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Chapter 5
Upscaling Flow and Transport Processes

Matteo Icardi, Gianluca Boccardo, and Marco Dentz

5.1 Introduction

Countless environmental, industrial and biological applications involve fluids flow-
ing through complex media or heterogeneous environments. These can be soil, sand
and rocks in aquifers and reservoirs, industrial separation and filtration devices, bio-
logical membranes and tissues, composite materials. Although all the fundamental
laws and modelling approaches of fluid dynamics still apply, a completely different
perspective has to be taken to deal with geometrical and physical complexity and
multiscale structure of the underlying media. This is generally done by means of
upscaling or averaging techniques, not different than the ones used to deal with
the multiscale structure of turbulence. The main difference between flows through
porous media and turbulent flows lies in the fact that the latter is an emerging
phenomena purely due to the nonlinearity of the Navier–Stokes equations, while
the former inherits its multiscale complexity directly from the geometrical and
physical properties of the material. This means that, even starting from linearised or
simplified flow regimes (e.g., Stokes), interesting emergent macro-scale dynamics
can appear due to these properties. The ultimate scientific challenge is to develop a
quantitative link between the properties of the media and the upscaled parameters in
the macroscopic dynamics. Although a wide range of these emerging dynamics are
more easily observed and studied than the turbulent structures (which, by nature, are
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hardly reproducible),1 the high dimensionality of the set of all possible geometrical
structures makes a systematic research and a predictive model development (e.g.,
closures, parameter estimation, etc.) particularly challenging. As turbulence models
are naturally first developed and tested on clearly defined scenarios (such as the
periodic isotropic turbulence or wall-bounded flows), similarly upscaled porous
media models have traditionally been derived from simple granular materials, such
as sphere packings. While the former usually assume the existence of a continuum of
length scales, as dictated by the classical turbulence theory, the latter typically rely
on clearly defined and well-separated scales (usually two or possibly more). These
assumptions, however, are only very crude approximations of the actual natural and
engineered media, and can lead to significantly misrepresent the overall transport
processes.

In this chapter, while presenting the fundamentals of flow and transport through
porous media (intended in the classical sense) and some of the specific methodolo-
gies and challenges, we take a more general point of view, focused on the underlying
upscaling procedures and their assumptions, to help smooth out the still existent
barrier between porous media and fluid dynamics research.

5.2 Flow Through Porous and Heterogeneous Media

As already mentioned, although the concept of upscaling and averaging is present
in many fluid dynamics problems, particularly relevant to many applications is
the understanding of the emerging dynamics of fluid flowing through multiscale
(porous) materials. As we will discuss in Sect. 5.2.1, the peculiarity of this problem
is due to the presence of large surface areas where no-slip conditions generate, in the
first approximation, linear damping in the momentum equation, proportional to an
effective parameter known as permeability of the media. However, natural porous
materials, such as soil and rocks, can have a highly irregular and heterogeneous
structure, causing this emerging effect to be significantly space-dependent. Due to
the limited a priori knowledge of the exact geology, this space heterogeneity is often
modelled as a random field. This gives rise to another important upscaling problem,
namely understanding the effect of meso- and macro-scale heterogeneities in the
permeability. This is discussed in Sect. 5.2.3.

In both cases, crucial to the upscaling process is the solution of a closure problem,
solved on a representative elementary volume (REV). This can be understood at
different levels. The first simple definition of REV can be based solely based on
geometrical information such as the porosity of the material, φ, i.e., the volume
fraction of void space available for the fluid. This, being a very simple averaging
process, can be computed on different length scales �, i.e., φ = φ(�). For increasing

1For example, with the recent development of 3D printing, a wide range of porous media structures
can be synthetically recreated and tested.
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�, if the media has only finite-size heterogeneities (or well-separated scales) and
no fractal structure, this converges to a finite number 0 < φ0 < 1. This implicitly
defines a minimal REV of size �φ . Even assuming the existence of this well-defined
REV, the actual upscaling of transport and flow processes involves the average of
fluctuating quantities (or closure variables), which are solutions of a differential
model. This might require a much larger size to converge to a constant. For periodic
structures, in the assumption of stationary (fully developed) profiles and local
equilibrium (imposed through the pseudo-periodicity of the variables), the periodic
cell represents not only the geometric REV but also the right REV for all processes.
Relaxing these periodicity assumptions means allowing random “perturbation” in
the material that results in a larger geometrical REV, and, possibly, in perturbation
in the solution persisting over bigger scales. This means that, to obtain well-defined
(e.g., space-independent) macroscopic effective parameters, the existence and size
of the REV cannot be known a priori and could be significantly larger than the
one obtained from purely geometrical considerations. This consideration applies not
only to the upscaling of the flow discussed below (which could indeed need a REV
much larger than the geometrical one) but also to the upscaling of transport and
reaction processes (discussed in Sect. 5.3), and, more significantly to all non-linear
and more complex models (such as multiphase flows).

5.2.1 Darcy’s Law

The earliest approaches to the study of flow in porous media were directed to the
derivation of simple linear relation between pressure drop and superficial velocity,
and implicitly made use of a macroscopic description of a continuous (pseudo-
homogeneous) fluid–solid domain. Henry Darcy, who investigated the sand filter
system employed in the delivery of freshwater to the city of Dijon, first proposed
this relation, now known as Darcy’s law:

− δP

L
= μ

K
q, (5.1)

where δP is the integral pressure drop (or the so-called pressure head, including
hydrostatic pressure) across the porous medium, L is its length and thus char-
acterises flow in saturated porous media via its permeability, K , and the fluid
superficial velocity q. This law, originally derived on purely phenomenological and
experimental grounds, can be intuitively extended in three dimensions, as a force
balance between pressure gradient and linear wall stresses, neglecting the transient
and inertial term in an upscaled form of the Navier–Stokes equation:

− K∇P = μq , (5.2)
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where K can now be more generally a symmetric tensor, not necessarily isotropic,
i.e., pressure gradients in one direction can possibly cause flow to happen in an
arbitrary direction, due to non-symmetric porous structures. This result can also be
rigorously derived using the tools of homogenisation or volume-averaging [1, 2],
upscaling the incompressible Stokes’ law to obtain Darcy’s law. Equation (5.1),
while still being useful in many porous media systems, has been found to have its
limitations. The first is related to the relative magnitude of the superficial velocity q.
More appropriately, and by analogy with the usual analysis of the laminar–turbulent
flow transition, it can be expressed in terms of the Reynolds number where the
system’s characteristic length is the average grain diameter or pore width. As such,
in the vast majority of cases, Darcy’s law will find an upper range of validity at Re
ranging from one to ten [3]. Other cases, where a more complex equation has to be
used, include the already mentioned fractal porous media (where the permeability is
no more a constant but a non-local kernel), multiphase flows, non-Newtonian fluids,
non-equilibrium flows.

5.2.2 Extensions of Darcy’s Law

For high Reynolds numbers, the linear relationship expressed in Eq. (5.1) between
superficial velocity and the hydraulic gradient (δP/L) ceases to be valid, making
Darcy’s law unsuitable for describing the nonlinearities arising under these condi-
tions. Although there has been some controversies [4, 5] about the correct extension
of Darcy’s law to transitional and turbulent flows, the most commonly used equation
that can be used to that end is the Darcy–Forchheimer equation:

− δP

L
= μ

K
q + βρq|q|, (5.3)

where β is the so-called inertial flow parameter and, like K , is independent of
fluid properties and only depends on the microstructure of the porous medium.
Various attempts at an explanation of this phenomenon have been made: the most
intuitive of which would be to ascribe this nonlinearity to the onset of turbulence,
by immediate analogy with the relationship between head loss and fluid velocity
for the flow in pipes, which becomes non-linear right after the transition to the
turbulent region corresponding to higher Reynolds numbers. The problem with
this approach is that, while for the flow in pipes the laminar and turbulent zones
are clearly identifiable, the transition in the case of flow in porous media is much
smoother, with no clear separation between the two: this can be related to what is
known for flow around spheres, where the same behaviour is found. A number of
experiments were conducted in the past to identify the critical Reynolds number
associated with the transition to the turbulent zone in porous media, and found it to
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be several orders of magnitude higher than the Re at which the nonlinearities begin
to become apparent [6].

Beyond these difficulties caused by non-trivial changes in the fluid dynamic
structure at the pore-scale when transitioning to high Reynolds numbers, there are
also a number of other notable extensions, for which, brief pointers follow.

Multiphase and Unsteady Flows

While single-phase flow in porous media (also known as saturated) are generally
steady, a trivial extension is to add a time derivative term to model unsteadiness
caused, for example, by time-dependent pressure boundary conditions. However,
when dealing with multiphase flows, the time-dependence naturally appears. While
density-driven miscible Darcy’s flows are easily obtained, immiscible multiphase
extensions of the Darcy’s equation rely on much stronger assumptions (see also
the discussion in Sect. 5.5). The simplest form of multiphase flow is the Richards’
equation that describes a water plume travelling through a steady Darcian flow field.

Brinkman

One early and well-known approach to bridge the gap between the free flow
and the Darcy’s descriptions was put forward by Brinkman, whose eponymous
equation adds a viscous term to the Darcy’s equation (usually with an effective
viscosity which is not necessarily equivalent to the viscosity of the fluid). Rigorous
derivations of the Brinkman equation with homogenisation have been proposed [1],
with the contemporary presence of the Darcy and Brinkman terms, under a specific
scaling for the geometrical properties of the porous structure. Furthermore, the
Brinkman equation has found interesting applications as a unified numerical approx-
imation (e.g., penalisation approaches [7]) that, for limiting cases, can recover both
Stokes and Darcy equations.

Non-Newtonian

When considering non-Newtonian fluids, the Darcy’s law for low fluid velocities
is still used, with a modified “porous medium viscosity” comprising the non-
Newtonian effects. In the higher velocities ranges, the interplay between shear-
thickening effects and turbulent nonlinearities becomes more difficult to understand:
both formal attempts of upscaling via volume-averaging [8] and accurate computa-
tional pore-scale simulations in reconstructed geometries [9] have been presented.

Knudsen

Finally, the constant assumption of all the theory presented up until this point (and
henceforth, excluding this paragraph) has been that of considering the fluid as a
continuum and as such, to employ the mentioned no-slip condition on the solid
matrix boundary. In practice, many real-world systems (e.g., rarefied gases, shale
gas) are characterised by Knudsen flow, and are not treatable within the usual
framework, leading to non-trivial additions of slip-flow corrections to effective
permeability.
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5.2.3 Heterogeneous Media

As described in the previous section, the (space) averaged flow behaviour on
the scale of a REV is described by the Darcy’s equation. Here we consider the
transition from the Darcy to larger scales of heterogeneity. For geological porous
media, this means an order of metres or hundreds of metres. Here, spatial or
ensemble (considering random realisations of geological structures) averaging, or
a combination of both, can be used to study emerging macroscopic dynamics. We
denote here both averaging operation with the bracket notation 〈·〉 and we limit
our discussion to the steady state Darcy flow equation with heterogeneous medium
properties

q(x) = −K(x)

μ
∇P(x), ∇ · q(x) = 0. (5.4)

which is equivalent to a Laplacian equation for the pressure. This description implies
that the flow field is helicity-free, i.e., q(x) ·∇ ×q(x) = 0. This means that there are
no closed streamlines in d = 2 dimensional Darcy flow. For d = 3 dimensions, zero
helicity implies that streamlines are either closed or organised on two-dimensional
toruses [10]. These topological properties prohibit chaotic flow and thus have an
impact on the stretching of material lines and surfaces.

The systematic upscaling of flow and transport upscaling in heterogeneous
porous media has been performed with stochastic approaches in order to model the
spatial variability of permeability [11–13]. This is motivated, on the one hand, by the
incomplete knowledge of the small scale fluctuations of K(x), and on the other hand
by the desire to identify the large scale behaviour due to “typical” spatial random
fluctuations and quantify it in terms of only a few geo-statistical characteristics.
This requires certain assumptions such as statistical stationarity and ergodicity. In
this framework, the log-permeability f (x) = ln[K(x)] has been modelled as a
multi-Gaussian random field, which implies that K(x) is a multi-lognormal random
field. This can be understood as follows. Consider a set of f (x) values evaluated at
positions xi (i = 1, . . . , n) in the medium. The set {f (xi )}ni=1 is modelled now
as a spatial stochastic process, which is characterised by a joint Gaussian PDF
characterised by the covariance matrix Cij = C(xi − xj ),

P({f (xi )}) =
exp

[
−∑n

i,j=1 f (xi )C
−1
ij f (xj )/2

]

(2π)n
√

det(C)
. (5.5)

The variance of f (x) is given by σ 2
ff = C(0). The covariance C(x) is typically

modelled as a short-ranged function that decays on characteristic length scales, the
correlation lengths. For an overview of common covariance models, see Refs. [11–
13]. A statistically isotropic medium is characterised by a single correlation scale �.
For anisotropic media, the correlation scale depends on the spatial direction.
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In this framework flow is upscaled in terms of an effective permeability Ke

tensor [14, 15], which is defined by

〈q(x)〉 = −Ke

μ
〈∇P(x)〉. (5.6)

Here we focus on statistically isotropic media, for which Ke
ij = Keδij . Note that

Ke is in general not equal to the arithmetic average 〈K(x)〉.
In the following, we first report on some exact results for the effective perme-

ability for flow in layered media and two-dimensional multi-Gaussian permeability
fields. Then we discuss briefly perturbation theory results and conjectures for three-
dimensional media.

Exact Solutions
For layered porous media, permeability is constant along one of the coordinate
axis and variable in the other directions. This means the correlation length is
infinite along one coordinate axis. For simplicity, we consider the case of 2 spatial
dimensions. For a pressure gradient parallel or perpendicular to the layering exact
solutions for the effective permeability exist. The direction of the mean pressure
gradient in the following is aligned with the x-direction.

For flow aligned with the direction of stratification, the flow problem has an exact
solution, which is

q(y) = −K(y)〈∇P(x)〉. (5.7)

In this case, Ke = KA = 〈K(y)〉, the effective permeability is equal to the
arithmetic mean permeability. For flow perpendicular to stratification, the exact
solution is

q(x) = −
⎡
⎢⎣μ

L

L∫

0

dx′

K(x′)

⎤
⎥⎦

−1

〈∇P(x)〉. (5.8)

where L is the length of the flow domain. Here the effective permeability is given
by the harmonic mean Ke = KH = 1/〈K(x)−1〉.

For flow in isotropic two-dimensional multi-lognormal permeability fields with
finite correlation length, the effective permeability is exactly given by the geometric
mean [16, 17],

Ke = KG exp
(−〈f (x)〉) . (5.9)

This result can be derived based on a duality between stream function and flow
potential using the fact that both K(x) and 1/K(x) are lognormal distributed.
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Perturbation Theory

For three-dimensional heterogeneous porous media, the duality argument invoked
for two dimensions does not hold. Thus, the effective permeability has been
determined using perturbation theory in the fluctuations of log-permeability about
its mean value, f ′(x) = f (x) − 〈f (x)〉, which gives [18–20]

Ke = KG

⎛
⎝1 + σ 2

ff

6

⎞
⎠ , (5.10)

which is strictly valid only for σ 2
ff � 1. For larger values of σ 2

ff and d spatial
dimensions, Matheron [18] conjectured the expression

Ke = KG exp

[
σ 2

ff

(
1

2
− 1

d

)]
, (5.11)

which for d = 2 gives the exact result Ke = KG and in d = 3 and small σ 2
ff � 1 is

consistent with the perturbation theory result Eq. (5.10). The effective permeability
is bounded between the harmonic and arithmetic mean, KH ≤ Ke ≤ KA.

5.3 Macroscopic Transport Models

Transport in heterogeneous media can be described by the advection–dispersion
equation

∂c(x, t)

∂t
+ ∇ · v(x)c(x, t) − ∇ · [D(x)∇c(x, t)

] = 0. (5.12)

At the pore-scale, the velocity field v(x) is obtained from the Stokes equation
and the dispersion tensor reduces to D = DmI , where Dm is the molecular
diffusion coefficient and I the identity matrix. At the Darcy scale, a similar
equation can be derived by homogenisation or volume-averaging [1, 2], with the
flow velocity given by v(x) = q(x)/φ, where φ is porosity, which here is assumed
to be constant, and the dispersion tensor D(x) given by the solution of a closure
problem. Alternatively, dimensional and phenomenological arguments can lead to
the following parameterisation [21, 22]:

Dij = α0Dmδij +
d∑

k,l=1

αijkl

qk(x)ql(x)

‖q(x)‖ , (5.13)
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where α0Dm is the effective diffusivity (see Sect. 5.5), and αijkl are geometrical
dispersivities. For an isotropic medium, the αijkl are given by

αijkl = αII δij δkl + αI − αII

2

(
δikδjl + δilδjk

)
. (5.14)

This description of dispersion is valid at high Péclet numbers. The Péclet number
compares the relative strength of diffusive and advective transport mechanisms and
is here defined as Pe = V L/D, where L is a characteristic heterogeneity length
scale and V a characteristic velocity.

The advection–dispersion Eq. (5.12) is equivalent to a Ito’s stochastic differential
equation [23, 24] for the position x(t) of a solute particle

dx(t)

dt
= v[x(t)] + ∇ · D[x(t)] + √

2D[x(t)] · ξ(t), (5.15)

where ξ(t) is a Gaussian white noise of zero mean, 〈ξ(t)〉 = 0 and covariance
〈ξi(t)ξj (t

′)〉 = δij δ(t − t ′). Equation (5.15) is the starting point for random walk
particle tracking simulations for the solution of advective–dispersive transport in
heterogeneous porous media.

A key issue for transport in heterogeneous media is to quantify the transport
behaviours on a scale larger than the characteristic heterogeneity scale. For the
transition from pore to Darcy scale, the observation scale is larger than the
characteristic pore length, for the transition from Darcy to regional scale, it is
larger than the correlation scale of permeability. In the following, we briefly report
on upscaling efforts in terms of Fickian transport formulations, the occurrence
of anomalous dispersion and modelling approaches to account for non-Fickian
transport.

5.3.1 Fickian Dispersion

Before discussing Fickian large scale transport formulations, we briefly summarise
some signatures of Fickian transport for one-dimensional transport at constant
velocity v0 and diffusion coefficient D0. Firstly, for a point-like solute injection,
the concentration distribution is Gaussian shaped as

c0(x, t) =
exp

[
− (x−v0t)

2

4D0t

]
√

4πD0t
. (5.16)

The first and second centred moments of c(x, t), denoted by m(t) and κ(t) evolve
linearly in time as m(t) = v0t and κ(t) = 2D0t . Solute breakthrough, i.e., the
distribution of solute arrival times at a control plane located at the distance x from
the plane at which solute is injected, is given by the inverse Gaussian distribution
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f0(t, x) =
x exp

[
− (x−v0t)

2

4D0t

]
√

4πD0t3
. (5.17)

Hydrodynamic Dispersion

As already mentioned, the upscaling of transport from the pore to the Darcy scale
can be approached by stochastic approaches [25], spatial averaging and homogeni-
sation. Under the assumption of local physical equilibrium, these approaches
derive for the (homogeneous) Darcy scale the advection–dispersion Eq. (5.12). The
hydrodynamic dispersion tensor D accounts for the impact of molecular diffusion
and pore-scale velocity fluctuations on Darcy-scale solute transport. It is in general
a function of the Péclet number. This has been observed both for the longitudinal,
i.e., the mean flow direction, and the transverse dispersion coefficients DL and DT .
For Pe � 1, DL/D ∼ 1, for 1 < Pe < Pec, it behaves as DL/D ∼ Peγ , with
1 < γ < 1.5, and for Pe > Pec it scales as DL/D ∼ Pe. The critical Péclet
number is Pec ≈ 400 − 500 [26, 27]. These behaviours can be described by the
expression [22]

DL = Dα + αI v
Pe

Pe + 2 + 4δ2 , (5.18)

where α accounts for the effect of the tortuous pore geometry on molecular diffusion
in the bulk and δ is a parameter that characterises the shape of the pore channels
and v is the average pore velocity. The second term on the right-hand side of
Eq. (5.18) is termed mechanical dispersion. It quantifies solute spreading due to the
tortuous streamlines and velocity variability of the pore-scale flow field. Bear [22]
proposes to use expression Eq. (5.18) also for the transverse dispersion coefficients
DT . Experimental data suggest that DT /D ∼ Pe0.95 for 1 < Pe < Pec [28].

Macro-Dispersion

For transport upscaling from the Darcy to the regional scale, stochastic perturbation
theory gives for macro-scale transport the advection–dispersion equation [20]

φ
∂c(x, t)

∂t
+ 〈q〉∂c(x, t)

∂x
− ∇ · [D∗∇c(x, t)

] = 0, (5.19)

where the x-axis of the coordinate system is aligned with the mean hydraulic gradi-
ent. The Péclet number here is defined as Pe = 〈q〉�/DL. For a statistically isotropic
heterogeneous porous medium, the macro-dispersion tensor D∗ is diagonal. For
Pe  1, the longitudinal macro-dispersion coefficient DL is given by

D∗
L = σ 2

ff �KG〈∇P(x)〉 + . . . , (5.20)

where the dots denote contributions of the order of DL and of order σ 2
ff . This

remarkable result relates the macroscopic dispersion effect due to local scale
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velocity fluctuations to the statistical medium properties in terms of the variance σ 2
ff

and correlation length � of log-permeability and the geometric mean permeability.
Perturbation theory in σ 2

ff predicts that D∗
T is of the order of DT , this means local

scale dispersion. While this is exact for two dimensions [29], observations and
numerical simulations suggest that it is not valid for three dimensions [30, 31]. In
fact, numerical results suggest that D∗

T ∝ σ 4
ff in the advection-dominated limit of

Pe → ∞. The reader is referred to the textbooks by [11–13] for a thorough account
of the macro-dispersion approach and stochastic perturbation theory for macro-scale
transport in heterogeneous porous media.

5.3.2 Anomalous Dispersion

Fickian dispersion predicts that the first and second centred moments of a solute
plume increase linearly with time that the solute distribution is Gaussian shaped, and
solute breakthrough can be described inverse Gaussian distributions. Furthermore,
within the Fickian dispersion paradigm, mixing is fully characterised by the constant
dispersion coefficients. For heterogeneous porous media, and heterogeneous media
in general, however, transport does not generally follow Fickian dynamics. Break-
through curves are characterised by strong tailing, dispersion evolves in general
non-linearly in time and spatial plumes do not show Gaussian shapes and are in
general characterised by forward or backward tails. Such behaviours are closely
related to the notion of incomplete mixing on the support scale. If the support scale
is not fully mixed, for example, due to mass transfer between sub-scale mobile and
immobile regions, or velocity variability, transport dynamics are history-dependent.
Non-Fickian and anomalous transport behaviours have been observed both on the
pore [32–34] and Darcy scales [35, 36].

The mechanism that mixes the support scale is diffusion (pore-scale) and
hydrodynamic dispersion (Darcy scale). Note that ultimately the mechanism that
attenuates concentration contrasts is diffusion. Mechanical dispersion quantifies the
spread of a solute distribution due to advective heterogeneity and the formation of
filaments, which facilitates the action of diffusion to homogenise concentration, and
is discussed further in Sect. 5.3.3. Thus, for high Péclet numbers, the characteristic
mixing time scales over the support scale may be significantly larger than the
time scale of interest. The prediction of transport in heterogeneous media requires
approaches that allow to quantify non-Fickian transport dynamics.

The moment equations and projector formalism approaches [37, 38] are obtained
from the stochastic averaging of the local scale heterogeneous transport problem,
Eq. (5.12), which yields space- and time-non-local integro-differential equations,
whose memory kernels are related to the heterogeneity statistic. Closed-form
expressions for the memory kernels are in general difficult to obtain. Fractional
advection–dispersion equations [39, 40] are characterised by spatio-temporal kernel
function with an asymptotic power-law scaling. This approach can be related to
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continuous time random walks and Levy flights [41]. In the following, we provide
a summary of the continuous time random walk (CTRW) and multi-rate mass
transfer (MRMT) frameworks to describe anomalous dispersion in porous media.
The CTRW [42–44], and related time domain random walk (TDRW) [45, 46]
frameworks, as well as the MRMT approach [47, 48] have been used for transport
upscaling in highly heterogeneous porous and fractured media. These approaches
account for the heterogeneity-induced distribution of advective and diffusive mass
transfer rates and residence times.

Continuous Time Random Walks

The continuous time random walk (CTRW) [49, 50] models particle motion as a
random walk in space and time. The concentration distribution, or equivalently, the
particle density c(x, t) is given by

c(x, t) =
t∫

0

dt ′R(x, t ′)
∞∫

t−t ′
dt ′′ψ(t ′′), ψ(t) =

∞∫

−∞
dxψ(x, t), (5.21)

where R(x, t)dxdt is the average number of times a particle is in [x, x+dx]×[t, t+
dt]; ψ(x, t) is the joint PDF of transition length and time. Thus, the right-hand side
of Eq. (5.21) denotes the frequency by which a particle arrives at a position x at time
t ′ times the probability that it stays (waits) there for a time smaller that t . R(x, t)

satisfies the Chapman–Kolmogorov type equation

R(x, t) = c(x, t)δ(t) +
∞∫

−∞
dx′

t∫

0

dt ′ψ(x − x′, t − t ′)R(x′, t ′). (5.22)

The first term on the right-hand side denotes the initial particle distribution at time
t = 0. Combining Eqs. (5.21) and (5.22) gives the generalised master equation [51]

∂c(x, t)

∂t
=

∞∫

−∞
dx′

t∫

0

dt ′K(x − x′, t − t ′)
[
c(x′, t) − c(x, t)

]
, (5.23)

where the memory kernel K(x, t) is defined by its Laplace transform [52] as

K∗(x, λ) = λψ∗(x, λ)

1 − ψ∗(λ)
. (5.24)

Laplace transformed quantities are denoted by an asterisk, the Laplace variable is
denoted by λ. For short-ranged spatial transitions, Eq. (5.23) can be localised in
space such that
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∂c(x, t)

∂t
+

t∫

0

dt ′
[
κ1(t − t ′) ∂

∂x
− κ2(t − t ′) ∂2

∂x2

]
c(x, t) = 0, (5.25)

where the advection and dispersion kernels are defined by

κ1(t) =
∞∫

−∞
dxxK(x, t), κ2(t) = 1

2

∞∫

−∞
dxx2K(x, t), (5.26)

The fluctuating micro-scale transport dynamics are encoded in the joint PDF
ψ(x, t). For purely advective solute transport, for example, the transition length is
of the order of the correlation scale �c of the velocity magnitude v, and the transition
time is given kinematically by �c/v. The distribution ps(v) of the particle speed
sampled equidistantly along a streamline is related to the Eulerian velocity PDF by
flux-weighting as [53]

ps(v) = vpe(v)

〈ve〉 . (5.27)

Thus, the joint PDF of transition length and time is

ψ(x, t) = δ(x − �c)
�2
cpe(�c/t)

t3〈ve〉 . (5.28)

For transport at an average velocity v0 over the characteristic length �0 combined
with mass transfer into immobile zones, the transition time distribution is given in
Laplace space by Margolin et al. [54]

ψ∗(λ) = exp

(
λτ0 + γt τ0

[
1 − p∗

f (λ)
])

, (5.29)

where τ0 = �0/v is the advective transition time, γt the trapping rate and pf (t) the
distribution of residence times in the immobile regions.

We briefly summarise the transport characteristics for an uncoupled CTRW, this
means ψ(x, t) = �(x)ψ(t), characterised by a power-law long-time scaling of the
transition time distribution as ψ(t) ∼ t−1−β with 0 < β < 2. Such heavy tailed
transition distributions imply strong particle retention and thus memory effects.
The power-law in ψ(t) directly relates to the solute breakthrough curves. Note
that the breakthrough time at a control plane is the sum of n transition times τi ,
where n may be approximated by the average number of spatial steps needed to
arrive at the control plane. Thus, the generalised central limit theorem implies
that the breakthrough curve scales as f (t, x) ∼ t−1−β . The first and second
centred moments of the solute distribution scale asymptotically as m(t) ∼ tβ and
κ2(t) ∼ t2β for 0 < β < 1 and as m(t) ∼ t and κ2(t) ∼ t3−β .
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For advective transport upscaling, the CTRW framework has been used together
with Markov models for series of velocity magnitudes along streamlines [55–57],
which allow for the evolution of the transition time distribution with increasing step
number and for the conditioning of transport on initial particle velocities [53]. The
CTRW framework has been employed for transport modelling in a wide range of
fluctuating environments ranging from the diffusion of charge carriers in impure
semi-conductors [50] to diffusion in living cells [58], see also [41, 59].

Multi-Rate Mass Transfer

The multi-rate mass transfer (MRMT) approach [47, 48] separates the support scale
into a mobile continuum and a suite of immobile continua, which communicate
through linear mass transfer. At each point, the immobile concentration cim(x, t) is
related to the mobile concentration cm(x, t) through the linear relation [48]

cim(x, t) =
t∫

0

dt ′ϕ(t − t ′)cm(x, t ′). (5.30)

The evolution of the mobile concentration is given by the advection–dispersion
equation [47]

φm

∂cm(x, t)

∂t
+ q

∂

∂x
cm(x, t) − Dφm

∂2

∂x2 cm(x, t) = −φim

∂cim(x, t)

∂t
, (5.31)

where φim and φm are the immobile and mobile volume fractions. The memory
function ϕ(t) encodes the mass transfer mechanisms between the mobile and
immobile continua. For diffusive mass transfer into slab shaped immobile regions,
the memory function is defined by its Laplace transform as [48, 60]

ϕ∗(λ) = tanh(
√

λτD)√
λτD

, (5.32)

where τD is the characteristic diffusion time across the slab. For spherical inclusions,
the memory function is

ϕ∗(λ) = 3√
λτD

[
coth(

√
λτD) − 1√

λτD

]
. (5.33)

For purely diffusive mass transfer the MRMT approach is equivalent to transport
under matrix diffusion [61], which describes transport in fractured media under
diffusive mass transfer between the fracture and the rock matrix. In general for
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diffusive mass transfer, the memory function is obtained from the solution of a
diffusion problem in a heterogeneous immobile domain [62].

For first-order mass transfer at a single rate ω the memory is given by

ϕ(t) = ω exp(−ωt). (5.34)

Oftentimes, the mass transfer processes and the geometries of immobile regions are
not known in detail. The memory has then been modelled by a superposition of
multiple first-order memory functions as [35, 47, 48]

ϕ(t) =
∞∫

0

dωP(ω)ω exp(−ωt), (5.35)

where P(ω) is the rate distribution, which may be related to the volume fractions
of the immobile zones, for example. Other approaches use parametric forms for the
memory function, such as truncated power-laws [63].

In this framework, the behaviour of solute breakthrough at asymptotic times
follows the time derivative of the memory function

f (t, x) = −x

q

φm

φim

dϕ(t)

dt
. (5.36)

This means, for a memory function, which asymptotically behaves as a power-law
ϕ(t) ∼ t−β , the breakthrough curve scales as f (t, x) ∼ t−1−β [35, 64]. For matrix
diffusion into a semi-infinite slab, the memory function scales as ϕ(t) ∼ t−1/2 and
consequently the breakthrough curve as f (t, x) ∼ t−3/2, which is a signature of
matrix diffusion.

Both the CTRW and MRMT frameworks share similar phenomenology in that
they account for memory effects due to a distribution of characteristic mass transfer
time scales. The correspondence between the two pictures was discussed in [64–
67]. The time behaviour of the spatial moments of the concentration distribution is
similar to the ones described by an uncoupled CTRW [64].

5.3.3 Mixing and Chemical Reactions

In this section, we are concerned with mixing and reactions in heterogeneous porous
media. As chemical reactions are contact processes, mixing and dispersion are
key processes for the sound quantification of chemical reactions in heterogeneous
media. This refers both to homogeneous, i.e., fluid–fluid, reactions, and to heteroge-
neous, i.e., fluid–solid, reactions, as outlined in the following. We will first discuss
the notions of mixing and dispersion, and specifically the difference between these
two processes. Then, we discuss chemical reactions under spatial heterogeneity.
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Mixing, Diffusion and Dispersion

In Fickian transport descriptions, the process that leads to the mixing of initially
segregated solutes or the mixing of an initially concentrated solute into the ambient
fluid is mass transfer due to diffusion or dispersion. From expression Eq. (5.16) we
obtain directly that the maximum concentration cm(t) in one dimension decays as
cm(t) = 1/

√
4πDt . In d spatial dimensions one finds that cm(t) = 1/(4πDt)d/2.

Mixing due to molecular diffusion on mesoscopic length scales L is in general slow.
The characteristic mixing time is given by τm = L2/D. For a free fluid, stirring
or chaotic flow accelerates the mixing process in that it generates laminar struc-
tures [68] whose size l(t) increases exponentially fast with time, l(t) = l0 exp(λt),
where λ here is the Lyapunov exponent. The width of the lamellar structures is
limited by stretching and diffusion to the Batchelor scale sB = √

D/λ [69]. The
number of lamellae in a closed area of size A = L2 increases exponentially fast as
n(t) ∼ �(t)/L, while each lamella occupies an area of A� ∼ sBL. Complete mixing
is achieved when n(t)A� ∼ L2. This gives a mixing time τm = λ−1 ln(L2/�0sB)

which is in general much shorter than the mixing time by diffusion only.

Mixing and Spreading in Porous Media

Here we are concerned with mixing in flows through heterogeneous porous
media. We have seen above that solute transport has been quantified in terms
of hydrodynamic dispersion (pore to Darcy scale) and macro-dispersion (Darcy
to regional scale), which simulates that the support scale is well-mixed. This
Fickian paradigm, however, breaks down for transport in heterogeneous media, for
which anomalous or non-Fickian transport behaviours are observed. These involve
history-dependence, which implies that the support scale cannot be considered well-
mixed. Unlike for stirring in a free fluid, for porous media flows, the “stirring”
is done by the medium itself, whose structure leads to tortuous path-lines and
velocity heterogeneity. Chaotic flow patterns are in general prohibited topologically
for steady two-dimensional flows. In three dimensions, steady pore-scale flow is
chaotic [70], which may lead to similar mixing as in chaotic flow in a free fluid [71].
The existence of low velocity regions, stagnant zones in the wake of solute grains,
velocity variability between pores and intra-grain mass transfer, however, leads to
incomplete mixing on the REV scale and thus history-dependent transport [72, 73].

The topological properties of Darcy-scale flow through porous media prohibit
chaotic flow [74], see also Sect. 5.2.3. Thus, while the action of the spatially variable
flow velocity leads to the creation of lamellar structures [75], their lengths cannot
increase exponentially fast [76]. In fact, the extension of a solute distribution due
to such advection-induced spreading can be measured by the concept of macro-
dispersion. When lamellae form along the mean flow direction, the separation
distance between them is given by the characteristic transverse heterogeneity length
scale �. Thus, the time scale to mix the heterogeneous concentration distribution is
given by the time for transverse dispersion over the distance �, τD = �2/DT . These
mechanisms are accounted for by effective dispersion coefficients [77, 78]. Unlike
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macro-dispersion, the concept of effective dispersion does not account for the effect
of purely advective spreading [79, 80], but quantifies the combined effect of local
scale dispersion and advective heterogeneity, which eventually leads to mixing.

Scalar Dissipation and Concentration Statistics

In order to illustrate the relative role of local scale dispersion and spreading as
quantified by macro-dispersion in solute mixing, we consider the evolution of the
variance of the concentration fluctuation about its ensemble mean value, c′(x, t) =
c(x, t) − 〈c(x, t)〉, defined here by

σ 2
c (t) =

∫
dx〈c′(x, t)2〉. (5.37)

From the Darcy-scale advection–dispersion Eq. (5.12) one can derive [81]

dσ 2
c (t)

dt
= − 2

φ

∫
dx〈∇ c̃(x, t) · D∇ c̃(x, t)〉+

+ 2

φ

∫
dx∇〈c(x, t)〉 · D∗∇〈c(x, t)〉.

(5.38)

The first term on the right-hand side is denoted as scalar dissipation rate. It quantifies
the destruction of concentration variance due to local dispersive mass transfer. The
second term on the right-hand side quantifies the creation of concentration variance
due to spreading as quantified by macro-dispersion.

The mixing process can also be described in terms of the evolution of the PDF of
concentration values c(x, t) in the heterogeneous mixture, which can be defined by

p(c; x, t) = 〈δ[c − c(x, t)]〉. (5.39)

Based on the advection–dispersion Eq. (5.12) one can derive the following evolution
equation for the PDF [82]:

φ
∂p(c; x, t)

∂t
+ 〈q〉 · ∇p(c; x, t) − ∇ · D∗∇p(c; x, t) =

= − ∂

∂c
〈∇ · D∇c(x, t)|c〉p(c; x, t).

(5.40)

The term on the right-hand side is the average over the local dispersive flux terms
conditional to concentration, which represents a closure problem. The celebrated
interaction by exchange with the mean (IEM) closure [83] approximates this
expression as

〈∇ · D∇c(x, t)|c〉 = γIEM

2

(
c − 〈c(x, t)〉) , (5.41)
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where γIEM is a rate constant that may be related to local scale dispersion and the
local dissipation scales. This closure implies for the scalar dissipation rate

2

φ

∫
dx〈∇c′(x, t) · D∇c′(x, t)〉 = γIEMσ 2

c (t). (5.42)

This closure approximation has been applied to predict mixing in heterogeneous
porous media, but is not able to match the numerically observed evolution of the
scalar dissipation rate [84]. The IEM closure has several shortcomings for porous
media mixing. Firstly it implicitly assumes that the concentration PDF is Gaussian
shaped or approximately Gaussian, while in porous media they are typically highly
non-Gaussian [75]. Secondly, it assumes a constant local mixing scale, while
the mixing scale in porous media evolves with time [85]. Alternative approaches
employ parametric forms for the concentration PDF, such as beta-distributions,
which can be parameterised by the concentration mean and variance [86], mapping
approaches [87] and stochastic mixing models for the evolution of concentra-
tion [88].

Lamellar Mixing
Recently, the problem of mixing in porous media has been addressed using a
lamellar mixing approach [75, 89]. The mixing process can be roughly separated in
two regimes. In an early time regime, the initial solute distribution spreads out and
advective heterogeneity generates a lamellar organisation of the concentration field.
In the late time regime, the lamellar organisation is destroyed due to coalescence
of adjacent lamellae. In both regimes, the concentration PDF can be constructed in
terms of the concentration contents of individual lamellae and their interactions.

In the early time regime, lamellae are non-interacting and the evolution of the
concentration content of the mixture can be understood by the superposition of
the concentration contents of isolated lamellae, which is fully determined by fluid
stretching and local scale dispersion [69, 90]. The concentration across a stretched
lamella is Gaussian shaped and given by [75]

c(z, t) =
c0 exp

(
z2�(t)2

s2
0 [1+4θ(t)]

)

√
1 + 4θ(t)

, θ(t) = D

φs2
0

t∫

0

dt ′�(t ′)2, (5.43)

where z is the coordinate across the lamella, �(t) = l(t)/ l(0) the relative strip
elongation and s0 the initial strip width. Note that the concentration here depends
on the elongation �(t). The PDF of concentration values across a strip is then given
by

p(c|cm) = 1

2c
√

ln(cm/ε) ln(cm/c)
, (5.44)
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where ε is a lower concentration cut-off and cm(t) = c(z = 0, t) is the maximum
strip concentration, which again depends on elongation �(t). For heterogeneous
media, the strip elongation �(t) is the result of the random deformations a strip expe-
riences as it is transported through the medium. For heterogeneous porous media,
elongation is dominated by intermittent shear events along a trajectory [76]. The
mean elongation may follow power-law behaviours 〈�(t)〉 ∼ tα with 1/2 < α < 2.
The maximum concentration can be approximated by cm(t) ≈ 1/�(t)

√
Dt [75],

because it decays at the same rate as the area of the lamella increases. Thus, the PDF
of elongation can be mapped onto the PDF pm(cm, t) of maximum concentrations,
and the global concentration PDF is obtained through superposition of the local
laminar PDFs as

p(c, t) =
∫

dcmpm(cm, t)p(c|cm). (5.45)

The decisive step here is to recognise that the concentration field at early times is
organised in a lamellar structure and that the concentration content of a lamella
depends explicitly on the strip elongation. This allows obtaining the concentration
PDF by mapping from the PDF of strip elongations.

With increasing time, the length of the lamellae becomes larger than the mixing
support, which increases slower than the lamella elongation (∼ √

t for dispersive
growth), or is constant in the case of a confined domain. Thus, the lamellae need
to fold back to each other, which in the late time regime leads to diffusive overlap
and the formation of lamella aggregates through a random aggregation process. The
PDF of maximum concentrations of lamella aggregates after n aggregations is given
by the gamma distribution [69]

pm(cm, t) =
(
cm/〈cm(t)〉)n−1 exp

(−cm/〈cm(t)〉)
�(n)〈cm(t)〉 . (5.46)

In the centre of the plume, the number n(t) of lamellae in the aggregate is related
to the average maximum concentration as n(t)〈cm(t)〉 ∼ 1/

√
κ∗(t), where κ∗(t) is

the spatial variance of the average solute concentration, which can be described by
macro-dispersion. This sets the concentration PDF at the plume centre as a result of
random aggregation of lamellae. The evolution equation for the PDF p(c, t) of the
concentration content in the mixture as a result of random aggregation is discussed
in [69].

Chemical Reactions

In this section, we will briefly discuss the upscaling of chemical reactions in
heterogeneous porous media and the influence of mixing on the reaction efficiency.
Chemical reactions are contact processes and thus depend on the availability of
reacting species and on the mechanisms that bring them into contact. In a well-
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mixed reactor, in which stirring-induced mixing is exponential as described above,
mass transfer is not a limiting process. For a heterogeneous porous medium, in
which mixing is much slower, reactions may be limited by the transport rate,
i.e., the efficiency by which they are brought into contact. In the former case, the
chemical reaction is rate limited, in the latter transport limited. These situations are
distinguished by the Damköhler number

Da = krτm, (5.47)

where kr is a reaction rate and τm a characteristic mass transfer time scale. For
Da < 1, the chemical reaction is rate limited, for Da  1 it is mixing, or transport
limited.

Incomplete Mixing
A key issue for reaction upscaling in porous media is the notion of a well-mixed
support scale. We have seen in the previous sections that mixing in porous media
is slow because the “stirring” by the porous medium is much less efficient than
stirring-induced chaotic advection in a free fluid. Spatial heterogeneity and con-
sequently slow mass transfer between different compartments of a heterogeneous
porous medium leads to reactant segregation and thus to a reduction of the reaction
rate compared to a well-mixed system. We have seen in Sect. 5.3.2 that incomplete
mixing on the support scale leads to non-Fickian transport and history-dependent
transport phenomena. The same mechanisms lead to reaction behaviours that are
different from the ones measured in well-mixed laboratory environments [91, 92].
However, traditional Darcy-scale reactive transport modelling is based on the
advection–dispersion equation for the species concentration ci combined with a
kinetic rate law determined for a well-mixed environment,

φ
∂ci(x, t)

∂t
+ q · ∇c(x, t) − ∇ · [D∇c(x, t)

] =
∑
j

νij rj [c(x, t)]), (5.48)

where νij are stoichiometric coefficient, rj is the reaction rate of the j th reaction
and c(x, t) is the vector of concentrations of the reacting species. This formulation
assumes that the support scale is a well-mixed environment. This means that the
time scale by which the concentration on the support scale homogenises after a
concentration perturbation due to mass transfer is smaller than the reaction time
scale. Only under these conditions can the reaction rate on the right-hand side
be identified with the one obtained in a well-mixed environment. The upscaling
of reactive transport from the pore to the Darcy scale can be formally studied,
for example, using volume-averaging [93, 94] or homogenisation theory [95].
The validity of Darcy-scale reaction–dispersion models such as Eq. (5.48) have
been investigated in detail by Kechagia et al. [96] and Meile and Tuncay [97].
These studies systematically show discrepancies between the average reaction
rates and reaction rates predicted by the advection–dispersion reaction equation.
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Similar observations have been made for the upscaling from Darcy to regional
scale [98–101]. Incomplete mixing on the support scale leads in general to the
reduction of the mixing efficiency compared to equivalent Fickian large scale
models. The segregation of reactants on the support scale can be addressed using
multi-continuum approaches [102, 103], which resolve concentration variability on
the support scale due to subregions of slow and fast mass transfer.

An illustrative example for the impact of chemical heterogeneity on reactivity
is diffusion in a medium characterised by a spatial distribution of specific reactive
surfaces σr(x) at which species A reacts to C. The concentration cA of A evolves
according to the reaction–diffusion equation

∂cA(x, t)

∂t
− D∇2cA(x, t) = −kσr(x)cA(x, t). (5.49)

We consider σr(x) = 0, 1 randomly distributed in space with a characteristic
distance �c and Da = kL2/D  1, this means fast chemical reactions. Thus one
would assume that the effective reaction rate is given by the mean diffusion time
between reactive spots, ke = 1/τD , where τD = �2

c/D is the average diffusion
time between reaction spots. However, the total mass of A decays at long times as a
stretched exponential [104],

cA ∼ exp
[
−β

(
t/τD

)d/(d+2)
]
, (5.50)

with β being a constant. It decays slower than the exponential decay predicted
by τD . This is due to the fact that the space between reaction spots has a finite
probability to be arbitrarily large. Thus, segregation due to spatial heterogeneity
leads to a slower decay than what would be predicted by mean field theory.

Mixing-Limited Reactions
For mixing-limited chemical reactions, i.e., for high Da, the “stirring” action of
the heterogeneous porous medium enhances the mixing efficiency compared to
purely diffusive mass transfer and may lead to the formation of localised mixing and
reaction hotspots [105, 106]. At high Da, the reaction rate is directly proportional
to the mixing rate and the reactive transport problem can be mapped onto a
conservative transport problem plus a speciation relation [107]. We illustrate this
briefly for a fast reversible bimolecular reaction A + B � C ↓ on the Darcy scale.
Chemical equilibrium is described by the mass action law

cAcB = K, (5.51)

where cA and cB are the concentrations of species A and B and K is the equilibrium
constant. The reactive transport problem is described by Eq. (5.48) for each species
(i = A,B), which for a heterogeneous medium reads as
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φ
∂ci(x, t)

∂t
+ ∇ · q(x)ci(x, t) − ∇ · D(x)∇ci(x, t) = −r(x, t), (5.52)

where we have assumed the same dispersivity for both species, and where r(x, t)

denotes the “equilibrium” reaction rate. It is determined by observing that ξ =
cA − cB is a conserved variable (sometimes called mixture fraction) and obeys the
conservative advection–dispersion equation

φ
∂ξ(x, t)

∂t
+ ∇ · q(x)ξ(x, t) − ∇ · D(x)∇ξ(x, t) = 0. (5.53)

Secondly, both cA and cB depend only on u through the mass action law, Eq. (5.51),

cA(u) = ξ

2
+
√

ξ2

4
+ K, (5.54)

and analogously for cB . Using this relation Eq. (5.52) together with Eq. (5.53) gives
the following equation for the reaction rate:

r(x, t) = 1

φ

d2cA(ξ)

dξ2

[∇ξ(x, t) · D(x)∇ξ(x, t)
]
, (5.55)

The expression in the square brackets is identical to the scalar dissipation rate,
see Eq. (5.38), which measures the rate of mixing of dissolved substances. This
expression illustrates the direct dependence of the reaction rate at high Da with
the mixing rate as quantified by the scalar dissipation rate. The impact of medium
heterogeneity on the reaction rate has been investigated using the PDF of the
conserved components ξ(x, t), which can be mapped directly on the PDF of the
species concentrations via Eq. (5.54) [108, 109].

5.4 Multiphase and Surface Processes

In the previous sections, we presented the challenges related to the dispersion and
the upscaling of bulk reactions in the fluid. These, when the Fickian assumption
is not valid, can be conveniently approximated with multi-continuum models.
This is not dissimilar from what is obtained in proper multiphase systems. For
example, conjugate heat transfer problems, that would require the coupled solution
of heat transfer in the fluid and solid region, can be averaged to obtain two-phase
formulations with appropriate transfer terms. However, these transfer terms are
local (in time and space) and linear only under local equilibrium conditions in both
phases. An alternative approach is to perform the upscaling in two steps. First the
phase which relaxes faster to equilibrium is approximated macroscopically with
an equivalent heat transfer coefficient (possibly non-constant) at the solid boundary.
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This first upscaling reduces the dimensionality of the fast dynamics in a sub-domain,
effectively representing it as a surface process, leaving us with the task of averaging
transport in one phase only with complex boundary conditions.

Among these surface processes we can identify the following three categories:

• Dynamic conditions: One of the most general surface process is the one
encountered in adsorption–desorption processes that can be modelled with the
following boundary conditions:

j · n = (u − Dm∇) c · n = b (c, s) ,

where j is the flux, b represents the adsorption/desorption/transfer processes, r

is a source/sink describing chemical reactions and s = s(x, t) is the adsorbed
concentration on the surface. This has been solved separately with a surface
ordinary differential equation

∂ s

∂t
= −b (c, s) .

• Mixed conditions: When the time scale defined by b is fast enough, one can
explicitly find s = s(c) such that b(c, s) = 0. This means that the above
conditions simplify to a, possibly non-linear, mixed boundary condition of the
type

j · n = (u − Dm∇) c · n = b
(
c, s (c)

) = f (c).

Linearising f we obtain a mixed (Robin) boundary condition

j · n = f0 + f ′c. (5.56)

• Simple conditions: Assuming infinitely slow adsorption/reaction process f , the
condition above reduces to a fixed flux (Neumann) condition

j · n = f0,

while, in the opposite case of infinitely fast surface process, we can retrieve a
simple fixed concentration (Dirichlet) condition.

Clearly, the validity of these increasingly simplifying assumptions has to be verified
case by case, and we consider this as part of the upscaling process. In all three
cases, however, standard upscaling techniques (such as volume-averaging and
homogenisation) can be applied only when the surface process is slow compared
to advection and diffusion. When instead this is not the case, more advanced
techniques have to be used [110, 111]. This is similar to the case of diffusion-limited
bulk reactions (see above) that generally results in upscaled dispersion and velocity
coefficients significantly different from the non-reactive case.
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5.4.1 Mass and Heat Transfer

The transport and deposition of particles in porous media are fundamental mul-
tiscale phenomena present in a number of natural and engineered processes.
Although we refer here to the transport of physical particles, the discussion below
conceptually applies, with minor modifications, also to heat transfer mechanisms.

The classical theoretical framework typically used is the colloid filtration theory
but, more in general, advances in this field generally belong to the so-called soft
matter physics. Several complex physical mechanism, in fact, can arise due to the
complex particle–particle and particle–wall interaction. In this chapter, however, we
focus on a simple advection–diffusion description, in the dilute limit, with negli-
gible Stokes and Reynolds numbers. Therefore most hydrodynamical interactions
(sometimes called hydrodynamic retardation effects) between the particles and the
surface of the solid grains, and the DLVO interactions happen at a very small scale
and are therefore taken into account only at the boundaries, by modified boundary
conditions. This is known as the Smoluchowski–Levich approximation that results
in the molecular diffusion coefficient Dm being constant, obtained, for example, via
the Stokes–Einstein relation for diffusion of spheres in liquids. For larger particles
instead, one should consider many other effects that act possibly also far from the
wall, such as modified suspension viscosity, lift forces arising in small Reynolds
number flows, the Faxen correction, due to the perturbed flow around the particles,
and possibly also particle rotation, particle collisions, etc. Although some of these
additional physics can easily be included in the upscaling, we limit ourselves to the
effect of a surface process in the upscaling, namely in the equivalent macroscopic
dispersion and reaction coefficients.

In the dimensional analysis of mass transfer phenomena, the most used dimen-
sionless quantity is the Sherwood number, describing the ratio between convective
mass transfer and diffusive transport, which is the analogue of the Nusselt number
used in heat transfer. It is defined as:

Sh = hL

Dm

, (5.57)

where L is a characteristic length (in porous media application generally taken to
be equal to the pore or grain size), and Dm is the molecular diffusion coefficient.
The mass transfer coefficient h is defined as the molar flux through the surface per
unit surface, normalised by �C the concentration driving force. This representation
implicitly considers the mass transfer as an equivalent diffusion process through the
surface. If this is more often true at the micro-scale, after the upscaling, this effective
transfer coefficient scaled by the diffusion strongly depends on the other transport
mechanisms, such as advection, gravity and all the other external forces.

In the earlier studies of filtration, the most common upscaling approach was
to determine a single parameter describing the filter effectiveness: this is obtained
from its features and the operating conditions under investigation, and is defined the
collector efficiency ηD [112]. This efficiency coefficient is then assumed to be the
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product of two separated effects: the so-called attachment efficiency α, describing
the probability of a particle that has reached the solid grain to be adsorbed, and
the purely fluid-dynamical term η0 to model the transport the bulk of the fluid to
the surface of the grains. The latter is the often decomposed as a sum of different
contributions due to, for example, Brownian diffusion, steric interception and
inertial (and gravitational) effects. Some early works [113] analytically obtained,
for Sh in idealised geometries, expressions such as

Sh = As
1
3 Pe

1
3 , η = 4As

1
3 Pe− 2

3 ,

where As is a parameter depending on the porous medium porosity φ. Many
other such relationships are available connecting the system features, in terms
of geometrical features and fluid dynamic conditions, to an approximate particle
deposition efficiency ηD [114]. There are a number of issues facing these models;
first of all they are most often based on a single idealised geometrical model
representing the porous medium, thus failing to grasp the pore-scale complexities
and heterogeneity and its effect on particle filtration. Another conceptual hurdle
in the application of these models is the difficult translation of the obtained
efficiency parameter ηD into an effective macro-scale reaction term employable in a
macroscopic transport equation [115], and to understand its dependence on the flow
parameters and its inseparable connection with the effective dispersion and velocity.

From Surface Processes to Averaged Reaction Rates

We follow here [115], showing how to obtain a stationary effective reaction rate for
a periodic geometry and its dependence on the (reactive) boundary condition and
flow parameters, for arbitrary reaction/deposition regimes. To this aim, we consider
Eq. (5.12) and we assume that the detailed surface processes can be averaged in
a small boundary layer around the solid matrix and approximated with a generic
effective linearised mixed boundary condition (see Eq. (5.56)) of the type:

− Dm∇c · n = −r
α

α − 1
c + r0 on �, (5.58)

where α is the deposition/attachment efficiency, � is the porous matrix surface area,
r is the surface transfer coefficient and r0 is a constant surface flux. When α = 1,
Eq. (5.58) is equivalent to a Dirichlet conditions c = 0 on the solid grains (perfect
sink). In a particle-based Lagrangian framework, such as the one considered when
performing random walk simulations, this efficiency α can be interpreted as related
to the probability of a single colloidal particle of attaching to the collector surface
upon collision [116].

Applying a simple volume-average over a fixed REV �, defined as · = 1
V

∫ · dv

(with V being the total volume), the divergence theorem and the boundary condition,
Eq. (5.58), we obtain
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∂c

∂t
+ 1

V

∫

∂�

(c u · n − Dm∇c · n) ds = − 1

V

∫

�

r
α

α − 1
c ds + r0. (5.59)

Considering a box with periodic boundary conditions on y− and z−directions,
and no accumulation (stationary, local equilibrium hypothesis), it is possible to
identify the second surface integral on the LHS of Eq. (5.59) with the total flux
F through the x−boundaries of the domain (inlet and outlet in this case). Being the
starting equation linear, it is reasonable to assume the above quantity (the average
mass flux) to be a linear function of the average concentration, with a macroscopic
effective reaction rate R defined as:

R = F − r0

cV
. (5.60)

This quantity is simply computable from a micro-scale simulation on the periodic
cell, simply looking at inlet–outlet fluxes and averaged volume concentration, even
in the case of perfect sink (r → ∞) condition. Assuming a Fickian macroscopic
dispersion (see sections above), we can therefore postulate a closed-form for
the one-dimensional macroscopic advection–diffusion–reaction equation for c =
(c/c∞), in dimensionless form

∂C

∂tdiff
+ εPe

∂C

∂X
− D

Dm

∂2C

∂X2
= −DaDC + Da0, (5.61)

where X represents the (dimensionless) macroscopic space variable and we have

defined tdiff = tDm

L2 , and the Damköhler numbers as Da = Rs L2

Dm
, and Da0 = r0 L

q
.

For a periodic FCC packing [115] we obtain the following qualitative upscaling
law for the long-time effective macroscopic reaction rate, as a function of the

microscopic Damköhler number Dam = rL2

D
:

Da =

⎧⎪⎪⎨
⎪⎪⎩

K1(Dam) for Pe � 10

K2(Dam)Pe0.15 for Pe � 10, Dam � 1

K3(Dam) for Dam � 1

with constants Ki . This qualitative behaviour is universal, although the exponent
0.15 and the constants could possibly depend on the specific geometry. The
dependence of Da with respect to Dam, on the other hand, is linear (independent
of Pe) for slow surface processes while, for infinitely fast processes, it saturates to a
constant (that depends on Pe). This is the typical behaviour for reactions happening
on a localised lower-dimensional manifold where mixing can totally control the
reaction.
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5.5 Conclusions

In the previous sections we highlighted the most important physical models and
macroscopic equations that can be relevant in porous and heterogeneous materials.
We identified several assumptions and limitations of the upscaling processes.

Non-Equilibrium and Lack of Scale Separation

When no upscaling is available that can decouple the physical scales or when
transition out-of-equilibrium effects are important at the micro-scale, alternative
techniques can be used such as numerical multiscale approaches such as multiscale
FEM, variational, heterogeneous or hybrid multiscale methods. These methods
allow for a generic system to be solved efficiently explicitly accounting for
some micro-scale information. They usually rely on a pre-processing offline step
(similarly to the cell-problems in classical upscaling) or on an online dual-resolution
computational approach.

Suspensions and Interfacial Flows

Multiphase flows such as suspensions and interfacial flows can be upscaled with
the approaches described above, only under local equilibrium, and when the forces
acting on each phase are relatively small. The presence of complex momentum
transfer (in the case of suspensions) and strong localised forces, such as surface
tension (in the case of interfacial flows), makes the standard upscaling inadequate.
An intuitive interpretation of this inadequacy is the fact that volumetric/ensemble
averages cannot properly represent interfacial forces and configuration-dependent
forces. Time-dependent, non-linear, non-local and memory effects can arise at the
macro-scale.

Appendix A: Homogenisation and Two-Scale Expansions

In this section we briefly sketch the main ideas and steps in the formal derivation
of macroscopic equations using the method of periodic homogenisation with two-
scale asymptotic expansion. The method has been initially proposed in theoretical
mechanics for the study of composite materials and subsequently extensively
studied in mathematical analysis, for elliptic (diffusion) operators and variational
problems [117–121]. Quite interestingly, the first results in the area were developed
in parallel both for periodic and random (stationary ergodic) media. Being the
underlying mathematical techniques significantly different, the latter is also called
stochastic homogenisation and has lately seen important developments [122–124],
making it, in some cases, a more realistic and conceptually deeper alternative to
the former. While the formal steps of periodic homogenisation are easily accessible
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with a basic background of asymptotic methods and PDEs, the mathematical proofs
concerning the existence of a macroscopic limit (and the convergence towards
it, [125]) require extensive knowledge of functional analysis and PDE theory and
a much more complex notation, clearly beyond the scope of this chapter. For porous
media applications we refer to [1] for a comprehensive, yet accessible, treatise.

We can identify the following steps that are usually needed to perform the two-
scale expansion and derive a homogenised equation:

1. Define the scale separation parameter ε = �
L

, where L is a characteristic
macroscopic length (e.g., the total domain size) and � is a microscopic length
(e.g., the size of the pores). While mathematical homogenisation theory deals
with the existence, uniqueness, form and convergence rate of the problem when
ε → 0, the more applied approach is to guess such a limit exist and constructively
find its form and validity (measured in terms of corrections of the order of ε).

2. Put the (microscopic) equations in dimensionless form, to highlight and recog-
nise the scaling, which is the crucial assumption for the validity of what follows.
This is not strictly necessary but one of the advantages of homogenisation theory
is, in fact, the clear identification of validity regimes of the macroscopic equation.

3. Write down spatial (and possibly temporal) coordinates, derivatives and fields as
an asymptotic expansion in terms of ε. Neglecting time, given a spatial coordinate
x ∈ � ∈ [0, L]d and a field c = c(x), a two-scale expansion is performed as
follows:

x = x0 + εx1 (5.62a)

c(x) ≈ c0(x) + εc1(x) + ε2c2(x) = c0(x0, x1) + εc1(x0, x1) + ε2c2(x0, x1)

(5.62b)

∇c =
(

∇x0 + 1

ε
∇x1

)
c ≈ 1

ε
∇x1c0 + (∇x0c0 + ∇x1c1

) + ε
(∇x0c1 + ∇x1c2

)
,

(5.62c)

where x0 ∈ � ∈ [0, L]d defines the macro-scale and x1 the (periodic with
period [0, �]d ) micro-scale. While this expansion is formally always valid, its
usefulness, as we will further explain below, relies on a wide separation of scales
in the domain which is not always satisfied in real porous media.

4. Starting from the lowest power of ε, hierarchically define and solve (when a
solution is trivially found) the cascade of equations for c0, c1, . . . . Usually it is
enough to solve for the first two terms2 to get a closed-form and computable
parameters of the macroscopic limit (c0). However, to achieve that, additional
assumptions have to be made to close the system of equations. In particular, a
simplified dependence of c1 on the macro-scale c0 has to be assumed (when it is
not obtained formally), guessing a separable structure of the type:

2With a total of three equations for three lowest powers of ε, in the case second-order PDEs.
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c1(x0, x1) = w · ∇x0c0 + c1, (5.63)

where the vectorial field w = w(x1), periodic and with zero average, w = 0,
is also called corrector and can be found by solving the so-called cell-problem,
usually derived, after some manipulation, from the first correction equation for
c1. This decomposition c1 well represents the scale-separation hypothesis.

5. Depending on the problem, also an average on c0 (or, when c0 is constant on
the micro-scale, on c0 + εc1) might be defined to get rid of the micro-scale
dependence, defining a new macroscopic field

c0(x0) = c0(x0, x1) =
∫

[0,�]d
c0(x0, x1)dx1

and a macroscopic evolution equation for c0 (or c0 + εc1) can be derived from
the terms of order ε0.

Example: Reaction–Diffusion in a Perforated Domain

It is important to notice that the steps outlined above are a constructive formal
approach for homogenisation that is attractive (at least as a first approach) for new
problems but does not cover the large number of possible problems for which a
homogenised limit exists. This is much less general than, for example, variational
approaches in which a given macroscopic limit is guessed and proven to be the
correct limit. As an example, we illustrate the steps above for the simple case of
pure diffusion with slow superficial reaction (or equivalently, heat transfer with a
prescribed heat flux at the boundary), i.e.,

∇ · (D∇c(x)
) = f (x) (5.64)

with constant diffusion3 coefficient D, and a generic space-dependent source/sink
term f . The equation is defined on a perforated (porous) domain � ∈ [0, L]d in
d-dimensions, with periodic microstructure (cell) �ε ∈ [0, �]d . For simplicity we
assume also periodicity in � but this can be easily replaced with any other simple
(macroscopic) boundary conditions. On the internal boundaries (the porous matrix)
we impose a linear mixed (normal flux) condition:

D∇nc = kc + r, (5.65)

3Traditionally, homogenisation is performed on continuous domains with space-dependent oscil-
lating diffusion coefficient. However, the case studied here, more relevant to porous media
applications, can be interpreted as a limiting case in which the diffusion coefficient tends to a
patch-wise constant. This is what is done practically when solving porous media problems with
immersed boundaries, penalisation or diffuse domain methods.
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where k is a superficial reaction term (or heat transfer coefficient), and r is a
constant superficial source (or sink) term. Despite its simplicity, this includes
already important applications such as linear isotherm adsorption or heat transfer.
The extension to the mass or heat transfer through an interface within two domain
or two phases, instead of a boundary condition, is a possible extension which is
discussed in Sect. 5.4.

Inserting the expansions Eq. (5.62) into Eq. (5.64), yields

∇x0 ·
[
D

(
∇x0 + 1

ε
∇x1

)
(c0 + εc1)

]
+

+1

ε
∇x1 ·

[
D

(
∇x0 + 1

ε
∇x1

)
(c0 + εc1)

]
=

= f0(x0, x1) + εf1(x0, x1),

while the expansion of the boundary condition can be rewritten as

D

(
n · ∇x0 + 1

ε
n · ∇x1

)
(c0 + εc1) = kc0 + εkc1 + r.

At this point, since we have not put the equation in dimensionless form, it is
important to identify the regime of interest. We will focus here on the simplest
regime for which the homogenisation approach outlined above works seamlessly.
This is the case when all coefficients (D, f ) are of the same order, namely of order
one, and the boundary coefficients (k = εk1, r = εr1) are of order ε1.

Collecting now terms with equal power of ε, and taking into account the
assumptions on the coefficients, the only term of order ε−2 leads to the linear
homogeneous equation

∇x1 · (D∇x1c0
) = 0

that turns out to be a simple (linear homogeneous) equation for the variable c0 at
the micro-scale, i.e., in each periodic cell �ε (since only derivatives with respect
to x1 appear). The largest terms in the boundary condition, i.e., a simple no-
flux (homogeneous Neumann) condition, are n · ∇x1c0 = 0 on the internal solid
boundaries, with periodic boundary conditions on the external boundaries. This
equation is trivially satisfied by a constant, i.e., a function c0 = c0(x0) which is
a function of x0 only.

For the terms of order ε1, we obtain the following equation:

∇x0 · (D∇x1c0
) + ∇x1 · (D∇x0c0

) + ∇x1 · (D∇x1c1
) = 0.
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Given the conclusion above, i.e., c0 constant at the micro-scale, the first term
disappears and, replacing the assumption Eq. (5.63),4 we obtain the equation

∇x1 ·
(
D∇x1

(
w · ∇x0c0

) + D∇x0c0

)
= 0

or, since this has to hold for an arbitrary ∇x0c0, equivalently written as a vectorial
cell-problem for the corrector w

∇x1 · D
(∇x1 w + I

) = 0 (5.66)

with I being the identity matrix, with boundary condition

Dn ·
(
∇x1

(
w · ∇x0c0

) + ∇x0c0

)
= Dn · (∇x1w + I

) · ∇x0c0 = 0

or, equivalently, in vectorial form,

Dn · (∇x1w + I
) = 0. (5.67)

The next scale, ε0, reads

∇x0 ·
(
D
(∇x0c0 + ∇x1c1

)) + ∇x1 ·
(
D
(∇x0c1 + ∇x1c2

)) = f0(x0, x1)

that, by using Eq. (5.63), the conclusions obtained above and the boundary condi-
tions

Dn · (∇x0c1 + ∇x1c2
) = k1c0 + r1

can be averaged over the periodic cell to obtain the effective equation

∇x0 · (D∇x0c0
) = f0(x0, x1) − α

φ

(
k1c0

� + r1

)
, (5.68)

where α is the specific surface area, φ is the porosity of the porous material, D
is the (tensorial anisotropic) effective diffusion coefficient D = DI + ∇x1w that
is computed from the cell-problem defined above. This gives us a macroscopic
governing equation for c0 + εc1 (which, in this case, is equivalent to c0, being it
constant over x1, and c1 with mean zero), where surface terms integrated over the
surface (c0

� is, in fact, a surface average which, in this case, is again equivalent to
c0) appear in the right-hand side, together with f0, as bulk reaction terms.

4Which, in this case, is a unique and exact decomposition since this equation is defined up to an
additive constant, c1, and a multiplicative constant, ∇x0c0.
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Physical Interpretation and Limitations

With respect to other upscaling techniques, the steps performed above do not to have
a direct physical motivation and, therefore, it might be hard to understand and assess
the validity of the underlying assumptions. However there are a few considerations
that can be made:

• Despite the apparent complexity, the cell-problem Eqs. (5.66) and (5.67) has a
clear physical interpretation, being each component of w a harmonic function
(i.e., a solution of the Laplace equation, while in other cases it would be
the solution of the underlying microscopic physics), with periodic boundary
conditions and a fixed gradient at the boundary.5 These periodic cell-problems
can often be shown to be equivalent to more intuitive closure problem, similar
to the ones obtained in volume-averaging, where a concentration gradient is
imposed at the external boundaries, respectively, in the x-, y- or z-direction.
The periodicity, however, enforces also that a fully developed concentration
profile (and not just a constant) is obtained while, as we will discuss in the next
section, more general closure problems can be obtained by volume-averaging,
with arbitrary boundary conditions.

• Two often overlooked assumptions for homogenisation, possibly more important
than the separation of scales or the periodicity of the geometry (which can
be simply assumed as a first-order approximation) are the local equilibrium
and stationarity conditions, implicitly assumed when imposing periodicity of
all fields. This is particularly relevant for processes with long pre-asymptotic
transition times (lengths) to equilibrium. In those cases, homogenisation is only
able to retrieve the asymptotic stationary macroscopic model which might be
significantly inaccurate for studying the initial times of processes like mixing.
Even if, in principle, homogenisation can include explicitly the time-dependence
both in the macro- and microscales, the periodic assumption implicitly defines
steady closure (cell) problems. Generalisations of the homogenisation techniques
to overcome these assumptions have been recently proposed [126, 127].

• Another limitation is the particular scaling chosen which, on the one hand,
clearly states the validity of the model, but, on the other hand, can be very
restrictive. This aspect is also often overlooked when, for example, non-linear
models, multiphase or fast reactions are considered. In those cases, additional
terms arise in the leading orders that, only in some cases, can be tamed by ad hoc
homogenisation techniques.

• Homogenisation should be thought of as a rigorous and robust analysis of the
multiscale features of the model (convergence properties to the macroscopic
solution, identification of validity regimes and approximation errors) and not

5Also a source term on the right-hand side would appear to counterbalance advection or faster
reaction and obtain a periodic solution.
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only as generic way of discovering emerging macroscopic equations. For more
complex models, it is usually advisable to first tackle the problem with more
phenomenological macroscopic models based, for example, on mixture theory
and variation principles, using conservation laws and the second law of thermo-
dynamics. Complementarily, volume-averaged computational results can be used
to compute the parameters of these models, while homogenisation gives directly
explicit formulas for upscaled parameters. From the practical point of view, both
approaches require the solution a microscopic cell/closure problem.

Appendix B: Volume/Ensemble Averaging

An upscaling approach, developed extensively for porous media in the last
30 years [2, 128–130], is the theory of volume-averaging with its many variants.
This is conceptually equivalent to the techniques more commonly used in
fluid dynamics, turbulence, combustion and multiphase flows [82, 131, 132],
such as the large eddy simulation. Closer instead to the Reynolds averaging
in the RANS equations is instead the concept of ensemble averaging used
predominantly in a surprisingly abundant amount of theoretical work in stochastic
hydrology [11, 12, 133, 134]. These approaches have been separately developed by
the porous media and fluid dynamics communities without significant connections.
While it is out of the scope of this chapter to explain any of these approaches in
detail, we offer here a very brief introduction and some general comments about
the applicability, similarities, differences and meaning of these methodologies. The
interested reader is referred to the previously cited works and to the review [135].

Both spatial averaging and ensemble/perturbation methods rely on the following
steps:

• Write the heterogeneous coefficients of the governing equation (e.g., velocity
field, diffusion/dispersion coefficient) with a simple decomposition into a mean
and fluctuating term, which for a generic quantity g reads

g(x) =
∫

�

w(y)g(x + y)dy + g̃(x) = g(x) + g̃(x)

for volume-averaging (better denoted, in this formulation, as generalised volume-
averaging or space convolution filter), where w(x) is function with a compact
and localised support such that

∫
�

w(y)dy = 1. The size of the support, �, which
defines the averaging length scale, should be related to the REV size (when the
REV exists). Alternatively, for ensemble averaging, assuming that now g is a
random field, we can similarly define

g(x, ω) =
∫

ω

g(x, ω)dμ(x, ω) + g′(x) = 〈
g
〉
(x) + g′(x),
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where μ(x, ω) is the probability associated with the random field measure, ω is
a random event. While the first averaging is well-defined both for pore-scale
(i.e., perforated) and macro-scale (i.e., continuous) domains, the second one
strictly applies only to macro-scale (e.g., permeability) heterogeneities, although
extensions are possible.

• Applying the averaging operator to a generic transport equation for the field c, an
unclosed equation for the mean (which we denote here generally with c for both
averages) is found, where the unclosed terms are either non-linear terms (for both
volume and ensemble averages) or boundary terms (for volume-averaging). In
fact, while in standard single-phase turbulence modelling, the averaging volume
only contains fluid, in porous media the so-called spatial averaging theorem
applies

∇c = ∇c + α

ε
cn�,

where, as discussed in the homogenisation section, ·� denotes an average over the
fluid–solid interface, and n the normal to the surface. A generalisation is possible
when dealing with generic multiphase systems whose interfaces between phases
can be mobile. In that case, a more complex treatment has been used to derive
upscaled equations for all phases [2, 131, 136].

• To obtain a first-order upscaled model, the unclosed equation for c is closed with
a combination of geometrical6 and physical/phenomenological arguments, and
by the solution of the closure problem for the fluctuations g̃. The latter can be
easily obtained by subtracting the equation for g from the initial equation. This,
however, often contains other unclosed terms that could be written in terms of
higher order moments of coefficients, e.g., g, and variables, e.g., c.

• Higher order approximations can be obtained either by defining new problems
for the higher order moments or, exploiting the linearity (or linearisation) of
the transport equation, in defining a new sequence of problems to find an
approximation for c of the type:

c = c0 + c1 + c2 + . . . ,

where, for example, c0 is obtained by neglecting all unclosed terms in the
equation for c.

6Here is where the hypotheses on the porous media structure are introduced, through estimates

of the (tensorial) spatial moments nyj
�

with j = 0, 1, 2, . . . denoting the order of the tensorial
product and y being the spatial coordinate.
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