
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

rust-code-analysis: A Rust library to analyze and extract maintainability information from source codes / Ardito, Luca;
Barbato, Luca; Castelluccio, Marco; Coppola, Riccardo; Denizet, Calixte; Ledru, Sylvestre; Valsesia, Michele. - In:
SOFTWAREX. - ISSN 2352-7110. - ELETTRONICO. - 12:2020(2020), pp. 1-6. [10.1016/j.softx.2020.100635]

Original

rust-code-analysis: A Rust library to analyze and extract maintainability information from source codes

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.softx.2020.100635

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.softx.2020.100635

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2854856 since: 2020-12-05T16:02:24Z

Elsevier B.V.



SoftwareX 12 (2020) 100635

S
a

b

c

s
c

(
r
s

h
2
n

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

rust-code-analysis: A Rust library to analyze and extract
maintainability information from source codes
Luca Ardito a,∗, Luca Barbato b, Marco Castelluccio c, Riccardo Coppola a, Calixte Denizet c,
ylvestre Ledru c, Michele Valsesia a

Control and Computer Engineering Dept., Politecnico di Torino, Italy
Luminem, Italy
Mozilla Corporation, United States of America

a r t i c l e i n f o

Article history:
Received 18 September 2020
Received in revised form 19November 2020
Accepted 19 November 2020

Keywords:
Algorithm
Software metrics
Software maintainability
Software quality

a b s t r a c t

The literature proposes many software metrics for evaluating the source code non-functional proper-
ties, such as its complexity and maintainability. The literature also proposes several tools to compute
those properties on source codes developed with many different software languages. However, the Rust
language emergence has not been paired by the community’s effort in developing parsers and tools able
to compute metrics for the Rust source code. Also, metrics tools often fall short in providing immediate
means of comparing maintainability metrics between different algorithms or coding languages. We
hence introduce rust-code-analysis, a Rust library that allows the extraction of a set of eleven
maintainability metrics for ten different languages, including Rust. rust-code-analysis, through the
Abstract Syntax Tree (AST) of a source file, allows the inspection of the code structure, analyzing source
code metrics at different levels of granularity, and finding code syntax errors before compiling time.
The tool also offers a command-line interface that allows exporting the results in different formats.
The possibility of analyzing source codes written in different programming languages enables simple
and systematic comparisons between the metrics produced from different empirical and large-scale
analysis sources.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v01
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00050
Code Ocean compute capsule
Legal Code License Mozilla Public License v2.0
Code versioning system used git
Software code languages, tools, and services used Rust
Compilation requirements, operating environments & dependencies Cargo (Rust package manager)
If available Link to developer documentation/manual https://mozilla.github.io/rust-code-analysis/index.html

https://docs.rs/rust-code-analysis/0.0.17/rust_code_analysis
Support email for questions

1. Motivation and significance

Software Maintainability is defined as the ease with which a
oftware component, or system, can be modified and improved,
orrected from faults, and adapted to changing environment or

∗ Corresponding author.
E-mail addresses: luca.ardito@polito.it (L. Ardito), luca.barbato@luminem.it

L. Barbato), mcastelluccio@mozilla.com (M. Castelluccio),
iccardo.coppola@polito.it (R. Coppola), cdenizet@mozilla.com (C. Denizet),
ledru@mozilla.com (S. Ledru), michele.valsesia@polito.it (M. Valsesia).

requirements [1]. Maintainability is a significant factor in soft-
ware products’ economic success that is not easy to estimate for
real-world software projects [2].

Software Metrics are measures of software characteristics that
are quantifiable or countable, and can serve as an important aid
to the estimation of software maintainability. The building of a
maintainability prediction model can allow identifying parts of
the software to refactor or modify. Source Code Metrics are a

subset of Software Metrics that focus on measuring properties of

ttps://doi.org/10.1016/j.softx.2020.100635
352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).

https://doi.org/10.1016/j.softx.2020.100635
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100635&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00050
https://mozilla.github.io/rust-code-analysis/index.html
https://docs.rs/rust-code-analysis/0.0.17/rust_code_analysis
mailto:luca.ardito@polito.it
mailto:luca.barbato@luminem.it
mailto:mcastelluccio@mozilla.com
mailto:riccardo.coppola@polito.it
mailto:cdenizet@mozilla.com
mailto:sledru@mozilla.com
mailto:michele.valsesia@polito.it
https://doi.org/10.1016/j.softx.2020.100635
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


L. Ardito, L. Barbato, M. Castelluccio et al. SoftwareX 12 (2020) 100635

t
u
M
v
t

s
t
f
s
c
N
l

o
e
d
i
(
H
c
t
a
s

r
r
t

t
c
l
p

a
p
a
(
b
f
(

c
H
i

2

i
m
R

t
c
T
t
n

he source code of a system and mapping them to numerical val-
es [3]. Researchers have been working on the topic of Software
etrics for more than 40 years by proposing, developing, and
alidating many different metrics, suites and models, and tools
o compute them.

Nuñez-Varela et al. [4], in their recent systematic mapping
tudy, listed 300 source code metrics, linking those metrics with
he tools that can use them just by analyzing papers published
rom 2010 to 2015. In our previous work [5], we identified 174
oftware metrics – among which we identified a set of 15 most
ommonly mentioned ones – and 19 metric computation tools.
one of those tools was able to work with the Rust programming
anguage.

However, the industry and academia still have no accordance
n the best options for both metrics and tools to be adopted to
valuate software maintainability. In the industry, the consoli-
ated best practices usually include continuous integration, test-
ng with code coverage measurement and language sanitization
such as static analysis), and sometimes coding style enforcement.
owever, the lack of adequate and consolidated tooling makes it
hallenging to have an automated evaluation of the code main-
ainability [6]. The reliability of the result is another problem that
ffects this kind of software. Lincke et al. [7] showed that different
oftware metrics tools provided inconsistent results.
Furthermore, the emergence of new programming languages

equires new software to compute and evaluate software met-
ics. Each language requires a dedicated parser and metrics ex-
ractor. Rust is a recent programming language whose focus is
on developing reliable and efficient systems that exploit paral-
lelism and concurrency. Conciseness, expressiveness, and mem-
ory safety are among the principal properties that guided the Rust
development [8].

This paper introduces rust-code-analysis (RCA), a Rust library,
o analyze and extract maintainability information from source
odes written in many different programming languages. The
ibrary is based on a parser generator tool and an incremental
arsing library called Tree Sitter.1
To the best of our knowledge, the library constitutes the first

ttempt to develop a Software Metrics extractor with the Rust
rogramming language. The usage of Rust can guarantee several
dvantages for the development and usage of the library, such as:
i) guaranteed memory-safety and thread-safety, with the possi-
ility of eliminating many classes of bugs at compile-time [9]; (ii)
ast and memory-efficient parsing and metrics computation [10];
iii) easy integration with other programming languages.

At the same time, RCA is the first open-source tool able to
ompute maintainability software metrics for the Rust language.
ence, it can serve as a valuable aid to evaluate software written
n Rust and the programming language itself.

. Software description

rust-code-analysis is a Rust library to analyze and extract
nformation from source code written in the following program-
ing languages: C++, C#, CSS, Go, HTML, Java, JavaScript, Python,
ust, Typescript.
Mozilla developed the initial version of this library to support

he Firefox development processes. Every month, up to 6000
hanges2 frommore than 500 developers can land in its codebase.
his library is one of the elements developed to help to evaluate
he inherent risk of a change and preventing the introduction of
ew defects [11], especially at the uplift phase [12,13].

1 https://github.com/tree-sitter/tree-sitter Last visited 10/06/2020.
2 https://www.openhub.net/p/firefox.

The library is available on GitHub,3 published on Crates.io4
and released under the Mozilla Public License v2.0. It can run
on the most common platforms (i.e., Linux, macOS, and Win-
dows). The library’s dependencies can be managed and built with
the standard package manager distributed with the compiler:
Cargo. Cargo eliminates the need for manual management of
large dependency graphs and simplifies building the software,
unlike tools written in C/C++. rust-code-analysis guarantees the
metrics correctness by running unit testing that executes code
with well-known characteristics.

For the comparison, we created unit tests considering two
main goals:

• verifying the rust-code-analysis correctness in typical use
cases, i.e., using source code that represents real cases and
that can usually be found in a codebase;

• checking the rust-code-analysis correctness in extreme
cases using unusual parameters (corner case).

The values used for producing the rust-code-analysis outputs are
obtained by manually calculating the metrics of known source
code pieces used as input for the tests. The unit tests described
above can be found in the repository.

The library comes coupled with a command-line tool called
rust-code-analysis-cli, which allows interacting efficiently with
the APIs exposed by the library. The command-line tool can also
be used to print and export the metrics in different formats, and
it can be installed through Cargo as well.

The codebase of rust-code-analysis can be considered a com-
bination of two loosely-coupled components:

• Language parsers;
• Metrics computation modules.

Ideally, a contributor interested in adding a new language or
metric to the codebase could add a new metric or language to the
respective module, leaving the rest of the code untouched. In ad-
dition, any developer is allowed to contribute to the development
of rust-code-analysis through pull requests.

2.1. Features

The rust-code-analysis library is mainly thought for develop-
ers. Indeed, through its APIs, it is possible to carry out various
tasks related to software code metric computation and mainte-
nance analysis:

• Print the Abstract Syntax Tree (AST) of a source code passed
as input;

• Use the information extracted from AST nodes to detect
in advance possible parsing errors present in the code. For
example, it is possible to catch grammar errors before a
program is compiled;

• Print a series of Source Code Metrics to evaluate the quality
of source code;

• Export metrics in different output formats.

Leveraging the power of Rust, some of the APIs are imple-
mented in a multi-threaded fashion, speeding up considerably the
entire computation.

Also, to help users interacting with the APIs in an easy way, a
command-line interface called rust-code-analysis-cli has been de-
veloped. Indeed, through the CLI’s commands, a user can visualize
the output produced by the APIs on the shell or decide to store it
within either text or binary files.

3 https://mozilla.github.io/rust-code-analysis/index.html.
4 https://crates.io/crates/rust-code-analysis.
2

https://github.com/tree-sitter/tree-sitter
https://www.openhub.net/p/firefox
https://mozilla.github.io/rust-code-analysis/index.html
https://crates.io/crates/rust-code-analysis


L. Ardito, L. Barbato, M. Castelluccio et al. SoftwareX 12 (2020) 100635

T
M

s
o
t
m
b

t

t
i
s
f
a

2

l

able 1
etrics computed by rust-code-analysis.
Metric Description

CC McCabe’s cyclomatic complexity: it calculates the code
complexity examining the control flow of a program. It is
measured as the number of linearly independent paths
through a piece of code [14].

SLOC Source lines of code: it returns the total number of lines in a
source file.

PLOC Physical lines of code: it returns the total number of
instruction and comment lines in a source file.

LLOC Logical lines of code: it returns the total number of logical
lines (statements) in a source file.

CLOC Comment lines of code: it returns the total number of
comment lines in a file.

BLANK it counts the number of blank lines in a source file.
Hal-
stead

The Halstead suite, a set of seven statically computed metrics,
all based on the number of distinct operators (n1) and
operands (n2) and the total number of operators (N1) and
operands (N2) [15]. The suite provides a series of information,
such as the effort required to maintain the analyzed code, the
size in bits to store the program, the difficulty to understand
the code, an estimate of the number of bugs present in the
codebase, and an estimate of the time needed to implement
the software.

MI Maintainability index: a suite to measure software’s
maintainability, calculated both on source files and functions
[16].

NOM Number of Methods: it returns the number of methods in a
source file.

NARGS Number of arguments: it counts the number of arguments of
each method in a source file.

NEXITS Number of exits: it counts the number of possible exit points
of each method in a source file.

Metrics

All rust-code-analysis metrics are calculated starting from the
ource code of a program without executing it, i.e., the library
nly computes static metrics. Static metrics allow the evalua-
ion of software quality, discover sections of a source code that
ight be more difficult to maintain, and compare the difference
etween programming languages.
The implemented metrics are divided into three main groups:

• Line metrics detect the number of lines of a certain kind,
such as the number of instructions, comments, and state-
ments in code.

• Function metrics count the number of functions and closures
in a code. They can also extract further data, such as the
number of arguments and exit points of a function.

• Global metrics provide a series of information on the effort
required to maintain and understand a codebase, including
an estimate of the number of bugs or the time needed to
implement software. Also, they can evaluate the complexity
of a codebase by examining the control flow of a program.

Metrics are computed independently for each function and
hen merged to determine the general quality of a program.

At the current state of implementation, the tool implements
he list of metrics reported in Table 1. The implemented metrics
nclude established suites available in the literature (e.g., the Hal-
tead suite [15]), but also metrics that were specifically defined
or the first time in the rust-code-analysis tool, such as NARGS
nd NEXITS.

.2. Code representation

rust-code-analysis builds, through the use of an open-source
ibrary called tree-sitter,5 an Abstract Syntax Tree (AST) in order

5 https://tree-sitter.github.io/.

Table 2
Parameters for the rust-code-analysis command line interface.
Parameter Description

-metrics Compute and print metrics.
-p Define the path to a file or a directory.
-O Select the output format used to export metrics between the

following values: cbor, json, toml, yaml.
-o Specify the path for the output file to be saved.
–pr Enable json and toml output files to be exported as

pretty-printed.
-I Consider only files with a specified extension.
–f Scan the code in search of all the nodes of a certain type.
–count Count the number of nodes of a certain type.
-d Print the entire AST on the shell.
–ls, –le Consider only the portion of the file between the lines

specified by ls and le.
–serve Make the cli act as a server on the localhost.
–port Specify the port used by the server.

to represent the syntactic structure of a source file. An AST differs
from a Concrete Syntax Tree because it does not include informa-
tion about the source code less important details, like punctuation
and parentheses.

The AST defines a series of Syntax Nodes as a basic data
structure to inspect the Syntax tree. They are usually used to:

• List every construct present in a codebase;
• Count the number of constructs of a certain kind;
• Detect the number of parsing errors in a program.

Each Syntax node contains a type information (the grammar
rule of the inspected code that the node represents), in addition
to its position in the source code in terms of row/column co-
ordinates. tree-sitter supports the distinction between Concrete
and Abstract Syntax Trees, by separating named and anonymous
nodes, with the former being the only one concurring in the
generation of ASTs.

On top of the generated AST, rust-code-analysis performs a
division of the source code in spaces. A space is any structure
that incorporates a function. It contains a series of fields such
as the name of the structure, the relative line start, line end,
kind, and a metric object, which is composed of the values of
the available metrics computed by rust-code-analysis on the
functions contained in that space. All metrics computed at the
function level are then merged at the parent space level, and
this procedure continues until the space representing the entire
source file is reached.

Here a list of the space kinds that can be found in source files
of different programming languages: function, class (Java, C++),
struct (Rust, C, C++), trait (Rust), impl (Rust), unit (all languages),
namespace (C++).

2.3. Command line interface

rust-code-analysis offers a command-line interface to com-
pute metrics and extract information from source code. The
command-line interface can be used by launching the command
rust-code-analysis-cli, and feeding the proper parameters.
The order of parameters is irrelevant for the proper functioning of
the program. The list of parameters supported by the command
line interface is shown in Table 2.

rust-code-analysis leverages a Rust library, called Serde,6 to
favor data interchange between applications and to export met-
rics in a machine-parsable and human-readable format. By de-
fault, rust-code-analysis-cli supports three textual formats: JSON,

6 https://crates.io/crates/serde Last visited 24/06/2020.
3

https://tree-sitter.github.io/
https://crates.io/crates/serde


L. Ardito, L. Barbato, M. Castelluccio et al. SoftwareX 12 (2020) 100635

T
s
a

3

u
c
e

l
c
a

t

u

d

p
r

a

s

9

G

c

w
t

OML, and YAML. In addition, to speed up processing and transfer
peeds, a binary data serialization format based on JSON has been
dded: CBOR.

. Illustrative examples

This section reports illustrative examples of some of the main
se cases that can be performed by using the rust-code-analysis
ommand-line interface, and the output obtained on simple code
xamples.
To execute a command on single function it is possible to

everage the ls and le parameters. For instance, to execute rust-
ode-analysis on a single function which starts at line 5 and ends
t line 10:

rust−code−analysis−c l i command −−l s 5 −−l e 10 −p
path / to / f i l e / or / directory / containing / the / code

To print all computed metrics on the screen, the command is
he following one:

rust−code−analysis−c l i −−metrics −p
/ path / to / f i l e / or / directory / containing / the / code

To export metrics in a specific output format, it is possible to
se the following command:

rust−code−analysis−c l i −−metrics −O format −o /
output / path −p / path / to / f i l e / or / directory /
containing / the / code

Json and Toml formats can be exported as pretty-printed. To
o so, it is necessary to set the pr parameter. Below an example:

rust−code−analysis−c l i −−metrics −O format −−pr −o
/ output / path −p / path / to / f i l e / or / directory /

containing / the / code

To know if there are some syntactic errors in the code, it is
ossible to use the --f parameter, by searching for the occur-
ence of nodes of the error type:

rust−code−analysis−c l i −I "∗ . ext " −f −error −p /
path / to / f i l e / or / directory / containing / the / code

In addition, it is also possible to count the number of nodes of
certain type using the count option:

rust−code−analysis−c l i −I "∗ . ext " −−count −error −

p / path / to / f i l e / or / directory / containing / the /
code

The following command allows to print the AST of a given
ource file, by using the -d parameter:

rust−code−analysis−c l i −d −p / path / to / f i l e / or /
directory / containing / the / code

To use the rust-code-analysis-cli as a server running on port
090, the following command can be used:

rust−code−analysis−c l i −−serve −−port 9090

Once the server is started, it is possible to ping it through a
ET command at the following URL:

http : / /127 .0 .0 .1 :9090/ ping

Finally, to get the metrics from the server instance of the rust-
ode-analysis-cli, the following POST request can be used. In the
POST request, filename identifies the path to the source file,
hile unit is a boolean value that indicates the tool to include in
he output only top-level metrics (1) or all detailed metrics (0).

http : / /127 .0 .0 .1 :9090/ metrics?file_name={ filename
}&unit ={ unit }

As an example, we report the JSON output that can be obtained
by running the rust-code-analysis-cli program on a simple code
example. The code example (a simple Rust function) is reported
in Listing 2. The JSON output is reported in Listing 2.

The following command writes all the computed metrics in a
file called foo.rs.json, and outputs it in the tmp directory.

rust−code−analysis−c l i −p foo . rs −−metrics −O json
−o /tmp

The JSON output contains the subdivision of a source code in
different spaces. Looking at the code example below, a space has
been generated for the whole unit, for the impl Foo, for the bar
function and for the closure inside bar.

For each space, the metrics are grouped in different JSON items
depending on their structure. For example, the metrics obtained
counting the Lines of Code present in a source file (SLOC, PLOC,
LLOC, CLOC) have been grouped in a JSON array called LOC.

Listing 1: A simple Rust code example

struct Foo {
buf: Vec<u8>,

}

impl Foo {
fn bar(&self) -> usize {

let s = 0;
for i in 0..10 {

s += self
.buf
.iter()
.fold(s, |acc, x| acc + x * i);

}
s

}
}

Listing 2: foo.rs.json
{

" name " : " /tmp/foo.rs " ,
" start_line " : 1,
" end_line " : 16,
" kind " : " unit " ,
" spaces " : [

{
" name " : " Foo " ,
" start_line " : 5,
" end_line " : 16,
" kind " : " impl " ,
" spaces " : [

{
" name " : " bar " ,
" start_line " : 6,
" end_line " : 15,
" kind " : " function " ,
" spaces " : [

{
" name " : " <anonymous > " ,
" start_line " : 12,
" end_line " : 12,
" kind " : " function " ,
" spaces " : [],
" metrics " : {

" nargs " : 4.0,
" nexits " : 0.0,
" cyclomatic " : 1.0,
" halstead " : {...},
4



L. Ardito, L. Barbato, M. Castelluccio et al. SoftwareX 12 (2020) 100635

v
p

" loc " : {...},
" nom " : {...},
" mi " : {...},

}
}

],
" metrics " : {

" nargs " : 1.0,
" nexits " : 1.0,
" cyclomatic " : 1.5,
" halstead " : {...},
" loc " : {...},
" nom " : {...},
" mi " : {...},

}
}

],
" metrics " : {

" nargs " : 0.0,
" nexits " : 1.0,
" cyclomatic " : 1.3333333333333333,
" halstead " : {...},
" loc " : {...},
" nom " : {...},
" mi " : {...},

}
}

],
" metrics " : {

" nargs " : 0.0,
" nexits " : 1.0,
" cyclomatic " : 1.25,
" halstead " : {...},
" loc " : {...},
" nom " : {...},
" mi " : {...},

}
}

4. Related work

In our previous work we conducted a Systematic Review
to find all open-source tools cited in related literature about
software metrics. We came up with a set of thirteen open-
source tools that were proposed by the software maintenance
community and/or used to perform empirical measurements of
source codes: CKJM [17], MetricsReloaded [18], CodeMetrics [19],
Squale [20], Quamoco Benchmark [21], CBR Insight [22], Halstead
Metrics Tool [23], SonarQube [24], JSInspect [25], Escomplex [26],
Eslint [27], CCFinderX [28], Ref-Finder [29].

In Table 3, we report the language support offered by rust-
code-analysisand the languages among those supported by the
open-source tools available in the literature. It can be seen that,
albeit tools like SonarQube and CBR Insight cover many of the
languages with which rust-code-analysis works, no tool is com-
patible with the Rust language.

In Table 4, we report the metrics computed by rust-code-
analysis and the ones computed by the open-source tools avail-
able in the literature. For the sake of readability, we compacted
under the LOC name all metrics related to the count of the lines of
code in a source file, namely SLOC, PLOC, LLOC, CLOC, and BLANK.
As shown in the Table, there are no tools that can offer the same
combination of metrics computed by rust-code-analysis. In par-
ticular, two of them do not cover any of the considered metrics.
Considering the most complex metric suites (i.e., the Halstead
suite and the Maintainability Index), they are both considered
by only two open-source tools (and only Escomplex can compute
both). As expected, no open-source tools allow the computation
of the NARGS and NEXITS metrics since they have been defined in
the scope of the rust-code-analysis tool.

In the following, we highlight some rust-code-analysis ad-
antages compared with the other tools described in Table 4. In
articular, rust-code-analysis:

Table 3
Languages supported by rust-code-analysis compared with most popular open
source tools according to the literature.

CK
JM

M
et
ri
cs
Re

lo
ad

ed

Co
de

M
et
ri
cs

Sq
ua

le

Q
ua

m
oc

o

CB
R

In
si
gh

t

H
al
st
ea

d
To

ol

So
na

rQ
ub

e

JS
In
sp

ec
t

Es
co

m
pl
ex

Es
lin

t

CC
Fi
nd

er
X

Re
f-
Fi
nd

er

R-
C-

A

C++ v v v v v v
C# v v v v
CSS v v
GO v v
HTML v v
Java v v v v v v v v v v
JavaScript v v v v v v
Python v v v
Rust v
TypeScript v v

Table 4
Metrics computed by rust-code-analysis compared with most popular open
source tools according to the literature.

CK
JM

M
et
ri
cs
Re

lo
ad

ed

Co
de

M
et
ri
cs

Sq
ua

le

Q
ua

m
oc

o

CB
R

In
si
gh

t

H
al
st
ea

d
To

ol

So
na

rQ
ub

e

JS
In
sp

ec
t

Es
co

m
pl
ex

Es
lin

t

CC
Fi
nd

er
X

Re
f-
Fi
nd

er

R-
C-

A

CC v v v v v v v v
LOC v v v v v v v v v
Halstead v v v
MI v v v
NOM v v v
NARGS v
NEXITS v

• is modular, so it is easy to create new modules that imple-
ment new metrics or add support for more programming
languages;

• is written in Rust, so it takes advantage of this programming
language’s features, described in Section 1.

• is actively maintained by Mozilla. External contributors can
implement new features, fix bugs, and then submit pull
requests to include their changes in the project.

• is currently used for analyzing mozilla-central (the Firefox
source code), so it can exploit a big testbed;

• supports multiple programming languages. Implementing
metrics for projects written in different programming lan-
guages is problematic because developers are required to
learn the structure of each language, wasting a significant
amount of time;

• provides the binaries for Windows and Linux in a facilitated
way by using a continuous integration and deployment ser-
vice. There is no need to build the code from scratch, mak-
ing things simpler for end-users. Indeed, building a project
sometimes requires struggling with complex configurations,
depending on the operating system (and its version) in use,
and the libraries installed in the system;

• provides a CLI and a library, which makes it easily integrable
into third-party software.

5. Impact and conclusions

In this paper, we presented rust-code-analysis, a Rust library
to analyze and extract maintainability information from source
codes.
5



L. Ardito, L. Barbato, M. Castelluccio et al. SoftwareX 12 (2020) 100635

d
o
s
e
i
c

a

m
f
t
i

C
f

D

c
t

A

w
r
s
R
i

R

rust-code-analysis is a novel software package with two newly
efined software maintainability metrics (NARGS and NEXITS). It
ffers a command-line interface that can be easily called by other
oftware projects to monitor and inspect the quality of their code,
ither in production or under development. The tool is already
n use for Firefox Nightly to evaluate the risk of the codebase
hanges.7
We also expect the following impacts for the rust-code-

nalysis library:

• For software engineers and coders, the tool can evaluate the
code maintainability of running projects, quantify its com-
plexity, and inspect possible parsing errors before compile
time through an AST analysis.

• For integration in developer workflows, the tool can be
integrated to identify risky changes and surface the need for
more testing or refactoring.

• For researchers in software engineering, the tool can be
used to either conduct empirical studies and compare main-
tainability properties between implementations of the same
algorithm in different languages or implement different al-
gorithms in the same language.

Both use cases can be easily carried out, leveraging the com-
and line interface of the tool. As an example of using the tool

or empirical experiments, we already developed a tool in Python
hat exploits rust-code-analysis to compare diverse algorithm
mplementations written each in a different language.8

As an immediate future work, we plan to add CHANGE and
ognitive Complexity metrics and to implement all the metrics
or the C# and Java languages.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

Mozilla Research, United States of America funded this project
ith the research grant 2018 H2. The project title is: ‘‘Algo-
ithms clarity in Rust: advanced rate control and multi-thread
upport in rav1e". This project aimed to understand how the
ust programming language improves code maintainability while
mplementing complex algorithms.

eferences

[1] IEEE. Standard glossary of software engineering terminology. IEEE Std
610.12-1990 1990;1–84. http://dx.doi.org/10.1109/IEEESTD.1990.101064.

[2] Kaur A, Kaur K, Pathak K. Software maintainability prediction by data
mining of software code metrics. In: 2014 international conference on data
mining and intelligent computing (ICDMIC). 2014, p. 1–6. http://dx.doi.org/
10.1109/ICDMIC.2014.6954262.

[3] Lanza M, Marinescu R. Object-oriented metrics in practice: using soft-
ware metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media; 2007.

[4] Nuñez-Varela AS, Pérez-Gonzalez HG, Martínez-Perez FE, Soubervielle-
Montalvo C. Source code metrics: A systematic mapping study. J Syst
Softw 2017;128:164–97. http://dx.doi.org/10.1016/j.jss.2017.03.044, http:
//www.sciencedirect.com/science/article/pii/S0164121217300663.

7 https://github.com/mozilla/gecko-dev.
8 https://github.com/SoftengPoliTo/SoftwareMetrics.

[5] Ardito L, Coppola R, Barbato L, Verga D. A tool-based perspective on
software code maintainability metrics: a systematic literature review. Sci
Program 2020;2020:5284645. http://dx.doi.org/10.1155/2020/8840389.

[6] Sarwar M, Tanveer W, Sarwar I, Mahmood W. A comparative study of MI
tools: Defining the roadmap to MI tools standardization. In: 2008 IEEE
international multitopic conference. 2008, p. 379–85. http://dx.doi.org/10.
1109/INMIC.2008.4777767.

[7] Lincke R, Lundberg J, Löwe W. Comparing software metrics tools. In:
Proceedings of the 2008 international symposium on software testing and
analysis. ACM; 2008, p. 131–42.

[8] Matsakis ND, Klock FS. The rust language. ACM SIGAda Ada Lett
2014;34(3):103–4.

[9] Balasubramanian A, Baranowski MS, Burtsev A, Panda A, Rakamarić Z,
Ryzhyk L. System programming in rust: Beyond safety. In: Proceedings of
the 16th workshop on hot topics in operating systems. 2017, p. 156–61.

[10] Xu H, Chen Z, Sun M, Zhou Y. Memory-safety challenge considered solved?
An empirical study with all rust CVEs. 2020, arXiv preprint arXiv:2003.
03296.

[11] Nayrolles M, Hamou-Lhadj A. CLEVER: Combining code metrics with clone
detection for just-in-time fault prevention and resolution in large industrial
projects. In: Proceedings of the 15th international conference on mining
software repositories. New York, NY, USA: Association for Computing
Machinery; 2018, p. 153–64. http://dx.doi.org/10.1145/3196398.3196438.

[12] Castelluccio M, An L, Khomh F. Is it Safe to Uplift this Patch?: An
Empirical Study on Mozilla Firefox. In: 2017 IEEE international conference
on software maintenance and evolution (ICSME), 2017. p. 411–21.

[13] Castelluccio M, An L, Khomh F. An empirical study of patch uplift in rapid
release development pipelines. Empir Softw Eng 2018;1–37.

[14] Ebert C, Cain J, Antoniol G, Counsell S, Laplante P. Cyclomatic complexity.
IEEE Softw 2016;33(6):27–9.

[15] Halstead MH. Elements of software science. Operating and programming
systems series, New York, NY, USA: Elsevier Science Inc.; 1977.

[16] Welker KD. The software maintainability index revisited. CrossTalk
2001;14:18–21.

[17] Kaur A, Kaur K, Pathak K. A proposed new model for maintainability index
of open source software. In: Proceedings of 3rd international conference
on reliability, infocom technologies and optimization. IEEE; 2014, p. 1–6.

[18] Saifan AA, Alsghaier H, Alkhateeb K. Evaluating the understandability of
android applications. Int J Soft Innov (IJSI) 2018;6(1):44–57.

[19] Kaur A, Kaur K, Pathak K. Software maintainability prediction by data
mining of software code metrics. In: 2014 international conference on data
mining and intelligent computing (ICDMIC). IEEE; 2014, p. 1–6.

[20] Ludwig J, Xu S, Webber F. Compiling static software metrics for reliability
and maintainability from github repositories. In: 2017 IEEE international
conference on systems, man, and cybernetics (SMC). IEEE; 2017, p. 5–9.

[21] Wagner S, Lochmann K, Heinemann L, Kläs M, Trendowicz A, Plösch R, et
al. The quamoco product quality modelling and assessment approach. In:
2012 34th international conference on software engineering (ICSE). IEEE;
2012, p. 1133–42.

[22] Ludwig J, Cline D. CBR insight: measure and visualize source code quality.
In: 2019 IEEE/ACM international conference on technical debt (TechDebt).
IEEE; 2019, p. 57–8.

[23] Hariprasad T, Vidhyagaran G, Seenu K, Thirumalai C. Software complexity
analysis using halstead metrics. In: 2017 international conference on
trends in electronics and informatics (ICEI). IEEE; 2017, p. 1109–13.

[24] Sarwar MI, Tanveer W, Sarwar I, Mahmood W. A comparative study of
MI tools: Defining the roadmap to MI tools standardization. In: 2008 IEEE
international multitopic conference. IEEE; 2008, p. 379–85.

[25] Chatzidimitriou K, Papamichail M, Diamantopoulos T, Tsapanos M, Syme-
onidis A. Npm-miner: An infrastructure for measuring the quality of the
npm registry. In: 2018 IEEE/ACM 15th international conference on mining
software repositories (MSR). IEEE; 2018, p. 42–5.

[26] GitHub I. escomplex. 2017, https://github.com/escomplex/escomplex,
[27] Tómasdóttir K, Aniche M, Van Deursen A. The adoption of javascript

linters in practice: A case study on eslint. IEEE Trans Softw Eng
2020;46(8):863–91. http://dx.doi.org/10.1109/TSE.2018.2871058.

[28] Matsushita T, Sasano I. Detecting code clones with gaps by function
applications. In: Proceedings of the 2017 ACM SIGPLAN workshop on
partial evaluation and program manipulation; 2017. p. 12–22.

[29] Kádár I, Hegedus P, Ferenc R, Gyimóthy T. A code refactoring dataset
and its assessment regarding software maintainability. In: 2016 IEEE 23rd
international conference on software analysis, evolution, and reengineering
(SANER), vol. 1. IEEE; 2016, p. 599–603.
6

http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://dx.doi.org/10.1109/ICDMIC.2014.6954262
http://dx.doi.org/10.1109/ICDMIC.2014.6954262
http://dx.doi.org/10.1109/ICDMIC.2014.6954262
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb3
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb3
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb3
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb3
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb3
http://dx.doi.org/10.1016/j.jss.2017.03.044
http://www.sciencedirect.com/science/article/pii/S0164121217300663
http://www.sciencedirect.com/science/article/pii/S0164121217300663
http://www.sciencedirect.com/science/article/pii/S0164121217300663
https://github.com/mozilla/gecko-dev
https://github.com/SoftengPoliTo/SoftwareMetrics
http://dx.doi.org/10.1155/2020/8840389
http://dx.doi.org/10.1109/INMIC.2008.4777767
http://dx.doi.org/10.1109/INMIC.2008.4777767
http://dx.doi.org/10.1109/INMIC.2008.4777767
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb7
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb7
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb7
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb7
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb7
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb8
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb8
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb8
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb9
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb9
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb9
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb9
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb9
http://arxiv.org/abs/2003.03296
http://arxiv.org/abs/2003.03296
http://arxiv.org/abs/2003.03296
http://dx.doi.org/10.1145/3196398.3196438
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb13
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb13
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb13
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb14
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb14
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb14
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb15
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb15
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb15
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb16
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb16
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb16
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb17
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb17
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb17
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb17
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb17
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb18
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb18
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb18
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb19
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb19
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb19
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb19
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb19
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb20
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb20
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb20
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb20
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb20
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb21
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb21
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb21
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb21
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb21
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb21
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb21
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb22
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb22
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb22
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb22
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb22
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb23
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb23
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb23
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb23
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb23
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb24
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb24
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb24
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb24
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb24
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb25
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb25
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb25
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb25
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb25
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb25
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb25
https://github.com/escomplex/escomplex
http://dx.doi.org/10.1109/TSE.2018.2871058
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb29
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb29
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb29
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb29
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb29
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb29
http://refhub.elsevier.com/S2352-7110(20)30348-4/sb29

	rust-code-analysis: A Rust library to analyze and extract maintainability information from source codes
	Motivation and significance
	Software description
	Features
	Metrics
	Code representation
	Command line interface

	Illustrative examples
	Related work
	Impact and conclusions
	Declaration of competing interest
	Acknowledgments
	References


