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stable (right) parts of the slope with protection embankment in the 
foreground; bottom view of the failed (c) vs. stable (d) slope and barrier; 
concrete wall supporting the barrier (e) and previous crack (f) denoting the 
absence of reinforcement; (g) arenaceous block with silty matrix and (h) 
maximum size of the rock blocks fallen ......................................................................... 7-6 

Figure 7.7. Embankment instability along the SP20 road between the villages of San 
Lorenzo e Flaviano and Sommati (42.660061N, 13.293697E): (a) longitudinal 
crack along the road surface after the earthquake;(b) downstream view of the 
crossing section; (c) view of the Armco tube underneath the embankment; (d) 
maximum vertical settlement at the bridge-embankment connection; (e) 
longitudinal crack at the border of the pavement surface; (f) previous 
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south-east. This gap had been recognized prior to the event as a zone of elevated risk (GdL INGV, 
2016). The present event and those that preceded it occurred along the spine of the Apennine 
Mountain range on normal faults and had rake angles ranging from -80 to -100. Each of these 
events produced substantial damage to local towns and villages; the present event most strongly 
affected Arquata del Tronto, Accumoli, Amatrice, and Pescara del Tronto. In total there were 299 
fatalities, generally from collapses of unreinforced masonry dwellings, and several hundred 
persons were injured (www.ilgiornale.it).  

In the days following the event, the severity of its effects became apparent through media 
reports. Given the significance of the effects, the quality of the ground motion recording 
networks in Italy, and the strong ties between the Italian and US earthquake research 
communities, the decision was made to mobilize engineering reconnaissance activities so as to 
gather perishable data. This report is principally concerned with reconnaissance undertake by 
the NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) association, with co-
funding from the B. John Garrick Institute for the Risk Sciences at UCLA and the NSF I/UCRC 
Center for Unmanned Aircraft Systems (C-UAS) at BYU.  

The US-based GEER team was mobilized to the earthquake area two weeks after the 
mainshock. The US team worked in close collaboration with Italian researchers organized under 
the auspices of the Italian Geotechnical Society, the Italian Center for Seismic Microzonation and 
its Applications, the Consortium ReLUIS, Centre of Competence of Department of Civil Protection, 
the Institute of Environmental Geology and Geoengineering (IGAG) of National Research Council, 
and the DIsaster RECovery Team of Politecnico di Torino. Additional smaller teams from Greece 
and UK Universities joined the Italy-US GEER main team in successive periods. The objective of 
the field reconnaissance activities was to collect and document perishable data that is essential 
to advance knowledge of earthquake effects, which ultimately leads to improved procedures for 
characterization and mitigation of seismic risk.  

The GEER team was multi-disciplinary, with expertise in geology, seismology, geomatics, 
geotechnical engineering, and structural engineering. GEER coordinated its reconnaissance 
activities with those of the Earthquake Engineering Research Institute (EERI), whose activities 
were focused on emergency response and recovery, in combination with documenting the 
effectiveness of public policies related to seismic retrofit. As such, the task of documenting 
structural damage patterns was taken up by GEER.  

This report covers reconnaissance following the event sequence that began on 24 August 
2016, which was followed by a few aftershocks in the subsequent days. We do not address here 
reconnaissance of subsequent, apparently triggered events that began in late October 2016, 
including M 5.9 and 6.6 earthquakes. These will be the subject of later reports.  
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1.2  Overview of Reconnaissance Activities 
The approach followed by the GEER team was to combine traditional reconnaissance activities of 
on-ground recording and mapping of field conditions, with advanced imaging and damage 
detection routines enabled by state-of-the-art geomatics technology. This combination of 
reconnaissance techniques provides opportunities for innovative future study.  

GEER reconnaissance occurred in three phases, with the first comprising the largest team, 
and subsequent phases being focused on mapping of structural damage pattern in villages of 
interest. Phase 1 took place principally from 5-9 September, 2016. Aside from early coordination 
meetings, the Phase 1 team (comprised of approximately 30 researchers) worked in teams of 
approximately 3-4 so as to cover as much of the affected region as possible. Activities undertaken 
by the Phase 1 team included mapping of surface fault rupture, locating and mapping landslides, 
mapping damage patterns within villages (with the objective of characterizing variable levels of 
site response including topographic and possible valley effects), and bridge inspections. A tool 
found to be very useful in some of these activities was three-dimensional imaging from UAVs 
(Unmanned Aerial Vehicles). Use of the UAV required obtaining permission from the Department 
of Civil Protection (DPC), and was used in landslide areas and for imaging of structural damage 
patterns. 

Several aspects of the reconnaissance activities benefitted from geo-spatial resources 
available to the team prior to field mobilization. These included damage proxy maps based on 
Interferometric Synthetic Aperture RADAR (InSAR) data 
(http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA20897, last accessed October 25, 
2016), provided by Advanced Rapid Imaging and Analysis (ARIA) project team 
(http://aria.jpl.nasa.gov/ last accessed October 25, 2016) and high-resolution orthophotos 
provided the Copernicus EMS Rapid Mapping service (http://emergency.copernicus.eu/, last 
accessed October 25, 2016). These images were overlayed on Google Earth maps, and provided 
insights into where deformations or damage may have occurred, which was useful in planning of 
reconnaissance activities.  

The Phase 2 team mobilized from 9-13 September 2016 and focused on damage pattern 
mapping in Amatrice, Accumoli, Arquata del Tronto, and surrounding villages. The Phase 3 team 
mobilized from 3-6 October 2016 and undertook similar activities, but in different villages (e.g. 
Norcia and Castelluccio among others). Finally, on 19 October 2016, Francesca Bozzoni from the 
GEER team, along with representatives of the French Association of Earthquake Engineering 
(AFPS), visited several dam sites in the epicentral region, to which access had previously been 
denied. 

Following this introduction, Chapter 2 describes the tectonic setting and regional geology, 
including discussions of major past earthquakes in the region. Also covered in Chapter 2 is 
mapping of the surface fault rupture mapped jointly by INGV, GEER, and others (i.e. EMERGEO 
working group, 2016; and INQUA collaborative multi-organizational team, 2016). Chapter 3 

http://emergency.copernicus.eu/
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describes strong ground motions, which were well recorded. We present the available data, 
describe the processing that was undertaken, and show how the data compare to predictions 
from selected ground motion models, including some with Italy-specific regional factors. Chapter 
4 presents the earthquake-induced landslides, including the landslide types that were observed, 
how the seismic landslide activity compares to non-seismic landslides observed historically in the 
region, and the use of UAV technology in these activities.  

Chapter 5 is concerned with the performance of building structures in the villages and 
hamlets within the strongly shaken area. We present typical construction practices and damage 
quantification protocols, describe mapping activities that document field performance at varying 
levels of resolution, describe the damage patterns and statistics revealed by the data from work 
to date, and illustrate the effectiveness of retrofit activities that had been undertaken in several 
villages. Chapter 6 documents the performance of bridge structures, including the poor 
performance of several masonry bridge structures. Chapter 7 addresses the performance of 
other infrastructure such as retaining walls, dams and pipelines.  In the last chapter, significant 
case histories that can serve as subjects for future research are identified and discussed.   
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A less prominent bedrock fault scarp occurs at lower elevation along the same slope of Mt. 
Vettore (white arrow in Figs. 2.2a and 2.2b). The fault plane places the carbonate bedrock into 
contact with slope deposits of Late Pleistocene-Holocene age (Coltorti and Farabollini, 1995). 

 
Figure 2.1. Map showing active fault systems discussed in this chapter and locations of large seismic 
events in the region since 2009. Faults: Mt.Vettore-Bove fault, MVBF; Norcia fault, NF; Cascia fault, CF; 
Amatrice fault segment, AFs; Campotosto fault segment, CFs; Capitignano fault, CaF; Upper Aterno Valley-
Paganica fault ststem, UAV-PF; Leonessa fault,LF; Monti Gemelli-Montagna dei Fiori fault, MGMFF. 

 
Figure 2.2. a, b) Mt. Vettore fault: bedrock fault scarps along the SW slope; the uppermost scarp is known 
as "Cordone del Vettore"; the white arrows indicate the bedrock scarp located in the middle sector of the 
slope; c) bedrock fault scarp along the western slope of Palazzo Borghese, between Mt. Porche and Mt. 
Argentella, NW of Mt. Vettore. 
























































































































































































































































































































































































































































































































