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Stress detection in Computer Users from Keyboard
and Mouse Dynamics

Lucia Pepa, Antonio Sabatelli, Lucio Ciabattoni, Member, IEEE, Andrea Monteriù, Member, IEEE
Fabrizio Lamberti, Senior Member, IEEE, and Lia Morra, Senior Member, IEEE

Abstract—Detecting stress in computer users, while technically
challenging, is of the utmost importance in the workplace,
especially now that remote working scenarios are becoming
ubiquitous. In this context, cost-effective, subject-independent
systems are needed that can be embedded in consumer devices
and classify users’ stress in a reliable and unobtrusive fashion.
Leveraging keyboard and mouse dynamics is particularly ap-
pealing in this context as it exploits readily available sensors.
However, available studies are mostly performed in laboratory
conditions, and there is a lack of on-field investigations in
closer-to-real-world settings. In this study, keyboard and mouse
data from 62 volunteers were experimentally collected in-the-
wild using a purpose-built Web application, designed to induce
stress by asking each subject to perform 8 computer tasks
under different stressful conditions. The application of Multiple
Instance Learning (MIL) to Random Forest (RF) classification
allowed the devised system to successfully distinguish 3 stress-
level classes from keyboard (76% accuracy) and mouse (63%
accuracy) data. Classifiers were further evaluated via confusion
matrix, precision, recall, and F1-score.

Index Terms—Stress classification, machine learning, key-
board, mouse, in-the-wild study.

I. INTRODUCTION

PROVIDING computer-based systems with the capability
to recognize emotions is an ongoing subject of study.

Should consumer devices like, e.g., laptops, smartphones, in-
car entertainment systems and home appliances be capable to
achieve an accurate reading of individuals’ affective states,
they could make appropriate decisions about how to interact
with them, and adapt system’s responses accordingly [1].
Applications are plentiful in fields like human-computer in-
teraction, robotics, entertainment, learning, and healthcare.

Among emotional states that could be tackled, there is one
that deserves a special attention, given the key role that it
plays in work environments and for human health [22]: stress.
Stress is a physiological response to a situation perceived to
be challenging or threatening. While moderate levels of stress
can be actually beneficial to work performance, chronic stress
has been shown to be highly detrimental. Chronic stressors
may lead to burnout, a growing concern in both western and
developing countries with an estimated lifetime prevalence of
4% [40]. Evidence shows that workers make more errors when
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overly stressed, leading to a loss of productivity and, in the
case of critical infrastructures, potentially fatal consequences
[2]. Furthermore, stress may negatively impact the immune
and cardiovascular systems [38]. Adding to this situation, the
COronaVIrus Disease 2019 (COVID-19) outbreak led to a
massive shift towards a Working From Home (WFH) operating
modality, and public announcements by major tech companies
are sparking a debate on the potential opportunities and perils
of resorting to WFH on a permanent basis. In fact, despite
its appeal, WFH may expose workers to new forms of stress
and burnout, as the lines between professional and personal
lives become blurry and workers struggle to preserve healthy
boundaries between the two [39].

It is therefore crucial to equip both workers and managers
alike with tools to enable proper stress management in a
remote workforce, starting with methods to detect stress and
other emotional states based on users’ observation [28]. In
the last years, different approaches have been investigated for
stress detection [37], [28]. Even though some of them achieved
quite impressive results, there are still serious problems limit-
ing their applicability. First, most of the proposed methods rely
on sensors directly attached to the users’ skin or body [22], or
use external recording sensors such as webcams, microphones,
or even thermal cameras [14].

Both methods have side effects: first, users are aware of
being monitored, which could alter their affective states and
be itself a source of additional stress; second, it is unlikely
that users can wear or use monitoring devices continuously
during everyday activities [28]. Specialized hardware can be
expensive and is unlikely to become commonplace in the short
term or in a WFH scenario. Last but not least, both raise major
privacy concerns, especially in a work environment.

Thus, the challenge appears to be the development of cost-
effective, subject independent systems that can be embedded in
consumer devices and that are able to detect users’ stress in a
reliable and unobtrusive fashion. In this paper, a possible solu-
tion to this challenge is proposed by leveraging the analysis of
keystroke and mouse dynamics (K&MD). Many workers use a
computer on a daily basis; thus, this solution would not require
dedicated hardware, could be readily deployed in a traditional
office or WFH setting, and would have minimal risks from
a privacy viewpoint. Furthermore, affective states evaluation
could be readily integrated in the work environment, e.g., to
remind users to take pauses when overworked or overstressed.

Even though K&MD-based methods were proven suitable
to identify several emotions with good performance [7], [21],
[36], their practical application is still an open problem.
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Previous studies were mostly conducted in laboratory condi-
tions, and there is a lack of on-field studies closer to actual
professional settings [28]. In-the-wild studies face difficulties
in inducing the intended stress levels, as well as collecting and
labelling data, as the experimenter cannot directly interact with
the subjects.

The present work tries to address the above challenges by
designing a stress classification method based on K&MD that
leverages real-world, in-the-wild data acquired in an uncon-
trolled setting resembling traditional office or WFH scenarios.

Specifically, the contribution of this paper is threefold:
• a web-based stress induction setup for collecting K&MD

data in the wild: users are asked to engage in several
tasks, representative of various computer-based activities,
under different stressful conditions;

• fine-grained 3-level stress detection based on a variety of
K&MD features;

• a cross-subjects validation design: while most previ-
ous works evaluated their algorithms through subject-
dependent validations, which ensures higher accuracy
[28], cross-subject validation is essential to quantify
algorithm robustness, especially prior to its deployment
in production environments [37].

This work extends a preliminary investigation [36] that demon-
strated the feasibility of these objectives through a controlled
study of stress detection, where just 2 classes were considered.

II. BACKGROUND

A. Overview of stress detection techniques

Stress manifests itself in a plurality of ways which can be
broadly classified as psychological, behavioural and physio-
logical. While psychological effects may be evaluated through
direct interaction with the user, e.g., through questionnaires
or chatbots, stress detection is most commonly performed by
detecting behavioral and physiological alterations through a
variety of sensors, briefly categorized in Fig. 1.

Stress-related physiological processes, mediated by the au-
tonomic nervous system, are largely involuntary changes in
cardiovascular, muscular and electrodermal activity, respira-
tory rate, skin temperature, and eye movements [22]. They
can be observed using a variety of sensors including wearable
sensors [22], [4], [9] and, less commonly, eye tracking devices
[12], [15] and thermal infrared imaging [22]. Recent advances
in wearable sensors allows to record physiological signals
in an increasingly unobtrusive, yet accurate fashion, yielding
reliable and accurate stress measurements. Nonetheless, as
users may not be willing to wear or use monitoring devices
constantly, it is important to investigate complementary strate-
gies.

Behavioral alterations in response to stress include bodily
gestures (e.g., facial expressions, body pose) [13], [10] and
speech [14], which can be detected using cameras, micro-
phones and 3D cameras (e.g., Kinect) in combination with
computer vision and speech analysis algorithms [14]. Another
important line of research is detecting stress from daily life
activity, such as eating [41], computer interactions [36], [5],
[35], or driving. Besides the cost of deploying such sensors,

there are significant privacy and acceptability issues associ-
ated with constantly recording subjects. In contrast, analyzing
naturally occurring interactions with electronic devices, such
as smartphones [17] and computers [7], [1], [36], [20], does
not require additional and potentially intrusive hardware.

Another important distinction is related to the setting in
which stress detection is carried out, e.g. during everyday
home activities [4], [9], working [8], [17], [5], driving, and
in outdoor places [4], [9]. Although some detection methods
can target more than one setting, special-purpose approaches
are much more common. We focus here in particular on pro-
fessional and office environments. In [5], various technologies
for monitoring office workers’ emotions, including stress and
mental load, were compared, and mouse and keyboard ob-
tained the highest scores in most of the analyzed dimensions,
including use of common hardware, cost-effectiveness, intu-
itiveness, availability and privacy compliance. Nonetheless,
in another review on automatic stress recognition for office
environments [35], only a handful out of the two hundred
references cited in that work was actually based on K&MD.
Additionally, lower accuracy is generally obtained compared
to methods based on computer vision and wearable devices.

B. Stress detection from K&MD

Early studies of K&MD focused on simple tasks like
password entering. When dealing with more sophisticated
tasks (in terms of interactions), many factors may influence
typing rhythm or mouse movements, including individuals’
age, gender, handedness, skills, physical and mental state, and
familiarity with the task, as well as external conditions, like
hardware or software used, presence of disturbing elements,
etc. [26]. Unsurprisingly, this fact pushed researchers to work
under laboratory controlled conditions or, alternatively, to
simplify on-field studies by focusing on specific tasks, such as
computer programming [23], [6], [7]. An exception is reported
in [1], in which participants of a user study were simply
requested to carry out their usual daily activities (like, e.g.,
using a word processor, or an email application) and to rate
their emotions from time to time. The main drawback of this
approach is the lack of control on the actual emotions tested
or the number of collected samples.

Both on-field and laboratory studies have to deal with
the fundamental issue of how to induce and rate affective
states [33]. A common solution is to rely on ad hoc tasks,
often drawn from psychological literature, to raise participants’
memory load, irritation, anxiety, pressure, or similar cognitive
stress states. Participants are requested, e.g., to perform mental
calculations [16], [26], play math- or logic-related games (e.g.,
Tower of Hanoi) [18], or stressing exercises (e.g., Stroop’s
color-word interference test [11]) [15], [13]), remember a
number of words or digits (n-back memory task) [34], answer
questions about a given clip or text [21], etc. A smaller number
of works leveraged tasks closer to everyday activities, like
transcribing a text [19] or searching an item in a website [29].

Different stress levels can be inducted by varying task
complexity [12] and/or introducing external stressors [9]. For
instance, the characteristics of the test environment can be
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Fig. 1: Taxonomy of stress detection approaches.

changed from comfortable, to neutral and stressful through
relaxing music, silence, or loud noise [24]. Other stressors
include varying level of guidance [6], introducing time con-
straints, random disturbing events (faults, interruptions, etc.),
monetary compensation [19] and social pressure [20], [17].
These stressors are similar to those typical of work environ-
ments, such as dealing with constant noise or interruptions or
meeting strict deadlines.

Data labeling, i.e., rating of perceived (level of) emotions is
another critical factor, in particular for on-field studies. While
in some cases, external raters or recordings are used [31],
the most frequent option is self-rating [1], [30]. The latter
approach is also more suited to in-the-wild data collection,
where additional sensors are not easy to deploy.

A dimension that further distinguishes works in this field
concerns the diversity of features used. This is partly due
to the fact that keyboard- and mouse-based features may
be task-specific [26]. Early research focused on keyboard
activity, as password typing had been extensively studied for
authentication purposes [3]. More recent work [16] leveraged
keystroke pause length, time per keystroke, time between
keystrokes, and frequency of deletion and navigation keys [16],
as well as mouse speed and directions [32].

Results showed that, in laboratory conditions, it is feasible
to classify stress conditions with comparable accuracy to other
affective states (75% with k-NN). Better results have been only
obtained by using ad hoc hardware or combining K&MD with
other sensing techniques [27].

By moving from the above review, several research gaps
were identified and addressed in this study. First, few works
addressed in-the-wild setups [37], [22], and even fewer carried
out a proper stress classification. Some had to fall back to a
more general valence [23] or emotion [1], [6] classification,
mainly because of the lack of data. Khan et al. [7] per-
formed just a regression analysis on data collected in-the-wild,
suggesting the potential for a future stress detection. Many
works focused on 2-class stress detection; however, a stress
classification of at least 3 levels would be closer to clinical
evaluations and more useful in real-life applications [38]. Fi-
nally, algorithms validation can be performed through within-

subject or between-subjects cross validation methods. Within-
subject validation often leads to better results, but the ability
of an algorithm to generalize over unseen users is crucial to
quantify its robustness and suitability to real scenarios [37],
[14], [9]. Additionally, training user-specific classifiers would
require a great amount of data, thus limiting applicability in
many real-world applications [23], [6]. The need to investigate
between-subjects multiclass stress classification is much more
evident for in-the-wild studies, since previous literature did
not address this issue.

III. EXPERIMENTAL PROTOCOL FOR STRESS INDUCTION

A. Subjects Recruitment

Since our study focuses on stress detection in-the-wild,
few constraints were set in recruiting subjects. In particular,
an invitation was sent to students and teaching staff at the
authors’ universities, who were asked to extend the invitation
to relatives and friends. The study was conducted during
the COVID-19 outbreak, when subjects were mostly working
remotely. A total of 62 subjects were recruited. All of them had
to be at least 18 years old (28 on average, σ = 8, 40 males and
22 females), native Italian speakers, and use computers daily.
Subjects with previous history of cardiac, neurological or anx-
iety disorders, color blindness, or prescription drugs for sleep
disorders were asked to self-exclude from the study. Subjects
had to confirm that they had not consumed any alcohol or
caffeine the day of the experiment, and any psychoactive drug
within the 48 hours preceding the experiment.

B. Equipment

The experimental protocol was administered through a
purpose-built Web application, allowing participants to com-
plete the test whenever they wanted, from their homes or
offices, and using their own equipment (keyboard, mouse,
screen, etc.). The application, which could be accessed through
a link provided with the invitation (https://www.revoltsrl.it/
stress/#/welcome), was implemented using Angular, a Type-
Script based open-source front-end framework for web devel-
opment. The application is responsible both for administering
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Fig. 2: Scheme of the experimental protocol. After an initial rest phase, the procedure comprises a sequence of 8 tasks (4 tasks,
each repeated twice with increasing difficulty). After each task, the subject assessed his/her stress level on a 1-to-10 scale.

the tasks, as well as for collecting data concerning keyboard
and mouse operations, as detailed in Section IV-A.

C. Procedure and Tasks

The experimental protocol was designed to induce stress by
performing several computer tasks while distracted by sounds
and other disturbances. Prior to the experiment, subjects were
informed about the number of tasks, that each task had been
designed to mimic common work or leisure activities, and that
after each one they had to self-evaluate their perceived stress
level on a scale from 1 (low) to 10 (high).

The experimental protocol started with a rest phase in order
to set a baseline for stress measurement. Subjects were asked
to watch a relaxing movie on underwater nature, included in
the application, for five to ten minutes, or until they felt as
relaxed as possible. After rating their perceived stress level,
they were allowed to start the procedure.

The procedure comprises four tasks, each executed twice
with increasing difficulty (Fig. 2):

• Text typing (easy), copying a short text;
• Tower of Hanoi (easy), with 3 disks;
• Simon Says game (easy), sequence of 5 sounds;
• Four-quadrant test (easy);
• Tower of Hanoi (difficult), with 5 disks;
• Simon Says game (difficult), sequence of 10 sounds;
• Four-quadrant test (difficult);
• Text typing (difficult), transcribing a dictated text.
The tasks were selected for their potential to raise cognitive

load and anxiety based on a preliminary study conducted by
the authors [36], as well as previous studies [22], [35].

In the first text typing task, which resembles everyday office
activities [19], provided instructions stated that it was neither
an accuracy contest nor a race; subjects had to type at a normal
pace, and take the time needed for fixing possible mistakes.
Average duration of this task was 339 seconds (σ = 129).

In the second task, subjects were requested to solve a
simple Tower of Hanoi game (like, e.g., in [18]). This is a
well-known problem-solving task in experimental psychology,
being a relatively straightforward puzzle that requires very
simple instructions and no additional domain knowledge. It
consists of 3 rods and a number of disks of different sizes,
which can only be moved on top of smaller disks. As shown
in Fig. 2, the game starts with the disks properly stacked in
the left rod. The objective is to move the entire stack to the
very right rod by obeying the above constraints. With 3 disks,

the puzzle can be solved in 7 moves. No time constraints were
set. On average, subjects needed 71 seconds and 15 moves to
solve the puzzle (σ = 38 and σ = 5, respectively).

The third task was aimed at collecting mouse data by
inducing a given stress level through a n-back task. In order
to approximate a common computer task, we implemented a
web-based version of Simon Says, a well-known electronic
memory game [34]. The game requires the subjects to repeat
a sequence of sounds, increasing the length by one every
time they succeed, until the maximum number of sounds
is reached. In case of errors, the sequence is repeated. On
average, subjects made 4 errors (σ = 3) and spent 77 seconds
(σ = 48) on this task.

The fourth task modeled the impact that interferences can
have on task execution, increasing subjects’ reaction time
and perceived stress. In this four-quadrant task [2] (a variant
of the Stroop test [11]), subjects are shown the names of
several colors displayed in differently colored fonts (e.g., the
word “red” in a yellow font). Subjects have to click on the
colored quadrant which corresponds to the spelled word (“red”
in our example), instead of the font color (yellow in our
example). In previous studies [2], subjects had instead to click
on the quadrant corresponding to the font color and ignore
the word. Preliminary experiments showed that higher level
of stress could be induced by the chosen implementation [36].
Subjects had a maximum of 3 seconds for clicking on the right
quadrant: after that, a new word and color were generated.
Every time they did not click the right quadrant in time, a
strong and unpleasant buzz sound was played. The task lasted
90 seconds on average (σ = 54).

In the fifth task, the Tower of Hanoi game was used again.
However, in order to induce much higher levels of stress, 5
disks were used (requesting at least 31 moves). Moreover, two
different stressors were added, namely a disturbing tick-tock
sound and a timer (set to 300 seconds). On average, subjects
needed 215 seconds (σ = 82) and 80 moves (σ = 34).

Similarly, in the sixth task, the Simon Says game was used
again, with sequences of 10 sounds. On average, subjects made
10 errors (σ = 9) and spent 146 seconds (σ = 52) on this
task. In the seventh step, the four-quadrant task was repeated
with the addition of a tick-tock sound. Time limit for clicking
the correct quadrant was also reduced to 2 seconds. Subjects
employed on average 135 seconds (σ = 43) to complete it.

In the last task, subjects were requested to type a dictated
text. Dictation speed was rather high, and it was not possible
to pause it. Subjects were requested to type at their fastest
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pace, trying to fix typos and errors if possible. The duration
of this task was 320 seconds. At the end of the experiment,
collected data were saved on the computer, and subjects were
requested to send them for dataset creation and processing.

IV. PROPOSED METHOD FOR STRESS CLASSIFICATION

A. Data Collection

The data collected during the experimental protocol are
divided in 3 categories: stress self-assessment, keyboard data,
and mouse data. Self assessment data consists of self-reported
measures of the perceived stress level (on a 1 to 10 scale) col-
lected after each task of the experimental protocol. Keyboard
data were acquired during the 2 text typing tasks. For each
keystroke, the software records the character typed, if it was a
keyup or keydown event (boolean value), the duration of the
pressure (ms) and a timestamp (ms). Mouse data were acquired
during the Tower of Hanoi, Simon Says, and four-quadrant
tasks and included, for each click, the mouse coordinates (x
and y), the presence of a press or release (boolean value, for
both the left and right button), the click duration and dwell
time (in ms), and a timestamp (in ms). All the data were
registered by the Angular application, exported as CSV files
and imported in MATLAB for data analysis and classification.

B. Feature Extraction

A sliding window of 5 seconds without overlap was applied
on keyboard and mouse data, and feature extraction was
performed on each window. For features that yield an array of
values for each time window, the maximum, minimum, mean,
standard deviation (std), and point-to-point (ptp) variation
(difference between maximum and minimum) were extracted,
for a total of 5 features. Other features were directly computed
as a single value in the window. In the following, feature
categories are referred to as either “array” or “single value”.

In summary, 15 keyboard features were computed [16], [25]:
• key dwell time (array): press-to-release time of each key

(ms);
• key down-to- down time (array): time elapsed from the

press of one key to the press of the next key (ms);
• key velocity (single value, mean): number of keys pressed

per second;
• latency time (single value, mean): time elapsed from a

key release to the press of the next key (ms);
• number of backspaces (single value, count);
• number of key pressed (single value, count);
• key press (single value, percentage): amount of the win-

dow with at least one key pressed.
From mouse data, 22 features were computed [32]:
• mouse velocity (array): change in position per second;
• mouse acceleration (array): variation of velocity per sec-

ond;
• mouse inactivity (single value, count): time for which the

user is not moving the mouse (ms);
• number of clicks (single value, count);
• click dwell time (array): duration of each click (ms);
• click distance (array): time distance between two consec-

utive clicks (ms).

All the features were validated in previous literature, as well
as in a preliminary experiment in laboratory conditions [36].
Some features may assume an invalid value in given windows
(e.g., click distance needs at least two clicks in order to be
significant): these windows were excluded from the analysis.

C. Stress Classification Algorithm

Keyboard and mouse are rarely used at the same time when
working at a computer; hence, different classifiers were built
in order to predict the stress level depending on what device
the participant was using. Each time windows was labelled as
low (1–3), medium (4–7) or high (8–10) stress. After min-
max normalization, feature selection was performed based on
Neighborhood Component Analysis (NCA). In previous work,
best performance were achieved when limiting the analysis to
the most discriminative features [36]. Building on (and further
extending) our preliminary investigation [36], several ML
techniques were compared in order to build the classifiers: k-
Nearest Neighbour, Support Vector Machines, Decision Trees,
and Random Forest (RF). Since RF reached the best results,
the remainder of this work will focus on this method.

In order to deal with sparse and inaccurate labeling deriv-
ing from on-field data, a Multiple Instance Learning (MIL)
approach was applied. MIL is a semi-supervised learning
technique where the task is learned given labelled groups, or
“bags”, each containing multiple training samples. Since MIL
does not assume complete knowledge of training labels, it is
particularly suited to in-the-wild data analysis. In our case, all
the time windows from the same task share the same label;
the classifier will learn through approximately classified time
intervals (bags) rather than individual instances (single time
windows). In this paper, Majority-Voting RF is selected as
MIL extension of a RF classifier. Bags length was set to 90
seconds with an overlap of 50%.

A subject-independent 5-fold cross validation was adopted
to test both classifiers: 80% of the participants were used
for training, the remaining 20% for testing. The classifier is
thus tested on never-seen participants, which is a condition
close to real applications, as discussed in Section II. Classifiers
performance was evaluated on validation bags via confusion
matrix, accuracy, precision, recall, and F1-score. Performance
scores are averaged over the 5 folds.

V. RESULTS

All the participants successfully completed all the planned
tasks, for a total of 496 tasks. Task recordings that were
empty (38 tasks, 7.7%), clearly shorter than the minimum time
required to complete the task (8), or much longer than the max-
imum plausible time (8) were excluded. After the exclusion
of invalid trials, a total of 411 (100 low, 219 medium, 92 high)
and 429 (120 low, 222 medium, 87 high) bags were extracted
from mouse and keyboard data respectively.

Participants’ stress levels were compared between the easy
and difficult version of each task (Fig. 3) and between each
task and the rest phase. At one-way non-parametric ANOVA,
median differences were statistically significant (p < 0.05) for
all the tasks except the easy Tower of Hanoi and the rest phase.
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Fig. 3: Stress levels self-assessed by participants for the tasks
in the experimental protocol. The easy and difficult versions
of the same task are displayed in the same color (typing tasks:
purple; Tower of Hanoi tasks: blue; Simon Says tasks: green;
four-quadrant tasks: orange), rest phase is in gray.

Fig. 4: Distribution of the most discriminative mouse features
according to NCA feature selection. F3, F4: mouse velocity
(mean, std). F12, F15: click dwell time (maximum, std). F17,
F19, F20, F21: click time distance (maximum, mean, std, ptp).

The mouse most discriminative features (Fig. 4), as selected
by the NCA, were: mouse velocity (mean, std), click dwell
time (maximum, std), and click distance (maximum, mean, std,
ptp). The keyboard most discriminative features (Fig. 5) were:
key dwell time (maximum, minimum, std), key velocity, key
down-to-down time (minimum, std), number of key pressed,
key press percentage, and latency time.

Classification accuracy reached 63% and 76% for mouse
and keyboard classifiers, respectively. Fig. 6 shows confusion
matrices for the keyboard (Table 6a) and mouse (Table 6b)
classifiers. Columns are the true classes, rows the predicted
ones. The considered classes, i.e., low, medium, and high
stress are indicated with letters L, M, and H respectively.
Classification performance in terms of recall, precision and
F1-score is presented in Table I.

Recall Precision F1-score
L M H L M H L M H

K 0.57 0.87 0.47 0.4 0.85 0.64 0.47 0.86 0.54
M 0.24 0.77 0.75 0.42 0.73 0.75 0.3 0.69 0.75

TABLE I: Recall, precision, and F1-score of the keyboard (K)
and mouse (M) classifiers for the 3 classes, low (L), medium
(M), and high (H) stress.

Fig. 5: Distribution of the most discriminative typing features
according to NCA feature selection. F2, F3, F4: key dwell time
(minimum, mean, std). F6: key velocity. F8, F10: key down-
to-down time (minimum, std). F13: number of keys. F14: key
press percentage. F15: mean latency time.

aaaaa
Pred. True L M H

L 4 3 3
M 3 47 5
H 0 4 7

(a)

aaaaa
Pred. True L M H

L 5 5 2
M 15 30 3
H 1 4 15

(b)

Fig. 6: Confusion matrix for (a) keyboard and (b) mouse
classifier. Columns: true classes, rows: predicted classes.

VI. DISCUSSION

Statistical analysis of participants’ stress self-assessment
revealed that the selected tasks were able to increase the stress
level from the rest condition, as well as from the easy to the
difficult versions of each task. At the same time, it showed
that the stress level varied from one task to the other, as
confirmed by post-hoc interviews with participants. Indeed,
the experimental protocol was devised to re-create a scenario
similar to a common working day, in which different tasks
need to be accomplished under varying stress levels. Even-
tually, the experimental protocol induces an overall increase
in perceived stress level which can be correctly detected by
machine learning techniques.

Differences in tasks, data, classes, and algorithms make
it difficult to directly compare obtained results with existing
literature. However, it is worth summarizing the current and
previous contributions concerning affective states or stress
detection using K&MD, as proposed in Table II, which re-
ports the number of participants, setting, sensor, algorithm,
number of classes and accuracy. The current work is the
only performing a ternary stress classification using in-the-
wild data collected from a wide sample (62 participants)
and reaching an accuracy above 75% (using KD). Several
discriminative features were found significant also in previous
works, such as key dwell time [1], [16], [21], key down-
to-down [1], [21], [23], key latency [1], [21], number of
keys or keys rates [1], [16], and mouse velocity [20], [23].
Decision trees and RF were also investigated in some previous
works leading to better performance with respect to other
algorithms [21], [1]. However, the introduction of a MIL
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Paper Subj. Setting Sensor Algorithm Classes Accuracy
[1] 12 real KD C4.5 2 <75%
[16] 24 lab. KD KNN 2 75%
[20] 18 lab. MD threshold 2 78%
[21] 35 lab. K&MD RF 2 69%
[23] 14 lab. K&MD FFNN 3 52.9%
[28] 25 lab. K&MD SVM 2 65.5%
this 62 real K&MD RF+MIL 3 76.3%

TABLE II: Comparison with the literature. Acronyms: FFNN
(Feed-Forward Neural Network), KNN (K-Nearest Neigh-
bour), SVM (Support Vector Machine), RF (Random Forest),
(MIL) (Multiple Instance Learning).

approach possibly contributed to better results by mitigating
the effect of inaccurate labeling, typical of natural settings.

While in line with previous literature, our results also
showed some weaknesses, especially in the prediction of the
low stress class (F1-score is equal to 0.47 for the keyboard,
and 0.3 for the mouse). In contrast, for both the medium and
high classes, precision and recall are comparable, as indicated
by the F1-score (keyboard, 0.84 for medium stress and 0.54 for
high stress, mouse, 0.69 for medium stress and 0.75 for high
stress) and well above the chance level. However, an error
in classifying the low stress class has a much lower impact
that an error in classifying a high stress class. These problems
were also mentioned in previuos works: the difficulty to obtain
high performance from K&MD is known in on-field studies
[1], and it was considered a drawback of the lack of control
on induced affective states and data loss.

Overall, based on the above considerations the outcomes of
this study appear to be promising and particularly relevant for
future developments, especially considering that results from
real-world, in-the-wild setups are generally regarded as much
more informative than those from controlled setups [37], [22].

Some limitations of the proposed approach, such as data
loss, are typical of in-the-wild experiments. Other encountered
limitations were documented also in controlled studies, like
labeling uncertainty, class imbalance (due to the difficulty to
solicit high stress levels), and task selection (for instance,
the Simon Says and the four-quadrant tasks tend to generate
specific mouse patterns that may not generalize for different
tasks). This last aspect could be further investigated by includ-
ing tasks that are less clinically relevant as stressors, but that
are more similar to everyday computer activities.

VII. CONCLUSION

The aim of this work was to reach a subject-independent,
multiclass stress classification in computer users in an un-
controlled environment through a non-intrusive, non-invasive,
and cost-effective solution. To this purpose, data generated
by common multimedia input peripherals were collected in-
the-wild from 62 subjects using their own computer-based
equipment. MIL applied to a RF algorithm reached the best
results in classifying 3 stress levels. While confirming some
of the limitations known in the literature, the findings of this
study contribute at shedding further light on a challenging,
though extremely important goal for this field of research.

Future works will explore how K&MD could be combined
with other stress detection methods (e.g., vision-based methods

or wearable sensors). The proposed methodology can be
extended by exploring other tasks, more closely related to
real-life tasks, and by exploring inter-subject as well as cross-
subject designs. An open challenge is how to disentangle
variations in K&MD patterns related to the task to those due
to the users’ stress response. A further research direction to
explore is how stress detection can be leveraged to enhance
human-computer interface, e.g. by adapting the system be-
havior according to the user’s emotional states, or providing
feedback to the users in order to increase their awareness
of their cognitive and mental state. A computer or mobile
device may integrate data acquired by multiple IoT devices
and wearable sensors at different times of the day to build
an accurate, fine-grained and dynamic picture of the user’s
cognitive and emotional state.
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Andrea Monteriù (S’04-M’06) received the M.Sc.
degree in Electronic Engineering and the Ph.D.
degree in Artificial Intelligence Systems from Uni-
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