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THE GEOMETRY OF CONFORMAL TIMELIKE

GEODESICS IN THE EINSTEIN UNIVERSE

OLIMJON ESHKOBILOV, EMILIO MUSSO, AND LORENZO NICOLODI

Abstract. This paper studies the geometry of the critical points of the sim-
plest conformally invariant variational problem for timelike curves in the n-
dimensional Einstein universe. Such critical curves are referred to as confor-
mal timelike geodesics. The functional defining the variational problem is the
Lorentz analogue of the conformal arclength functional in Möbius geometry.
We compute the Euler–Lagrange equations and show that the trajectory of a
conformal timelike geodesic is constrained into some totally umbilical Einstein
universe of dimension 2, 3, or 4. The case of dimension 2 leads to orbits of 1-
parameter groups of Lorentz Möbius transformations, while that of dimension
3 has been dealt with in [8]. In this paper, we discuss the case of conformal
timelike geodesics in the 4-dimensional Einstein universe whose trajectories
are not contained in any lower dimensional totally umbilical Einstein universe.
It is shown that such curves can be explicitly integrated by quadratures and
explicit expressions in terms of elliptic functions and integrals are provided.

1. Introduction

Let E1,n�1 denote the conformal compactification of Minkowski n-space (n > 1),
realized as the set of oriented null lines through the origin in pseudo-Euclidean
space R

2,n. Topologically, E1,n�1 is the sphere product S1 ⇥ S

n�1. The restriction
to E1,n�1 of the pseudo-Euclidean structure of R2,n makes E1,n�1 into an oriented,
time-oriented, Lorentz manifold with product metric �dt

2+g

S

n�1 , where dt2 is the
standard metric on S

1 and g

S

n�1 that on S

n�1. The Lorentz manifold E1,n�1 is
known in the literature as the compact Einstein universe.1 The role of E1,n�1 in
conformal Lorentz geometry is similar to that of the conformal n-sphere S

n (the
Möbius n-space) in conformal Riemannian geometry [2, 12, 16]. In particular, all
Robertson–Walker spacetimes, including the Lorentz spaceforms, can be confor-
mally realized as open domains of E1,n�1 [9, 19]. Conformal Lorentz geometry, in
both its intrinsic and extrinsic aspects, has played an important role since the work
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1Actually, E1,n�1 is the double covering of the space that in [2, 12] is called Einstein universe.
The advantage of working with the compact model E1,n�1, instead that with its universal covering
R⇥Sn�1 (the Einstein static universe), is that its group of (restricted) conformal transformations
is a Lie group of matrices (cf. [10] for more details), which greatly simplifies computation.
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2 OLIMJON ESHKOBILOV, EMILIO MUSSO, AND LORENZO NICOLODI

of H. Weyl in general relativity [42] and of W. Blaschke and G. Thomsen in the clas-
sical geometries of Laguerre, Möbius and Lie [4, 6, 20, 21]. In the 1980s, the subject
has been considered in the twistor approach to gravity by Penrose and Rindler [34]
and more recently in the study of cyclic cosmological models [32, 33, 39, 40] and in
the regularization of the Kepler problem [16]. For other applications of conformal
Lorentz geometry, we refer to [1].

Let us begin by recalling some facts about the conformal geometry of curves
in S

n which are comparatively relevant to our study. It is well known that along
a generic curve in the conformal sphere S

n there exists a canonical conformally
invariant arc element whose integral defines a conformally invariant functional,
called the arclength functional. This construction is classical and goes back to the
work of a number authors of the first decades of the 19th century, including Fialkov,
Haantjes, Liebmann, Takasu, Vessiot, et al. [11, 18, 25, 37, 41]. In [28], E. Musso
characterized the critical curves of the arclength functional for the case of S3 and
provided explicit expressions for the critical curves in terms of elliptic functions.
Extending this work to S

n, in [26], M. Magliaro, L. Mari and M. Rigoli proved
that every critical curve in S

n lies in a totally umbilical 4-sphere S

4 and obtained
explicit expressions for the critical curves in S

4. Interestingly enough, it follows
from the results in [26] that any closed critical curve in S

n lies in some S

3 ⇢ S

n,
up to Möbius transformation. The question of existence and properties of closed
critical curves for the arclength functional in S

3 has recently been addressed by E.
Musso and L. Nicolodi in [29, 30].

The purpose of this paper is to study the timelike curves in E1,n�1 which are
critical for the conformal strain functional, the Lorentz analogue of the arclength
functional for curves in S

n. These curves are referred to as conformal timelike

geodesics, or conformal worldlines. The conformal strain functional defines the
simplest conformally invariant variational problem on the space of generic timelike
curves (i.e., timelike curves without conformal vertices) and generalizes the func-
tional for timelike curves in E1,2 considered in [8]. Proceeding by the method of
moving frames in analogy with [26, 28], we compute the variational equations sat-
isfied by the conformal worldlines. We then prove that the conformal worldlines
in E1,n�1 are constrained into some totally umbilical Einstein universe of dimen-
sion 2, 3, or 4. This is the Lorentz analogue of the result for the critical curves of
the arclength functional in S

n mentioned above [26]. Now, the case of conformal
worldlines in a 3-dimensional Einstein universe has been partially investigated in
[8]. Moreover, it can be shown that the trajectories of the conformal worldlines
in a 2-dimensional Einstein universe are orbits of 1-parameter groups of Lorentz
Möbius transformations. The focus of this paper is on the conformal worldlines of
E1,3 whose trajectories are not contained in any lower dimensional totally umbilical
Einstein universe, the so-called linearly full conformal worldlines. We will prove
that they can be integrated by quadratures and will compute explicit expressions
in terms of elliptic functions and elliptic integrals.

More specifically, the results are organized as follows. In Section 2, we collect
some basic facts about conformal Lorentz geometry [2, 16, 31] and develop for
timelike curves in E1,n�1 the classical approach to the conformal geometry of curves
in Möbius space [11, 18, 27, 35, 36, 37, 38]. We define the conformal strain for a
timelike curve and the associated notion of conformal vertex. We then introduce
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the infinitesimal conformal strain and the conformal strain functional for generic
timelike curves.

In Section 3, we use the moving frame method to compute the Euler–Lagrange
equations of the conformal strain functional. This is the content of Theorem A.
Next, we show that the trajectory of a conformal worldline is constrained in a totally
umbilical Einstein universe of dimension 2, 3 or 4. This is proved in Theorem B.

In Section 4, we study the linearly full conformal worldlines of E1,3. For a linearly
full worldline � ⇢ E1,3, we construct a canonical lift to the (restricted) conformal
group, called the canonical conformal frame field of �, and define the three con-
formal curvatures of � (cf. Proposition 3). We then use the variational equations
to show that the curvatures are either constant, in which case the trajectory of �
is an orbit of a 1-parameter group of (restricted) conformal transformations (cf.
Remark 7), or can be expressed in terms of Jabobi’s elliptic functions. This is
done in Proposition 5. As a consequence of Proposition 5, it is shown that any
congruent class of conformal worldlines can be represented by a model worldline,
the so-called standard configuration (cf. Definition 12). This implies that the con-
formal equivalence classes of linearly full conformal worldlines can be parametrized
by three real parameters (cf. Proposition 6). We then define the momentum op-

erator of a worldline �. This is an element of the Lie algebra of the (restricted)
conformal group, which is intrinsically defined by the worldline. The existence of
the momentum is a consequence of the conformal invariance of the strain functional
and of the Nöther conservation theorem (cf. Remark 8). A conformal worldline is
called regular, exceptional, or singular depending on whether the momentum is a
regular, exceptional, or singular element of the Lie algebra. Proposition 7 shows
that a worldline can only be either regular, or exceptional. Next, for both types of
worldlines, we define the integrating factor of an eigenvalue of the momentum and
construct the principal vectors of the eigenvalues (cf. Proposition 8). The rather
technical and lengthy calculations for the explicit determination of the integrating
factors are given in the final Appendix.

In Section 5, we use the integrating factors and the principal vectors to integrate
by quadratures the trajectories of the linearly full conformal worldlines of E1,3 with
nonconstant curvatures. This is the content of Theorems C and D. At the end of
the section, the theoretical aspects underlying the integration by quadratures are
briefly discussed. We also explain why, contrary to what happens in E1,2, where
there are countably many closed worldlines with nonconstant curvatures (cf. [8]),
a linearly full conformal worldline in E1,3 with nonconstant curvatures cannot be
closed. Finally, we show that the trajectory of a conformal worldline is invariant
under the action of an infinite cyclic group of conformal transformations.

2. Conformal geometry of a timelike curve

2.1. The Einstein universe and its restricted conformal group. Let E1,n�1

denote the n-dimensional submanifold of Rn+2, n > 1, defined by the equations
x

2
0 + x

2
1 = 1 and x

2
2 + · · · + x

2
n+1 = 1. As a manifold, E1,n�1 is the Cartesian

product S1 ⇥ S

n�1. The restriction to E1,n�1 of the quadratic form

g = �dx

2
0 � dx

2
1 + dx

2
2 + · · ·+ dx

2
n+1

induces on E1,n�1 a Lorentz pseudo-metric ge. The normal bundle of E1,n�1 is
spanned by the restrictions of the vector fields n1 = x0@x0 + x1@x1 and n2 =
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x2@x2 + · · · + x

n+1@xn+1 . Thus, contracting dx0 ^ · · · ^ dx

n+1 with n1 and n2,
yields a volume form on E1,n�1 which in turn defines an orientation. The vector
field �x1@x0 + x0@x1 is tangent to E1,n�1 and induces a unit timelike vector field
on E1,n�1. We time-orient E1,n�1 by requiring that such a vector field is future-
directed.

Definition 1. The Lorentz manifold (E1,n�1
, ge), with the above orientation and

time-orientation, is called the n-dimensional Einstein universe.

In order to describe the conformal geometry of E1,n�1, it is convenient to consider
in R

n+2 the coordinates

y0 =
1p
2
(x0 + x

n+1), y1 = x1, . . . , yn = x

n

, y

n+1 =
1p
2
(�x0 + x

n+1).

The corresponding basis of Rn+2 is denoted by (E0, . . . , En+1) and is called the stan-
dard (light-cone) basis of Rn+2. With respect to (y0, . . . , yn+1), the scalar product
associated to g can be written as

(2.1) hY, Y 0i = �(y0y
0
n+1 + y

n+1y
0
0)� y1y

0
1 +

n

X

j=2

y

j

y

0
j

.

In addition, dV = dy0^ · · ·^y

n+1 defines a positive volume form. From now on, we
will use light-cone coordinates and we will think of the elements V 2 R

n+2 as their
coordinate column vectors with respect to (E0, . . . , En+1). For each V 2 R

n+2, V 6=
0, [V ] will denote the oriented line spanned by V . By the mapping E1,n�1 3 V 7!
[V ], E1,n�1 can be identified with the manifold of isotropic oriented lines through
the origin of R

n+2 (null rays). Using this identification, the identity connected
component A"

+(2, n) of the pseudo-orthogonal group of (2.1) acts transitively and
e↵ectively on the left of E1,n�1 byX[V ] = [XV ]. This action preserves the oriented,
time-oriented conformal Lorentz structure of E1,n�1. It is a classical result that, if
n > 2, every restricted conformal transformation of E1,n�1 is induced by a unique
element of A"

+(2, n) [7, 12]. For this reason, we call A
"
+(2, n) the restricted conformal

group of the n-dimensional Einstein universe.

Remark 1. To distinguish the connected component of the identity we proceed as
in [16]. Let C ⇢ V2(Rn+2) be the cone of all isotropic bi-vectors, i.e., the non-zero
decomposable elements V ^W of

V2(Rn+2) such that hV, V i = hW,W i = hV,W i
= 0. The function

V : C 3 V ^W 7! dV (V,W,E1, . . . , En

, E

n+1 � E0) 2 R

never vanishes and the half cones

C+ = {V ^W 2 C : V(V ^W ) > 0}, C� = {V ^W 2 : V(V ^W ) < 0}
are the two connected components of C. Therefore, A"

+(2, n) is the group of all
pseudo-orthogonal matrices B of the scalar product (2.1), such that detB = 1 and
B C+ = C+.

Let

(2.2) m = (m
ji

), m
ji

:= hE
j

,E
i

i, i, j = 0, . . . , n+ 1.
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Then the column vectors B0, . . . , Bn+1 of a matrix B 2 A"
+(2, n) form a light-cone

basis of Rn+2, i.e., a positive-oriented basis such that

hB
i

, B

j

i = m
ji

, i, j = 0, . . . , n+ 1, B0 ^ (B1 +B2) 2 C+.
This allows us to identify A"

+(2, n) with the manifold of all light-cone bases of Rn+2.

Let R2,n denote R

n+2 equipped with the scalar product (2.1), the volume form
dV , and the positive half cone C+. Di↵erentiation of the R

2,n-valued maps

B
j

: A"
+(2, n) 3 B 7! B

j

2 R

2,n
, j = 0, . . . , n+ 1,

yields

dB
j

=
n+1
X

i=0

µ

i

j

B
i

,

where µ

i

j

are left-invariant 1-forms. The conditions hB
j

, B

i

i = m
ji

imply that

µ = (µi

j

) takes values in the Lie algebra of A"
+(2, n), namely

a(2, n) =
�

X 2 gl(n+ 2,R) | tXm+ mX = 0
 

.

As a consequence, we can write

µ =

0

B

B

@

µ

0
0 �µ

1
n+1

t

µ

n+1 0
µ

1
0 0 t

µ1 µ

1
n+1

µ0 µ1 µ̃ µ

n+1

0 �µ

1
0

t

µ0 �µ

0
0

1

C

C

A

,

where

µ0 = t(µ2
0, . . . , µ

n

0 ), µ1 = t(µ2
1, . . . , µ

n

1 ), µ

n+1 = t(µ2
n+1, . . . , µ

n

n+1)

and t

µ̃ + µ̃ = 0. The left-invariant 1-forms µ

0
0, µ

j

0, µ
j

n+1, j = 1, . . . , n, and µ

i

j

,
1  i < j = 1, . . . , n, are linearly independent and span the dual of the Lie algebra
a(2, n). They satisfy the Maurer–Cartan equations

(2.3) dµ

i

j

= �
n+1
X

k=0

µ

i

k

^ µ

k

j

, i, j = 0, . . . , n+ 1.

Remark 2. Let M

1,n�1 be Minkowski n-space, i.e., the a�ne space R

n with the
Lorentzian scalar product

(p,q) = �p1q1 + p2q2 + · · ·+ p

n

q

n

.

The map

(2.4) j(p) =



t

⇣

1, p1, . . . , pn,
(p,p)

2

⌘

�

2 E1,n�1

is a conformal embedding whose image is said the Minkowski-chamber of E1,n�1.
Let P"

+(1, n � 1) = M

1,n�1
o SO"

+(1, n � 1) be the restricted Poincaré group of

M

1,n�1. For each (p,L) 2 P"
+(1, n� 1), let ⇤p := (�p1, p2, . . . , pn). The matrix

B(p,L) =

0

@

1 0 0
p L 0

⇤pp
2

⇤pL 1

1

A

belongs to A"
+(2, n) and

(2.5) J : P"
+(1, n� 1) 3 (p,L) 7! B(p,L)) 2 A"

+(2, n)
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is a faithful representation. Similarly, one can build conformal embeddings of de Sit-
ter and Anti-de Sitter n-spaces into E1,n�1. Also Robertson–Walker n-spacetimes
can be conformally realized as open submanifolds of the Einstein universe [19].

Definition 2. A (2 + h)-dimensional subspace W ⇢ R

2,n, h = 1, . . . , n � 1, is
called Lorentzian if the restriction of h , i to W is nondegenerate and of signature
(2, h). The set E(W) of all null rays belonging to W is a h-dimensional totally
umbilical Lorentzian submanifold of E1,n�1. We call E(W) a h-dimensional Lorentz

cycle of E1,n�1. The cycle E(W) endowed with the induced conformal structure is
a conformal Lorentz manifold equivalent to a h-dimensional Einstein universe.

2.2. Timelike curves. Let � : I ⇢ R ! E1,n�1 be a parametrized timelike curve,
n � 3. A null lift of � is a map � : I ! R

2,n, such that �(t) = [�(t)], for every
t 2 I. Since � is a timelike immersion, a null lift � of � satisfies

� ^ �0|t 6= 0, h�|t ,�|ti = h�|t ,�0|ti = 0, h�0|t ,�0|ti < 0,

for every t 2 I. For each k = 1, . . . , n + 1, the kth osculating space of � at �(t)
is the linear subspace T k(�)|

t

⇢ R

2,n spanned by the vectors �|t , �
0
|t , . . . , �

k

|t .
Clearly, this definition is independent of the choice of the null lift. The totality of
osculating spaces defines the kth osculating sheaf

T k(�) =
�

(t, V ) 2 I ⇥ R

2,n | V 2 T k(�)|
t

 

.

We have the following.

Lemma 1. For each t 2 I, T 2(�)|
t

is a 3-dimensional Lorentzian subspace of R

2,n
.

Proof. Choose � so that h�0,�0i = �1. Di↵erentiating h�,�0i = 0 and h�0,�0i = �1,
we get h�,�00i = 1 and h�0,�00i = 0. This implies that �|t ,�

0
|t and �

00
|t are linearly

independent, for each t 2 I. Next, let

A1 =
1

2

⇣

1 + h�00,�00i
⌘

�� �00, A2 = �0 A3 =
1

2

⇣

1� h�00,�00i
⌘

�+ �00.

Then, (A1|t , A2|t , A3|t) is a basis of T 2(�)|
t

, such that

hA
i|t , Aj |ti = 0, i 6= j,

hA1|t , A1|ti = hA2|t , A2|ti = �hA3|t , A3|ti = �1,

as required. ⇤

The above lemma implies that T k(�)|
t

is a Lorentzian subspace of R2,n, for each
k � 2, and for each t 2 I. The Lorentzian cycle E(T k(�)|

t

) is denoted by Ek(�)|
t

.
We call Ek(�)|

t

the kth osculating cycle of � at �(t). The orthogonal complement
N k(�)|

t

of T k(�)|
t

is a spacelike subspace such that R2,n = T k(�)|
t

�N k(�)|
t

. We
call N k(�)|

t

the kth normal space at �(t). The totality of kth normal spaces defines
the kth normal sheaf

N k(�) =
�

(t, V ) 2 I ⇥ R

2,n | V 2 N k(�)|
t

 

.

Let pr(k)|t denote the orthogonal projection of Rn+2 onto N k(�)|
t

.

Definition 3. The conformal strain of a timelike curve � is the quartic di↵erential

(2.6) Q
�

=
hpr(2)(�000), pr(2)(�000)i

|h�0,�0i| dt

4
.
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The conformal strain is independent of the choice of the null lift �. In addition, if
� and e� are two equivalent timelike curves,2 then Qe� = h

⇤(Q
�

).

Definition 4. If Q(�)|
t

= 0, the point �(t) is said to be a conformal vertex. A
timelike curve without conformal vertices is said to be generic. If Q

�

= 0, the curve
is said to be totally degenerate.

Remark 3. If � is totally degenerate, then E1(�)|
t

is constant and the trajectory of
� is contained in a 1-dimensional conformal cycle.

Following [8], it can be shown that E1(�)|
t

has second order analytic contact with
� at �(t). Moreover, �(t) is a conformal vertex if and only if the order of contact is
strictly greater than 2. This underlines the fact that the conformal strain measures
the infinitesimal distortion of the curve from its osculating cycle.

Definition 5. If � is generic, there exists a unique null lift �, referred to as the
canonical lift, such that Q

�

= h�0,�0i2dt4. The smooth positive function �

�

=
|h�0,�0i|1/2 is called the conformal strain density and the exterior di↵erential 1-form
�

�

= �

�

dt is called the infinitesimal conformal strain (or conformal arc element)
of �. By construction, �

�

is invariant under the action of the restricted conformal
group and orientation preserving changes of parameter. In particular, any generic
timelike curve can be parametrized is such a way that �

�

= 1. In this case, we
say that the curve is parametrized by conformal parameter, which will be usually
denoted by u. For a smooth map f : I ! R

h, by ḟ = �

�1
�

f

0 we define the derivative
of f with respect to the conformal arc element.

Remark 4. The 1-form �

�

is the Lorentzian analogue of the conformal arc element
of a curve in the 3-dimensional round sphere [23, 26, 28, 30] and generalizes the
analogue notion for a generic timelike curve in the (1 + 2)-Einstein universe [8].

Let � be a generic timelike curve and let � be its canonical lift. Then, for every
t, dim (T 3(�)|

t

) = 4, and hence T 3(�) is a vector bundle. Furthermore, the cross
sections

(2.7) M0 = �, M1 =
1

|h�0,�0i|1/2�
0
, M2 =

pr(2)(�
000)

hpr(2)(�000), pr(2)(�000)i1/2
,

and

(2.8) M

n+1 = � 1

h�,�00i�
00 +

h�0,�00i
h�,�00i �

0 +
1

2

⇣ h�00,�00i
h�,�00i2 � h�00,�0i2

h�,�00i2
⌘

�

give rise to a canonical trivialization (M0,M1,M2,Mn+1) of T 3(�), such that

hM0,M0i = hM
n+1,Mn+1i = hM0,M1i = hM0,M2i = 0,

hM1,Mn+1i = hM2,Mn+1i = hM1,M2i = 0,

hM0,Mn+1i = hM1,M1i = �hM2,M2i = �1.

(2.9)

In particular, M0|t ^ (M1|t +M2|t) is an isotropic bi-vector, for every t 2 I. If we
revert the orientation along the curve, this bi-vector changes sign.

This implies that any generic timelike curve has an intrinsic orientation, defined
by M0|t ^ (M1|t +M2|t) 2 C+, for every t 2 I.

2I.e., e� = B · (� � h), where B 2 A"
+(1, n+ 1) and h is a change of parameter.
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Assumption 2. From now on, we implicitly assume that all timelike curves are
generic and equipped with their intrinsic orientations. For any such a curve �, we
denote by � its canonical null lift.

Definition 6. The scalar product (2.1) induces a metric structure on the vector
bundle N 3(�). The covariant derivative of a cross section V : I ! N 3(�), with
respect to the conformal arc element, is defined by

(2.10) D(V ) = pr(3)(V̇ ) : I ! N 3(�).

The normal bundles N 2(�) and N 3(�) possess two canonical cross sections,
denoted by W

�

and S

�

, respectively. The cross section S

�

is defined by

(2.11) S

�

= pr(3)(Ṁ2).

Next, let

(2.12) h1 = hṀ1,Mn+1i, h2 =
q

hS
�

, S

�

i.
We define W

�

by

(2.13) W

�

:= (ḣ1 � 3h2ḣ2)M2 � (h2
2 � 2h1)S�

+D

2(S
�

).

Note that

T 4(�)|
t

= span(M0|t,M1|t,M2|t, S�

|
t

,M

n+1|t),
T 5(�)|

t

= span(M0|t,M1|t,M2|t, S�

|
t

, D(S
�

)|
t

,M

n+1|t),
for every t 2 I.

2.3. First and second order frame fields. A first order frame field along � is a
smooth map

A = (A0, . . . , An+1) : I ! A"
+(2, n),

such that A0 is a null lift and A

0
0 2 span(A0, A1). First order frame fields do exist

along any timelike curve. If A is a first order frame field, then any other is given
by

e

A = AX(r, x, y, R),

where

r, x : I ! R, x > 0, y : I ! R

n�1
, R : I ! SO(n� 1)

are smooth functions and

(2.14) X(r, x, y, R) =

0

B

B

@

r �x

t

yR

t
yy�x

2

2
0 1 0 x/r

0 0 R y/r

0 0 0 r

�1

1

C

C

A

.

Definition 7. A first order frame field is said to be of second order if

A0 = M0, A1 = M1, A2 = M2, A

n+1 = M

n+1.

Second order frame fields do exist along any generic, timelike curve with its intrinsic
orientation. Note that (A3, . . . , An

) is a trivialization of the third-order normal
bundle of �.
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If A is a second order frame field, then

(2.15) A

0 = A

0

B

B

B

B

@

0 �h1 1 0 0
1 0 0 0 h1

0 0 0 �t

s 1
0 0 s � 0
0 �1 0 0 0

1

C

C

C

C

A

�

�

,

where � = (�j
i

)
i,j=3,...,n : I ! o(n � 2) is a smooth map, h1 is as in (2.12), and

s = t(s3, . . . , sn) is defined by

S

�

=
n

X

j=3

s

j

A

j

.

If V =
P

n

j=3 V
j

A

j

is a cross-section of N 3(�), then

DV =
n

X

j=3

⇣

V̇

j +
n

X

i=3

�

j

i

V

i

⌘

A

j

.

This implies that

(2.16) DS

�

=
n

X

j=3

s

j

(1)Aj

, D

2(S
�

) =
n

X

j=3

s

j

(2)Aj

,

and

(2.17) W

�

=
�

ḣ1 � 3 t

s ṡ

�

A2 +
n

X

j=3

�

s

j

(2) + (2h1 � t

s s)sj
�

A

j

,

where s(1), s(2) : I ! R

n�3 are defined by

s

j

(1) := ṡ

j +
n

X

i=3

�

j

i

s

i

, s

j

(2) := ṡ

j

(1) +
n

X

i=3

�

j

i

s

i

(1).

2.4. The strain functional and the conformal worldlines. For a generic time-
like curve �, we have seen that there is a canonical arc element �

�

on I. If K ⇢ I

is a closed interval in I, we can define the total strain functional

S
K

(�) =

Z

K

�

�

on the space of smooth, generic, timelike immersions of I into E1,n�1.

Definition 8. We say that a generic timelike curve � is a conformal timelike geo-

desic, or a conformal worldline, if for any closed interval K ⇢ I and for any smooth
variation

g : I ⇥ (�✏, ✏) 3 (t, ⌧) 7! �

⌧

(t) 2 E1,n�1
,

with �0 = � and supp(g) ⇢ K,3

d

d⌧

(S
K

(�
⌧

)) |
⌧=0 = 0.

3supp(g) denotes the support of the variation, i.e., the closure of the set of all t 2 I such that
�⌧ (t) 6= �(t), for some ⌧ 2 (�✏, ✏).
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3. The variational equations

The purpose of this section is to prove the following.

Theorem A. A generic timelike curve � equipped with its intrinsic orientation is

a conformal timelike geodesic if and only if W

�

(cf. (2.13)) vanishes identically.

Proof. First, we prove that a generic timelike curve with W

�

= 0 is a conformal
worldline. Without loss of generality, we may assume that � is parametrized by
conformal parameter. By (2.13), it follows that W

�

= 0 if and only if

(3.1) ḣ1 = 3h2ḣ2, D

2(S
�

) = (h2
2 � 2h1)S�

.

Let A : I ! A"
+(2, n) be a fixed second order frame field and

g : I ⇥ (�✏, ✏) 3 (u, ⌧) 7! �

⌧

(u) 2 E1,n�1

be a compactly supported variation of �, such that supp(g) ✓ K. By possibly
shrinking the interval (�✏, ✏), we may assume that, for every ⌧ 2 (�✏, ✏), �

⌧

is
generic and equipped with its intrinsic orientation. Then, there is a di↵erentiable
map

A : I ⇥ (�✏, ✏) 3 (u, ⌧) 7! A
⌧

(u) 2 A"
+(2, n),

such that A0 = A and A
⌧

is a second order frame field along �
⌧

, for every ⌧ 2
(�✏, ✏). This implies that there exist smooth maps Q, ⇤ : I⇥ (�✏, ✏) ! a(2, n) such
that

A�1
dA = Qdu+ ⇤d⌧,

where

Q =

0

B

B

B

B

@

0 �m � 0 0
� 0 0 0 m

0 0 0 �t

p �

0 0 p  0
0 �� 0 0 0

1

C

C

C

C

A

,

and

⇤ =

0

B

B

B

B

@

�

0
0 ��1

n+1 �

2
n+1

t

�

n+1 0
�

1
0 0 �

2
1

t

�1 �

1
n+1

�

2
0 �

2
1 0 �t

�2 �

2
n+1

�0 �1 �2 � �

n+1

0 ��10 �

2
0

t

�0 ��00

1

C

C

C

C

A

,

for smooth maps

�, m, �

0
0, �

1
0, �

2
0, �

1
n+1, �

2
n+1 : I ⇥ (�✏, ✏) ! R,

p, �0, �1, �2, �n+1 : I ⇥ (�✏, ✏) ! R

n�2
,

 , � : I ⇥ (�✏, ✏) ! o(n� 2).

Let the restrictions to I

⇠= I ⇥ {0} of the above maps be denoted by the same
symbols with an over bar. Note that supp(⇤) ✓ K. The cross section

Vg =
n

X

a=2

�

a

0Aa

: I ! N 2(�)
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is independent of the choice of A and A. We call Vg the infinitesimal variation of
g. From Ȧ = AQ and the identity (2.15), we obtain � = 1, m = h1, p = s and
 = �. From the Maurer–Cartan equations, it follows that

(3.2) @

u

⇤� @

⌧

Q = ⇤Q�Q⇤ =: [⇤, Q].

Using (3.2), we compute4

(@
⌧

�) |
I

= �

0
0 +

˙
�

1
0,

�

0
0 =

1

2

⇣

˙
�

0
2 � ˙

�

1
0 � �

n+1 · s� h1�
2
1

⌘

,

�̇0 = �1 � �

2
0 s� ��0,

�̇1 = �h1�0 � �

n+1 � �

2
1 s� ��1,

˙
�

n+1 = h1�1 + �2 � �

0
2 s� ��

n+1,

˙
�

2
0 = �

2
1 + s · �0.

Integrating by parts, taking into account that supp
�

�

i

j

� ⇢ K, i, j = 0, . . . , n + 1,
and that � is skew-symmetric, it follows from the above identities that

d

d⌧

(S
K

(�
⌧

)) |
⌧=0 =

Z

K

(@
⌧

�|
I

) du =

Z

K

�

�

0
0 +

˙
�

1
0

�

du =

Z

K

�

0
0 du

= �1

2

Z

K

⇣

s · (��̇1 � h1�0 � �

2
1s� ��1) + h1

� ˙
�

2
0 � s · �0

�

⌘

du

=
1

2

Z

K

⇣

� ṡ · �1 + h1s · �0 + (s · s)�21 + s · ��1 + ḣ1�
2
0 + h1s · �0

⌘

du

= �1

2

Z

K

ṡ · (�̇0 + �

2
0s+ ��0) du+

1

2

Z

K

s · � (�̇0 + �

2
0s+ ��0) du

+
1

2

Z

K

⇣

h1s · �0 + (ts s)(
˙
�

2
0 � s · �0) + ḣ1�

2
0 + h1s · �0

⌘

du

=
1

2

Z

K

⇣

�

2
0 (ḣ1 � 3 t

s ṡ) + �0 ·
�

ṡ(1) + � s(1) � (ts s� 2h1)s
�

⌘

du

=
1

2

Z

K

⇣

�

2
0 (ḣ1 � 3 t

s ṡ) + �0 ·
�

s(2) + (2h1 � t

s s)s
�

⌘

du

=
1

2

Z

K

hVg,W�

idu.

This implies the result.

Next, we show that, for each u0 2 I, there exists an open interval J ⇢ I con-
taining u0, such that, for every smooth function ⇢ : I ! R with compact support
K ⇢ J and every j = 2, . . . , n, there exists a compactly supported variation g, such
that Vg = ⇢A

j

. This clearly implies that a conformal worldline satisfies W
�

= 0.
Using the conformal invariance of the functional, without loss of generality, we

may suppose that �(u) belongs to the Minkowski chamber, for every u lying in an
open interval J ⇢ I containing u0. Then, �|

J

= j � ↵, where ↵ : J ! M

1,n�1 is
a timelike curve of Minkowski space. Let t : J ! M

1,n�1 be the future-directed

4For v, w 2 R

n�2, thought of as column vectors, v · w = tvw denotes the usual dot product.
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timelike unit tangent vector along ↵ and let

N(↵) =
�

(u,v) 2 J ⇥M

1,n�1 | ⇤v t|u = 0
 

be the normal bundle of ↵, equipped with the metric covariant derivative r(v) :=
pr(v̇).5 Let (b2, . . . ,bn

) be a flat orthogonal trivialization of N(↵), such that
(t,b2, . . . ,bn

) is positive-oriented. Then (↵, t,b2, . . . ,bn

) : J ! P

"
+(1, n � 1) is a

lift of ↵ to the restricted Poincaré group,6 and

F = J � (↵, t,b2, . . . ,bn

) : J ! A"
+(2, n)

is a first order frame field along �|
J

. Let A : J ! A"
+(2, n) be a second order frame

field along �. Then A = F X(r, x, y, R), where

x, r : J ! R, r > 0, y : J ! R

n�1
, R = (Ri

j

)
i,j=2,...,n : J ! SO(n� 1)

are smooth maps and X(r, x, y, R) is as in (2.14). Now, let

m = t(m2
, . . . ,m

n) =
⇢

r

t(R2
j

, . . . , R

n

j

).

It is now an easy matter to check that the variation

�

⌧

(u) = j � (↵|
u

+ ⌧

n

X

j=2

m

j(u)b
j

|
u

), (u, ⌧) 2 J ⇥ (�✏, ✏),

�

⌧

(u) = �(u), (u, ⌧) 2 (I \ J)⇥ (�✏, ✏),
satisfies the required properties. This concludes the proof of the Theorem A. ⇤

The next theorem shows that the conformal timelike geodesics (conformal world-
lines) lie in some Einstein universe of dimension 2, 3, or 4.

Theorem B. The trajectory of a conformal timelike geodesic is contained in an

m-dimensional Lorentzian cycle, where m can be 2, 3, or 4.

Proof. Let � be a conformal worldline parametrized by conformal parameter. Let
A = (A0, . . . , An+1) be a second order frame field along �. Then

T 5(�)|
u

= span(A0|u, A1|u, A2|u, S�

|
u

, DS

�

|
u

, A

n+1|u),
for every u 2 I. From (2.15), we have

Ȧ0 = A1, Ȧ1 = �h1A0 �A

n+1,

Ȧ2 = A0 + S

�

, Ȧ

n+1 = h1A1 +A2,
(3.3)

and

(3.4) Ȧ

j

= �s

j

A2 +
n

X

k=3

�

k

j

A

k

, j = 3, . . . , n.

The first equation in (3.1) yields

(3.5) (h2)
2 =

2

3
h1 + c1, c1 2 R.

The remaining equations in (3.1) can be written as

(3.6) ṡ = �� s+ s(1), ṡ(1) = �(
4

3
h1 � c1)s� � s(1)

5Here, pr|u denotes the orthogonal projection of M1,n�1 onto N(↵)|u.
6J is the faithful representation of P "

+(1, n) into the conformal group.
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or, equivalently, in the form

(3.7)

(

d

du

(S
�

) = DS

�

� ( 23h1 + c1)A2,

d

du

(DS|
�

) = �
⇣

4
3h1 � c1

⌘

S

�

� 1
3 ḣ1A2.

From (3.6), it follows that (s, s(1)) is a solution of the linear system

d

du

(s ^ s(1)) = �(� s) ^ s(1) � s ^ (� s(1)).

Hence, two possibilities may occur:

• Case I : s|
u

^ s(1)|u 6= 0, for every u 2 I;
• Case II : s ^ s(1) vanishes identically.

Case I. The vectors fields S
�

and DS

�

are everywhere linearly independent. Then,
the osculating spaces T 5(�)|

u

are 6-dimensional. Using (3.3) and (3.7), we obtain

d

du

(A0 ^A1 ^A2 ^ S

�

^DS

�

^A) = 0.

Hence, T 5(�)|
u

coincides with a fixed 6-dimensional Lorentzian subspace W

�

✓
R

2,n, for each u 2 I. This implies that the trajectory of � is contained in the
4-dimensional Lorentzian cycle E(W

�

).

Case II. Since (s, s(1)) is a solution of the linear system (3.6), there are two pos-
sibilities:

• Case II.1 : s = s(1) = 0;
• Case II.2 : t

s s+ t

s(1) s(1) > 0.

Case II.1. If s = ṡ = 0, then (3.3) implies

d

du

(A0 ^A1 ^A2 ^A

n+1) = 0.

Therefore, T 3(�)|
u

coincides with a fixed 4-dimensional Lorentzian subspace W
�

✓
R

2,n, for every u 2 I. Hence, the trajectory of � is contained in the 2-dimensional
Lorentzian cycle E(W

�

).

Case II.2 If t

s s + t

s(1) s(1) > 0 and s ^ s(1) = 0, then span(S
�

|
u

, DS

�

|
u

) is a
1-dimensional spacelike subspace, for every u 2 I. Thus

P =
�

(u, V ) 2 I ⇥ R

2,n | V 2 span(S
�

|
u

, DS

�

|
u

)
 

is a rank 1 vector bundle. Let P be a unit length cross section of P. The identity
s ^ s(1) = 0 implies that S

�

and DS

�

are both proportional to P . Let eI = I \
I⇤, where I⇤ is the discrete set {u 2 I | S

�

|
u

= 0}. On eI, the 5th and 4th order
osculating bundles are spanned by A0, A1, A2, P, An+1. This implies the existence
of a smooth function f : eI ! R, such that

Ṗ |e
I

= fP |e
I

, mod(A0, A1, A2, An+1),

Taking into account the previous identity, from (3.3) we get

(3.8)
d

du

(A0 ^A1 ^A2 ^ P ^A

n+1)|e
I

= f(A0 ^A1 ^A2 ^ P ^A

n+1)|e
I

.

Let Gr5(Rn+2) be the Grassmannian of 5-dimensional subspaces of Rn+2. From
(3.8), it follows that the map

I 3 u 7! span(A0|u ^A1|u ^A2|u ^ P |
u

^A

n+1|u) 2 Gr5(R
n+2)



14 OLIMJON ESHKOBILOV, EMILIO MUSSO, AND LORENZO NICOLODI

is constant on eI, and hence on I by continuity. Then, the 4th order osculating
spaces coincide with a fixed 5-dimensional Lorentzian subspace W

�

✓ R

2,n. Hence,
the trajectory of � is contained in the 3-dimensional Lorentzian cycle E(W

�

). ⇤

By Theorem B, if � is a conformal worldline, then three possibilities may occur:

• � is trapped in a 4-dimensional Einstein universe and there are no 3-
dimensional Lorentzian cycles containing the trajectory of �. In this case,
we say that � is a linearly full conformal worldline.

• the trajectory is trapped in a 3-dimensional Lorentzian cycle but does not
lie in any 2-dimensional Lorentzian cycle.

• the trajectory is trapped in a 2-dimensional Lorentzian cycle.

4. Linearly full conformal worldlines

In this and in the next section, we will focus on the linearly full conformal
worldlines of a 4-dimensional Einstein universe E1,3. We suppose that the curves
are parametrized by conformal parameter and oriented by the intrinsic orientation.

4.1. Canonical frames and conformal curvatures.

Proposition 3. Let � : I ! E1,3
be a conformal worldline. Then, there exists a

unique second order conformal frame B : I ! A

"
+(2, 3), such that

(4.1) Ḃ = BK,

with

(4.2) K =

0

B

B

B

B

B

B

@

0 �k1 1 0 0 0
1 0 0 0 0 k1

0 0 0 �k2 0 1
0 0 k2 0 �k3 0
0 0 0 k3 0 0
0 �1 0 0 0 0

1

C

C

C

C

C

C

A

,

where k1, k2, k3 : I ! R are smooth functions with k2 > 0 and k3 6= 0. In addition,

if k1, k2 and k3 are not constant, then there exist c1, c2, c3 2 R, c3 6= 0, such that

(4.3) k1 =
3

2
k

2
2 + c1, k3 = c3k

�2
2 , k̇

2
2 + k

4
2 + c

2
3k

�2
2 + 2c1k

2
2 + c2 = 0.

Proof. Let (M0,M1,M2,M5) be the canonical trivialization of T 3(�) and S

�

: I !
N 3(�) be the cross section defined in (2.11). Let

B3 = S

�

/

q

hS
�

, S

�

i
and consider the unique unit cross section B4 : I ! N 4(�), such that

det(M0,M1,M2,M3, B4,M5) > 0.

If we let

B0 = M0, B1 = M1, B2 = M2, B5 = M5,

the map B = (B0, . . . , B5) is a second order frame field along �. In view of (2.15),
we have

(4.4) Ḃ0 = B1, Ḃ1 = �k1B0 �B5, Ḃ5 = k1B1 +B2,
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where k1 = h1.
7 Since D is a metric covariant derivative, DB3 is a multiple of B4,

and hence DB3 = k3B4, for some nonzero function k3. From (2.15), we have

(4.5) Ḃ2 = B0 + k2B3,

where k2 =
phS

�

, S

�

i > 0. Taking into account (3.7), we then obtain

(4.6) Ḃ3 = �k2B2 + k3B4.

Moreover, since B takes values in A"
+(2, 4), using (4.4)–(4.6), we obtain

(4.7) Ḃ4 = �k3B3.

Combining (4.4)–(4.7), it follows that B satisfies (4.1), as required.
Next, suppose that the functions k1, k2 and k3 are not constant. The first and

second covariant derivatives of S
�

can be written as

DS

�

= k̇2B3 + k2k3B4, D

2
S

�

= (k̈2 � k2k
2
3)B3 + (2k̇2k3 + k3k̇2)B4.

Thus, from the variational equation W

�

= 0, it follows that

(4.8) k̈2 = k2(k
2
3 + k

2
2 � 2k1), k2k̇3 + 2k3k̇2 = 0, k̇1 = 3k2k̇2.

The second and third equations in (4.8) imply the existence of two constants c1

and c3 6= 0, such that

(4.9) k1 =
3

2
k

2
2 + c1, k3 = c3k

�2
2 .

Substituting (4.9) into (4.8), we find

k̈2 = �2k32 + c

2
3k

�3 � 4k2 � 2c1k2,

which implies the existence of a constant c2, such that

k̇

2
2 + k

4
2 + c

2
3k

�2
2 + 2c1k

2
2 + c2 = 0.

⇤
Definition 9. We call B, introduced in the proof of Proposition 3, the canonical

conformal frame. The functions k1, k2, k3 are called the conformal curvatures,
while the constants c1, c2, c3 are referred to as the characters of the worldline.

Remark 5. Conversely, if k1, k2, k3 : I ! R are smooth functions satisfying (4.3),
by solving the linear system (4.1) with initial condition B(u0) 2 A"

+(2, 4), we get

a smooth map B : I ! A"
+(2, 4). The curve � = [B0] is a linearly full conformal

worldline with conformal curvatures k1, k2, k3 and canonical conformal frame B.
Any other worldline e� with the same curvatures is congruent to �, with respect to
the restricted conformal group, i.e., there exists X 2 A"

+(2, 4), such that e� = X · �.
Remark 6. The sign ambiguity of the third curvature can be removed by the follow-
ing argument. If k3 is the third conformal curvature of � and if X is an orientation–
preserving and time-reversing conformal transformation, then X ·�(�u) is a confor-
mal worldline with conformal curvatures k1(�u), k2(�u) and �k3(�u). Therefore,
up to a time-reversing conformal transformation, k3 can be considered positive.

Definition 10. The sign of the third curvature is called the conformal helicity of
the worldline. By the previous remark, it is not restrictive to consider conformal
worldlines with positive helicity. From now on, positive helicity is assumed.

7We refer to (2.12) for the definition of h1.
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Remark 7. If k1, k2 and k3 are constant, the variational equations imply k1 =
(k22 + k

2
3)/2. In this case K (cf. (4.2)) is a fixed element of the Lie algebra a(2, 4)

and � is congruent to the orbit through [t(1, 0, 0, 0, 0)] of the 1-parameter group of
conformal transformations R 3 u 7! Exp(uK) 2 A

"
+(2, 4). Thus, the determination

of the conformal worldlines with constant curvatures is reduced to the computation
of the exponentials of the matrices uK. From a computational point of view, this
requires a detailed analysis of possible orbit types of the infinitesimal generator K.

4.2. Conformal curvatures in terms of Jacobi’s elliptic functions. In the
following, we suppose that the conformal curvatures are not constant.

Lemma 4. If c1, c2, c3 are the characters of �, then the 3-order polynomial Q1(t) =
t

3+2c1t2+c2t+c

2
3 has three distinct real roots e1, e2, e3, such that e1 < 0 < e2 < e3.

Proof. Let e1, e2, e3 be the roots of Q1. Then,

k̇

2
2 + k

4
2 + c

2
3k

�2
2 + 2c1k

2
2 + c2 = 0

implies

(4.10) (k2k̇2)
2 = �(k22 � e1)(k

2
2 � e2)(k

2
2 � e3)

and

(4.11) c1 = �1

2
(e1 + e2 + e3), c2 = e1e2 + e1e3 + e2e3, c

2
3 = �e1e2e3.

If two roots are the complex conjugate one of the other, say e2 and e3, the third
equation of (4.11) implies e1 < 0. Hence the right hand side of (4.10) is strictly
negative. This contradicts the fact that k2 is non constant. If Q1 has a double root,
say e2 = e3, then the third equation of (4.11) implies e1 < 0. So, as in the previous
case, the right hand side of (4.10) is strictly negative, which is a contradiction.
Thus the roots must be real and distinct. We choose the ordering e1 < e2 < e3. By
the third equation of (4.11), two possibilities may occur: either e1 < e2 < e3 < 0,
or e1 < 0 < e2 < e3. In the first case, the right hand side of (4.10) is negative,
which is a contradiction. Thus e1 < 0 < e2 < e3, as claimed. ⇤
Definition 11. We say that e1, e2, e3 are the phase parameters of the worldline.
According to (4.11), the characters can be computed from the phase parameters.

Next, we let

(4.12) `1 = e2`3, `2 = e1`4, `3 = e3 � e1, `4 = e3 � e2, m = `4/`3,

and denote by K(m) and sn(�,m) the complete integral of the first kind and the
Jacobi’s sn-function with parameter m.8

Proposition 5. Let � be a conformal worldline with phase parameters e1 < 0 <

e2 < e3. Then

(4.13) k2(u) =

s

`1 � `2sn2(
p
`3u+ u0,m)

`3 � `4sn2(
p
`3u+ u0,m)

and

(4.14) k1 =
3

2
k

2
2 �

1

2
(e1 + e2 + e3), k3 =

p�e1e2e3 k
�2
2 ,

8The parameter m is the square of the modulus k of the elliptic function. In the literature,
the notation sn(�, k) is also used to denote the sn-function with modulus k.
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where u0 is a constant.

Proof. Let f(u) = k2(u/
p
`3). Then, by (4.10), we have

ḟ

2 = � 4

e3 � e1
(f � e1)(f � e2)(f � e3).

If e1 < 0 < e2 < e3, the general solution of the equation above (cf. [3], page77) is

f(u) =
`1 � `2sn2(u+ u0,m)

`3 � `4sn2(u+ u0,m)
,

where u0 is a constant. This implies (4.13). We conclude the proof by observing
that (4.14) is an immediate consequence of (4.9) and (4.11). ⇤

The above proposition has the following consequences: (1) k2 is a strictly posi-
tive, even periodic function, with period

(4.15) ! = 2K(m)/
p

`3;

(2) the parametrizations by conformal parameter of a worldline are defined on the
whole real line. In addition, by possibly shifting the independent variable, the
constant u0 in (4.13) can be put equal to zero. This means that a conformal
worldline admits a parametrization by conformal parameter, such that k2(0) =
p

`1/`3. This is referred to as the canonical parametrization.

Definition 12. We say that a conformal worldline � is a standard configuration

if: (1) � is parametrized by the canonical parameter; and (2) the canonical frame
B of � satisfies the initial condition B|0 = I6.

9 Clearly, any conformal worldline is
conformally equivalent to a unique standard configuration.

The above discussion can be summarized in the following.

Proposition 6. The standard configurations are in 1-1 correspondence with the

points of the domain

F = {e = (e1, e2, e3) 2 R

3 : e1 < 0 < e2 < e3} ⇢ R

3
.

In other words, for each e = (e1, e2, e3) 2 F , there exists a unique conformal

worldline � in its standard configuration with phase parameters (e1, e3, e3).

4.3. The momentum operator. Let � be a conformal worldline in standard con-
figuration with curvatures k1, k2, k3. Let H : Y ! a(2, 4) be the map given by

(4.16) H =

0

B

B

B

B

B

B

@

0 �1 �(k22 � k1) k̇2 k2k3 0
0 0 0 �k2 0 1
�1 0 0 0 0 �(k22 � k1)
0 �k2 0 0 0 k̇2

0 0 0 0 0 k2k3

0 0 �1 0 0 0

1

C

C

C

C

C

C

A

.

Then, (4.13) and (4.14) imply

(4.17) Ḣ = [H,K].

This equation together with B

0 = BK yields

(4.18) B|u H|u B

�1
|u = H|0 , 8u 2 R.

9Here, I6 denotes the 6⇥ 6 identity matrix.
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Definition 13. We let m := H|0 and call m the momentum operator of �.

Remark 8. We give a brief explanation of the conceptual origin of the momentum
operator. The first step is the construction of the momentum space and of the
Euler–Lagrange exterior di↵erential system [14, 15]. In our specific situation, the
momentum space is the 19-dimensional manifold Z = A

"
+(2, 4)⇥ K, where

K =
n

k = (k1, k2, k3, k̇2) 2 R

4 | k2 > 0, k3 > 0
o

⇢ R

4
.

The restricted conformal group acts freely on the left of Z by

L

Y

(X, k) = (Y X, k), 8X,Y 2 A

"
+(2, 4), 8 k 2 K.

The Euler–Lagrange di↵erential system is the A"
+(2, 4)-invariant Pfa�an di↵erential

ideal I ⇢ ⌦⇤(Z) generated by the 1-forms

µ

2
0, µ

3
0, µ

4
0, µ

2
1, µ

3
1, µ

4
1, µ

3
5, µ

4
5, µ

4
2, µ

0
0

µ

2
5 � µ

1
0, µ

1
5 � k1µ

1
0, µ

3
2 � k2µ

1
0, µ

4
3 � k3µ

1
0

and

dk̇2 � k2(k
2
3 + k

2
2 � 2k1)µ

1
, dk2 � k̇2µ

1
0, dk1 � 3k2k̇2µ

1
0, k2dk3 + 2k2k̇2µ

1
0.

The independence condition of the system is the invariant 1-form µ

1
0. The integral

curves of (I, µ1
0) can be constructed as follows. Let � be a conformal worldline10

with curvatures k1, k2, k3 and canonical frame B. The lift b = (B, k1, k2, k3, k̇2) :
R ! Z of � to Z is said to be the extended frame field along �. Proposition 3 tells
us that the integral curves of (I, µ1

0) are the extended frame fields of the worldlines.
Using the Maurer–Cartan equations (2.3), we see that

(4.19) ⇣ =
1

2
(µ1

0 + µ

2
5 + (k22 � k1)µ

2
0 � k̇2µ

3
0 � k2k3µ

4
0 + k2µ

3
1)

is an invariant contact 1-form, such that the integral curves of its characteristic
vector field X

⇣

are the extended frames of the worldlines.11 We can think of ⇣ as a
map into the dual space a(2, 4)⇤ of the conformal Lie-algebra. If \ : a⇤(4, 2) ! a(2, 4)
denotes the pairing defined by the Killing form, then ⇣\ = \ � ⇣ : Z ! a(2, 4) is an
equivariant map which in our context plays the role of the Legendre transformation.
If b is the extended frame field of �, then H coincides with ⇣\ � b. The momentum
map of the action of A"

+(2, 3) on (Z, ⇣) is given by

b

m : (X, k) 2 Z ! ad

⇤
X

(⇣|(B,k)) 2 a

⇤(2, 4).

By Nöther’s conservation theorem for a Hamiltonian action on a contact manifold,
b

m is constant along the characteristic curves. Thus, if b is the extended frame of a
worldline �, then bm

�

= b

m � b is constant and bm\

�

is the momentum operator of �.
This explains the geometrical origin of the momentum operator of a worldline.

Hereafter we will adopt the following notations:

• Pm is the characteristic polynomial of m;
• Sm is the spectrum of m, where m is viewed as an endomorphism of C6;
• for each � 2 Sm, n1(�) is the multiplicity of � as a root of Pm and n2(�) is
the complex dimension of the m-eigenspace V

�

of �.

10Recall that � is linearly full, with positive helicity and parametrized by the conformal
parameter

11The characteristic vector field X⇣ is defined by ⇣(X⇣) = 1, ◆X⇣
d⇣ = 0.
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Definition 14. A conformal worldline is said to be regular, exceptional, or singular
depending on whether m is a regular, exceptional, or singular element of the Lie
algebra a(2, 4). In other words: (1) � is regular if Sm consists of six elements; (2)
� is exceptional if Sm has less that six elements and n2(�) = 1, for every � 2 Sm;
(3) � is singular if n2(�) > 1, for some �.

From (4.18) it follows that Pm coincides with the characteristic polynomial of
H|u , for every u 2 R. By (4.3), we get

(4.20) Pm(t) = t

6 + 2c1t
4 + (c2 + 1)t2 + c

2
3 = Q1(t

2) + t

2
.

Let Q2(t) be the third-order polynomial Q1(t) + t

2. Since the roots of Q1(t) are
the phase parameters e1 < 0 < e2 < e3, we infer that three possibilities may occur:

• Q2 has three distinct real roots ⇢1, ⇢2, ⇢3, such that e1 < ⇢1 < 0 < e2 <

⇢2 < ⇢3 < e3;
• Q2 has one negative real root ⇢1 with e1 < ⇢1 and two complex conjugate
roots ⇢2 = µ+ i⌫, ⌫ > 0 and ⇢3 = µ� i⌫;

• Q2 has one simple real root ⇢1 such that e1 < ⇢1 < 0 and a double real
root ⇢2 = ⇢3, e2 < ⇢ < e3.

Let12

�0 = i

p

|⇢1|, �1 = �i

p

|⇢1|, �2 =
p
⇢2,

�3 = �p
⇢2, �4 =

p
⇢3, �5 = �p

⇢3.
(4.21)

In the first two cases the eigenvalues of Pm are simple and

(4.22) Sm = {�0, . . . ,�5}.
While, in the third case we have

(4.23) Sm = {�0, . . . ,�3}
and the two real eigenvalues �2 and �3 are the double roots of Pm.

We can prove the following.

Proposition 7. A conformal worldline is either regular or exceptional.

Proof. For every � 2 Sm, let L�

= (L0
�

, . . . , L

5
�

) : R ! C

6 be defined by

(4.24)

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

L

0
�

= �(�2 � k

2
2)(�

2 + k1 � k

2
2),

L

1
�

= �(�� k2k̇2),

L

2
�

= ��2(�2 � k

2
2),

L

3
�

= �(�k̇2 � k2),

L

4
�

= k2k3(�2 � k

2
2),

L

5
�

= �(�2 � k

2
2).

The map L

�

is real-analytic and periodic, with period !. Let D
�

be its zero set. If
� /2 R, then D

�

= ;. If � 2 R, instead, we have

(4.25) D

�

=

(

D

+
�

= {n! + p

�

, n 2 Z}, � > 0,

D

�
�

= {n! � p

�

, n 2 Z}, � < 0,

12If z 2 C \R+, then
p
z is the determination of the square root with positive imaginary part.
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where p

�

2 (0,!) is given by

(4.26) p

�

= sn�1

✓

1

↵

,m

◆

, ↵ =

s

`2 � �

2
`4

`1 � �

2
`3
.

The �-eigenspace V
�

|
u

of H|
u

is spanned by L

�

|
u

, for every u /2 D

�

. Since D

�

is a
discrete set, this implies that dim(V

�

|
u

) = 1, for every u 2 R. On the other hand, m
and H|

u

belongs to the same adjoint orbit, for every u. Thus, also the eigenspaces
of the momentum are 1-dimensional. This proves the result. ⇤
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Figure 1. The graphs of the functions s
�

(on the left) and r

�

(on
the right), � 2 R.

4.4. Integrating factors and principal vectors. Let � be the standard config-
uration of a linearly full conformal worldline with nonconstant curvatures. Denote
by e1 < 0 < e2 < e3 its phase parameters and by B : R ! A

"
+(2, 4) its canonical

frame field. For each � 2 Sm, consider the functions

(4.27) r

�

=
k2k̇2 + �

k

2
2 � �

2
, s

�

=
�

2 + k

2
2 � 2�k2k̇2

(�2 � k

2
2)

2
.

If � /2 R, the functions r

�

and s

�

are periodic, complex-valued and real-analytic;
if � 2 R, r

�

and s

�

are periodic, real-valued and real-analytic on the complement
of the discrete set eD

�

= D

+
�

[ D

�
�

; their absolute values tend to infinity when u

approaches one of the points of eD
�

(see Figure 1). For notational consistency, we
put eD

�

= ;, when � /2 R.

Definition 15. A primitive �
�

: R \ eD
�

! C of r
�

is said to be an integrating

factor of the first kind for the eigenvalue � if

• �

�

|0 = 0;
• e

���
L

�

: R \ eD
�

! C

6 extends to a real-analytic map R ! C

6.

Remark 9. The integrating factors of the first kind are quasi-periodic functions,
with quasi-period 2!. If � /2 R, the function �

�

is a regular, complex-valued func-
tion. If � 2 R, the integrating factor �

�

is real-analytic on the complement of
the discrete set D

�

and its imaginary part is locally constant. The function e

�� is
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Figure 2. The graphs of the functions kL
�

k2 (on the left) and
e

��� (on the right), � 2 R.

real-valued, with singularities at the points of D
�

(see Figure 2). The singularities
of e��� compensate the zeroes of the functions L

j

�

so that the products e

���
L

j

�

are regular, real-analytic maps (see Figure 3). The evaluation of the integrating
factors in terms of elliptic integrals and the Jacobi theta functions is analyzed in
the appendix. The explicit expression of the integrating factor of the first kind for a
non-real eigenvalue is given in (6.4) while the integrating factor of a real eigenvalue
can be found in (6.7).
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Figure 3. The graphs of the functions e

���
L

0
�

(on the left) and
e

���
L

3
�

(on the right), � 2 R.

Let � be a multiple root of Pm. We set

b

D

�

= {�sign(�)p+ n! : n 2 Z}
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and we define T

�

= (T 0
�

, . . . , T

5
�

) : R \ bD
�

! R

6 by

(4.28)

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

T

0
�

= 1
2 (�

2 � k

2
2)(6�

2 + 2c1 + k

2
2),

T

1
�

= k2(k
2
2 k̇2+�

2
k̇2�2�k2)

�

2�k

2
2

,

T

2
�

= �2�(�2 � k

2
2),

T

3
�

= k2(�
2+k

2
2�2�k2k̇2)

�

2�k

2
2

,

T

4
�

= 0,

T

5
�

= (�2 � k

2
2).

Remark 10. The map T

�

is periodic with period !, is real-analytic on the comple-
ment of bD

�

and tends to ±1 when u tends to a point of bD
�

. It vanishes at the
point of D

�

(see Figure 4)
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Figure 4. The graphs of the functions kT
�

k2 (on the left) and ⌘
�

(on the right) when � 2 R is a multiple root of Pm.

Definition 16. A primitive ⌘
�

: R \ eD
�

! R of s
�

is said an integrating factor of

the second kind for the multiple eigenvalue � if

• ⌘

�

|0 = 0;
• e

���(T
�

� ⌘

�

L

�

) : R \ eD
�

! C

6 extends to a real-analytic map R ! C

6.

Remark 11. The integrating factor of the second kind vanishes at the points of D
�

and tends to ±1 when u tends to a point of bD
�

(see Figure 4). The functions ⌘
�

L

�

and T

�

�⌘
�

L

�

behave in a similar way. Multiplying T

�

�⌘
�

L

�

by e

��� , the zeroes of
one factor compensate the singularities of the other so that the product is a regular
analytic function (see Figures 5). The formula expressing the integrating factor
of the second kind is given in (6.11). Despite the apparent opacity, the formulas
of the integrating factors can be easily made operative using standard symbolic
computation programs such as Mathematica 11.

Proposition 8. If � 2 Sm is an eigenvalue of the momentum, then

(4.29) e

���

5
X

j=0

L

j

�

B

j

= A
�

,
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Figure 5. The graphs of the functions e

���(T 0
�

� ⌘

�

L

0
�

) (on the
left) and e

���(T 3
�

� ⌘

�

L

3
�

) (on the right) when � 2 R is a multiple
root of Pm.

where A
�

2 C

6
is an m-eigenvector of the eigenvalue �. If � is a multiple root of

Pm, then

(4.30) e

���

5
X

j=0

(T j

�

� ⌘

�

L

j

�

)B
j

= C
�

,

where C
�

2 C

6
is a nonzero vector, such that

C
�

^A
�

6= 0, m(C
�

) = �C
�

+A
�

.

We call A
�

the principal vector of the eigenvalue � and C
�

the secondary principal
vector of the multiple eigenvalue �.

Proof. Let L
�

: R ! C

6 be the map

(4.31) L
�

=
5
X

i=0

L

i

�

(u)B
i

|
u

.

Let V
�

be the 1-dimensional m-eigenspace of the eigenvalue �. Then, (4.18) implies
that L

�

|
u

2 V

�

, for every u 2 R. Therefore, there exists a unique real-analytic map
er

�

: R \D
�

! C, such that

(4.32) L̇
�

|
u

= er
�

|
u

L
�

|
u

8u 2 R \D
�

.

From Ḃ = BK and by (4.2), we have

(4.33) L̇
�

⌘ k2k̇2 + �

k

2
2 � �

2
j

L
�

mod(B0, B1, B2, B3, B4).

From (4.32) and (4.33), we have r

�

= er
�

. Using (4.32), it follows that that e���L
�

is constant on R \ D

�

. On the other hand, e���
L

�

extends smoothly across D

�

and hence also e

���L
�

extends to a real-analytic map R ! C

6. This implies that
e

���L
�

= A
�

, for some A
�

2 V

�

. This proves the first part of the statement.
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Let � be a multiple root of Pm. The map T

�

satisfies

(4.34) H|
u

· T
�

|
u

= �T

�

|
u

+ L

�

|
u

, T

�

|
u

^ L

�

|
u

6= 0, 8u 2 R \D
�

.

Let

T
�

= e

���

5
X

j=0

T

j

�

B

j

: R \D
�

! C

6
.

From (4.34), we obtain

(4.35) m(T
�

) = �T
�

+A
�

, T
�

^A
�

6= 0.

Di↵erentiating the first equation in (4.35), we get m(T0
�

) = �T0
�

. Thus, there
exists a unique real-analytic function es

�

: R\D
�

! C such that T0
�

= es
�

A
�

. Using
Ḃ = BK, we obtain

Ṫ
�

⌘ �

2 + k

2
2 � 2�k2k̇2

(�� k

2
2)

2
A

�

, mod(B0, B1, B2, B3, B5).

Then, es
�

= s

�

. This implies that T
�

�⌘
�

A
�

is constant on R\D
�

. Since e���(T
�

�
⌘

�

L

�

) extends smoothly across eD
�

, also T
�

� ⌘

�

A
�

extends to a smooth (real-
analytic) map R ! C

6. Hence there exists C
�

2 C

6 such that T
�

� ⌘

�

A

�

= C
�

.
Using (4.35), it follows that m(C

�

) = �C
�

+ A
�

and that C
�

^ A
�

6= 0. This
proves the result. ⇤
Remark 12. Since � is a standard configuration, then B|0 = I6 and hence

A
�

= L

�

|0, C
�

= T

�

|0.
Thus, the principal vectors can be explicitly computed in terms of the phase pa-
rameters e1, e2 and e3.

5. Integrability by quadratures

5.1. Integrability by quadratures of the regular conformal worldlines.
Let � : R ! E1,3 be the standard configuration of a regular linearly full conformal
worldline. Its momentum operator has six simple roots �0, . . . ,�5, ordered as in
(4.21). Let �

j

be the integrating factor of the first kind and A
j

be the principal
vector of �

j

, respectively. Let A 2 C(6, 6) denote the matrix with column vectors
A0, . . . ,A5 and define the real-analytic maps

�, ⇤ : R \D
�

! C(6, 6), X : R ! C(6, 6)

by13
8

>

<

>

:

� = (e��0
"0, . . . , e

��5
"5),

⇤ = (L
�0 , . . . , L�5),

X = �⇤.

We have the following.

Theorem C. Let � ⇢ E1,3
be the standard configuration of a regular linearly full

conformal worldline. Then

� =
⇥

m t(A�1)X mE0

⇤

,

where m is the matrix representing the scalar product h , i with respect to the standard

light-cone basis (E0, . . . , E5) of R2,4
.

13Here "j = t(�0j , . . . , �
5
j ), j = 0, . . . , 5, denote the column vectors of the canonical basis of R6.
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Proof. Since A
j

= e

��j
B · L

�j , j = 0, . . . , 5, we have A = B ⇤�, that is,

(5.1) B = A��1 ⇤�1
.

From (5.1), using the fact that t

B mB = m, we get

(5.2) ⇤ = mX�1 tA mA��1
.

Substituting (5.2) into (5.1), we obtain

B = m t(A�1)X m,

which implies the result. ⇤

5.2. Integrability by quadratures of the exceptional conformal worldlines.
Let � : R ! E1,3 be the standard configuration of an exceptional linearly full
conformal worldline. Its momentum operator has four distinct roots �0, . . . ,�3,
ordered as in (4.21). Then, �0 and �1 are simple purely imaginary roots and
�2, �3 are real double roots of Pm. For each eigenvalue �

j

, j = 0, . . . , 3, let �
j

be its integrating factor of the first kind and A
j

be the corresponding principal
vector. For each double root �

j

, j = 2, 3, let ⌘
j

be the integrating factor of the

second kind and C
j

be the secondary principal vector. Let eA denote the matrix
eA = (A0,A1,A2,A3,C2,C3). Let

e�,

e⇤ : R \D
�

! C(6, 6), eX : R ! C(6, 6)

be the real-analytic maps defined by
8

>

<

>

:

e� = (e��0
"0, e

��1
"1, e

��2
"2, e

��3
"3, e

��2
"4, e

��3
"5),

e⇤ = (L
�0 , L�1 , L�2 , L�3 , T�2 � ⌘2L�2 , T�3 � ⌘3L�3),

eX = e� e⇤.

We have the following.

Theorem D. Let � ⇢ E1,3
be the standard configuration of an exceptional linearly

full conformal worldline. Then

� =
h

m t(eA�1) eX mE0

i

.

Proof. From Proposition 4.4, it follows that the canonical frame field, the principal
vectors and the integrating factors satisfy

e

��0
B · L

�0 = A0, e

��1
B · L

�1 = A1, e

��2
B · L

�2 = A2, e

��3
B · L3 = A3

and

e

��2
B · (T

�2 � ⌘2L�w) = C2 e

��3
B · (T

�3 � ⌘3L�3) = C3.

We then have

(5.3) B = eA e��1
e⇤�1

.

Combining (5.3) with t

B mB = m, we obtain

(5.4) e⇤�1 = e� eA�1 m t(eA�1) eX m.

Substituting (5.4) into (5.3), we obtain B = m t(eA�1) eX m, from which the result
follows. ⇤
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5.3. Final comments and remarks. The theoretical explanation of the inte-
grability by quadratures lies in the Arnold–Liouville integrability of the Euler–
Lagrange di↵erential system. This means the following. Let m 2 a(2, 4) be the
momentum of a linearly full conformal worldline � with nonconstant curvatures.
We know that m is either regular or exceptional. The stabilizer A

"
+(2, 4)m of m is

a 3-dimensional closed subgroup, di↵eomorphic to S

1 ⇥ R

2. The inverse image of
m

\ by the momentum map is a 4-dimensional submanifold Zm ⇢ Z and the char-
acteristic vector field X

⇣

is tangent to Zm. The worldlines with momentum m are

originated by the integral curves of X
⇣

|
Zm . The stabilizer A"

+(2, 4)m acts freely on

Zm and the quotient space Zm/A
"
+(2, 4)m is a circle. This implies that Zm ⇢ Z

is di↵eomorphic to the Cartesian product of R

2 with a 2-dimensional torus T

2.
In principle, the integration by quadratures can be achieved by a di↵eomorphism
 m : Zm ! R

2 ⇥ T

2 such that  ⇤(X⇣

) is a linear vector field. Since the stabi-
lizer of the momentum operator is not compact, then the trajectory of � cannot be
closed. Instead, if � is trapped in a 3-dimensional Einstein universe, the stabilizer of
the momentum operator can be a maximal compact abelian subgroup of A"

+(2, 3).
Thus, in this case, there are countably many closed worldlines with nonconstant
curvatures, as it has been shown in [8].

The periodicity of the conformal curvatures implies that the trajectory of � is left
unchanged by the action of the infinite cyclic subgroup generated by B(!)B(0)�1 2
A

"
+(2, 4).
At last, we note that if the phase parameters e1, e2, e3 are known, then all steps of

the integration procedure can be implemented and computed using Mathematica.

6. Appendix: The integrating factors

6.1. Integrating factors of the first kind. Given � 2 Sm, let

(6.1) a = `1 � �

2
`3, b = `2 � �`4, c =

�`4

`2 � �

2
`4

and

(6.2) d =
�(`2`3 � `1`4)

(`2 � �

2
`4)(`1 � �

2
`3)

,

where `1, `2, `3 and `4 are constants as in (4.12). From (4.13) and (4.27), we obtain

(6.3) r

�

(u) =
1

2

d

du

✓

ln
a� b sn2(

p
`3u,m)

`3 � `4 sn2(
p
`3u,m)

◆

+ c+
d

1� ↵

2sn2(
p
`3u,m)

,

where the parameter m is as in (4.12) and ↵ is as in (4.26).

6.1.1. The integrating factor of the first kind of a non-real eigenvalue. If � is a
non-real eigenvalue, then

1� ↵

2sn2(
p

`3u,m) 6= 0, 8u 2 R

and
Z

du

1� ↵

2sn2(u,m)
= ⇧(↵2

, am
m

(u),m),

where ⇧(n,�,m) is the incomplete integral of the third kind and am
m

(�) is the
Jacobi amplitude with parameter m. Note that in this case, the restriction of
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the incomplete integral of the third kind on the real axis is a regular real-analytic
function. Since

a� b sn2(
p
`3u,m)

`3 � `4 sn2(
p
`3u,m)

/2 R�, 8u 2 R

we can evaluate the logarithm14 of the function on the left hand side in the above
formula. Thus, the integrating factor of the eigenvalue is given by

(6.4) �

�

(u) =
1

2
ln

✓

a� b sn2(
p
`3u,m)

`3 � `4 sn2(
p
`3u,m)

◆

+ cu+
dp
`3
⇧(↵2

, am
m

(
p

`3u),m).

6.1.2. The integrating factor of the first kind of a real eigenvalue. If � is a real
eigenvalue, the function r

�

is singular and the evaluation of the integrating factor
requires some caution. Let w and v be the real constants

w =
↵

p

(↵2 �m)(↵2 � 1)
,

and

v =
E(m)

K(m)
� E(p,m)� cs(p,m)dn(p,m)�

p

(↵2 �m)(↵2 � 1)

↵

,

where p = p

�

is as in (4.26) and E(m), E(�,m) are the complete and incomplete
elliptic integrals of the second kind respectively. Let f

�

be the periodic extension,
with period 2!, of the locally constant function

f

�

(u) =

8

>

<

>

:

�⇡

2 , u 2 [p� !, p),

� 3⇡
2 , u 2 [p,! � p),
⇡

2 , u 2 [! � p,! + p),

if � < 0, and

f

�

(u) =

(

�⇡

2 , u 2 [p� !, p),
⇡

2 , u 2 [p,! + p),

if � > 0. Denote by #1(�, q

m

) the first Jacobi theta function with nome

q

m

= exp(�⇡K(1�m)/K(m)).

Proceeding as in [22], page 71, we see that

(6.5) g

�,1(u) =
w

2
p
`3

ln

 

#1(
⇡

2K(m) (p� up
`3
), q

m

)

#1(
⇡

2K(m) (p+
up
`3
), q

m

)

!

+ wvu

is a real-valued primitive of (1� ↵

2sn2(
p
`3u,m))�1. We take

g

�,2(u) =
1

2
ln(a) + cu� 1

2
ln(`3 � `4sn(

p

`3u,m)+

+
1

2
ln(1� ↵

2sn2(
p

`3u,m))
(6.6)

as a real-valued primitive of

1

2

d

du

✓

ln
a� bsn2(

p
`3u,m)

`3 � `4sn2(
p
`3u,m)

◆

+ c.

14We use the standard determination of the natural logarithm, with a branch cut discontinuity
in the complex plane running from �1 to 0.
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Then,

(6.7) �

�

= dg

�,1 + g

�,2 + if

�

,

is the integrating factor for the real eigenvalue �.

6.2. Integrating factors of the second kind. Let � be a multiple root of Pm.
Note that � is necessarily real. From

s

�

=
�

2 + k

2
2 � 2�k2k̇2

(�2 � k

2
2)

2
= �2�

k2k̇2

(�2 � k

2
2)

2
+
�

2 + k

2
2

k

2
2 � �

2
,

it follows that
Z

s

�

du = ⌘1,� + ⌘2,�,

where

⌘1,� = �2�

Z

k2k̇2

(�2 � k

2
2)

2
du =

�

k

2
2 � �

2

= �

`3 � `4sn2(
p
`3u,m)

(`1 � �

2
`3)� (`2 � �

2
`4)sn2(

p
`3u,m)

=
�

`1 � �

2
`3

`3 � `4sn2(
p
`3u,m)

1� ↵

2sn2(
p
`3u,m)

(6.8)

and

⌘2,� =

Z

�

2 + k

2
2

(�2 � k

2
2)

2
du = A

Z

cn2(
p
`3u,m)

1� ↵

2sn2(
p
`3u,m)

du+

+ B

Z

cn2(
p
`3u,m)sn2(

p
`3u,m)

1� ↵

2sn2(
p
`3u,m)

du+ C

Z

sn2(
p
`3u,m)

1� ↵

2sn2(
p
`3u,m)

du,

(6.9)

where

A =
`3(`1 + �

2
`3)

(`1 � �

2
`3)2

, B = �`4(`2 + �2`4)

(`1 � �

2
`3)2

,

and

C =
(`3 � `4)((`1 � `2) + �

2(`3 � `4))

(`1 � �

2
`3)2

.

The integrals in the right hand side of (6.9) can be evaluated as in [3], page 218,
and, as a result, we obtain

⌘2,� =
Mp
`3
E(
p

`3u,m) + Nu+ P(g
�,1 � i

⇡

2
b

f

�

)+

+
Qp
`3

sn(
p
`3u,m)cn(

p
`3u,m)dn(

p
`3u,m)

1� ↵

2sn2(
p
`3u,m)

,

(6.10)

where g

�,1 is as in (6.5) and b

f

�

is the periodic extension. with period !, of the
locally constant function

f(u) =

(

0, u 2 [0, p),

1, u 2 [p,!),
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and M, N, P, Q are the constants
8

>

>

>

>

>

<

>

>

>

>

>

:

M = ↵

2

2↵2(m�↵

2)

⇣

A+ 1
↵

2B+ 1
↵

2�1C
⌘

,

N = 1
2↵2

�

A+ C� 1
↵

2B
�

,

P = 1
2↵2(m�↵

2)

�

(2m↵2 � ↵

4 �m)A+ (↵4 �m)C+ (↵4 � 2↵2 +m)B
�

,

Q = � ↵

2

2(m�↵

2)

⇣

A+ 1
↵

2�1C+ 1
↵

2B
⌘

.

Summarizing: the integrating factor of the second kind of a multiple root is given
by

(6.11) ⌘

�

= ⌘1,� + ⌘2,�,

where ⌘1,� and ⌘2,� are defined as in (6.8) and (6.10).
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[12] C. Frances, Géometrie et dynamique lorentziennes conformes, Thése, E.N.S. Lyon (2002).
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165–183.
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