sup

x0∈Zd≥0

‖P (·, s | x0) − π‖∞ < ε ∀s ≥ t

⎫⎬
⎭ .

The CRNs PointMass(x, δ) and MultiDimUnif(a, b, δ) have finite mixing times τ ε , for any δ, ε > 0. This is proven in 
Lemma A.2 in Section A.2 of the Appendix.

Definition 7. We say that a CRN is explosive if there exist an initial condition x0 and a finite time t ∈R>0 such that

P

(
sup

0≤s≤t
‖X(s)‖∞ = ∞

∣∣∣∣∣ x0

)
> 0.

We say that the CRN is non-explosive otherwise.

Theorem 8. Let F = {N1, . . . , Nm} be a finite ordered set of m CRNs with the same set of species V = {V 1, . . . , Vd}. Assume that each 
CRN Ni is robust, denote by πi its limit distribution and by τ ε

i its mixing time at level ε > 0. Let ζ ∈Rm
>0 be such that 

∑m
i=1 ζ(i) = 1, 

and assume that for every ε > 0

max
1≤i≤m

τ ε
i < ∞.

Moreover, assume that for every δ > 0 the CRN Mix(F , ζ, δ) is non-explosive. Then, for every δ > 0 the CRN Mix(F , ζ, δ) is robust, 
and, if we denote by πδ the limit distribution of Mix(F , ζ, δ), we have

lim
δ→0

∥∥∥∥∥πδ
V −

m∑
i=1

ζ(i)πi

∥∥∥∥∥
∞

= 0.

In order to choose δ such that the distance∥∥∥∥∥πδ
V −

m∑
i=1

ζ(i)πi

∥∥∥∥∥
∞

is smaller than a given quantity, it is important to have upper bounds on the mixing times τ ε
i . In Appendix B, such bounds 

are developed for the CRN PointMass(x, δ). We have seen in Theorem 5 (which is a consequence of Theorem 8) how a 
family of point mass networks can be used to construct a robust CRN whose limit distribution is arbitrarily close to a given 
distribution q.
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However, the application of Theorem 8 does not need to be limited to point mass networks. Before stating the next 
result, which is more general than Theorem 5, we introduce a choice of CRN constructions with a product-form Poisson as 
limit distribution. Note that, due to [13], many different choices are possible. Here we choose one with a finite mixing time, 
so that Theorem 8 can be applied.

Construction 8. (Product-form Poisson Network) Let c ∈Rd
>0. Define the CRN ProdPois(c) = (S, C, R, κ) as follows.

• The set of species is S = {V 1, . . . , Vd}.
• The sets of complexes, reactions, and rate constants are given by the reaction diagram described by:

0
c(i)2

−−−→ V i for i ∈ {1, . . . ,d}
V i

c(i)−−→ 2V i for i ∈ {1, . . . ,d},
2V i

1−→ 0 for i ∈ {1, . . . ,d}. 


Theorem 9. Let {π1, . . . , πm} be a family of distributions on Zd≥0 such that there is a partition {I1, I2, I3} of {1, . . . , m} satisfying the 
following:

• for all i ∈ I1 , πi is a point mass distribution at some vi ∈Zd≥0;

• for all i ∈ I2 , πi is a uniform distribution over [a(i), b(i)] for some a(i) ≤ b(i) ∈Zd≥0;

• for all i ∈ I3 , πi is a product-form Poisson distribution with mean ci ∈Rd
>0 .

Let F δ = {N δ
1 , . . . , N δ

m} be a family of CRNs with common set of species V = {V 1, . . . , Vd}, such that

• for all i ∈ I1 , N δ
i = PointMass(vi, δ);

• for all i ∈ I2 , N δ
i = MultiDimUnif(a(i), b(i), δ);

• for all i ∈ I3 , N δ
i =Ni = ProdPois(ci).

Let ζ ∈ Rm
>0 with 

∑m
i=1 ζ(i) = 1. Then, for any δ > 0 the CRN Mix(F δ, ζ, δ) is robust. Moreover, if πδ denotes its limit distribution, 

then

lim
δ→0

∥∥∥∥∥πδ
V −

m∑
i=1

ζ(i)πi

∥∥∥∥∥
∞

= 0.

The proofs of Theorem 8 and Theorem 9 are given in Sections A.1 and A.5 of the Appendix, respectively. We note that 
much of the proof relies on time scale separation, hence, similarly to what we noted in Remarks 9 and 12, a precise 
regulation of all the rate constants is not necessary for the results to hold.

As a final remark, note that in Constructions 4, 6, and 8, the species do not interact (i.e. two different species are never 
involved in the same reaction). As a consequence, the counts of the different species evolve independently. It is therefore 
straightforward to obtain CRNs whose limit distribution approximates products of Poisson distributions and uniform distri-
butions. It is indeed sufficient to consider different constructions for different species: consider for example the distribution 
q on Z2≥0 given by q(v1, v2) = q1(v1)q2(v2), where q1 is uniform over {a, a +1, . . . , b} (say with 1 ≤ a ≤ b) and q2 is Poisson 
with mean c. Then, q is approximated by the limit distribution of

0
1−→ V 1

(b + 1)V 1
2/δ−−→ aV 1

0
c2−→ V 2

V 2
c−→ 2V 2

2V 2
1−→ 0.

The design of the CRN in Fig. 3 follows this idea. Note however that Theorem 8 is considerably more general, in that the 
subnetworks Ni may be arbitrarily complex and may involve arbitrary interactions between the visible species (subject to 
the other conditions of the theorem). An apparent limitation of the theorem as stated is that the subnetworks Ni may not 
have their own hidden species; this is to ensure that when one subnetwork is “turned off” and another is “turned on”, we 
can be assured (by robustness and finite mixing time) that all subnetwork species will be regulated within known bounds 



78 D. Cappelletti et al. / Theoretical Computer Science 801 (2020) 64–95
Fig. 3. Example of general mixing. The reaction diagram on the two left columns is an example of general mixing as given by Construction 7 with its target 
distribution on the right. Notice that whereas the CRN with limit distribution shown in the third panel of Fig. 2 has 6 reactions per pixel, giving a total 
of 6 × 50 × 50 = 1.5 × 104 reactions, the above distribution is generated using only 34 reactions despite the dimension of its support being larger, namely 
100 × 100. In general, the size of the support of a distribution is not an indication of its complexity in terms of the CRNs that generate them. In this 
example δ = 0.01.

– this would not be the case if different subnetworks had different sets of hidden species, for example. Since the use of 
hidden species has been critical for generating interesting marginal distributions, in this work and in prior work [48], it 
would desirable to also be able to mix distributions that were generated with the help of hidden species. Thankfully, it is 
straightforward to augment each Ni with degradation reactions for any hidden species that it was missing, thus obtaining 
a new set of Ni each of which use the same set of visible and hidden species and have unchanged marginal distributions 
on the visible species. Now Theorem 8 can be applied, renaming the subnetworks’ visible and hidden species together 
as the theorem’s “visible” species, and adding the theorem’s new “hidden” species; the marginal of the resulting mixture 
distribution onto the subnetworks’ original visible species will be as desired.
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Appendix A. Proofs and estimates

The aim of this section is to provide a complete proof of Proposition 7, Theorem 5, Theorem 8, and Theorem 9. In 
particular, we will show how Theorem 5 follows from Theorem 9, which in turn follows from Theorem 8.

From the proof of Theorem 8 it will emerge how, for a fixed ε > 0, the choice of δ such that∥∥∥∥∥πδ
V −

m∑
ζ(i)πi

∥∥∥∥∥ < ε
i=1 ∞
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depends on the mixing times of the CRNs N1, . . . , Nm . This holds in the particular case of Theorem 5 as well. Hence, to 
guide the design of networks that approximate a given distribution with accuracy ε, we will provide in Appendix B useful 
estimates on the mixing times of PointMass(x, δ).

A.1. Proof of Theorem 8

Proof. Denote by Xδ(·) the continuous-time Markov chain associated with Mix(F , ζ, δ). Define Xδ
V (·) and Xδ

H(·) as the 
projections of Xδ(·) onto the components of the species in V = {V 1, . . . , Vd} and H = {H1, . . . , Hm}, respectively. Moreover, 
for convenience we will write a state of Mix(F , ζ, δ) as

(v,h) ∈ Zd+m
≥0 ,

with v and h indicating the components of the species in V and H, respectively.
Note that Xδ

H(·) is a continuous-time Markov chain itself, and is distributed according to the subnetwork of Mix(F , ζ, δ), 
which we will denote by NH = (H, CH, RH), given by

0
ζ(i)δ2

−−−−⇀↽−−−
δ

Hi for 1 ≤ i ≤ m. (A.1)

NH is detailed balanced with detailed balanced equilibrium δζ , and its state space is irreducible. It follows that NH admits 
a unique stationary distribution πδ

H defined by

πδ
H(h) = e−δ

m∏
i=1

(δζ(i))hi

hi ! (A.2)

for all h ∈Zm≥0.

Consider a vector v ∈Zd≥0 that is a positive recurrent state for at least one reaction system Ni , i ∈ {1, . . . , d}. Moreover, 
denote by σ δ(v) the time of the first visit of Xδ(·) to (v, 0), defined as

σ δ(v) = inf{t ≥ 0 : Xδ(t) = (v,0) and Xδ(s) �= (v,0) for some 0 ≤ s < t}.
We prove that Mix(F , ζ, δ) is robust by proving that for any (v0, h0) ∈Zd+m

≥0

E[σ δ(v) | Xδ(0) = (v0,h0)] < ∞. (A.3)

Indeed, if (A.3) holds, then (v, 0) is positive recurrent by definition, hence there exists a stationary distribution πδ whose 
support coincides with the closed irreducible component that contains (v, 0), and such stationary distribution is unique. 
Moreover, a unique closed irreducible set exists and it is eventually reached with probability 1 from all states of Zd+m

≥0 , 
otherwise (A.3) could not hold.

We need to prove (A.3). Let ei ∈Zm≥0 be the ith vector of the canonical basis, namely the vector with 1 in the ith entry 
and 0 in the other components. We have that (A.1) is positive recurrent and irreducible, and that Xδ(·) is non-explosive 
and therefore well-defined for all times greater than 0. Hence, given Xδ(0) = (v0, h0), the chain will satisfy Xδ

H(t) = ei after 
a time with finite expectation. Assume Xδ

H(t) = ei , and let u be the time until the next change in copy-numbers of the 
species {H1, . . . , Hm}. Then, u is exponentially distributed with rate δ + δ2, independently of the value of Xδ

V (t). It follows 
that there is a positive probability ϕi(δ, v) that u > τπi(v)/2, where

τη = max
1≤i≤m

τ
η
i

is finite by assumption for all η > 0. Moreover, by definition of mixing times,

P
(

Xδ(t + u) = (v,0)

∣∣∣ Xδ
H(t) = ei, u > τπi(v)/2, Xδ

V (t) = v ′)≥ πi(v)

2
> 0,

independently of v ′ ∈Zd≥0. Hence, the number of times the chain satisfies Xδ
H(t) = ei before visiting (v, 0) is stochastically 

bounded from above by a geometric random variable with mean 
(
ϕi(δ, v)πi(v)/2

)−1
. Moreover, the expected time between 

two visits of (A.1) to ei is finite. Hence, (A.3) holds.
For all δ > 0 we have

πδ
V (v) − πδ(v,0) =

∑
h∈Zm≥0\{0}

πδ(v,h),

which implies
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0 ≤ πδ
V (v) − πδ(v,0) ≤

∑
h∈Zm≥0\{0}

πδ
H(h) = 1 − e−δ. (A.4)

For any v ∈Zd≥0, let Y δ
v(t) be the time Xδ(·) spends in state (v, 0) ∈Zd+m

≥0 by time t , that is

Y δ
v(t) =

t∫
0

1{(v,0)}(Xδ(s))ds.

By classical Markov chain theory and by robustness of Mix(F , ζ, δ) we have that

lim
t→∞

Y δ
v(t)

t
= πδ(v,0)

almost surely, for any initial condition Xδ(0).
We now assume that for any v ∈Zd≥0 and any ε > 0, there exists δε,v such that if δ ≤ δε,v then∣∣∣∣∣ lim

t→∞
Y δ

v(t)

t
−

m∑
i=1

ζ(i)πi(v)

∣∣∣∣∣< 3

4
ε (A.5)

almost surely, independently on the initial condition Xδ(0). For δ small enough, both δ ≤ δε,v and 1 − e−δ < ε/4 hold. 
Hence, by (A.4), (A.5), and the triangular inequality∣∣∣∣∣πδ

V (v) −
m∑

i=1

ζ(i)πi(v)

∣∣∣∣∣< ε.

For any ε > 0, there exists a compact set K ε ⊂Zd≥0 such that for any v /∈ K ε

πδ
V (v) +

m∑
i=1

ζ(i)πi(v) < ε.

Since K ε is compact, the minimum δε = minv∈K ε δε,v exists and is positive. Hence, for all v ∈ Zd≥0 and for all δ small 
enough such that δ ≤ δε and 1 − e−δ < ε/4, we have∣∣∣∣∣πδ

V (v) −
m∑

i=1

ζ(i)πi(v)

∣∣∣∣∣<
{
ε if v ∈ K ε

πδ
V (v) +∑m

i=1 ζ(i)πi(v) < ε if v /∈ K ε

and the proof is concluded. Hence, it suffices to show (A.5).
Let t0 = 0 and define recursively

t j = inf{t ≥ t j−1 : Xδ
H(t) = 0 and Xδ

H(s) �= 0 for some t j−1 < s < t}
for j ≥ 1. That is, t j with j ≥ 1 is the time of the jth visit to a state with no molecules of species H1, . . . , Hm .

For any j ≥ 1, let s j denote the holding time in the state with no molecules of {H1, . . . , Hm}, measured from time t j . 
Then, s j is exponentially distributed with rate

∑
y→y′∈RH

λy→y′(0) =
m∑

i=1

δ2ζ(i) = δ2.

It follows from classical renewal theory and from (A.2) that for any j ≥ 1

E[t j+1 − t j] = 1

πδ
H(0)

∑
y→y′∈RH λy→y′(0)

= eδ

δ2
.

It follows that, with probability 1, lim j→∞ t j = ∞. This in turn implies that almost surely

lim
t→∞

Y δ
v(t)

t
= lim

j→∞
Y δ

v(t j)

t j
.

For all j ≥ 1, independently of the value of Xδ
V (t j), a molecule of Hi is produced at time t j + s j with probability ζ(i). 

Let u j denote the molecule lifetime. Note that with probability
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δ

δ + δ2
= 1

1 + δ

the molecule of Hi is degraded before another molecule of a species in H is produced. For convenience, denote this event 
by A j . Given that A j occurs, u j is the minimum between the degradation of the Hi molecule (exponentially distributed 
with rate δ) and the time until the production of another molecule of a species in H (exponentially distributed with rate 
δ2). Hence, given that A j occurs, u j is exponentially distributed with rate δ + δ2. It follows that

P (u j > τε/2 | A j) = e−(δ+δ2)τ ε/2
.

Given that u j > τε/2, all the reactions of the system Ni can take place for a time longer than τ ε/2, and these are the only 
reactions that can occur. Thus, by the definition of mixing times,

πi(v) − ε

2
≤ P
(

Xδ
V (t j+1) = v

∣∣∣ Xδ
H(t j + s j) = Hi, A j, u j > τε/2, Xδ

V (t j) = v ′)≤ πi(v) + ε

2

for all v, v ′ ∈ Zd≥0. Note that the bounds do not depend on Xδ
V (t j) = v ′ . In conclusion, by conditioning and by using the 

probabilities of the conditioning events calculated above, we obtain

P
(

Xδ
V (t j+1) = v | Xδ

V (t j) = v ′)≥
m∑

i=1

(
πi(v) − ε

2

)
ζ(i)

1

1 + δ
e−(δ+δ2)τ ε/2

.=bδ(v) (A.6)

P
(

Xδ
V (t j+1) = v | Xδ

V (t j) = v ′)≤
m∑

i=1

(
πi(v) + ε

2

)
ζ(i)

1

1 + δ
e−(δ+δ2)τ ε/2 + δ

1 + δ
+ 1

1 + δ

(
1 − e−(δ+δ2)τ ε/2

)
.=Bδ(v). (A.7)

The sequence Dδ( j) = Xδ
V (t j) for j ∈Z≥0 defines a discrete time Markov chain. Since Xδ(·) is robust, Dδ(·) has a unique 

closed irreducible set ϒ, and for any v ′ ∈Zd≥0 we have

lim
j→∞

P (Dδ( j) ∈ ϒ | Dδ(0) = v ′) = 1.

Moreover, (A.6) and (A.7) give a lower and upper bound on the transition probabilities to a state v from a state v ′ , which 
does not depend on v ′ . Hence, for small enough ε and small enough δ such that bδ(v) > 0, Dδ(·) restricted to ϒ is aperiodic 
and positive recurrent. It follows that there exists a limit distribution γ such that for any v, v ′ ∈Zd≥0

lim
j→∞

P (Dδ( j) = v | Dδ(0) = v ′) = γ (v),

independently of v ′ . Furthermore, since the argument of the limit is bounded from below by bδ(v) and from above by 
Bδ(v), we have

bδ(v) ≤ γ (v) ≤ Bδ(v).

If W j(v) is the number of visits of Dδ(·) to v up to step j (included), we have that with probability 1 lim j→∞ W j(v) = ∞, 
and

lim
j→∞

W j(v)

j
= γ (v).

By the strong law of large numbers, we have that almost surely

lim
j→∞

Y δ
v(t j)

t j
= lim

j→∞
Y δ

v(t1)

t j
+ lim

j→∞
t j − t1

t j
· Y δ

v(t j) − Y δ
v(t1)

t j − t1

= 0 + lim
j→∞

t j − t1

t j
·
∑W j−1(v)

i=1 si∑ j
i=2(ti − ti−1)

= lim
j→∞

t j − t1

t j
·
∑W j−1(v)

i=1 si

W j−1(v)
· W j−1(v)

j − 1
· j − 1∑ j

i=2(ti − ti−1)

= 1 · 1

δ2
· γ (x) · δ2

eδ
= γ (x)e−δ.
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Hence,

e−δbδ(v) ≤ lim
j→∞

Y δ
v(t j)

t j
≤ e−δ Bδ(v).

If δ is small enough,

e−δbδ(v) ≥
m∑

i=1

(
ζ(i)πi(v)

)
− 3

4
ε

e−δ Bδ(v) ≤
m∑

i=1

(
ζ(i)πi(v)

)
+ 3

4
ε,

which proves (A.5) and concludes the proof. �
A.2. Analysis of Constructions 4 and 6

In this section, we study the limit distributions and the mixing times of a construction that generalize slightly Con-
structions 4 and 6, by allowing for a more general choice of rate constants. We also give explicit bounds on the distance 
between the uniform distribution and the limit distribution of the construction presented here. The bounds provided here 
are in general sharper than those presented in the main text.

Construction 6′ (General Uniform Distribution Network). Let d ≥ 1 and let a, b ∈ Zd≥0 be such that a ≤ b. Define the CRN 
MultiDimUnif′(a, b, κ) = (S, C, R, κ) as follows.

• The set of species is S = {V 1, . . . , Vd}.
• The sets of complexes, reactions, and rate constants are given by the reaction diagram described below:

0
κ i

1−→ V i for i ∈ {1, . . . ,d} if b(i) �= 0,

(b(i) + 1)V i
κ i

2−→ a(i)V i for i ∈ {1, . . . ,d},

2V i
κ i

3−→ 0 for i ∈ {1, . . . ,d} if b(i) = 0. 


In what follows, we will denote by Xκ (·) the continuous-time Markov chain associated with the CRN
MultiDimUnif′(a, b, κ), and we will use the notation ri = b(i) − a(i) + 1 for all i ∈ {1, . . . , d}. Further, we will 
denote by Xκ (·, i) the ith component of Xκ (·). Note that the components Xκ (·, i) are distributed as independent 
continuous-time Markov chains. In particular, Xκ (·, i) is distributed as the process associated with the subnetwork of 
MultiDimUnif′(a, b, κ) given by the reactions changing the species V i . We will denote by Aκ,i the generator of Xκ (·, i)
(see [61]). We define σκ,i and σκ,i

v(i) as the hitting times of [a(i), b(i)] and of v(i) ∈Z≥0, respectively:

σκ,i = inf{t > 0 : Xκ (t, i) ∈ [a(i),b(i)]},
σ κ,i

v(i) = min{t > 0 : Xκ (t, i) = v(i) and Xκ (s, i) �= v(i) for some s < t}.
Finally, we denote by Eκ,i

v0(i)[·] the expectation with respect to the distribution of Xκ (·, i) given Xκ (0, i) = v0(i)

Lemma A.1. Let d ≥ 1 and let a, b ∈Zd≥0 be such that a ≤ b. Consider the function L(·), defined as L(v(i)) = v(i) for all v(i) ∈ Z≥0 . 
Then, limv(i)→∞ L(v(i)) = ∞. Moreover, for any κ > 0 and any i ∈ {1, . . . , d}, there exists αi ∈ R>0 and a compact set Ki ⊂ Z≥0

such that

Aκ,i L(v(i)) ≤ −αi L
2(v(i)) for all v(i) /∈ Ki .

Proof. Clearly, limv(i)→∞ L(v(i)) = ∞. Now assume that b(i) = 0. Then, for all v(i) ≥ 2 we have

Aκ,i L(v(i)) = −κ i
2 v(i) − 2κ i

3 v(i)(v(i) − 1),

which implies that for v(i) big enough Aκ,i L(v(i)) ≤ −κ i v(i)2 = −κ i L2(v(i)), and the result holds.
3 3
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Assume that b(i) �= 0. For all v(i) ≥ b(i) + 1 we have

Aκ,i L(v(i)) = κ i
1 − κ i

2
v(i)!

(v(i) − b(i) − 1)! ,

which is smaller than or equal to − κ i
2

2 L2(v(i)) for v(i) large enough. The proof is then concluded. �
Lemma A.2. Let d ≥ 1 and let a, b ∈ Zd≥0 be such that a ≤ b. For any κ > 0, MultiDimUnif′(a, b, κ) is robust and the support of 
its limit distribution is

� = {v ∈Zd≥0 : v ≥ a and v(i) = 0 if b(i) = 0} =

⎛
⎜⎜⎝×

1≤i≤d
b(i)=0

{0}

⎞
⎟⎟⎠×

⎛
⎜⎜⎝×

1≤i≤d
b(i) �=0

{v(i) : v(i) ≥ a(i)}

⎞
⎟⎟⎠ .

Moreover, for any κ > 0 and any ε > 0, the mixing time of MultiDimUnif′(a, b, κ) at level ε is finite.

Proof. In order to prove the existence of a unique limit distribution and argue that the mixing times are finite, we will 
make use of Foster-Lyapunov criteria discussed by Meyn and Tweedy in [62]. In particular, we will use the concept of super 
Lyapunov function, developed by Athreya, Kolba, and Mattingly in [63], to which Appendix C is devoted.

Since the components Xκ (·, i) are distributed as independent continuous-time Markov chains, in order to prove ro-
bustness of Xκ (·) it is sufficient to prove it for all its components separately. The same holds for the description of the 
irreducible closed sets of Xκ (·), which are necessarily Cartesian products of closed and irreducible sets of the components 
Xκ (·, i). Finally, the mixing times of Xκ (·) at level ε > 0 are finite for all ε > 0, if and only if the mixing times τ ε,i of 
Xκ (·, i) at level ε > 0 are finite for all ε > 0 and for all i ∈ {1, . . . , d}.

If b(i) = 0, then the process Xκ (·, i) is the continuous-time Markov chain associated with the CRN with reaction diagram

V i
κ i

2−→ 0, 2V i
κ i

3−→ 0.

As such, Xκ (·, i) can only decrease. It follows that the set {0} is closed and irreducible for Xκ (·, i). Moreover, it is the only 
closed and irreducible set, since the reaction V i → 0 can always take place as long as there is at least one molecule of V i .

If b(i) �= 0, then the process Xκ (·, i) is the continuous-time Markov chain associated with the CRN with reaction diagram

0
κ i

1−→ V i, (b(i) + 1)V i
κ i

2−→ a(i)V i .

Hence, the process Xκ (·, i) can always increase by 1, and decrease by ri if and only if at least b(i) + 1 = ri + a(i) molecules 
of V i are available. Hence, the set �(i) = {v(i) ∈Z≥0 | v(i) ≥ a(i)} is the only closed and irreducible set of Xκ (·, i).

In both cases, we can conclude that Xκ (·, i) is robust by showing that a unique limit distribution exists. This, together 
with the fact that the mixing times τ ε,i are finite, follows from Lemma A.1 and Theorem C.2. �

In Lemma A.2 we proved that Xκ (·) is robust, which holds if and only if each process Xκ (·, i) is robust. We denote by 
πκ the unique limit distribution of Xκ (·), and by πκ,i the unique limit distribution of Xκ (·, i). Since the components of 
Xκ (·) are independent, it follows that

πκ(v) =
d∏

i=1

πκ,i(v(i)) for all v ∈Z≥0.

Hence, in order to study πκ it is sufficient to study the distributions πκ,i , for i ∈ {1, . . . , d}, and this is what we will do.

Lemma A.3. Let i ∈ {1, . . . , d} with b(i) = 0. Then, πκ,i is the point mass distribution at 0.

Proof. The result follows from the fact that Xκ (·, i) is robust, and {0} is its only closed irreducible set, as proven in 
Lemma A.2. �
Lemma A.4. Let i ∈ {1, . . . , d} with b(i) ≥ 1. Let v0(i) ≥ b(i) + 1. Assume that

κ i
2ri(b(i) + 1)! > κ i

1. (A.8)

Then

Eκ,i
v0(i)[σκ,i] ≤ v0(i)

κ i
2ri(b(i) + 1)! − κ i

1

.
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Proof. Let L(v(i)) = v(i) for all v(i) ∈Z≥0. By Dynkin’s formula we have that for all t > o

Eκ,i
v0(i)[L(Xκ (min{t,σ κ,i}, i))] = L(v0(i)) + Eκ,i

v0(i)

⎡
⎢⎣

min{t,σ κ,i}∫
0

Aκ,i L(Xκ (s, i))ds

⎤
⎥⎦

≤ v0(i) + Eκ,i
v0(i)

⎡
⎢⎣

min{t,σ κ,i}∫
0

(κ i
1 − κ i

2ri(b(i) + 1)!)ds

⎤
⎥⎦

= v0(i) + (κ i
1 − κ i

2ri(b(i) + 1)!)Eκ,i
v0(i)[min{t,σ κ,i}].

By (A.8) and since for all times t > 0 we have Eκ,i
v0(i)[L(Xκ (min{t, σκ,i}, i))] ≥ 0, we may conclude

Eκ,i
v0(i)[min{t,σ κ,i}] ≤ x0(i)

κ i
2ri(b(i) + 1)! − κ i

1

.

We may use the monotone convergence theorem to conclude the proof. �
Lemma A.5. Let i ∈ {1, . . . , d} with b(i) ≥ 1, and assume (A.8) holds. Then,

0 ≤ 1

ri
− πκ,i(b(i)) ≤ 1

(ri)
2

· (κ i
1)

2

κ i
2(b(i) + 1)! + κ i

1

(
b(i) + 2

κ i
2ri(b(i) + 1)! − κ i

1

+ b(i) − a(i)

κ i
1

)
.

Proof. By classical theory on continuous-time Markov chains it is known that

πκ,i(b(i)) = 1/κ i
1

Eκ,i
b(i)[σκ,i

b(i)]
,

where 1/κ i
1 is the expected holding time of Xκ (·, i) in the state b(i). By conditioning on the first two steps, we have

Eκ,i
b(i)[σκ,i

b(i)] = 1

κ i
1

+ Eκ,i
b(i)+1[σκ,i

b(i)]

= 1

κ i
1

+ 1

κ i
2(b(i) + 1)! + κ i

1

+ κ i
2(b(i) + 1)!

κ i
2(b(i) + 1)! + κ i

1

Eκ,i
a(i)[σκ,i

b(i)] + κ i
1

κ i
2(b(i) + 1)! + κ i

1

Eκ,i
b(i)+2[σκ,i

b(i)]

= 1

κ i
1

+ 1

κ i
2(b(i) + 1)! + κ i

1

+ κ i
2(b(i) + 1)!

κ i
2(b(i) + 1)! + κ i

1

· b(i) − a(i)

κ i
1

+ κ i
1

κ i
2(b(i) + 1)! + κ i

1

Eκ,i
b(i)+2[σκ,i

b(i)]

= ri

κ i
1

+ κ i
1

κ i
2(b(i) + 1)! + κ i

1

Eκ,i
b(i)+2[σκ,i

b(i)].

Hence,

1

ri
− πκ,i(b(i)) = 1

ri

(
1 − ri

κ i
1 Eκ,i

b(i)[σκ,i
b(i)]

)
= 1

ri

⎛
⎜⎝

(κ i
1)2

κ i
2(b(i)+1)!+κ i

1
Eκ,i

b(i)+2[σκ,i
b(i)]

ri + (κ i
1)2

κ i
2(b(i)+1)!+κ i

1
Eκ,i

b(i)+2[σκ,i
b(i)]

⎞
⎟⎠

= 1

(ri)
2

⎛
⎜⎝

(κ i
1)2

κ i
2(b(i)+1)!+κ i

1
Eκ,i

b(i)+2[σκ,i
b(i)]

1 + (κ i
1)2

riκ
i
2(b(i)+1)!+riκ

i
1

Eκ,i
b(i)+2[σκ,i

b(i)]

⎞
⎟⎠≤ 1

(ri)
2

· (κ i
1)

2 Eκ,i
b(i)+2[σκ,i

b(i)]
κ i

2(b(i) + 1)! + κ i
1

.

From the first two equalities we have 1
ri

− πκ,i(b(i)) ≥ 0, which is the first part of the lemma. Moreover,

Eκ,i
b(i)+2[σκ,i

b(i)] ≤ Eκ,i
b(i)+2[σκ,i] + b(i) − a(i)

ki
1

,

where the second term bounds from above the expected time to reach b(i) from within the set {a(i), . . . , b(i)}. Hence, by 
Lemma A.4,
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1

ri
− πκ,i(b(i)) ≤ 1

(ri)
2

· (κ i
1)

2

κ i
2(b(i) + 1)! + κ i

1

(
b(i) + 2

κ i
2ri(b(i) + 1)! − κ i

1

+ b(i) − a(i)

κ i
1

)
,

which concludes the proof. �
Lemma A.6. Let i ∈ {1, . . . , d} with b(i) ≥ 1, and assume (A.8) holds. Let w ∈Z≥0 such that w ∈ [2, ri]. Then,

πκ,i(b(i) + w) ≤
(

κ i
1

κ i
2

)w

C(i, w),

where

C(i, w) =
∏w

j=1( j − 1)!∏w
j=1( j + b(i))! ≤ 1

(b(i) + 1)!(b(i) + 2)! .

Proof. To simplify the notation, denote

φi(v(i)) = v(i)!
(v(i) − b(i) − 1)!

for all integers v(i) that are greater than or equal to b(i) + 1, so that the transition rate from v(i) to v(i) − ri is given by 
κ i

2φi(v(i). Then, by using again classical Markov chain theory we have

πκ,i(b(i) + w) = 1

κ i
2φi(b(i) + w) + κ i

1

· 1

Eκ,i
b(i)+w [σκ,i

b(i)+w ] , (A.9)

where the first factor is the expectation of the holding time of Xκ (·, i) in the state b(i) + w . By performing first step analysis 
on Eκ,i

b(i)+w [σκ,i
b(i)+w ], we have

Eκ,i
b(i)+w [σκ,i

b(i)+y] = κ i
2φi(b(i) + w)

κ i
2φi(b(i) + w) + κ i

1

Eκ,i
a(i)+w−1[σκ,i

b(i)+w ] + κ i
1

κ i
2φi(b(i) + w) + κ i

1

Eκ,i
b(i)+w+1[σκ,i

b(i)+w ]

≥ κ i
2φi(b(i) + w)

κ i
2φi(b(i) + w) + κ i

1

Eκ,i
a(i)+w−1[σκ,i

b(i)+w ].
(A.10)

We will then study Ea(i)+w−1[σκ,i
b(i)+w ]. Note that a(i) + w − 1 ∈ [a(i), b(i)], because 2 ≤ w ≤ ri by assumption.

From each state v(i) ∈ [a(i), b(i)], it takes at least one exponential time with rate κ i
1 to reach the state b(i) + 1. From 

b(i) + 1, we reach the state b(i) + w without hitting [a(i), b(i)] with probability

pκ,i
w = (κ i

1)
w−1

(κ i
2)

w−1
∏w−1

j=1 [φi( j + b(i)) + (κ i
1/κ

i
2)]

.

Hence, if we let Gκ,i
w be a geometric random variable with parameter pκ,i

w , we have

Ea(i)+w−1[σκ,i
b(i)+w ] ≥ 1

κ i
1

E[Gκ,i
w ] = 1

κ i
1 pκ,i

w

= (κ i
2)

w−1∏w−1
j=1 [φi( j + b(i)) + (κ i

1/κ
i
2)]

(κ i
1)

w
. (A.11)

Hence, by combining (A.9), (A.10), and (A.11), we have

πκ,i(b(i) + w) ≤ 1

κ i
2φi(b(i) + w)Eκ,i

b(i)+w+1[σκ,i
b(i)+w ]

≤ (κ i
1)

w

(κ i
2)

wφi(b(i) + w)
∏w−1

j=1 [φi( j + b(i)) + (κ i
1/κ

i
2)]

≤ (κ i
1)

w

(κ i
2)

w
∏w

j=1 φi( j + b(i))
,

which concludes the proof. �
Finally, we are ready to prove the following result:
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Theorem A.7. Let i ∈ {1, . . . , d}, and assume (A.8) holds. Let qi be the uniform distribution on the set {a(i), . . . , b(i)}. Then, for any 
integer v(i) ∈ [a(i), b(i)] we have

0 ≤ qi(v(i)) − πκ,i(v(i)) ≤ κ i
1

κ i
2

1{b(i)≥1}D(κ, i),

where

D(κ, i) = 1

(b(i) + 1)!
(

1

ri
+ 1{ri≥2}

1

b(i) + 2

)

+ κ i
1

κ i
2

(
1

(ri)
2

· b(i) + 2

[(b(i) + 1)!]2 − (κ i
1/κ

i
2)

2
+ 1{ri≥3}

1

(b(i) + 1)!(b(i) + 2)! · 1 − (κ i
1/κ

i
2)

ri−2

1 − (κ i
1/κ

i
2)

)
. (A.12)

Moreover,

‖πκ,i − qi‖∞ <
κ i

1

κ i
2

1{b(i)≥1}ri D(κ, i).

Proof. By Lemma A.3, if b(i) = 0 then πκ,i = qi , hence the statement holds. We now assume b(i) ≥ 1.
By Lemma A.2, Xκ (·, i) is non-explosive, hence the forward Kolmogorov equation holds true [64]. It follows that, provided 

that ri ≥ 2 (which is equivalent to b(i) ≥ a(i) + 1), for any integer v(i) ∈ [a(i) + 1, b(i)]

κ i
1π

κ,i(v(i)) = κ i
1π

κ,i(v(i) − 1) + κ i
2

(v(i) + ri)!
(v(i) − a(i))!π

κ,i(v(i) + ri).

From v(i) ∈ [a(i) + 1, b(i)] it follows v(i) + ri ∈ [b(i) + 2, b(i) + ri]. Hence, by Lemma A.6 we have

0 ≤ πκ,i(v(i)) − πκ,i(v(i) − 1) ≤ 1

(b(i) + 1)!(b(i) + 2)! · (v(i) + ri)!
(v(i) − a(i))!

(
κ i

1

κ i
2

)v(i)−a(i)

.

Hence, by applying the above inequality iteratively, we have that for any two integers v1(i) ≤ v2(i) ∈ [a(i), b(i)]

0 ≤ πκ,i(v2(i))−πκ,i(v1(i)) ≤ πκ,i(b(i)) − πκ,i(a(i)) ≤ 1

(b(i) + 1)!(b(i) + 2)!
b(i)∑

j=a(i)+1

( j + ri)!
( j − a(i))!

(
κ i

1

κ i
2

) j−a(i)

= 1{ri≥2}
κ i

1

κ i
2

· 1

(b(i) + 2)! +
(

κ i
1

κ i
2

)2

· 1

(b(i) + 1)!(b(i) + 2)!
ri−3∑
j=0

(
κ i

1

κ i
2

) j

= 1{ri≥2}
κ i

1

κ i
2

· 1

(b(i) + 2)! + 1{ri≥3}

(
κ i

1

κ i
2

)2
1

(b(i) + 1)!(b(i) + 2)! · 1 − (κ i
1/κ

i
2)

ri−2

1 − (κ i
1/κ

i
2)

.

(A.13)

By Lemma A.2, for any integer v(i) < a(i) we have πκ,i(v(i)) = qi(v(i)) = 0. By Lemma A.5 and (A.13), for any integer 
v(i) ∈ [a(i), b(i)]

0 ≤ qi(v(i)) − πκ,i(v(i)) = 1

ri
− πκ,i(b(i)) + πκ,i(b(i)) − πκ,i(v(i))

≤ 1

(ri)
2

· (κ i
1)

2

κ i
2(b(i) + 1)! + κ i

1

(
b(i) + 2

κ i
2ri(b(i) + 1)! − κ i

1

+ b(i) − a(i)

κ i
1

)

+ 1{ri≥2}
κ i

1

κ i
2

· 1

(b(i) + 2)! + 1{ri≥3}

(
κ i

1

κ i
2

)2
1

(b(i) + 1)!(b(i) + 2)! · 1 − (κ i
1/κ

i
2)

ri−2

1 − (κ i
1/κ

i
2)

≤ κ i
1

κ i
2

D(κ, i),

(A.14)

where D(κ, i) is as in (A.12). Finally, from (A.14) it follows that
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∞∑
v(i)=b(i)+1

πκ,i(v(i)) = 1 −
b(i)∑

v(i)=a(i)

πκ,i(v(i))

=
b(i)∑

v(i)=a(i)

(
qi(v(i)) − πκ,i(v(i))

)

≤ κ i
1

κ i
2

ri D(κ, i).

Hence, for any v(i) ≥ b(i) + 1

|πκ,i(v(i)) − qi(v(i))| = πκ,i(v(i)) ≤ κ i
1

κ i
2

ri D(κ, i),

which concludes the proof. �
A.3. Proof of Proposition 7

Proof. The CRN MultiDimUnif(a, b, δ) is equal to MultiDimUnif′(a, b, κδ), with κδ as described in Construction 6. The 
quantity D(κδ, i) defined in (A.12) becomes

D(κδ, i) = 1

(b(i) + 1)!
(

1

ri
+ 1{ri≥2}

1

b(i) + 2

)
+ δ

2d
gi(δ),

where gi(δ) is a continuous function satisfying

lim
δ→0

gi(δ) = 1

[(b(i) + 1)!]2

(
1

(ri)
2

+ 1{ri≥3}
1

b(i) + 2

)
.

Hence, by Theorem A.7 for any v ∈Zd≥0 such that a ≤ v ≤ b we have

|πδ(v) − q(v)| = q(v) − πδ(v) =
d∏

i=1

[
πκδ,i(v(i)) +

(
qi(v(i)) − πκδ,i(v(i))

)]
−

d∏
i=1

πκδ,i(v(i))

≤
d∏

i=1

[
1

ri
+ δ

2d
1{b(i)≥1}D(κδ, i)

]
−

d∏
i=1

1

ri

≤ δ

2d

(
1∏d

i=1 ri

d∑
i=1

1{b(i)≥1}
1

(b(i) + 1)!
(

1 + 1{ri≥2}
ri

b(i) + 2

))
+ δ2G(δ),

where G(δ) is a continuous function satisfying limδ→0 G(δ) < ∞. If v ∈Zd≥0 does not satisfy v ≥ a, then by Lemma A.2 we 
have πδ(v) = 0 = q(v). Finally, for all v ∈Zd≥0 with v ≥ a and v � b, we have

|πδ(v) − q(v)| = πδ(v) ≤
∑

v ′≥a,v ′�b

πδ(v ′) = 1 −
∑

a≤v ′≤b

πδ(v ′) =
∑

a≤v ′≤b

(
q(v ′) − πδ(v ′)

)

≤ δ

2d

d∑
i=1

1{b(i)≥1}
1

(b(i) + 1)!
(

1 + 1{ri≥2}
ri

b(i) + 2

)
+ δ2G(δ)

d∏
i=1

ri .

The proof is concluded by noting that ri < b(i) + 2. �
A.4. Analysis of Construction 8

Let X(·) be the continuous-time Markov chain associated with ProdPois(c). Note that the different components X(·, i)
are independent continuous-time Markov chains, each one associated with the subnetwork of ProdPois(c) governing the 
changes of the species V i . We state and prove the following results concerning Construction 8.

Lemma A.8. Let d ≥ 1 and let c ∈ Rd
>0 . Consider the function L(·), defined as L(v(i)) = v(i) for all v(i) ∈ Z≥0 . Then, 

limv(i)→∞ L(v(i)) = ∞. Moreover, for any i ∈ {1, . . . , d}, there exists αi ∈R>0 and a compact set K ⊂Z≥0 such that
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Ai L(v(i)) ≤ −αi L
2(v(i)) for all v(i) /∈ K ,

where Ai is the generator of X(·, i).

Proof. It is clear that limv(i)→∞ L(v(i)) = ∞. Moreover,

Ai L(v(i)) = c(i)2 + c(i)v(i) − 2v(i)
(

v(i) − 1
)
.

Hence, if v(i) is large enough we have

Ai L(v(i)) ≤ −v(i)2 = −L2(v(i)),

which concludes the proof. �
Proposition A.9. The CRN ProdPois(c) is robust, with limit distribution π given by

π(v) =
d∏

i=1

e−c(i) (c(i))v(i)

v(i)! for all v ∈Zd≥0. (A.15)

Moreover, the mixing times of ProdPois(c) are finite at any level ε > 0.

Proof. Since the components X(·, i) are independent, the state space of X(·) is irreducible if and only if the same holds for 
each X(·, i). This is the case, since the molecules of a species V i can always increase by 1, and to decrease by 2 whenever 
at least 2 molecules are available.

The CRN ProdPois(c) is complex balanced with complex balanced equilibrium c, in the sense of [54]. Indeed, for any 
complex y ∈ C it holds that∑

y′∈C
y′→y∈R

κy′→yc y′ =
∑
y′∈C

y→y′∈R

κy→y′c y .

Hence, due to [57] the associated continuous-time Markov chain X(·) is non-explosive, and due to [13] and to the fact that 
the state space is irreducible, the limit distribution satisfies (A.15).

Finally, the mixing times of X(·) are finite at any level, if and only if the mixing times of any component X(·, i) are finite 
at any level. The latter is implied by Lemma A.8 and Theorem C.2, hence the proof is concluded. �
A.5. Proof of Theorem 9

Proof. Let Xδ(·) be the continuous-time Markov chain associated with Mix(F , ζ, δ). By Lemma 4, Proposition 7, and 
Proposition A.9, all the networks N δ

i are robust, for all δ > 0. Let πδ
i denote the limit distribution of N δ

i . By Lemma 4, 
Proposition 7, and Proposition A.9 we have

‖πδ
i − πi‖∞ ≤ δ for all i ∈ I1; (A.16)

‖πδ
i − πi‖∞ ≤ δ + o(δ) for all i ∈ I2; (A.17)

‖πδ
i − πi‖∞ = 0 for all i ∈ I3, (A.18)

where o(δ) is a function with the property

lim
δ→0

o(δ)

δ
= 0.

Furthermore, Constructions 4 and 6 are special cases of Construction 6′ , hence by Lemma A.2 and Proposition A.9 it follows 
that the mixing times of any network N δ

i are finite at any level ε > 0, for any δ > 0.
If we can show that Mix(F , ζ, δ) is non-explosive for any δ > 0, we can conclude the proof by Theorem 8 and by 

triangular inequality, using (A.16), (A.17), and (A.18).
Let Xδ

H(·) be the projection of Xδ(·) onto the species {H1, . . . , Hm}. Note that Xδ
H(·) is a continuous-time Markov chain, 

associated with the CRN

0
δ2ζ(i)−−−−⇀↽−−−

δ
Hi, for i ∈ {1, . . . ,m}.

The above CRN is detailed balanced, with detailed balanced equilibrium δζ ∈ Rm
>0. Hence, due to [57] Xδ

H(·) is non-
explosive. If Xδ(·) were explosive, then infinitely many transitions of Xδ(·) would occur while Xδ (·) is fixed at a state h. 
H
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Note that given Xδ
H(·) ≡ h, the components of Xδ(·) relative to the species {V 1, . . . , Vd} are independent continuous-time 

Markov chains. Let Xδ,h(·, j) denote the component of Xδ(·) relative to species V j , given that Xδ
H(·) ≡ h. If Xδ(·) were ex-

plosive, then a process Xδ,h(·, j) would be explosive, for some h ∈Zm≥0 and some j ∈ {1, . . . , d}. We will conclude the proof 
by showing that this is not possible.

Let Aδ,i be the generator of N δ
i . Then, the generator of Xδ,h(·, j) is given by

Aδ,h =
m∑

i=1

h(i)Aδ,i .

From Lemma A.1 and Lemma A.8, it follows that if L(v( j)) = v( j) for all v( j) ∈ Z≥0, then for each i ∈ {1, . . . , m} and for 
each δ ∈R>0, there exist αδ,i ∈R>0 and a compact set K δ,i ⊂Z≥0 such that

Aδ,i L(v( j)) ≤ −αδ,i L2(v( j)) for all v( j) /∈ K δ,i, i ∈ {1, . . . ,m}.
Hence, if

K δ =
m⋃

i=1

K δ,i and αδ = min
1≤i≤m

h(i)αδ,i,

then

Aδ,h L(v( j)) =
m∑

i=1

h(i)Aδ,i L(v( j)) ≤ −αδ L2(v( j)) for all v( j) /∈ K δ.

The proof is then concluded by Theorem C.2. �
A.6. Proof of Theorem 5

Proof. If q has finite support {v1, . . . , vm}, then we have

q =
m∑

i=1

q(vi)δvi .

Note that PointMassMix(q, δ) = Mix{F , ζ, δ}, if we let N δ
i = PointMass(vi, δ) and ζ(i) = q(vi) for all i ∈ {1, . . . , m}. 

Hence, the proof is concluded by Theorem 9. �
Appendix B. Bounds for the mixing times of PointMass(x, δ)

Here we give some useful bounds on the mixing times of a generalization of one-dimensional PointMass(x, δ), where 
the choice of rate constants is not constrained.

Proposition B.1. Consider the CRN

V
κ1−→ 0

2V
κ2−→ 0

Then, the CRN is robust with unique limit distribution π being the point mass distribution centered at 0. Moreover, for any choice of 
rate constants κ1, κ2 , and for all ε > 0,

τ ε ≤ 1

ε

∞∑
v=1

1

κ1 v + κ2 v(v − 1)
< ∞.

Proof. Robustness of the CRN and the fact that the limit distribution is the point mass distribution at 0 follows from 
Lemma A.3. Let X(·) denote the continuous-time Markov chain associated with the CRN. Let

• σ = inf{t ≥ 0 : X(t) = 0};
• Y (·) be the embedded discrete time Markov chain of X(·): Y (0) = X(0) and for each n ≥ 1, Y (n) is defined as the value 

of the process X(·) after n jumps;
• M = inf{n ≥ 0 : Y (n) = 0}.
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Let X(0) = v0. Note that since the process X(·) decreases at least by one unit at each jump, necessarily M ≤ v0. Denote by 
(Ev)∞v=0 a sequence of independent exponential random variables with rates κ1 v + κ2 v(v − 1). Then,

σ =
M−1∑
n=0

EY (n) ≤
v0∑

v=1

Ev

Then, by Markov inequality,

P (0, t | v0) = P (σ ≤ t | v0) ≥ 1 − 1

t

v0∑
v=1

1

κ1 v + κ2 v(v − 1)
≥ 1 − 1

t

∞∑
v=1

1

κ1 v + κ2 v(v − 1)
.

The proof is then concluded by noting that in this case

‖P (·, t | v0) − π‖∞ ≤ max

{
|P (0, t | v0) − π(0)|,

∞∑
v=1

|P (v, t | v0) − π(v)|
}

= max

{
1 − P (0, t | v0),

∞∑
v=1

P (v, t | v0)

}

= 1 − P (0, t | v0). �
Proposition B.2. Consider an integer x ≥ 1, and consider the CRN

0
κ1−→ V

(x + 1)V
κ2−→ xV

Then, the CRN is robust. Let π be its unique limit distribution. Moreover, assume that

ε > max

{
κ2

1 (x + 2)

κ2
2 [(x + 1)!]2 − κ2

1

,1 − e− κ1
x!·x

}
if κ2

2 [(x + 1)!]2 > κ2
1 (B.1)

ε > max

{
2κ1

κ2
,1 − e− κ1

x!·x
}

if κ2
2 [(x + 1)!]2 ≤ κ2

1 . (B.2)

Then

τ 2ε ≤ max

{
e− κ1

x!·x

κ2(e− κ1
x!·x − 1 + ε)x! · x

,
x

κ1ε

}
.

Proof. First, the CRN is robust due to Lemma A.2. Note that by Lemma A.5 and Lemma 4, it follows from (B.1) and (B.2)
that

ε > max
{

1 − π(x),1 − e− κ1
x!·x
}

. (B.3)

Let X(·) be the process associated with the CRN, and let

σ = inf{t ≥ 0 : X(t) = x}.
Since {X(t) = x} ⊆ {σ ≤ t}, we have that for any v0 ∈Z≥0

P (x, t | v0) = P (X(t) = x,σ ≤ t | X(0) = v0) = P (X(t) = x | σ ≤ t, X(0) = v0)P (σ ≤ t | X(0) = v0).

By monotonicity of birth and death processes [65, Section 2] and by strong Markov property we have

P (X(t) = n | σ < t, X(0) = v0) ≥ π(x).

Hence,

P (x, t | v0) ≥ π(x)P (σ ≤ t | X(0) = v0).

There are three cases:
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1. If v0 < x, and if we denote by �(k, θ) the sum of k independent exponential random variables with mean θ , then by 
Markov inequality

P (σ ≤ t | X(0) = v0) = P

(
�

(
x − v0,

1

κ1

)
≤ t

)

≥ P

(
�

(
x,

1

κ1

)
≤ t

)

≥ 1 − x

κ1t

2. If v0 = x, then P (σ < t | X(0) = v0) = 1 for all t ≥ 0.
3. If v0 > x, then

P (σ ≤ t | X(0) = v0) ≥ P (σ ≤ t | Av0 , X(0) = v0)P (Av0 | X(0) = v0),

where

Av0 = {the first v0 − x jumps of X(·) point downwards}.
For notational convenience, let

φx(v) = v!
(v − x − 1)! for v ≥ x + 1,

and denote by (Ev )∞v=x+1 a sequence of independent exponential random variables with rates κ2φx(v). Then, by Markov 
inequality,

P (σ ≤ t | Av0 , X(0) = v0) = P

( v0∑
v=x+1

Ev ≤ t

)

≥ 1 − 1

κ2t

v0∑
v=x+1

1

φx(v)

≥ 1 − 1

κ2t

∞∑
v=x+1

1

φx(v)
.

In order to express better the last series, note that

∞∑
v=x

(v − x)!
v! = 1

x! +
∞∑

v=x+1

(v − x)
(v − x − 1)!

v!

= 1

x! +
∞∑

v=x

(v − x)!
v! − x

∞∑
v=x+1

(v − x − 1)!
v!

It follows that
∞∑

v=x+1

1

φx(v)
=

∞∑
v=x+1

(v − x − 1)!
v! = 1

x! · x

and

P (σ ≤ t | Av0 , X(0) = v0) ≥ 1 − 1

x! · xκ2t
.

Moreover,

P (Av0 | X(0) = v0) =
v0∏

v=x+1

φx(v)

κ1 + φx(v)

= e
−∑v0

v=x+1 log
(

1+ κ1
φx(v)

)

≥ e
−∑∞

v=x+1
κ1

φx(v)

= e− κ1
x!·x ,
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which implies

P (σ ≤ t | X(0) = v0) ≥ e− κ1
x!·x
(

1 − 1

x! · xκ2t

)

Hence, independently on the initial condition v0 and provided that

ε > 1 − e− κ1
x!·x ,

if

t ≥ max

{
e− κ1

x!·x

κ2(e− κ1
x!·x − 1 + ε)x! · x

,
x

κ1ε

}

then

P (x, t | v0) ≥ (1 − ε)π(x).

Hence, since ε > 1 − π(x) by (B.3), it follows that

|P (x, t | v0) − π(x)| ≤ ε.

Moreover, for any v �= x we have

|P (v, t | v0) − π(v)| ≤ max{P (v, t | v0),π(v)}
≤ max{1 − P (x, t | v0),1 − π(x)}
≤ 1 − π(x) + επ(x) < 2ε,

which concludes the proof. �
Appendix C. Super Lyapunov functions

The theory we develop here was mostly developed in [63], for a specific family of stochastic differential equations. The 
concept and the terminology of “super Lyapunov function” themselves were also introduced in [63]. We are interested in an 
adaptation of [63, Lemma 6.1], which we state here as Theorem C.1 and whose proof we repeat for completeness.

Definition C.1. Let X(·) be a continuous-time Markov chain on Zd≥0, with generator A. We say that a function 
L : Zd≥0 →R≥0 is a super Lyapunov function if the following holds true:

• limx→∞ L(x) = ∞
• there exists a compact set K and real numbers α > 0 and γ > 1 such that

AL(x) ≤ −αLγ (x) for all x /∈ K . (C.1)

Remark C.1. If (C.1) holds for γ = 1, then the function L is a standard Lyapunov function. While the existence of such a 
function implies that the process X(·) is non explosive and that a limit distribution exists for any initial condition [62], in 
general it does not imply that the mixing times are finite. 


Remark C.2. Equation (C.1) is equivalent to the existence of real numbers α, β ≥ 0 and γ > 1 such that

AL(x) ≤ −αLγ (x) + β for all x ∈ Zd≥0. (C.2)

Indeed, it is sufficient to consider b = maxx∈K |AL(x)|. 


Theorem C.1. Let X(·) be a continuous-time Markov chain on Zd≥0, and let L(·) be a super Lyapunov function. Then,

E[L(X(t)) | X(0) = x0] ≤ max

{(
2β

α

) 1
γ

,

(
2

α(γ − 1)t

) 1
γ −1
}

for all t ≥ 0, x0 ∈Zd≥0,

where α, β, γ are as in (C.2).
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Proof. For simplicity, denote

zx0(t) = E[L(X(t)) | X(0) = x0].
Moreover, for any real number M > 0 let ρM be the stopping time

ρM = inf{t ≥ 0 : L(V (t)) ≥ M}.
By Dynkin’s formula, (C.2) and Jensen’s inequality, for any M > L(x0) we have

zx0(max{t,ρM}) = L(x0) + E

⎡
⎢⎣

max{t,ρM }∫
0

AL(X(s))ds

∣∣∣∣∣∣∣ X(0) = x0

⎤
⎥⎦

≤ L(x0) + βt − α

t∫
0

(
zx0(s)

)γ
ds.

By taking the limit for M going to infinity we have

zx0(t) ≤ L(x0) + βt − α

t∫
0

(
zx0(s)

)γ
ds.

Since the latter holds for any initial condition x0, we must have

d

dt
zx0(t) ≤ β − α

(
zx0(t)

)γ ≤ −α

2

(
zx0(t)

)γ for zx0(t) ≥
(

2β

α

) 1
γ

. (C.3)

Since the latter is strictly negative, it follows that as soon as we have zx0 (t) ≤
(

2β
α

) 1
γ

for some t ≥ 0, then the same holds 
for all times afterwards. In particular, if this holds for t = 0, then the proof is complete. We can therefore assume that 

zx0 (0) ≥
(

2β
α

) 1
γ

. By (C.3), it follows that as long as zx0 (t) ≥
(

2β
α

) 1
γ

, then zx0 (t) ≤ ux0(t) where ux0 (t) is the solution to

d

dt
ux0(t) = −α

2

(
ux0(t)

)γ
, ux0(0) = zx0(0) ≥

(
2β

α

) 1
γ

.

The latter can be explicitly calculated, and we have

ux0(t) =
(

α(γ − 1)t

2
+ ux0(0)1−γ

) 1
1−γ ≤

(
2

α(γ − 1)t

) 1
γ −1

,

which concludes the proof. �
Theorem C.2. Let X(·) be a continuous-time Markov chain on Zd≥0 , and let L(·) be a super Lyapunov function. Then, X(·) is non-
explosive. Moreover, if there exists a unique closed irreducible set, then X(·) has a unique limit distribution and the mixing times at any 
level are finite.

Proof. X(·) is non-explosive and admits a unique limit distribution π (when a unique closed irreducible set exists) due 
Foster-Lyapunov theory [62] (see Remark C.1). Hence, we only need to prove that the mixing times are finite. Let τ ε be the 
mixing time at level ε, and for any x ∈Zd≥0 let

τ
ε
2

x = inf
{

t ≥ 0 : ‖P (·, s | x) − π‖∞ <
ε

2
for all s ≥ t

}
.

Note that since π is a limit distribution, for any x ∈Zd≥0 we have τ
ε
2

x < ∞. Let

Mε = 4

ε

(
2β

α

) 1
γ

.

The set �ε = {x ∈Zd : L(x) ≤ Mε} is finite, because limx→∞ L(x) = ∞. Hence,
≥0
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Rε .= max
x∈�ε

τ
ε
2

x < ∞.

Finally, let

T = 2

α(γ − 1)

(
α

2β

) γ −1
γ

By Theorem C.1, we have that for any x0 ∈Zd≥0

E[L(X(T )) | X(0) = x0] ≤
(

2β

α

) 1
γ

,

and by Markov inequality we have that for any x0 ∈Zd≥0

P (X(T ) /∈ �ε | x0) = P (L(X(T )) > Mε | x0) ≤ E[L(X(T )) | X(0) = x0]
Mε

≤ ε

4
.

Hence, by Markov property and by definition of Rε , for any s ≥ T + Rε and any x0 ∈Zd≥0 we have

‖P (·, s | x0) − π‖∞ ≤ ε

4
· 2 + max

x∈�ε
‖P (·, s − T | x) − π‖∞ ≤ ε.

It follows that τ ε ≤ T + Rε , which concludes the proof. �
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