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Abstract: Time reversal invariance (TRI) of particles systems has many consequences, among which the
celebrated Onsager reciprocal relations, a milestone in Statistical Mechanics dating back to 1931. Because
for a long time it was believed that (TRI) dos not hold in presence of a magnetic field, a modification of
such relations was proposed by Casimir in 1945. Only in the last decade, the strict traditional notion of
reversibility that led to Casimir’s work has been questioned. It was then found that other symmetries
can be used, which allow the Onsager reciprocal relations to hold without modification. In this paper
we advance this investigation for classical Hamiltonian systems, substantially increasing the number of
symmetries that yield TRI in presence of a magnetic field. We first deduce the most general form of a
generalized time reversal operation on the phase space of such a system; secondly, we express sufficient
conditions on the magnetic field which ensure TRI. Finally, we examine common examples from statistical
mechanics and molecular dynamics. Our main result is that TRI holds in a much wider generality than
previously believed, partially explaining why no experimental violation of Onsager relations has so far
been reported.

Keywords: hamiltonian dynamics; magnetic field; correlation functions; onsager reciprocal relations

1. Introduction

The relation between time reversal invariance (TRI) and Onsager reciprocal relations [1,2], for systems
coupled with a magnetic field is a topic well investigated since Casimir’s article [3]. A cardinal contribution
was given by Kubo in Refs. [4–6] who used the usual time reversal operation

TB(r, p, t; B) = (r,−p,−t;−B) (1)

for the correlator of two classical observables φ and ψ in the stationary state, where r, p collectively
represent coordinates and momenta of the particles of the system of interest. He obtained the following
chain of equalities:

〈φ(0)ψ(t)〉B = ηφηψ〈φ(0)ψ(−t)〉−B = ηφηψ〈φ(t)ψ(0)〉−B (2)

Here the factors ηψ and ηφ are, respectively, the signatures of the observables ψ and φ, i.e., of two
generic functions defined on the phase space, with regard to the transformation TB. Moreover, the angular
brackets represent the average with respect to the equilibrium probability distribution in phase space.
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Generalized time reversal transformations different from TB are already given by Lax in Ref. [7],
but in the previous century the statement that crystallized in the literature was that only TB allows the
reciprocal relations to hold. Unfortunately, this only leads to a relation between two different systems as
stressed by the subscripts in (2), one with magnetic field B and the other with opposite field, which leads
to Casimir’s modification of Onsager reciprocal relations. As a consequence, the predictive power of these
relations is quite limited, compared to that of the original relations.

Recently, however, a different perspective has been adopted in Refs. [8–10] for classical systems
coupled with a constant magnetic field along an axis and in Ref. [11] for a magnetic field dependent on
one space coordinate. In particular, it was shown that suitable time reversal operations exist that yield (2)
without the inversion of the field. Furthermore, the quantum case, in the presence of a constant magnetic
field has been similarly treated in Ref. [12].

As we will show in detail, the generalized time reversal transformations that were investigated do
not exhaust the set of all possible operations leading to TRI. The first objective of this paper is to identify
the most general time reversal operation compatible with a classical Hamiltonian system. After this,
we analyze the minimal coupling with a generic magnetic field, formulating sufficient conditions for the
magnetic field and for the force potential that make the Onsager reciprocal relations hold.

This theoretical result is relevant also in the context of quantum mechanics, that will be dealt with in
a future paper. For exemplary instance, in Ref. [13] Büttiker and collaborators analyzed quantum systems
using the “tenfold way” developed by Zirnbauer in Ref. [14], which is founded on the idea that the validity
of the Onsager reciprocal relations necessarily requires microreversibility, i.e., Onsager’s notion that: “if the
velocities of all the particles present are reversed simultaneously the particles will retrace their former
paths, reversing the entire succession of configurations”, which is to say that T (r, p, t) = (r,−p,−t)
holds. As demonstrated in Refs. [8–10], this is not always required for statistical properties, because other
symmetries may as well do. In this paper we show that further generalized time reversal operations exist
that can be used in Linear Response Theory and beyond.

In Section 2, we derive and discuss our results about time reversal invariant (TRI) systems, in presence
of magnetic fields, and we introduce our methods of investigation. In particular, we provide sufficient
conditions for the magnetic fields that allow TRI. In Section 3, we summarize such results and outline
future developments.

2. Theory and Results

This section is organized as follows: Section 2.1 summarizes previous results on TRI in presence
of a magnetic field and its relevance for the Onsager reciprocal relations and other statistical equalities.
Section 2.2 identifies the general form of a TRI operation for a system coupled with a magnetic field B,
and gives sufficient conditions on B for such operations to exist. This is connected with the question
of gauge freedom, which is analyzed in Section 2.3. Section 2.4 closes the loop concerning sufficient
conditions, expressing them directly from the point of view of the magnetic field. Finally, various examples
of potentials are used to illustrate our theoretical results.

2.1. Onsager Reciprocal Relations and T-Symmetry

A dynamical system St : Ω→ Ω, on a phase space Ω with t ∈ R, is called TRI if there exists a map
M : Ω −→ Ω, such that:

MSt = S−tM , and M2 = I (3)

The operator St is the time evolution operator on the phase space, which moves every initial condition
Γ ∈ Ω to the corresponding evolved phase point StΓ ∈ Ω. As St and S−t are operators related to the same
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dynamics, forward in one case and backward in the other,M in (3) has to preserve the equations of motion
and so the Hamiltonian, cf. Section 2.2.

As shown for instance in Ref. [8], the canonical time reversal operation, i.e., M(r, p) = (r,−p),
does not verify Equation (3) when St describes the evolution of a system in a magnetic field. While the
equations of motion are preserved by TB, i.e., by inverting momenta and magnetic field together with time,
that operation means dealing with different systems, subject to different magnetic fields, rather than with
a single system in given magnetic field. Thus, one only obtains relations such as the Onsager–Casimir
ones, (2), that do not quantify the properties of a system of interest: they merely link non-quantified
properties of two different systems in two different magnetic fields.

Given the observables φ, ψ : Ω −→ R, their correlator with respect to a probability distribution in
phase space, ρ, is defined by:

〈φ(0)ψ(t)〉B =
∫

Ω
dXρ(X)φ(X)ψ(StX) (4)

In case an operationM verifying Equation (3) exists, Onsager reciprocal relations hold, as can be
demonstrated analyzing the correlator (4). This can be seen through the following steps: first,M is used
to change variable within the integral, setting X =MY, whose Jacobian determinant is 1, becauseM is
an isometry. It follows that:

〈φ(0)ψ(t)〉B =
∫

Ω
dYρ(MY)φ(MY)ψ(StMY) (5)

Suppose that φ and ψ respectively possess signatures ηφ and ηψ under the action ofM, and that the
probability density ρ is even underM, as appropriate for an equilibrium distribution of a Hamiltonian
particles system, such as the canonical ensemble. This leads to the result showed in Ref. [8]:

〈φ(0)ψ(t)〉B = ηφηψ

∫
Ω

dYρ(Y)φ(Y)ψ(S−tY) = ηφηψ〈φ(0)ψ(−t)〉B (6)

Using the invariance for time translation of the equilibrium state, i.e., translating forward by a time t
the last term of (6), we come to the final result:

〈φ(0)ψ(t)〉B = ηφηψ〈φ(t)ψ(0)〉B (7)

This is related to the Onsager theory of linear response as follows: given the macroscopic observables
αi, i = 1, ..., n, and entropy S of a system subjected to (relatively) small thermodynamic forces Xj, j = 1, ..., n,
one may write:

α̇i = ∑
j

LijXj Xj =
∂S
∂αj

; i, j = 1, ..., n (8)

where the linear transport coefficients are obtained via the Green–Kubo integrals of the corresponding
correlators (see Ref. [15]). Therefore, the symmetry properties of Lij descend from those of 〈αi(0)αj(t)〉.
If ηi and ηj are the signatures of the macroscopic observables, we have:

〈αi(0)αj(t)〉B = ηiηj〈αi(t)αj(0)〉B ; i, j = 1, ..., n (9)

that, after integration in time, yield the Onsager reciprocal relations:

Lij = ηiηjLji ; i, j = 1, ..., n (10)
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Our goal is to identify the general form of a time reversal transformation, as well as the conditions
under which Onsager symmetry may be obtained in presence of a magnetic field.

2.2. Dynamics and Transformations

Consider a system of particles coupled with an external static magnetic field and subject to forces
expressed by a potential. The corresponding Hamiltonian writes:

H =
N

∑
i=1

[
(pi − qi A(xi, yi, zi))

2

2mi

]
+ U(X, P, C) (11)

where N is the number of particles, qi and mi are the charge and the mass of the i-th particle, the first
addend is the coupling to the magnetic field and U(X, P, C) is the force potential. In general, U depends
on 2dN coordinates (X, P), if each particle has got d degrees of freedom, but it may also depend on a set of
parameters C. Without loss of generality, let us assume that the particles move in 3-dimensional space and
that d = 3. In the following we are going to use Ak(xi, yi, zi), with k = 1, 2, 3, to denote the components of
the vector potential A(xi, yi, zi).

Let us begin identifying the possible time reversal operations for a Hamiltonian system, in general.
Later, we will focus on those that are not broken by magnetic field.

Proposition 1. Take the 6-dimensional space of a single particle, with coordinates and momenta (x, y, z, px, py, pz),
and let I be the identity operator on this space. The general form of a time reversal operator T , for classical
Hamiltonian dynamics, writes:

T (x, y, z, px, py, pz) = P(s1x, s2y, s3z,−s1 px,−s2 py,−s3 pz) (12)

where P is a permutation of coordinates and of their conjugate momenta, such that P2 = I, and si, which equals 1 or
−1, takes opposite values in front of coordinates and momenta.

Proof. That P2 be the identity and that si be ±1 is imposed by the fact that T 2 = I, i.e., that a time reversal
transformation must be involutional. That a coordinate and its respective momentum have opposite sign
is imposed by the form of the Hamilton equations:

∂H
∂pi

= ẋi

∂H
∂xi = − ṗi

(13)

In fact, assuming that the Hamiltonian itself verifies TRI, an overall minus sign arises when time is
reversed. Then, in order to preserve the form of the equations of motion, a minus sign has to distinguish xi

from its conjugate momentum pi.

Note that P in Equation (12) is not a permutation of six elements but it acts in a block diagonal way
on the coordinates and in the same way on the momenta. For instance, assuming P swaps x and y, it does
the same with the corresponding momenta:

(x, y, z, px, py, pz)
P−→ (y, x, z, py, px, pz) (14)

This action comes in addition to the compulsory alternation of signs between coordinates and
conjugated momenta produced by the si factors.
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In order to enumerate how many different time reversal transformations exist, let us represent them
in matrix form. As positions and momenta are bound to be distinguished by a minus sign, it suffices to
consider the 3-dimensional space of positions, hence to consider a 3 × 3 matrix,Md. The action of T on
the corresponding momenta will be given by −Md.

First, suppose P is the identity, so thatMd takes the diagonal form:

Md =

s1 0 0
0 s2 0
0 0 s3

 (15)

In this case, there are eight possible choices for T , as shown in Ref. [9]. For example, the usual time
reversal operation that preserves the coordinates and reverses the momenta corresponds to s1 = s2 = s3 = 1.

If, on the other hand, P 6= I, the total number of permutations of three elements is the order of the
discrete group S3, i.e., 3! = 6. But the cyclical and the counter-cyclical permutations are not involutions,
and only the swap permutations remain:

Mxy =

 0 sP 0
sP 0 0
0 0 s3

 (16)

Myz =

s1 0 0
0 0 sP
0 sP 0

 (17)

Mxz =

 0 0 sP
0 s2 0
sP 0 0

 (18)

where sP = ±1 and the subscript onM identifies the swap. The non-zero elements in the 2× 2 permutation
blocks must own the same sign to ensure that the transformation squared is the identity. This amounts
to 12 transformations: four for each of the matrices (16), (17) and (18). Adding these to the previous 8
transformations, we obtain a total of 20 generalized time reversal transformations, that can be used to
derive the Onsager reciprocal relations, following e.g., the approach of Ref. [9].

For the invariance of the Hamiltonian, let us directly consider the magnetic field, B 6= 0. First, let the
particles of the system be coupled to B only, so that U(X, P, C) = 0. As there are 20 possible transformations
for each particle subspace, one can choose a time reversal operation among 20N . For instance, letM1 and
M2 be two matrices that represent two suitable transformations on 6-dimensional subspaces; one may
combine them in a single transformation O acting on the entire phase space as:

O(X, P) = (M1x1,−M1 p1, ...,M2xk,−M2 pk, ...,M2xN ,−M2 pN) (19)

where a special combination of the two operations has been chosen. By definition, O automatically satisfies
the conditions (3), and can be used under the Kubo correlation integral.

To find involutions that act on the entire phase space, not as block diagonal single particle matrices,
one may consider non-diagonal time reversal operations, that act on the Hamiltonian (11) exchanging
coordinates and momenta of different particles. However, because in general particles have different
masses, mi 6= mj for i 6= j, such operations do not qualify as time reversal involutions. For example,
consider the following transformation:
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(x1, ..., xj, xj+1, ..., xN , p1, ...., pj, pj+1, ..., pN)
Mnd−−→ (x1, ..., xj+1, xj, ..., xN ,−p1, ....,−pj+1,−pj, ...,−pN) (20)

where x1 = (x1, y1, z1). Writing the summation in Equation (11) as:

N

∑
i=1

[
(pi − qi A(xi))

2

2mi

]
= ... +

(pj − qj A(xj, yj, zj))
2

2mj
+

(pj+1 − qj+1 A(xj+1, yj+1, zj+1))
2

2mj+1
+ ... (21)

the transformation (20) yields:

... +
(pj + qj A(xj, yj, zj))

2

2mj+1
+

(pj+1 + qj+1 A(xj+1, yj+1, zj+1))
2

2mj
+ ... (22)

As the transformation (20) does not act on the masses, Equation (22) may differ from the corresponding
term in Equation (21), even in cases in which A(xj, yj, zj) = A(xj+1, yj+1, zj+1): the Hamiltonian is not
invariant under the action ofMnd. Depending on the values of the particles masses, certain swaps may
be allowed or not. In the following, we limit our investigation to the case that excludes particles swaps.

Considering the 20 operations listed above, (15), (16), (17) and (18), let us now relate them to the
functional form of the vector potential of Equation (11). Neglecting for sake of simplicity the particle index
i, we have:

(p− qA)2 = (px − qA1)
2 + (py − qA2)

2 + (pz − qA3)
2 (23)

Under the action of the map (12) with P = I, this yields:

(−s1 px − qA1(s1x, s2y, s3z))2 + (−s2 py − qA2(s1x, s2y, s3z))2 + (−s3 pz − qA3(s1x, s2y, s3z))2 (24)

and imposing that the result equals the expression (23),

(px − qA1)
2 + (py − qA2)

2 + (pz − qA3)
2 = (px + qs1 AT

1 )
2 + (py + qs2 AT

2 )
2 + (pz + qs3 AT

3 )
2 (25)

where the AT
k is the transformed component Ak(s1x, s2y, s3z), the Hamiltonian verifies TRI. We can

thus write:

Proposition 2. The necessary and sufficient algebraic conditions for the validity of Equation (25) are given by:

AT
k = −sk Ak k = 1, 2, 3 (26)

Proof. On the one hand, if (26) holds, substitution immediately yields (25). Vice versa, starting from
the validity of (25), one notes that the squares of p and A are squared norms of vectors in R3, hence are
invariant under rotations, as the generalized time reversal operations are. Consequently, the following
equality holds:

− px A1 − py A2 − pz A3 = pxs1 AT
1 + pys2 AT

2 + pzs3 AT
3 (27)

As each Ak only depends on (x, y, z), and the conjugate momenta are independent, one may vary at
will the values of (px, py, pz) in (27). Setting to zero two of them, one gets (26) for the third. Repeating, for
the other pairs, (26) is obtained.

Actually, TRI in presence of a magnetic field is less demanding than that, because it suffices that (25)
holds up to a gauge transformation. In other words, (23) can be generally replaced by:

[p− q(A +∇G)]2 = [px − q(A1 + ∂xG)]2 + [py − q(A2 + ∂yG)]2 + [pz − q(A3 + ∂zG)]2 (28)
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where G is a suitable scalar function that can be introduced without affecting the dynamics.

Proposition 3. Admitting possible gauge transformations, the necessary and sufficient algebraic conditions for the
time reversal invariance of Equation (25) are expressed by:

AT
k = −sk(Ak + ∂iG) k = 1, 2, 3 and i = x, y, z (29)

Proof. The reasoning used in the proof of Proposition 2 can be repeated. Introducing Ai + ∂iG in place of
Ai, in the left hand side of Equation (25), we get:

(px − q(A1 + ∂xG))2 + (py − q(A2 + ∂yG))2 + (pz − q(A3 + ∂zG))2 =

(px + qs1 AT
1 )

2 + (py + qs2 AT
2 )

2 + (pz + qs3 AT
3 )

2 (30)

Then, direct substitution shows that (29) implies (30). The inverse implication follows from the fact
that Equation (30) has to hold for any value of the coordinates and the momenta. In particular, considering
the case px = py = pz = 0, we have:

(A +∇G)2 = [AT ]2 (31)

and trivially the following:

− px(A1 + ∂xG)− py(A2 + ∂yG)− pz(A3 + ∂zG) = pxs1 AT
1 + pys2 AT

2 + pzs3 AT
3 (32)

The thesis follows separately considering pairs in which two among px, py and pz vanish.

As an example, take a constant magnetic field along the z axis, which corresponds to a vector potential
A(x, y, z) = A0(0, x, 0) = (0, A0x, 0), and choose the Coulomb gauge. Then (26) reduces to s1x = −s2x for
any value of x, that is:

s1 = −s2 (33)

In this case, the number of diagonal time reversal operations that preserve TRI is four, Ref. [9]. Indeed,
every constraint on the values of si halves the number of available reversal operations. Then, applying the
transformation (16) to (23) yields (the same can be repeated for (17) and (18)):

(−sP px − qA2(sPy, sPx, s3z))2 + (−sP py − qA1(sPy, sPx, s3z))2 + (−s3 pz − qA3(sPy, sPx, s3z))2 (34)

and in the same way as Proposition 2 we derive three necessary and sufficient conditions
A1(sPy, sPx, s3z) = −sP A2(x, y, z)

A2(sPy, sPx, s3z) = −sP A1(x, y, z)

A3(sPy, sPx, s3z) = −sz A3(x, y, z)

(35)

In the singular case A(x, y, z) = (0, A0x, 0), (35) reduces to 0 = ±sPx, which clearly has no solution
for sP = ±1; on the other hand, one observes that the same magnetic field corresponds to the vector
potential A(x, y, z) = A0/2(−y, x, 0), that instead leads to{

−sPx = −sPx

sPy = sPy
(36)
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which has solution. In other words, the four transformations in the form (16) continue to hold. The point
is that one can use the gauge freedom to replace (35), and write:

A1(sPy, sPx, s3z) = −sP(A2(x, y, z) + ∂yG)

A2(sPy, sPx, s3z) = −sP(A1(x, y, z) + ∂xG)

A3(sPy, sPx, s3z) = −sz(A3(x, y, z) + ∂zG)

(37)

In the next section, we discuss in detail the role of the gauge.

2.3. Gauge

By definition, the gauge choice has no physical consequences. In our case, the dynamics does not
change if the vector potential A is replaced by A +∇G, with G : R3 −→ R a scalar function. As commonly
done in this kind of magnetostatic problems, we choose the Coulomb gauge:

∇ · A = 0 (38)

The consequence of this on the physical field B, hence on the conditions for TRI, can be illustrated
starting from the diagonal transformations and recasting (29) in the following fashion:

(s1 AT
1 , s2 AT

2 , s3 AT
3 ) = −(A1 + ∂xG, A2 + ∂yG, A3 + ∂zG) = −(A +∇G) (39)

where we used the fact that (12) has to be an involution.
One can view Equation (12) (with P = I in the diagonal case) as a transformation on the vector

field V(R3) of which A is an element, that transforms as a vector and not as a pseudo-vector. Hence,
the necessary conditions (26) imply that A transformed as a vector field in R3 under a diagonal operation
M′ : V(R3) −→ V(R3) has to equal −A up to a gauge transformation, and B is then mapped to −B.

The same applies to the non diagonal transformations: we rewrite (37) asA′1
A′2
A′3

 = −Mxy

A1 + ∂xG
A2 + ∂yG
A3 + ∂zG

 (40)

where A′k = Ak(sPy, sPx, s3z). As the inverse of the matrix Mxy equals the matrix itself, multiplying
Equation (40) side by side by Mxy the consequence is again to transform A into −A up to a gauge
transformation. The same obviously holds forMxz andMyz.

The gauge freedom can be accounted for by introducing the equivalence classes [A] of the vector
potentials that lead to the same magnetic fields, i.e., whose elements differ by the gradient of an at
least twice differentiable scalar function G(x, y, z). We denote by [A]R an element of the class [A],
that corresponds to a particular choice of G. We can now state the following:

Proposition 4. A generalized time reversal operation M of form (12), that acts on all particles 6-dimensional
subspaces, preserves TRI in the presence of a magnetic vector potential A if and only if the associated transformation
defined on the 3-dimensional vector field space,M′ : V(R3) −→ V(R3), obeys:

M′A =MM(A1(MMx), A2(MMx), A3(MMx)) = [−A]R (41)

withMM one 3-dimensional specific matrix representation verifyingM2
M = I.
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When this is verified, the Hamiltonian is preserved up to a gauge transformation and the corresponding
equations of motion are in turn verified.

Proof. The direct implication directly comes from Equations (39) and (40), where the invariance of the
equations of motion leads to the condition (41). Vice versa, assuming there is an involutionM′ verifying
Equation (41), with 3-dimensional matrix representation MM, one can introduce the transformation
M ≡ (MMx,−MM p), which preserves the structure of the Hamilton equations under time reversal,
because it alternates signs. Furthermore, the Hamiltonian is unchanged under the application of M
to every particle space, sinceM(p− qA(x))2 = (−MM p− qA(MMx))2 by definition. Using (41) and
M2

M = I we obtainM(p− qA(x))2 = (p− q[A(x)]R)2.

Remark 1. ApplyingM as a variable change in the integral (5) deeply differs from inverting B. The coordinates
swap operated byM may amount to a mere rearrangement of the order in which the contributions to the integral
coming from the different regions of the phase space are summed up, that does not affect the total. That depends on
the functions that are integrated. For instance, given an average electric current from left to right, corresponding to a
forward trajectory of particles, its time reverse may exist even if the particles do not trace backward the configurations
of the forward trajectory; a reversed average of momenta suffices.

Remark 2. Remark 1 rests on the hypothesis that all coordinate transformations of interest map the domain of
integration on itself. Depending on the geometry of interest, a coordinate change may kick some particle out of the
volume occupied by the system under investigation. As long as one remains within the realm of infinite homogeneous
systems, or far from possible boundaries, as common in response theory, this is not an issue. In general, one
has to consider case by case whether the phase space is invariant under the chosen time reversal mapping. If the
dynamics is not translation invariant, making all time reversal symmetries fail, in principle one obtains a method to
experimentally find a violation of Onsager reciprocal relations.

To test the condition of Proposition 4, it suffices to check that the curl of A and ofM′A corresponds
to B and −B, respectively. For example, take a constant magnetic field with gauge choices A1(x, y, z) =
(0, A0x, 0) and A2(x, y, z) = (−A0y, 0, 0), which are elements of the same class [A]. Applying the
transformation of Equation (16) with sP = 1 and s3 = 1, one obtains A′2(x, y, z) = (0,−A0x, 0) that
does not equal −A2(x, y, z), but equals −A1(x, y, z), showing that it nevertheless belongs to the class [−A].
Thus, the transformation of Equation (16) satisfies the necessary condition (41) for TRI.

2.4. Magnetic field

Proposition 4 can be formulated in an equivalent form that does not involve gauge freedom:

Proposition 5. A generalized time reversal operation M of form (12), that acts on all particles 6-dimensional
subspaces, preserves TRI in the presence of a magnetic field B if and only if the associated transformation defined on
the 3-dimensional vector field space,M′ : V(R3) −→ V(R3), obeys:

M′B = det(MM)MM(B1(MMx), B2(MMx), B3(MMx)) = −B (42)

withMM the 3-dimensional specific matrix representation verifyingM2
M = I.

Proof. The derivation is trivial because (41) and (42) are equivalent statements by definition of a magnetic
field as curl of vector potential, which transforms as a pseudo-vector in 3D space.
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Again, TRI preserves the Hamiltonian, up to a gauge choice, as well as the corresponding equations
of motion. This perspective is particularly useful in classical mechanics, in which only the magnetic field
matters, because the equations of motion are the fundamental element of the theory.

Now, given a magnetic field B(x), the necessary conditions for a transformation to preserve TRI are
obtained from Equations (15), (16), (17) or (18). To do that for the 20 transformations we have got, let us
express B in the basis î, ĵ, k̂ of the 3-dimensional space as:

B = B1(x)î + B2(x) ĵ + B3(x)k̂ (43)

and take the diagonal transformations with matrix representation (15). Following the rule (42),
B transforms as:

B′ = s1s2s3[s1B1(s1x, s2y, s3z)î + s2B2(s1x, s2y, s3z) ĵ + s3B3(s1x, s2y, s3z)k̂] (44)

Then, the necessary matching conditions between the magnetic field components and the
transformation follow from the second equality of (42), and write:

B1(x, y, z) = −s2s3B1(s1x, s2y, s3z)

B2(x, y, z) = −s1s3B2(s1x, s2y, s3z)

B3(x, y, z) = −s1s2B3(s1x, s2y, s3z)

(45)

Therefore, given the magnetic field, one can verify by inspection which of the eight diagonal
transformations yield TRI. The same reasoning can be repeated for the non diagonal transformations, with
representations (16), (17) or (18), whose application to (43) implies:

B′xy = −s3[sPB2(sPy, sPx, s3z)î + sPB1(sPy, sPx, s3z) ĵ + s3B3(sPy, sPx, s3z)k̂] (46)

B′yz = −s1[s1B1(s1x, sPz, sPy)î + sPB3(s1x, sPz, sPy) ĵ + sPB2(s1x, sPz, sPy)k̂] (47)

B′xz = −s2[sPB3(sPz, s2y, sPx)î + s2B2(sPz, s2y, sPx) ĵ + sPB1(sPz, s2y, sPx)k̂] (48)

where the subscripts identify the transformation. This derives from the fact that the determinant of the
matrices (16), (17) and (18) equals the opposite of the diagonal element: −s2

Psi = −si. Then, the necessary
matching conditions for the 12 non-diagonal reversal operators write:

B1(x, y, z) = s3sPB2(sPy, sPx, s3z)

B2(x, y, z) = s3sPB1(sPy, sPx, s3z)

B3(x, y, z) = B3(sPy, sPx, s3z)

(49)


B1(x, y, z) = B1(s1x, sPz, sPy)

B2(x, y, z) = s1sPB3(s1x, sPz, sPy)

B3(x, y, z) = s1sPB2(s1x, sPz, sPy)

(50)


B1(x, y, z) = s2sPB3(sPz, s2y, sPx)

B2(x, y, z) = B2(sPz, s2y, sPx)

B3(x, y, z) = s2sPB1(sPz, s2y, sPx)

(51)
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This concludes the case of systems with U(X, P, C) = 0 in the Hamiltonian. For U(X, P, C) 6= 0, TRI
requires also the following:

MU(X, P, C) = U(MCX,−MCP, C) = U(X, P, C) (52)

whereM is a time reversal transformation on the phase space, obtained by applying a givenMC to the
coordinates, and alternating signs with the momenta. Let us begin introducing a force E deriving from a
scalar potential Φ that depends only on coordinates, so that −∇Φ = F, and the Hamiltonian reads:

H =
N

∑
i

[
[pi − qi A(xi, yi, zi))]

2

2mi
+ Φ(xi, yi, zi)

]
(53)

Given a transformationM that satisfies the conditions of Proposition 5, the Hamiltonian (53) results
invariant under the application ofM if:

MΦ(X) = Φ(MCX) = Φ(X) (54)

andMC is used as in Equation (52) (n.b. this includes the notable case of the coupling with an electric
field). In the following Section, we investigate notable examples of force potentials.

2.5. Force Potentials

In this Section we consider physically relevant inter-particle potentials. Without loss of generality, we
take a constant magnetic fields along the z axis, i.e., B = (0, 0, 1), which breaks four of the eight diagonal
time reversal symmetries. In turn, the conditions (49), (50) and (51) imply that only the four non diagonal
operations (16) yield TRI, producing a total of eight time reversal symmetries.

Example 1. Take a central potential, e.g., the Coulomb potential between charged particles:

U(X, P, C) =
N

∑
i<j

fij(C)u(rij) ; rij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 , (55)

rij being the distance between particle i and particle j, C a vector of parameters, and fij a function of such parameters.
This potential satisfies the condition (54) because each of the 20 available transformationsMC is an element of the
orthogonal group O(3). In particular, one may take block diagonal operators with 3× 3 blocks given by (15), (16),
(17) or (18). As a consequence, rij is left unchanged by the action ofM on the phase space. Moreover,MC does not
act on the space of the parameters C, leaving each fij invariant.

While very simple, the potentials of this form are most common and useful; in particular, interactions between
structureless objects are commonly modelled by central forces, such as those derived from Lennard–Jones, Morse,
Coulomb, gravitational and Yukawa potentials.

Example 2. The Coulomb ring-shaped (or Hartmann) potential treated in Ref. [16]

U(xi, yi, zi) = −
Z√

x2
i + y2

i + z2
i

+
1
2

Q
1

x2
i + y2

i
Q > 0 , Z > 0 (56)
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is used in quantum mechanics, and can be used to model a force field that is not purely central, thanks to its second
addend, that depends on the square distance from z axis. Here, the term x2

i + y2
i is invariant under the action of the 8

possible diagonal transformations; in particular, we have:

(s1xi)
2 + (s2yi)

2 = x2
i + y2

i (57)

In addition, for the non-diagonal transformations of the form (16), we have:

(sPyi)
2 + (sPxi)

2 = x2
i + y2

i (58)

In conclusion, this kind of potential does not add restrictions to TRI, other than those imposed by the
magnetic field.

Example 3. A different kind of potentials, used, e.g., in molecular dynamics, depends on momenta. For instance,
in Ref. [17], classical Fermion-like particles are simulated with the following potential:

U(pi) =
Ep

1 + ebp(|pi |2−1)
(59)

where Ep and bp are dimensional constants, while pi = (px
i , py

i , pz
i ). In this case, the particles are decoupled, but

they are subject to an external momentum dependent force. TRI, hence its consequences such as Onsager reciprocal
relations, may hold even in a system like this, if the functional form of the magnetic field allows, because |pi| is
invariant under rotations.

Example 4. The Polarisable Ion Model (PIM) potential, is particularly interesting in molecular dynamics studies,
to take into account certain intermolecular interactions cf. Refs. [18,19]. In the case of an N particles system, it is
expressed by:

U = Ucharge + Udispersion + Urepulsion + Upolarization (60)

where
Ucharge = ∑

i
∑
j>i

qiqj

rij
(61)

is the Coulomb electric potential,

Udispersion = −∑
i

∑
j>i

(
Cij

6
(rij)6 f ij

6 (rij) +
Cij

8
(rij)8 f ij

8 (rij)

)
(62)

is due to dipole-dipole and dipole-quadrupole dispersion,

Urepulsion = ∑
i

∑
j>i

Bije
−αijrij (63)

is a short-range repulsion term, and

Upolarization =∑
i

∑
j>i

(
qirij · µj

(rij)3 f ij
4 (rij)−

qjrij · µi

(rij)3 f ji
4 (rij)

)
+

∑
i

∑
j>i

(
µi · µj

(rij)3 −
3(rij · µi)(rij · µj)

(rij)5

)
+ ∑

i

|µi|2
2αi

(64)
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is the polarization interaction term, with µi the induced dipole moment of the molecule i. While the parts in Equations
(61), (62) and (63) are like the potential (55), and are invariant under any time reversal operation, the term in
Equation (64) is hard to control, since it is defined recursively: for any particle i, µi in principle depends on the
coordinates and on the dipole momenta of all the other particles. Explicitly expressing this dependence is problematic,
and the verification of Equation (52) so far remains out of reach. In fact, this potential is only analyzed through
approximations and numerically.

3. Conclusions

In this article, we have generalized the results of Refs. [8–11], increasing the number of time reversal
symmetries that concern mechanical systems in general, and systems in magnetic field, in particular.
We focused on block diagonal transformations, composed by operations acting on the 6-dimensional
subspace of each particle, and we have introduced suitable equivalence classes to account for the
corresponding gauge invariance. We then obtained sufficient conditions for TRI to hold in presence
of a magnetic field, which imply, for instance, Onsager reciprocal relations. Substantially enlarging the
range of applicability of TRI, we contribute to understand why violations of such relations to date are not
reported, despite the presence of magnetic fields.

The next step will be to investigate the necessary conditions for the validity of Onsager reciprocal
relations. Indeed, as Ref. [11] states, the discovery of a violation of Onsager reciprocal relations may lead
to the never observed situation of non-dissipative currents. This may be a dynamically indirect reason
why Onsager reciprocal relations cannot be broken, at least in classical systems where the evidence of
superconductivity was never found.

In the final part of this paper, we have illustrated the application of our results to notable potentials.
Such a few examples do not exhaust the set of possible situations in which TRI holds or is violated,
both theoretically and experimentally. However, it covers typical situations and constitutes a guide for
further investigations of the Onsager reciprocal relations.

As pointed out by one of the anonymous referees, electromagnetism is inherently relativistic, hence
in future works we may investigate the extension of our present results to the relativistic case. As a
matter of fact, regarding the time reversal operations on the single particle subspace, thus of any set of
non-interacting particles, a formal extension of our involutions is immediate, although not necessarily
conceptually satisfactory, given the role of time in Minkowski space. Moreover, Statistical Mechanics
relations, such as those considered in this paper, require interacting particles. This makes the subject most
intriguing and challenging [20–22].
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